1
|
Koloski CW, Adam H, Hurry G, Foley-Eby A, Zinck CB, Wei H, Hansra S, Wachter J, Voordouw MJ. Adaptive immunity in Mus musculus influences the acquisition and abundance of Borrelia burgdorferi in Ixodes scapularis ticks. Appl Environ Microbiol 2024; 90:e0129924. [PMID: 39503497 DOI: 10.1128/aem.01299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi cycles between immature black-legged ticks (Ixodes scapularis) and vertebrate reservoir hosts, such as rodents. Larval ticks acquire spirochetes from infected hosts, and the resultant nymphs transmit the spirochetes to naïve hosts. This study investigated the impact of immunocompetence and host tissue spirochete load on host-to-tick transmission (HTT) of B. burgdorferi and the spirochete load inside immature I. scapularis ticks. Wild-type (WT) C57BL/6J mice and mice with severe combined immunodeficiency (SCID) were experimentally infected with B. burgdorferi. To measure HTT, WT and SCID mice were repeatedly infested with I. scapularis larvae, and ticks were sacrificed at three different developmental stages: engorged larvae, 1-month-old, and 12-month-old nymphs. The spirochete loads in immature ticks and mouse tissues were estimated using qPCR. In WT mice, HTT decreased from 90% to 65% over the course of the infection, whereas in the SCID mice, HTT was always 100%. Larvae that fed on SCID mice acquired a much larger dose of spirochetes compared to larvae that fed on WT mice. This difference in spirochete load persisted over tick development where nymphs that fed as larvae on SCID mice had significantly higher spirochete loads compared to their WT counterparts. HTT and the tick spirochete loads were strongly correlated with the mouse tissue spirochete loads. Our study shows that the host immune system (e.g., the presence of antibodies) influences HTT of B. burgdorferi and the spirochete load in immature I. scapularis ticks.IMPORTANCEThe tick-borne spirochete Borrelia burgdorferi causes Lyme disease in humans. This pathogen is maintained in nature by cycles involving black-legged ticks and wildlife hosts. The present study investigated the host factors that influence the transmission of B. burgdorferi from infected hosts to feeding ticks. We infected immunocompetent mice and immunocompromised mice (that cannot develop antibodies) with B. burgdorferi and repeatedly infested these mice with ticks. We determined the percentage of infected ticks and their spirochete loads. This percentage was 100% for immunocompromised mice but decreased from 90% to 65% over time (8 weeks) for immunocompetent mice. The tick spirochete load was much higher in ticks fed on immunocompromised mice compared to ticks fed on immunocompetent mice. In summary, the host immune system influences the transmission of B. burgdorferi from infected hosts to ticks and the spirochete loads in those ticks, which, in turn, determines the risk of Lyme disease for people.
Collapse
Affiliation(s)
- Cody W Koloski
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hesham Adam
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alexandra Foley-Eby
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher B Zinck
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Haomiao Wei
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Satyender Hansra
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenny Wachter
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Hodžić A, Veinović G, Alić A, Seki D, Kunert M, Nikolov G, Sukara R, Šupić J, Tomanović S, Berry D. A metalloprotease secreted by an environmentally acquired gut bacterium hinders Borrelia afzelii colonization in Ixodes ricinus. Front Cell Infect Microbiol 2024; 14:1476266. [PMID: 39450335 PMCID: PMC11499241 DOI: 10.3389/fcimb.2024.1476266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Although the importance of the microbiome in the context of tick biology and vector competence has recently come into a broader research focus, the field is still in its infancy and the complex ecological interactions between the tick residential bacteria and pathogens are obscure. Here, we show that an environmentally acquired gut bacterium has the potential to impair Borrelia afzelii colonization within the tick vector through a secreted metalloprotease. Oral introduction of either Bacillus cereus LTG-1 isolate or its purified enhancin (BcEnhancin) protein significantly reduces B. afzelii burden in the guts of Ixodes ricinus ticks. This effect is attributed to the ability of BcEnhancin to degrade a glycan-rich peritrophic matrix (PM), which is a gut protective barrier essential for Borrelia survival. Our study highlights the importance of the gut microbiome in determining tick vector competence and provides a deeper mechanistic insight into the complex network of interactions between Borrelia, the tick, and the tick microbiome.
Collapse
Affiliation(s)
- Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Gorana Veinović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Amer Alić
- Department of Clinical Sciences of Veterinary Medicine, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - David Seki
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Martin Kunert
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Georgi Nikolov
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Ratko Sukara
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jovana Šupić
- Department of Clinical Sciences of Veterinary Medicine, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Snežana Tomanović
- Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Zarka J, Heylen D, Sprong H, Fonville M, Elst J, Matthysen E. Xenodiagnosis in the wild: A methodology to investigate infectiousness for tick-borne bacteria in a songbird reservoir. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100210. [PMID: 39318442 PMCID: PMC11421356 DOI: 10.1016/j.crpvbd.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024]
Abstract
A crucial factor to predict the persistence and spread of infections in natural systems is the capacity of reservoir hosts to maintain the infection and transmit it to others. This is known to greatly vary within and between species and through time, although the latter part of the variation is often less well understood in the wild. Borrelia garinii is one of the causal agents of Lyme disease in humans and is transmitted among avian hosts by the hard tick Ixodes ricinus. Great tits are known to be a reservoir in Europe for B. garinii. For tick-borne pathogens like B. garinii, infectiousness or host-to-vector transmission can be measured using xenodiagnosis where pathogen-free vectors are fed on a host, and the blood-fed vectors are subsequently tested for the pathogen. Here we describe and evaluate a methodology to quantify infectiousness for tick-borne pathogens in individual wild great tits (Parus major), involving captures and recaptures of targeted individuals. The methodology can potentially be applied to other species where recapturing is sufficiently guaranteed. We successfully recaptured most of the infested great tits two to three days after initial infestation (i.e. just before ticks have fully fed) with sufficient numbers of I. ricinus larval ticks, which were subsequently screened for B. garinii using a newly developed B. garinii-specific real-time PCR assay. Higher larval tick numbers were recovered from birds during the breeding seasons than during the winter months. Our novel B. garinii-qPCR performed well, and greatly reduced the amount of Sanger sequencing needed. Preliminary results suggest both seasonal and individual variation in infectiousness; heterogeneity that needs to be unravelled to further understand the contribution of resident birds to the epidemiology of B. garinii.
Collapse
Affiliation(s)
- Jens Zarka
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Hein Sprong
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, 3720 BA Bilthoven, the Netherlands
| | - Manoj Fonville
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, 3720 BA Bilthoven, the Netherlands
| | - Joris Elst
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
4
|
Nabbout AE, Ferguson LV, Miyashita A, Adamo SA. Female ticks (Ixodes scapularis) infected with Borrelia burgdorferi have increased overwintering survival, with implications for tick population growth. INSECT SCIENCE 2023; 30:1798-1809. [PMID: 37147777 DOI: 10.1111/1744-7917.13205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
The tick, Ixodes scapularis, vectors pathogens such as Borrelia burgdorferi, the bacterium that causes Lyme disease. Over the last few decades I. scapularis has expanded its range, introducing a novel health threat into these areas. Warming temperatures appear to be one cause of its range expansion to the north. However, other factors are also involved. We show that unfed adult female ticks infected with B. burgdorferi have greater overwintering survival than uninfected female ticks. Locally collected adult female ticks were placed in individual microcosms and allowed to overwinter in both forest and dune grass environments. In the spring we collected the ticks and tested both dead and living ticks for B. burgdorferi DNA. Infected ticks had greater overwintering survival compared with uninfected ticks every winter for three consecutive winters in both forest and dune grass environments. We discuss the most plausible explanations for this result. The increased winter survival of adult female ticks could enhance tick population growth. Our results suggest that, in addition to climate change, B. burgdorferi infection itself may be promoting the northern range expansion of I. scapularis. Our study highlights how pathogens could work synergistically with climate change to promote host range expansion.
Collapse
Affiliation(s)
- Amal El Nabbout
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
5
|
Genné D, Jiricka W, Sarr A, Voordouw MJ. Tick-to-host transmission differs between Borrelia afzelii strains. Microbiol Spectr 2023; 11:e0167523. [PMID: 37676027 PMCID: PMC10580945 DOI: 10.1128/spectrum.01675-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 09/08/2023] Open
Abstract
Many vector-borne pathogens establish multiple-strain infections in the vertebrate host and the arthropod vector. Multiple-strain infections in the host influence strain acquisition by naive vectors. Whether multiple-strain infections in the vector influence strain-specific transmission to naive hosts remains unknown. The spirochete, Borrelia afzelii, causes Lyme borreliosis and multiple-strain infections are common in both the tick vector and vertebrate host. Our study used two B. afzelii strains: Fin-Jyv-A3 and NE4049. Donor mice were infected with Fin-Jyv-A3 alone, NE4049 alone, or with both strains. Larval ticks fed on donor mice and molted into nymphal ticks infected with either strain or both strains. These nymphs were fed on test mice to determine whether multiple-strain infections in the nymph influence nymph-to-host transmission (NHT). Multiple-strain infection in the donor mice reduced the acquisition of both strains by ticks by 23%. Thus, a substantial fraction of infected nymphs from the multiple strain treatment were infected with the "wrong" competitor strain rather than the "right" focal strain. As a result, nymphs from the multiple strain treatment were 46% less likely to infect the test mice with the focal strain compared to nymphs from the single strain treatment. However, multiple-strain infection in the nymphal tick had no effect on the NHT of either strain. The nymphal spirochete load of Fin-Jyv-A3 was 1.9 times higher compared to NE4049. NHT of Fin-Jyv-A3 (79%) was 1.5 times higher compared to NE4049 (53%). Our study suggests that B. afzelii strains with higher nymphal spirochete loads have higher NHT. IMPORTANCE For many vector-borne pathogens, multiple-strain infections in the vertebrate host or arthropod vector are common. Multiple-strain infections in the host reduce strain acquisition by feeding vectors. Whether multiple-strain infections in the vector influence strain transmission to the host remains unknown. In our study, we used two strains of the tick-borne spirochete Borrelia afzelii, which causes Lyme borreliosis, to investigate whether multiple-strain infections in the nymphal tick influenced nymph-to-host transmission (NHT) of strains. Multiple-strain infections in mice reduced the acquisition of both B. afzelii strains by nymphal ticks. As a result, nymphs from the multiple strain treatment were less likely to infect naive test mice with the focal strain. Multiple-strain infection in the nymphal ticks did not influence the NHT of either strain. The strain with the higher bacterial abundance in the nymph had higher NHT. Our study suggests that pathogen abundance in the arthropod vector is important for vector-to-host transmission.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Whitney Jiricka
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
6
|
Uzum Z, Ershov D, Pavia MJ, Mallet A, Gorgette O, Plantard O, Sassera D, Stavru F. Three-dimensional images reveal the impact of the endosymbiont Midichloria mitochondrii on the host mitochondria. Nat Commun 2023; 14:4133. [PMID: 37438329 DOI: 10.1038/s41467-023-39758-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
The hard tick, Ixodes ricinus, a main Lyme disease vector, harbors an intracellular bacterial endosymbiont. Midichloria mitochondrii is maternally inherited and resides in the mitochondria of I. ricinus oocytes, but the consequences of this endosymbiosis are not well understood. Here, we provide 3D images of wild-type and aposymbiotic I. ricinus oocytes generated with focused ion beam-scanning electron microscopy. Quantitative image analyses of endosymbionts and oocyte mitochondria at different maturation stages show that the populations of both mitochondrion-associated bacteria and bacterium-hosting mitochondria increase upon vitellogenisation, and that mitochondria can host multiple bacteria in later stages. Three-dimensional reconstructions show symbiosis-dependent morphologies of mitochondria and demonstrate complete M. mitochondrii inclusion inside a mitochondrion. Cytoplasmic endosymbiont located close to mitochondria are not oriented towards the mitochondria, suggesting that bacterial recolonization is unlikely. We further demonstrate individual globular-shaped mitochondria in the wild type oocytes, while aposymbiotic oocytes only contain a mitochondrial network. In summary, our study suggests that M. mitochondrii modulates mitochondrial fragmentation in oogenesis possibly affecting organelle function and ensuring its presence over generations.
Collapse
Affiliation(s)
- Zerrin Uzum
- Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur; CNRS UMR2001, Paris, France.
| | - Dmitry Ershov
- Image Analysis Hub, Cell Biology and Infection Department, Institut Pasteur, Paris, France
- Bioinformatics and Biostatistics HUB, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Michael J Pavia
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Adeline Mallet
- Ultrastructural BioImaging Core Facility, Institut Pasteur, Paris, France
| | - Olivier Gorgette
- Ultrastructural BioImaging Core Facility, Institut Pasteur, Paris, France
| | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Fabrizia Stavru
- Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur; CNRS UMR2001, Paris, France
| |
Collapse
|
7
|
Samanta K, Azevedo JF, Nair N, Kundu S, Gomes-Solecki M. Infected Ixodes scapularis Nymphs Maintained in Prolonged Questing under Optimal Environmental Conditions for One Year Can Transmit Borrelia burgdorferi ( Borreliella genus novum) to Uninfected Hosts. Microbiol Spectr 2022; 10:e0137722. [PMID: 35862961 PMCID: PMC9431577 DOI: 10.1128/spectrum.01377-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/26/2022] [Indexed: 11/28/2022] Open
Abstract
In recent decades, Lyme disease has been expanding to previous nonendemic areas. We hypothesized that infected I. scapularis nymphs that retain host-seeking behavior under optimal environmental conditions are fit to fulfil their transmission role in the enzootic cycle of B. burgdorferi. We produced nymphal ticks in the laboratory under controlled temperature (22-25°C), humidity (80-90%), and natural daylight cycle conditions to allow them to retain host-seeking/questing behavior for 1 year. We then analyzed differences in B. burgdorferi infection prevalence in questing and diapause nymphs at 6 weeks postmolting (prime questing) as well as differences in infection prevalence of questing nymphs maintained under prolonged environmental induced questing over 12 months (prolonged questing). Lastly, we analyzed the fitness of nymphal ticks subjected to prolonged questing in transmission of B. burgdorferi to naive mice over the course of the year. B. burgdorferi infected unfed I. scapularis nymphal ticks maintained under optimal environmental conditions in the laboratory not only survived for a year in a developmental state of prolonged questing (host-seeking), but they retained an infection prevalence sufficient to effectively fulfil transmission of B. burgdorferi to uninfected mice after tick challenge. Our study is important for understanding and modeling Lyme disease expansion into former nonendemic regions due to climate change. IMPORTANCE Lyme disease is rapidly spreading from its usual endemic areas in the Northeast, Midwest, and Midatlantic states into neighboring areas, which could be due to changing climate patterns. Our study shows that unfed I. scapularis nymphal ticks kept under optimal environmental conditions in the laboratory survived for a year while exhibiting aggressive host-seeking behavior, and they maintained a B. burgdorferi infection prevalence which was sufficient to infect naive reservoir hosts after tick challenge. Our study raises important questions regarding prolonged survival of B. burgdorferi infected host-seeking nymphal I. scapularis ticks that can potentially increase the risk of Lyme disease incidence, if conditions of temperature and humidity become amenable to the enzootic cycle of B. burgdorferi in regions currently classified as nonendemic.
Collapse
Affiliation(s)
- Kamalika Samanta
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jose F. Azevedo
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Nisha Nair
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Suman Kundu
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Maria Gomes-Solecki
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Springer A, Jordan D, Glass A, Kahl O, Fingerle V, Girl P, Chitimia-Dobler L, Strube C. Borrelia Infections in Ageing Ticks: Relationship with Morphometric Age Ratio in Field-Collected Ixodes ricinus Nymphs. Microorganisms 2022; 10:microorganisms10010166. [PMID: 35056615 PMCID: PMC8778018 DOI: 10.3390/microorganisms10010166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
In Europe, Ixodes ricinus plays a major role as a vector of Borrelia burgdorferi sensu lato (s.l.) spirochaetes, the causative agents of Lyme borreliosis, among other pathogens. In unfed ticks, Borrelia spirochaetes experience prolonged nutrient restriction. However, only few studies exist with regard to Borrelia infections in unfed ticks of different physiological ages. Changing body dimensions of unfed ticks, due to the consumption of energy reserves, allow physiological age estimation. The present study investigated the relationship of morphometric age with Borrelia prevalence and spirochaete load in 1882 questing I. ricinus nymphs, collected at two different locations in northern Germany in 2020. In addition, Borrelia species composition was investigated by employing a reverse line blot (RLB) probe panel suitable for the detection of ten different B. burgdorferi s.l. species, as well as the relapsing-fever spirochaete B. miyamotoi. Overall, Borrelia prevalence was 25.8% (485/1882). Whilst there was no statistically significant difference in Borrelia prevalence between the different morphometric age groups, Borrelia infection intensity as determined by probe-based quantitative real-time PCR significantly declined with increasing morphometric age. Borrelia species differentiation by RLB was successful in 29.5% of positive ticks, and revealed B. afzelii as the dominating species (65.0% of the differentiated infections). Additionally, B. garinii, B. valaisiana, B. burgdorferi sensu stricto, B. spielmanii, and B. miyamotoi were detected.
Collapse
Affiliation(s)
- Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (A.S.); (D.J.); (A.G.)
| | - Daniela Jordan
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (A.S.); (D.J.); (A.G.)
| | - Antje Glass
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (A.S.); (D.J.); (A.G.)
| | - Olaf Kahl
- Tick-Radar GmbH, 10555 Berlin, Germany;
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany;
| | - Philipp Girl
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany; (P.G.); (L.C.-D.)
| | | | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hanover, Germany; (A.S.); (D.J.); (A.G.)
- Correspondence: ; Tel.: +49-511-9538-711
| |
Collapse
|
9
|
Norte AC, Araújo PM, Augusto L, Guímaro H, Santos S, Lopes RJ, Núncio MS, Ramos JA, Lopes de Carvalho I. Effects of stress exposure in captivity on physiology and infection in avian hosts: no evidence of increased Borrelia burgdorferi s.l. infectivity to vector ticks. MICROBIAL ECOLOGY 2022; 83:202-215. [PMID: 33758979 DOI: 10.1007/s00248-021-01738-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Exposure to environmental stressors, an increasingly recurring event in natural communities due to anthropogenic-induced environmental change, profoundly impacts disease emergence and spread. One mechanism through which this occurs is through stress-induced immunosuppression increasing disease susceptibility, prevalence, intensity and reactivation in hosts. We experimentally evaluated how exposure to stressors affected both the physiology of avian hosts and the prevalence of the zoonotic bacteria Borrelia burgdorferi sensu lato (s.l.), in two model species-the blackbird Turdus merula and the robin Erithacus rubecula captured in the wild, using xenodiagnoses and analysis of skin biopsies and blood. Although exposure to stressors in captivity induced physiological stress in birds (increased the number of circulating heterophils), there was no evidence of increased infectivity to xenodiagnostic ticks. However, Borrelia detection in the blood for both experimental groups of blackbirds was higher by the end of the captivity period. The infectivity and efficiency of transmission were higher for blackbirds than robins. When comparing different methodologies to determine infection status, xenodiagnosis was a more sensitive method than skin biopsies and blood samples, which could be attributed to mild levels of infection in these avian hosts and/or dynamics and timing of Borrelia infection relapses and redistribution in tissues.
Collapse
Affiliation(s)
- A C Norte
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - P M Araújo
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-InBIO, Universidade do Porto, Porto, Portugal
| | - L Augusto
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Department of Veterinary Sciences, University of Évora, Évora, Portugal
| | - H Guímaro
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - S Santos
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - R J Lopes
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-InBIO, Universidade do Porto, Porto, Portugal
| | - M S Núncio
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - J A Ramos
- Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, Calçada Martim de Freitas, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - I Lopes de Carvalho
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
10
|
Hamilton PT, Maluenda E, Sarr A, Belli A, Hurry G, Duron O, Plantard O, Voordouw MJ. Borrelia afzelii Infection in the Rodent Host Has Dramatic Effects on the Bacterial Microbiome of Ixodes ricinus Ticks. Appl Environ Microbiol 2021; 87:e0064121. [PMID: 34191531 PMCID: PMC8388833 DOI: 10.1128/aem.00641-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiome of blood-sucking arthropods can shape their competence to acquire and maintain infections with vector-borne pathogens. We used a controlled study to investigate the interactions between Borrelia afzelii, which causes Lyme borreliosis in Europe, and the bacterial microbiome of Ixodes ricinus, its primary tick vector. We applied a surface sterilization treatment to I. ricinus eggs to produce dysbiosed tick larvae that had a low bacterial abundance and a changed bacterial microbiome compared to those of the control larvae. Dysbiosed and control larvae fed on B. afzelii-infected mice and uninfected control mice, and the engorged larvae were left to molt into nymphs. The nymphs were tested for B. afzelii infection, and their bacterial microbiome underwent 16S rRNA amplicon sequencing. Surprisingly, larval dysbiosis had no effect on the vector competence of I. ricinus for B. afzelii, as the nymphal infection prevalence and the nymphal spirochete load were the same between the dysbiosed group and the control group. The strong effect of egg surface sterilization on the tick bacterial microbiome largely disappeared once the larvae molted into nymphs. The most important determinant of the bacterial microbiome of I. ricinus nymphs was the B. afzelii infection status of the mouse on which the nymphs had fed as larvae. Nymphs that had taken their larval blood meal from an infected mouse had a less abundant but more diverse bacterial microbiome than the control nymphs. Our study demonstrates that vector-borne infections in the vertebrate host shape the microbiome of the arthropod vector. IMPORTANCE Many blood-sucking arthropods transmit pathogens that cause infectious disease. For example, Ixodes ricinus ticks transmit the bacterium Borrelia afzelii, which causes Lyme disease in humans. Ticks also have a microbiome, which can influence their ability to acquire and transmit tick-borne pathogens such as B. afzelii. We sterilized I. ricinus eggs with bleach, and the tick larvae that hatched from these eggs had a dramatically reduced and changed bacterial microbiome compared to that of control larvae. These larvae fed on B. afzelii-infected mice, and the resultant nymphs were tested for B. afzelii and for their bacterial microbiome. We found that our manipulation of the bacterial microbiome had no effect on the ability of the tick larvae to acquire and maintain populations of B. afzelii. In contrast, we found that B. afzelii infection had dramatic effects on the bacterial microbiome of I. ricinus nymphs. Our study demonstrates that infections in the vertebrate host can shape the tick microbiome.
Collapse
Affiliation(s)
| | - Elodie Maluenda
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alessandro Belli
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Olivier Duron
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université Montpellier (UM), Montpellier, France
| | | | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Mahmood S, Sima R, Urbanova V, Trentelman JJA, Krezdorn N, Winter P, Kopacek P, Hovius JW, Hajdusek O. Identification of Tick Ixodes ricinus Midgut Genes Differentially Expressed During the Transmission of Borrelia afzelii Spirochetes Using a Transcriptomic Approach. Front Immunol 2021; 11:612412. [PMID: 33613535 PMCID: PMC7890033 DOI: 10.3389/fimmu.2020.612412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
Lyme borreliosis is an emerging tick-borne disease caused by spirochetes Borrelia burgdorferi sensu lato. In Europe, Lyme borreliosis is predominantly caused by Borrelia afzelii and transmitted by Ixodes ricinus. Although Borrelia behavior throughout tick development is quite well documented, specific molecular interactions between Borrelia and the tick have not been satisfactorily examined. Here, we present the first transcriptomic study focused on the expression of tick midgut genes regulated by Borrelia. By using massive analysis of cDNA ends (MACE), we searched for tick transcripts expressed differentially in the midgut of unfed, 24h-fed, and fully fed I. ricinus nymphs infected with B. afzelii. In total, we identified 553 upregulated and 530 downregulated tick genes and demonstrated that B. afzelii interacts intensively with the tick. Technical and biological validations confirmed the accuracy of the transcriptome. The expression of five validated tick genes was silenced by RNA interference. Silencing of the uncharacterized protein (GXP_Contig_30818) delayed the infection progress and decreased infection prevalence in the target mice tissues. Silencing of other genes did not significantly affect tick feeding nor the transmission of B. afzelii, suggesting a possible role of these genes rather in Borrelia acquisition or persistence in ticks. Identification of genes and proteins exploited by Borrelia during transmission and establishment in a tick could help the development of novel preventive strategies for Lyme borreliosis.
Collapse
Affiliation(s)
- Sazzad Mahmood
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Radek Sima
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Veronika Urbanova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Jos J A Trentelman
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Nicolas Krezdorn
- GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Frankfurt am Main, Germany
| | - Peter Winter
- GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Frankfurt am Main, Germany
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
12
|
Biotic Factors Influence Microbiota of Nymph Ticks from Vegetation in Sydney, Australia. Pathogens 2020; 9:pathogens9070566. [PMID: 32668699 PMCID: PMC7400589 DOI: 10.3390/pathogens9070566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 01/17/2023] Open
Abstract
Ticks are haematophagous ectoparasites of medical and veterinary significance due to their excellent vector capacity. Modern sequencing techniques enabled the rapid sequencing of bacterial pathogens and symbionts. This study’s aims were two-fold; to determine the nymph diversity in Sydney, and to determine whether external biotic factors affect the microbiota. Tick DNA was isolated, and the molecular identity was determined for nymphs at the cox1 level. The tick DNA was subjected to high throughput DNA sequencing to determine the bacterial profile and the impact of biotic factors on the microbiota. Four nymph tick species were recovered from Sydney, NSW: Haemaphysalis bancrofti, Ixodes holocyclus, Ixodes trichosuri and Ixodes tasmani. Biotic factors, notably tick species and geography, were found to have a significance influence on the microbiota. The microbial analyses revealed that Sydney ticks display a core microbiota. The dominating endosymbionts among all tick species were Candidatus Midichloria sp. Ixholo1 and Candidatus Midichloria sp. Ixholo2. A novel Candidatus Midichloria sp. OTU_2090 was only found in I. holocyclus ticks (nymph: 96.3%, adult: 75.6%). Candidatus Neoehrlichia australis and Candidatus Neoehrlichia arcana was recovered from I. holocyclus and one I. trichosuri nymph ticks. Borrelia spp. was absent from all ticks. This study has shown that nymph and adult ticks carry different bacteria, and a tick bite in Sydney, Australia will result in different bacterial transfer depending on tick life stage, tick species and geography.
Collapse
|
13
|
Lin YP, Diuk-Wasser MA, Stevenson B, Kraiczy P. Complement Evasion Contributes to Lyme Borreliae-Host Associations. Trends Parasitol 2020; 36:634-645. [PMID: 32456964 DOI: 10.1016/j.pt.2020.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 01/31/2023]
Abstract
Lyme disease is the most common vector-borne disease in the northern hemisphere and is caused by spirochetes of the Borrelia burgdorferi sensu lato complex. Lyme borreliae infect diverse vertebrate reservoirs without triggering apparent manifestations in these animals; however, Lyme borreliae strains differ in their reservoir hosts. The mechanisms that drive those differences are unknown. To survive in vertebrate hosts, Lyme borreliae require the ability to escape from host defense mechanisms, in particular complement. To facilitate the evasion of complement, Lyme borreliae produce diverse proteins at different stages of infection, allowing them to persistently survive without being recognized by hosts and potentially resulting in host-specific infection. This review discusses the current knowledge regarding the ecology and evolutionary mechanisms of Lyme borreliae-host associations driven by complement evasion.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Science, State University of New York at Albany, NY, USA.
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA; Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, D-60596 Frankfurt, Germany.
| |
Collapse
|
14
|
Borrelia prevalence and species distribution in ticks removed from humans in Germany, 2013-2017. Ticks Tick Borne Dis 2019; 11:101363. [PMID: 31987819 DOI: 10.1016/j.ttbdis.2019.101363] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
Lyme borreliosis caused by spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex is the most common tick-borne disease in Europe. In addition, the relapsing-fever spirochaete Borrelia miyamotoi, which has been associated with febrile illness and meningoencephalitis in immunocompromised persons, is present in Europe. This study investigated Borrelia prevalence and species distribution in ticks removed from humans and sent as diagnostic material to the Institute for Parasitology, University of Veterinary Medicine Hannover, in 2013-2017. A probe-based real-time PCR was carried out and Borrelia-positive samples were subjected to species determination by reverse line blot (RLB), including a B. miyamotoi-specific probe. The overall Borrelia-infection rate as determined by real-time PCR was 20.02 % (510/2547, 95 % CI: 18.48-21.63 %), with annual prevalences ranging from 17.17 % (90/524, 95 % CI: 14.04-20.68 %) in 2014 to 24.12 % (96/398, 95 % CI: 19.99-28.63 %) in 2015. In total, 271/475 (57.1 %) positive samples available for RLB were successfully differentiated. Borrelia afzelii was detected in 30.53 % of cases (145/475, 95 % CI: 26.41-34.89), followed by B. garinii/B. bavariensis (13.26 % [63/475], 95 % CI: 10.34-16.65). Borrelia valaisiana occurred in 5.89 % (28/475, 95 % CI: 3.95-8.41), B. spielmanii in 4.63 % (22/475, 95 % CI: 2.93-6.93), B. burgdorferi sensu stricto (s.s.)/B. carolinensis in 2.32 % (11/475, 95 % CI: 1.16-4.11), B. lusitaniae in 0.63 % (3/475, 95 % CI: 0.13-1.83) and B. bisettiae in 0.42 % (2/475, 95 % CI: 0.05-1.51) of positive ticks. Borrelia kurtenbachii was not detected, while B. miyamotoi was identified in 7.37 % (35/475, 95 % CI: 5.19-10.10) of real-time PCR-positive samples. Sanger sequencing of B. garinii/B. bavariensis-positive ticks revealed that the majority were B. garinii-infections (50/52 successfully amplified samples), while only 2 ticks were infected with B. bavariensis. Furthermore, 6/12 B. burgdorferi s.s./B. carolinensis-positive samples could be differentiated; all of them were identified as B. burgdorferi sensu stricto. Thirty-nine ticks (8.21 %, 95 % CI: 5.90-11.05) were coinfected with two different species. Comparison of the species distribution between ticks removed from humans in 2015 and questing ticks collected in the same year and the same area revealed a significantly higher B. afzelii-prevalence in diagnostic tick samples than in questing ticks, confirming previous observations. The obtained data indicate that Borrelia prevalence fluctuated in the same range as observed in a previous study, analysing the period from 2006 to 2012. Detection of B. miyamotoi in 7.37 % of Borrelia-positive samples points to the fact that clinicians should be aware of this pathogen as a differential diagnosis in cases of febrile illness.
Collapse
|
15
|
Genné D, Sarr A, Rais O, Voordouw MJ. Competition Between Strains of Borrelia afzelii in Immature Ixodes ricinus Ticks Is Not Affected by Season. Front Cell Infect Microbiol 2019; 9:431. [PMID: 31921706 PMCID: PMC6930885 DOI: 10.3389/fcimb.2019.00431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Vector-borne pathogens often consist of genetically distinct strains that can establish co-infections in the vertebrate host and the arthropod vector. Co-infections (or mixed infections) can result in competitive interactions between strains with important consequences for strain abundance and transmission. Here we used the spirochete bacterium, Borrelia afzelii, as a model system to investigate the interactions between strains inside its tick vector, Ixodes ricinus. Larvae were fed on mice infected with either one or two strains of B. afzelii. Engorged larvae were allowed to molt into nymphs that were subsequently exposed to three seasonal treatments (artificial summer, artificial winter, and natural winter), which differed in temperature and light conditions. We used strain-specific qPCRs to quantify the presence and abundance of each strain in the immature ticks. Co-infection in the mice reduced host-to-tick transmission to larval ticks and this effect was maintained in the resultant nymphs at 1 and 4 months after the larva-to-nymph molt. Competition between strains in co-infected ticks reduced the abundance of both strains. This inter-strain competition occurred in the three life stages that we investigated: engorged larvae, recently molted nymphs, and overwintered nymphs. The abundance of B. afzelii in the nymphs declined by 40.5% over a period of 3 months, but this phenomenon was not influenced by the seasonal treatment. Future studies should investigate whether inter-strain competition in the tick influences the subsequent strain-specific transmission success from the tick to the vertebrate host.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Lynn GE, Breuner NE, Eisen L, Hojgaard A, Replogle AJ, Eisen RJ. An immunocompromised mouse model to infect Ixodes scapularis ticks with the relapsing fever spirochete, Borrelia miyamotoi. Ticks Tick Borne Dis 2019; 10:352-359. [PMID: 30503357 PMCID: PMC11392017 DOI: 10.1016/j.ttbdis.2018.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/17/2018] [Accepted: 11/26/2018] [Indexed: 11/28/2022]
Abstract
The hard tick-borne relapsing fever spirochete, Borrelia miyamotoi, has recently gained attention as a cause of human illness, but fundamental aspects of its enzootic maintenance are still poorly understood. Challenges to experimental studies with B. miyamotoi-infected vector ticks include low prevalence of infection in field-collected ticks and seemingly inefficient horizontal transmission from infected immunocompetent rodents to feeding ticks. To reliably produce large numbers of B. miyamotoi-infected ticks in support of experimental studies, we developed an animal model where immunocompromised Mus musculus SCID mice were used as a source of B. miyamotoi-infection for larval and nymphal Ixodes scapularis ticks. Following needle inoculation with 1 × 105 spirochetes, the SCID mice developed a high spirochetemia (greater than 1 × 107 copies of B. miyamotoi purB per mL of blood) that persisted for at least 30 d after inoculation. In comparison, immunocompetent M. musculus CD-1 mice developed transient infections, detectable for only 2-8 d within the first 16 d after needle inoculation, with a brief, lower peak spirochetemia (8.5 × 104 - 5.6 × 105purB copies per mL of blood). All larval or nymphal ticks fed on infected SCID mice acquired B. miyamotoi, but frequent loss of infection during the molt led to the proportion infected ticks of the resulting nymphal or adult stages declining to 22-29%. The ticks that remained infected after the molt had well-disseminated infections which then persisted through successive life stages, including transmission to larval offspring.
Collapse
Affiliation(s)
| | | | - Lars Eisen
- Centers for Disease Control and Prevention, United States
| | | | | | | |
Collapse
|
17
|
Huang CI, Kay SC, Davis S, Tufts DM, Gaffett K, Tefft B, Diuk-Wasser MA. High burdens of Ixodes scapularis larval ticks on white-tailed deer may limit Lyme disease risk in a low biodiversity setting. Ticks Tick Borne Dis 2018; 10:258-268. [PMID: 30446377 PMCID: PMC6377166 DOI: 10.1016/j.ttbdis.2018.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 11/24/2022]
Abstract
An inverse relationship between biodiversity and human health has been termed the ‘dilution effect’ paradigm. In the case of tick-borne infections such as Lyme disease, the key assumption is that Borrelia burgdorferi sensu lato abundance is increased by the loss of less competent (dilution) hosts as biodiversity declines. White-tailed deer play a dual role in the pathogen cycle, as key reproductive hosts for adult ticks and incompetent hosts for the pathogen. While the role of deer as hosts of adult ticks is well established, the extent to which deer also feed immature ticks and reduce the proportion infected is unknown because of logistic constraints in measuring this empirically. We estimated the proportion of larvae that fed on deer in an extremely species-poor community on Block Island, RI, where tick nymphal infection prevalence was found to be lower than expected. In 2014, we measured the density, larval tick burdens, and realized reservoir competence of small mammal and bird hosts on Block Island, RI. In 2015, we measured the infection prevalence of host-seeking Ixodes scapularis nymphs resulting from larvae fed on available hosts in 2014. We back-estimated the proportion of larvae expected to have fed on deer in 2014 (the only unknown parameter) to result in the nymphal infection prevalence observed in 2015. Back-estimation predicted that 29% of larval ticks must have fed on deer to yield the observed 30% nymphal infection prevalence. In comparison, the proportion of larvae feeding on mice was 44% and 27% on birds. Our study identified an influential role of deer in reducing nymphal tick infection prevalence and a potential role as dilution hosts if the reduction in nymphal infection prevalence outweighs the role of deer as tick population amplifiers. Because both deer and competent hosts may increase in anthropogenic, fragmented habitats, the links between fragmentation, biodiversity, and Lyme disease risk may be complex and difficult to predict. Furthermore, a nonlinear relationship between deer abundance and Lyme disease risk would reduce the efficacy of deer population reduction efforts to control Lyme disease.
Collapse
Affiliation(s)
- Ching-I Huang
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| | - Samantha C Kay
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| | - Stephen Davis
- School of Science, Royal Melbourne Institute of Technology, 124 La Trobe St., Melbourne, Australia.
| | - Danielle M Tufts
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| | - Kimberley Gaffett
- The Nature Conservancy on Block Island, P.O. Box 1287, Block Island, RI 02807, United States.
| | - Brian Tefft
- Rhode Island Department of Environmental Management, Division of Fish and Wildlife, 277 Great Neck Road West Kingston, RI 02892, United States.
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Ave., 10027 New York, NY, United States.
| |
Collapse
|
18
|
Genné D, Sarr A, Gomez-Chamorro A, Durand J, Cayol C, Rais O, Voordouw MJ. Competition between strains of Borrelia afzelii inside the rodent host and the tick vector. Proc Biol Sci 2018; 285:20181804. [PMID: 30381382 PMCID: PMC6235042 DOI: 10.1098/rspb.2018.1804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/08/2018] [Indexed: 01/20/2023] Open
Abstract
Multiple-strain pathogens often establish mixed infections inside the host that result in competition between strains. In vector-borne pathogens, the competitive ability of strains must be measured in both the vertebrate host and the arthropod vector to understand the outcome of competition. Such studies could reveal the existence of trade-offs in competitive ability between different host types. We used the tick-borne bacterium Borrelia afzelii to test for competition between strains in the rodent host and the tick vector, and to test for a trade-off in competitive ability between these two host types. Mice were infected via tick bite with either one or two strains, and these mice were subsequently used to create ticks with single or mixed infections. Competition in the rodent host reduced strain-specific host-to-tick transmission and competition in the tick vector reduced the abundance of both strains. The strain that was competitively superior in host-to-tick transmission was competitively inferior with respect to bacterial abundance in the tick. This study suggests that in multiple-strain vector-borne pathogens there are trade-offs in competitive ability between the vertebrate host and the arthropod vector. Such trade-offs could play an important role in the coexistence of pathogen strains.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Andrea Gomez-Chamorro
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Claire Cayol
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
19
|
Bontemps-Gallo S, Lawrence KA, Richards CL, Gherardini FC. Genomic and phenotypic characterization of Borrelia afzelii BO23 and Borrelia garinii CIP 103362. PLoS One 2018; 13:e0199641. [PMID: 29944685 PMCID: PMC6019248 DOI: 10.1371/journal.pone.0199641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
In recent years, the number of Lyme disease or borreliosis cases in Eurasia has been dramatically increasing. This tick-borne disease is caused by Borrelia burgdorferi sensu lato, which includes B. burgdorferi sensu stricto, the main species found in North America, and B. afzelii and B. garinii, which are primarily responsible for the disease in Eurasia. Currently, research on Lyme disease has focused mainly on B. burgdorferi while B. afzelii and B. garinii, which cause disease with distinctly different symptoms, are less studied. The purpose of this study is to evaluate B. afzelii BO23 and B. garinii CIP 103362 as model organisms to study Eurasian Lyme disease. To begin our analyses, we sequenced, annotated the chromosomes of both species and compared them to B. burgdorferi strain B31. We also assayed shuttle vector, pBSV2, for transformation efficacy and demonstrated that these strains can be cultured on solid media. In addition, we characterized how physicochemical parameters (e.g., oxygen, osmolarity, oxidative stress) affect both growth and motility of the bacteria. Finally, we describe each strain's antibiotic susceptibility and accessed their ability to infect mice. In conclusion, B. afzelii BO23 was more practical for in vitro and in vivo studies than B. garinii CIP 103362.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kevin A. Lawrence
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Crystal L. Richards
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Frank C. Gherardini
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
20
|
Borrelia burgdorferi SpoVG DNA- and RNA-Binding Protein Modulates the Physiology of the Lyme Disease Spirochete. J Bacteriol 2018; 200:JB.00033-18. [PMID: 29632088 DOI: 10.1128/jb.00033-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022] Open
Abstract
The SpoVG protein of Borrelia burgdorferi, the Lyme disease spirochete, binds to specific sites of DNA and RNA. The bacterium regulates transcription of spoVG during the natural tick-mammal infectious cycle and in response to some changes in culture conditions. Bacterial levels of spoVG mRNA and SpoVG protein did not necessarily correlate, suggesting that posttranscriptional mechanisms also control protein levels. Consistent with this, SpoVG binds to its own mRNA, adjacent to the ribosome-binding site. SpoVG also binds to two DNA sites in the glpFKD operon and to two RNA sites in glpFKD mRNA; that operon encodes genes necessary for glycerol catabolism and is important for colonization in ticks. In addition, spirochetes engineered to dysregulate spoVG exhibited physiological alterations.IMPORTANCEB. burgdorferi persists in nature by cycling between ticks and vertebrates. Little is known about how the bacterium senses and adapts to each niche of the cycle. The present studies indicate that B. burgdorferi controls production of SpoVG and that this protein binds to specific sites of DNA and RNA in the genome and transcriptome, respectively. Altered expression of spoVG exerts effects on bacterial replication and other aspects of the spirochete's physiology.
Collapse
|
21
|
Honig V, Carolan HE, Vavruskova Z, Massire C, Mosel MR, Crowder CD, Rounds MA, Ecker DJ, Ruzek D, Grubhoffer L, Luft BJ, Eshoo MW. Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. FEMS Microbiol Ecol 2017; 93:4331634. [PMID: 29029144 PMCID: PMC5812510 DOI: 10.1093/femsec/fix129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/02/2017] [Indexed: 11/15/2022] Open
Abstract
Ixodes ricinus ticks are vectors of numerous human and animal pathogens. They are host generalists able to feed on more than 300 vertebrate species. The prevalence of tick-borne pathogens is influenced by host-vector-pathogen interactions that results in spatial distribution of infection risk. Broad-range polymerase chain reaction electrospray ionization mass spectrometry (PCR/ESI-MS) was used to analyze 435 I. ricinus nymphs from four localities in the south of the Czech Republic for the species identification of tick-borne pathogens. Borrelia burgdorferi sensu lato spirochetes were the most common pathogen detected in the ticks; 21% of ticks were positive for a single genospecies and 2% were co-infected with two genospecies. Other tick-borne pathogens detected included Rickettsia helvetica (3.9%), R. monacensis (0.2%), Anaplasma phagocytophilum (2.8%), Babesia venatorum (0.9%), and Ba. microti (0.5%). The vertebrate host of the ticks was determined using PCR followed by reverse line blot hybridization from the tick's blood-meal remnants. The host was identified for 61% of ticks. DNA of two hosts was detected in 16% of samples with successful host identification. The majority of ticks had fed on artiodactyls (50.7%) followed by rodents (28.6%) and birds (7.8%). Other host species were wild boar, deer, squirrels, field mice and voles.
Collapse
Affiliation(s)
- Vaclav Honig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, Brno, Czech Republic
| | - Heather E. Carolan
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Zuzana Vavruskova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic
| | - Christian Massire
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Michael R. Mosel
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Christopher D. Crowder
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Megan A. Rounds
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - David J. Ecker
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, Brno, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05, Ceske Budejovice, Czech Republic
| | - Benjamin J. Luft
- Department of Medicine, State University of New York, Stony Brook, NY 11794-8166, USA
| | - Mark W. Eshoo
- Ibis Biosciences Inc., Abbott Laboratories, 2251 Faraday Ave, Ste 150, Carlsbad, CA 92008, USA
| |
Collapse
|
22
|
Boyer PH, Boulanger N, Nebbak A, Collin E, Jaulhac B, Almeras L. Assessment of MALDI-TOF MS biotyping for Borrelia burgdorferi sl detection in Ixodes ricinus. PLoS One 2017; 12:e0185430. [PMID: 28950023 PMCID: PMC5614582 DOI: 10.1371/journal.pone.0185430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022] Open
Abstract
Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been demonstrated to be useful for tick identification at the species level. More recently, this tool has been successfully applied for the detection of bacterial pathogens directly in tick vectors. The present work has assessed the detection of Borrelia burgdorferi sensu lato in Ixodes ricinus tick vector by MALDI-TOF MS. To this aim, experimental infection model of I. ricinus ticks by B. afzelii was carried out and specimens collected in the field were also included in the study. Borrelia infectious status of I. ricinus ticks was molecularly controlled using half-idiosome to classify specimens. Among the 39 ticks engorged on infected mice, 14 were confirmed to be infected by B. afzelii. For field collection, 14.8% (n = 12/81) I. ricinus ticks were validated molecularly as infected by B. burgdorferi sl. To determine the body part allowing the detection of MS protein profile changes between non-infected and B. afzelii infected specimens, ticks were dissected in three compartments (i.e. 4 legs, capitulum and half-idiosome) prior to MS analysis. Highly reproducible MS spectra were obtained for I. ricinus ticks according to the compartment tested and their infectious status. However, no MS profile change was found when paired body part comparison between non-infected and B. afzelii infected specimens was made. Statistical analyses did not succeed to discover, per body part, specific MS peaks distinguishing Borrelia-infected from non-infected ticks whatever their origins, laboratory reared or field collected. Despite the unsuccessful of MALDI-TOF MS to classify tick specimens according to their B. afzelii infectious status, this proteomic tool remains a promising method for rapid, economic and accurate identification of tick species. Moreover, the singularity of MS spectra between legs and half-idiosome of I. ricinus could be used to reinforce this proteomic identification by submission of both these compartments to MS.
Collapse
Affiliation(s)
- Pierre H. Boyer
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
| | - Nathalie Boulanger
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
- French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- * E-mail:
| | - Amira Nebbak
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection 19–21 Boulevard Jean Moulin, Marseille, France
- Laboratoire de Biodiversité et Environnement: Interactions génomes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Bab Ezzouar, Algiers, Algeria
| | - Elodie Collin
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
| | - Benoit Jaulhac
- Early Bacterial Virulence: Lyme borreliosis Group, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, VBP EA 7290, Strasbourg, France
- French National Reference Center for Borrelia, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Institut Hospitalo-Universitaire Méditerranée Infection 19–21 Boulevard Jean Moulin, Marseille, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| |
Collapse
|
23
|
Belli A, Sarr A, Rais O, Rego ROM, Voordouw MJ. Ticks infected via co-feeding transmission can transmit Lyme borreliosis to vertebrate hosts. Sci Rep 2017; 7:5006. [PMID: 28694446 PMCID: PMC5503982 DOI: 10.1038/s41598-017-05231-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Vector-borne pathogens establish systemic infections in host tissues to maximize transmission to arthropod vectors. Co-feeding transmission occurs when the pathogen is transferred between infected and naive vectors that feed in close spatiotemporal proximity on a host that has not yet developed a systemic infection. Borrelia afzelii is a tick-borne spirochete bacterium that causes Lyme borreliosis (LB) and is capable of co-feeding transmission. Whether ticks that acquire LB pathogens via co-feeding are actually infectious to vertebrate hosts has never been tested. We created nymphs that had been experimentally infected as larvae with B. afzelii via co-feeding or systemic transmission, and compared their performance over one complete LB life cycle. Co-feeding nymphs had a spirochete load that was 26 times lower than systemic nymphs but both nymphs were highly infectious to mice (i.e., probability of nymph-to-host transmission of B. afzelii was ~100%). The mode of transmission had no effect on the other infection phenotypes of the LB life cycle. Ticks that acquire B. afzelii via co-feeding transmission are highly infectious to rodents, and the resulting rodent infection is highly infectious to larval ticks. This is the first study to show that B. afzelii can use co-feeding transmission to complete its life cycle.
Collapse
Affiliation(s)
- Alessandro Belli
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ryan O M Rego
- Institute of Parasitology, ASCR, Biology Centre, Ceske Budejovice, Czech Republic
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|