1
|
Sun LN, Meng JY, Wang Z, Lin SY, Shen J, Yan S. Research progress of aphid immunity system: Potential effective target for green pest management. INSECT SCIENCE 2024; 31:1662-1674. [PMID: 38415382 DOI: 10.1111/1744-7917.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Due to the absence of acquired immunity, insects primarily rely on their innate immune system to resist pathogenic microorganisms and parasitoids in natural habitats. This innate immune system can be classified into cellular immunity and humoral immunity. Cellular immunity is mediated by hemocytes, which perform phagocytosis, aggregation, and encapsulation to fight against invaders, whereas the humoral immunity primarily activates the immune signaling pathways and induces the generation of immune effectors. Existing studies have revealed that the hemipteran aphids lack some crucial immune genes compared to other insect species, indicating the different immune mechanisms in aphids. The current review summarizes the adverse impacts of pathogenic microorganisms and parasitoids on aphids, introduces the cellular and humoral immune systems in insects, and analyzes the differences between aphids and other insect species. Furthermore, our review also discussed the existing prospects and challenges in aphid immunity research, and proposed the potential application of immune genes in green pest management.
Collapse
Affiliation(s)
- Li-Na Sun
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| | - Zeng Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shi-Yang Lin
- Pu'er Agricultural Science Research Institute, Pu'er, Yunnan Province, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Walt HK, Bronzato-Badial A, Maedo SE, Hinton JA, King JG, Pietri JE, Hoffmann FG. Under the radar: Transcriptomic responses of bed bugs to an entomopathogen, environmental bacteria, and a human pathogen. J Invertebr Pathol 2024; 206:108182. [PMID: 39178984 DOI: 10.1016/j.jip.2024.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Bed bugs (Hemiptera: Cimicidae) are widely distributed, obligately blood-feeding insects, but they have never been linked to pathogen transmission in humans. Most other hematophagous insects that frequently bite humans transmit pathogens, and it is unclear why bed bugs do not. One hypothesis is that bed bugs have evolved a highly robust immune system because their mating system, traumatic insemination, exposes females to consistent wounding and bacterial infections. Although this has been proposed, very little is known about the bed bug immune system and how bed bugs respond to microbial challenges introduced by wounding. Similarly, there is little known about how the bed bug immune system responds to human pathogens. Understanding the bed bug immune system could give insight to why bed bugs appear not to transmit disease and under what circumstances they could, while also facilitating biological control efforts involving microbes. To investigate the transcriptomic response of bed bugs to immune challenges, we exposed female bed bugs to three bacterial challenges. 1.) Pseudomonas fluorescens, an entomopathogen known to have harmful effects to bed bugs, 2.) bacteria cultured from a bed bug enclosure (99.9 % Bacillus spp.), likely encountered during traumatic insemination, and 3.) Borrelia duttoni, a human vector-borne pathogen that causes relapsing fever. We compared the transcriptomes of infected bed bugs with uninfected matched controls in a pairwise fashion, focusing on immune-related genes. We found many known antimicrobial effector genes upregulated in response to P. fluorescens and traumatic insemination-associated bacteria, but interestingly, not in response to B. duttoni. In the differentially expressed genes that were shared between experiments, we found significant overlap in the P. fluorescens treatment and the traumatic insemination bacteria treatment, and between the P. fluorescens and B. duttoni treatments, but not between the traumatic insemination bacteria treatment and the B. duttoni treatment. Finally, we identify previously overlooked candidates for future studies of immune function in bed bugs, including a peroxidase-like gene, many putative cuticle-associated genes, a laccase-like gene, and a mucin-like gene. By taking a comprehensive transcriptomic approach, our study is an important step in understanding how bed bugs respond to diverse immune challenges.
Collapse
Affiliation(s)
- Hunter K Walt
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| | - Aline Bronzato-Badial
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Sophie E Maedo
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| | - Joseph A Hinton
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| | - Jonas G King
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Jose E Pietri
- Sanford School of Medicine, Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD, USA.
| | - Federico G Hoffmann
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
3
|
Pereira SB, de Mattos DP, Gonzalez MS, Mello CB, Azambuja P, de Castro DP, Vieira CS. Immune signaling pathways in Rhodnius prolixus in the context of Trypanosoma rangeli infection: cellular and humoral immune responses and microbiota modulation. Front Physiol 2024; 15:1435447. [PMID: 39210973 PMCID: PMC11357937 DOI: 10.3389/fphys.2024.1435447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Rhodnius prolixus is a hematophagous insect and one of the main vectors for Trypanosoma cruzi and Trypanosoma rangeli parasites in Latin America. Gut microbiota and insect immune responses affect T. cruzi and T. rangeli infection within triatomines. Particularly the Toll and IMD signaling pathways activations and how they orchestrate the antimicrobial peptides (AMPs) expressions in R. prolixus, especially when infected by T. rangeli. Objectives Examine how T. rangeli infection modulates R. prolixus cellular and humoral immunity and its impacts on insect microbiota. Methods R. prolixus was fed on blood containing epimastigotes of T. rangeli, and infection was quantified in insect tissues. The gene expression of dorsal, cactus, relish, PGRP, and AMPs was examined in the midgut, fat body, and salivary glands by quantitative real-time PCR. Microbiota composition was analyzed using RT-q PCR targeting specific bacterial species. Hemocyte numbers and phenoloxidase activity were quantified to assess cellular immune responses. Results T. rangeli infection modulated triatomine immunity in midgut and hemocoel, activating the expression of the NF-kB gene dorsal, associated with the Toll pathway; increasing expression of the gene encoding PGRP receptor, a component involved in the IMD pathway, both in the intestine and fat body; repressing the expression of the relish transcription factor, mainly in salivary glands. Among the R. prolixus AMPs studied, T. rangeli infection repressed all AMP gene expression, other than defensin C which increased mRNA levels. The PO activity was enhanced in the hemolymph of infected insects. T. rangeli infection did not induce hemocyte number alterations compared to control insects. However, an increase in hemocyte microaggregation was detected in infected insects. Discussion R. prolixus recognizes T. rangeli infection and triggers humoral and cellular immune responses involving Toll pathway activation, defensin C synthesis, increased phenoloxidase activity, and enhanced hemocyte aggregation. On the other hand, T. rangeli infection suppressed some IMD pathway components, suggesting that, in R. prolixus, this pathway is involved in defensins A and B gene regulation. Importantly, these immune responses altered the bacterial microbiota composition, potentially favoring T. rangeli establishment in the insect vector.
Collapse
Affiliation(s)
- Suelen Bastos Pereira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, Brazil
| | - Débora Passos de Mattos
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Marcelo Salabert Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, Brazil
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Geral, Laboratório de Biologia de Insetos, Niterói, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Cicero Brasileiro Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, Brazil
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Geral, Laboratório de Biologia de Insetos, Niterói, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, Brazil
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Geral, Laboratório de Biologia de Insetos, Niterói, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Daniele Pereira de Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Cecília Stahl Vieira
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Niterói, Brazil
- Department of Parasitology, Faculty of Science, Charles University, Praha, Czechia
| |
Collapse
|
4
|
Zhou L, Meng G, Zhu L, Ma L, Chen K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review. Int J Mol Sci 2024; 25:3835. [PMID: 38612644 PMCID: PMC11011964 DOI: 10.3390/ijms25073835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany;
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030810, China
| | - Kangkang Chen
- Department of Plant Protection, College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
5
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
6
|
Ma L, Yan X, Zhou L, Wang W, Chen K, Hao C, Lu Z, Qie X. Nitric oxide synthase is required for the pea aphid's defence against bacterial infection. INSECT MOLECULAR BIOLOGY 2023; 32:187-199. [PMID: 36527288 DOI: 10.1111/imb.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Compared to other insects, the pea aphid Acyrthosiphon pisum has a reduced immune system with an absence of genes coding for a lot of immunity-related molecules. Notably, nitric oxide synthase (NOS), which catalyses the synthesis of nitric oxide (NO), is present in the pea aphid. However, the role of NO in the immune system of pea aphid remains unclear. In this study, we explored the role of NO in the defence of the pea aphid against bacterial infections and found that the NOS gene of the pea aphid responded to an immune challenge, with the expression of ApNOS observably upregulated after bacterial infections. Knockdown of ApNOS using RNA interference or inhibition of NOS activity increased the number of live bacterial cells in aphids and the mortality of aphids after bacterial infection. Conversely, the increase in NO level in aphids using NO donor inhibited the bacterial growth, increased the survival of bacteria-infected aphids, and upregulated immune genes, such as Toll pathway and phagocytosis related genes. Thus, NO promotes immune responses and plays an important role in the immune system of pea aphid.
Collapse
Affiliation(s)
- Li Ma
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Xizhong Yan
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Lin Zhou
- Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Wentao Wang
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chi Hao
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess, Ministry of Agriculture, Northwest A & F University, Yangling, China
| | - Xingtao Qie
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
7
|
Ma L, Liu S, Lu P, Yan X, Hao C, Wang H, Wei J, Qie X, Lu Z. The IMD pathway in Hemipteran: A comparative analysis and discussion. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104513. [PMID: 35977558 DOI: 10.1016/j.dci.2022.104513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The evolutionary patterns of the genes in the IMD pathway in hemipterans were characterized and compared. The hemipteran insects were clustered into two groups. One group that encompasses whitefly, plant lice, and scale insect partially lacks the IMD pathway and all antimicrobial peptide (AMP) genes, with the vast majority of IMD pathway and all AMP genes being absent in aphids. The reasons for the absence of the IMD pathway and AMP genes in hemipterans were analyzed based on aphids, in terms of fitness costs. In case of limited resources, aphids have to make a trade-off between the necessary costs such as clean food sources, the essential amino acids supplied by primary bacterial symbionts for survival, nutrients and/or protections against stress provided by secondary symbionts, and the high reproductive capacity, and the costs that do not increase the fitness. Obviously, aphids have to abandon the strong immune system, especially the AMPs and IMD pathway which is mainly against Gram-negative bacteria. The common ground shared with aphids may be the reason for the absence of the IMD pathway and AMP genes in other hemipteran insects.
Collapse
Affiliation(s)
- Li Ma
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural University, Taiyuan, Shanxi, 030801, China; Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Ping Lu
- Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xizhong Yan
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Chi Hao
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Han Wang
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jiufeng Wei
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xingtao Qie
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Sidak-Loftis LC, Rosche KL, Pence N, Ujczo JK, Hurtado J, Fisk EA, Goodman AG, Noh SM, Peters JW, Shaw DK. The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. mBio 2022; 13:e0070322. [PMID: 35862781 PMCID: PMC9426425 DOI: 10.1128/mbio.00703-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.
Collapse
Affiliation(s)
- Lindsay C. Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kristin L. Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jessica K. Ujczo
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Susan M. Noh
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
9
|
Salcedo-Porras N, Oliveira PL, Guarneri AA, Lowenberger C. A fat body transcriptome analysis of the immune responses of Rhodnius prolixus to artificial infections with bacteria. Parasit Vectors 2022; 15:269. [PMID: 35906633 PMCID: PMC9335980 DOI: 10.1186/s13071-022-05358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhodnius prolixus is an important vector of Trypanosoma cruzi, the causal agent of Chagas disease in humans. Despite the medical importance of this and other triatomine vectors, the study of their immune responses has been limited to a few molecular pathways and processes. Insect immunity studies were first described for holometabolous insects such as Drosophila melanogaster, and it was assumed that their immune responses were conserved in all insects. However, study of the immune responses of triatomines and other hemimetabolous insects has revealed discrepancies between these and the Drosophila model. METHODS To expand our understanding of innate immune responses of triatomines to pathogens, we injected fifth instar nymphs of R. prolixus with the Gram-negative (Gr-) bacterium Enterobacter cloacae, the Gram-positive (Gr+) bacterium Staphylococcus aureus, or phosphate-buffered saline (PBS), and evaluated transcript expression in the fat body 8 and 24 h post-injection (hpi). We analyzed the differential expression of transcripts at each time point, and across time, for each treatment. RESULTS At 8 hpi, the Gr- bacteria-injected group had a large number of differentially expressed (DE) transcripts, and most of the changes in transcript expression were maintained at 24 hpi. In the Gr+ bacteria treatment, few DE transcripts were detected at 8 hpi, but a large number of transcripts were DE at 24 hpi. Unexpectedly, the PBS control also had a large number of DE transcripts at 24 hpi. Very few DE transcripts were common to the different treatments and time points, indicating a high specificity of the immune responses of R. prolixus to different pathogens. Antimicrobial peptides known to be induced by the immune deficiency pathway were induced upon Gr- bacterial infection. Many transcripts of genes from the Toll pathway that are thought to participate in responses to Gr+ bacteria and fungi were induced by both bacteria and PBS treatment. Pathogen recognition receptors and serine protease cascade transcripts were also overexpressed after Gr- bacteria and PBS injections. Gr- injection also upregulated transcripts involved in the metabolism of tyrosine, a major substrate involved in the melanotic encapsulation response to pathogens. CONCLUSIONS These results reveal time-dependent pathogen-specific regulation of immune responses in triatomines, and hint at strong interactions between the immune deficiency and Toll pathways.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Pedro Lagerblad Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco D. Prédio do CCS, Ilha do Fundão, Rio de Janeiro, 21941-902 Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Avenida Augusto de Lima, 1715, Belo Horizonte, MG CEP 30190-009 Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
10
|
Alejandro AD, Lilia JP, Jesús MB, Henry RM. The IMD and Toll canonical immune pathways of Triatoma pallidipennis are preferentially activated by Gram-negative and Gram-positive bacteria, respectively, but cross-activation also occurs. Parasit Vectors 2022; 15:256. [PMID: 35821152 PMCID: PMC9277830 DOI: 10.1186/s13071-022-05363-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) participate in the humoral immune response of insects eliminating invasive microorganisms. The immune deficiency pathway (IMD) and Toll are the main pathways by which the synthesis of these molecules is regulated in response to Gram-negative (IMD pathway) or Gram-positive (Toll pathway) bacteria. Various pattern-recognition receptors (PRRs) participate in the recognition of microorganisms, such as pgrp-lc and toll, which trigger signaling cascades and activate NF-κB family transcription factors, such as relish, that translocate to the cell nucleus, mainly in the fat body, inducing AMP gene transcription. METHODS T. pallidipennis inhibited in Tppgrp-lc, Tptoll, and Tprelish were challenged with E. coli and M. luteus to analyze the expression of AMPs transcripts in the fat body and to execute survival assays. RESULTS In this work we investigated the participation of the pgrp-lc and toll receptor genes and the relish transcription factor (designated as Tppgrp-lc, Tptoll, and Tprelish), in the transcriptional regulation of defensin B, prolixicin, and lysozyme B in Triatoma pallidipennis, one of the main vectors of Chagas disease. AMP transcript abundance was higher in the fat body of blood-fed than non-fed bugs. Challenge with Escherichia coli or Micrococcus luteus induced differential increases in AMP transcripts. Additionally, silencing of Tppgrp-lc, Tptoll, and Tprelish resulted in reduced AMP transcription and survival of bugs after a bacterial challenge. CONCLUSIONS Our findings demonstrated that the IMD and Toll pathways in T. pallidipennis preferentially respond to Gram-negative and Gram-positive bacteria, respectively, by increasing the expression of AMP transcripts, but cross-induction also occurs.
Collapse
Affiliation(s)
- Alvarado-Delgado Alejandro
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| | - Juárez-Palma Lilia
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| | - Maritinez-Bartneche Jesús
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| | - Rodriguez Mario Henry
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100 Cuernavaca, Morelos México
| |
Collapse
|
11
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Rhodnius prolixus Hemolymph Immuno-Physiology: Deciphering the Systemic Immune Response Triggered by Trypanosoma cruzi Establishment in the Vector Using Quantitative Proteomics. Cells 2022; 11:1449. [PMID: 35563760 PMCID: PMC9104911 DOI: 10.3390/cells11091449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the development of Trypanosoma cruzi within the triatomine vector at the molecular level should provide novel targets for interrupting parasitic life cycle and affect vectorial competence. The aim of the current study is to provide new insights into triatomines immunology through the characterization of the hemolymph proteome of Rhodnius prolixus, a major Chagas disease vector, in order to gain an overview of its immune physiology. Surprisingly, proteomics investigation of the immunomodulation of T. cruzi-infected blood reveals that the parasite triggers an early systemic response in the hemolymph. The analysis of the expression profiles of hemolymph proteins from 6 h to 24 h allowed the identification of a broad range of immune proteins expressed already in the early hours post-blood-feeding regardless of the presence of the parasite, ready to mount a rapid response exemplified by the significant phenol oxidase activation. Nevertheless, we have also observed a remarkable induction of the immune response triggered by an rpPGRP-LC and the overexpression of defensins 6 h post-T. cruzi infection. Moreover, we have identified novel proteins with immune properties such as the putative c1q-like protein and the immunoglobulin I-set domain-containing protein, which have never been described in triatomines and could play a role in T. cruzi recognition. Twelve proteins with unknown function are modulated by the presence of T. cruzi in the hemolymph. Determining the function of these parasite-induced proteins represents an exciting challenge for increasing our knowledge about the diversity of the immune response from the universal one studied in holometabolous insects. This will provide us with clear answers for misunderstood mechanisms in host-parasite interaction, leading to the development of new generation strategies to control vector populations and pathogen transmission.
Collapse
Affiliation(s)
- Radouane Ouali
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Sabrina Bousbata
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
12
|
Genome-Wide Analysis of Gene Families of Pattern Recognition Receptors in Fig Wasps (Hymenoptera, Chalcidoidea). Genes (Basel) 2021; 12:genes12121952. [PMID: 34946901 PMCID: PMC8702095 DOI: 10.3390/genes12121952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Pattern recognition receptors (PRRs) play important roles in detecting pathogens and initiating the innate immune response. Different evolutionary histories of pollinators and non-pollinators may result in different immune recognition systems. A previous study had reported that there were significant differences in peptidoglycan recognition proteins (PGRPs) between pollinators and non-pollinators in gene number and lineage of specific genes. In this study, based on the genomic data of 12 fig wasp species, with seven pollinators and five non-pollinators, we investigated the evolution patterns of PRRs, such as Gram-negative bacteria-binding proteins (GNBPs), C-type lectins (CTLs), scavenger receptors class B (SCRBs), fibrinogen-related proteins (FREPs), galectins, and thioester-containing proteins (TEPs). Our results showed that pollinators had no GNBP, but non-pollinators all had two gene members, which were clustered into two different clades in the phylogenetic tree, with each clade having specific domain and motif characteristics. The analysis of CTL and SCRB gene families also showed that there were lineage-specific genes and specific expansion in non-pollinators. Our results showed that there were significant differences in immune recognition between pollinators and non-pollinators, and we concluded that they had undergone flexible adaptive evolution in different environments. Our study can provide more molecular evidence for future functional studies on the immune system of fig wasps.
Collapse
|
13
|
Díaz-Garrido P, Cárdenas-Guerra RE, Martínez I, Poggio S, Rodríguez-Hernández K, Rivera-Santiago L, Ortega-López J, Sánchez-Esquivel S, Espinoza B. Differential activity on trypanosomatid parasites of a novel recombinant defensin type 1 from the insect Triatoma (Meccus) pallidipennis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103673. [PMID: 34700021 DOI: 10.1016/j.ibmb.2021.103673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Defensins are one of the major families of antimicrobial peptides (AMPs) that are widely distributed in insects. In Triatomines (Hemiptera: Reduviidae) vectors of Trypanosoma cruzi the causative agent of Chagas disease, two large groups of defensin isoforms have been described: type 1 and type 4. The aim of this study was to analyze the trypanocidal activity of a type 1 recombinant defensin (rDef1.3) identified in Triatoma (Meccus) pallidipennis, an endemic specie from México. The trypanocidal activity of this defensin was evaluated in vitro, against the parasites T. cruzi, T. rangeli, and two species of Leishmania (L. mexicana and L. major) both causative agents of cutaneous leishmaniasis. Our data demonstrated that the defensin was active against all the parasites although in different degrees. The defensin altered the morphology, reduced the viability and inhibited the growth of T.cruzi. When tested against T. rangeli (a parasite that infects a variety of mammalian species), stronger morphological effects where observed. Surprisingly the greatest effects were observed against the two Leishmania species, of which L. major was the parasite most affected with 50% of dead cells or with damaged membranes, in addition of a reduction in its proliferative capacity in culture. These results suggest that rDef1.3 has an important antimicrobial effect against trypanosomatids which cause some of the more important neglected tropical diseases transmitted by insect vectors.
Collapse
Affiliation(s)
- Paulina Díaz-Garrido
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Rosa Elena Cárdenas-Guerra
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Ignacio Martínez
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Sebastián Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Karla Rodríguez-Hernández
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Lucio Rivera-Santiago
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, C.P. 07360, México City, Mexico
| | - Sergio Sánchez-Esquivel
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico
| | - Bertha Espinoza
- Laboratorio de Estudios sobre Tripanosomiasis. Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México City, Mexico.
| |
Collapse
|
14
|
Eleftherianos I, Heryanto C, Bassal T, Zhang W, Tettamanti G, Mohamed A. Haemocyte-mediated immunity in insects: Cells, processes and associated components in the fight against pathogens and parasites. Immunology 2021; 164:401-432. [PMID: 34233014 PMCID: PMC8517599 DOI: 10.1111/imm.13390] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
The host defence of insects includes a combination of cellular and humoral responses. The cellular arm of the insect innate immune system includes mechanisms that are directly mediated by haemocytes (e.g., phagocytosis, nodulation and encapsulation). In addition, melanization accompanying coagulation, clot formation and wound healing, nodulation and encapsulation processes leads to the formation of cytotoxic redox-cycling melanin precursors and reactive oxygen and nitrogen species. However, demarcation between cellular and humoral immune reactions as two distinct categories is not straightforward. This is because many humoral factors affect haemocyte functions and haemocytes themselves are an important source of many humoral molecules. There is also a considerable overlap between cellular and humoral immune functions that span from recognition of foreign intruders to clot formation. Here, we review these immune reactions starting with the cellular mechanisms that limit haemolymph loss and participate in wound healing and clot formation and advancing to cellular functions that are critical in restricting pathogen movement and replication. This information is important because it highlights that insect cellular immunity is controlled by a multilayered system, different components of which are activated by different pathogens or during the different stages of the infection.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Christa Heryanto
- Infection and Innate Immunity LaboratoryDepartment of Biological SciencesInstitute for Biomedical SciencesThe George Washington UniversityWashingtonDCUSA
| | - Taha Bassal
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationGuizhou UniversityGuiyangChina
| | - Gianluca Tettamanti
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- BAT Center‐Interuniversity Center for Studies on Bioinspired Agro‐Environmental TechnologyUniversity of Napoli Federico IINapoliItaly
| | - Amr Mohamed
- Department of EntomologyFaculty of ScienceCairo UniversityGizaEgypt
| |
Collapse
|
15
|
Reginald K, Wong YR, Shah SMR, Teh KF, Freddy Jalin EJ, Khan NA. Investigating immune responses of the house cricket, Acheta domesticus to pathogenic Eschericia coli K1. Microbes Infect 2021; 23:104876. [PMID: 34332091 DOI: 10.1016/j.micinf.2021.104876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Insects models are excellent models of the innate immune system, as they are free from the influences of the vertebrate adaptive immunity. Crickets are hemimetabolous insects belonging to the order Orthopteran order that have not been as extensively characterized as other holometabolous insects, and may provide new insights to the insect immune responses. In this study, we aim to characterize the innate immune responses of the common house cricket, Acheta domesticus in response to a human pathogenic bacterium E. coli K1. METHODS Crickets were injected with sterile buffer, live E. coli K1 or heat-killed E. coli K1. Physiological effects such as mortality and weight change of the crickets were determined 24-, 48 and 72-hours post injection while immunological effects such as hemocyte counts, bacteremia, phenoloxidase and lysozyme activity of the crickets were measured at 2- and 24-hours post-injection. RESULTS The injection of E. coli K1 in crickets resulted in >85% mortality 3-days post injection, accompanied by significant weight loss. E. coli K1 injection caused a significant increase in both phenoloxidase and lysozyme activities in cricket hemolymphs 24-hours post injection. Live E. coli K1 injected crickets resulted in a significant reduction in circulating hemocytes 24-hours post injection which was not observed in other treatment groups. This was consistent with the resolution of bacteremia observed 24-hours post infection in live E. coli K1 injected crickets. CONCLUSION Our study provides new insights on the innate immune response to pathogenic E. coli K1 in a cricket model.
Collapse
Affiliation(s)
- Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia.
| | - Yi Ru Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Smyrna Moti Rawanan Shah
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Keng Foo Teh
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Eunice Jalin Freddy Jalin
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia; Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
17
|
Fogaça AC, Sousa G, Pavanelo DB, Esteves E, Martins LA, Urbanová V, Kopáček P, Daffre S. Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges. Front Immunol 2021; 12:628054. [PMID: 33737931 PMCID: PMC7962413 DOI: 10.3389/fimmu.2021.628054] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Ticks are ectoparasitic arthropods that necessarily feed on the blood of their vertebrate hosts. The success of blood acquisition depends on the pharmacological properties of tick saliva, which is injected into the host during tick feeding. Saliva is also used as a vehicle by several types of pathogens to be transmitted to the host, making ticks versatile vectors of several diseases for humans and other animals. When a tick feeds on an infected host, the pathogen reaches the gut of the tick and must migrate to its salivary glands via hemolymph to be successfully transmitted to a subsequent host during the next stage of feeding. In addition, some pathogens can colonize the ovaries of the tick and be transovarially transmitted to progeny. The tick immune system, as well as the immune system of other invertebrates, is more rudimentary than the immune system of vertebrates, presenting only innate immune responses. Although simpler, the large number of tick species evidences the efficiency of their immune system. The factors of their immune system act in each tick organ that interacts with pathogens; therefore, these factors are potential targets for the development of new strategies for the control of ticks and tick-borne diseases. The objective of this review is to present the prevailing knowledge on the tick immune system and to discuss the challenges of studying tick immunity, especially regarding the gaps and interconnections. To this end, we use a comparative approach of the tick immune system with the immune system of other invertebrates, focusing on various components of humoral and cellular immunity, such as signaling pathways, antimicrobial peptides, redox metabolism, complement-like molecules and regulated cell death. In addition, the role of tick microbiota in vector competence is also discussed.
Collapse
Affiliation(s)
- Andréa C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Géssica Sousa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel B. Pavanelo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliane Esteves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa A. Martins
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
- Laboratory of Bacteriology, Tick-Pathogen Transmission Unit, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Sirlei Daffre
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Rolandelli A, Nascimento AEC, Silva LS, Rivera-Pomar R, Guarneri AA. Modulation of IMD, Toll, and Jak/STAT Immune Pathways Genes in the Fat Body of Rhodnius prolixus During Trypanosoma rangeli Infection. Front Cell Infect Microbiol 2021; 10:598526. [PMID: 33537241 PMCID: PMC7848085 DOI: 10.3389/fcimb.2020.598526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Trypanosoma rangeli is the second most common American trypanosome that infects man. It is vectored by triatomines from the genus Rhodnius, in which it invades the hemolymph and infects the salivary glands, avoiding the bug immune responses. In insects, these responses are initiated by well conserved pathways, mainly the IMD, Toll, and Jak/STAT. We hypothesize that long-term infection with T. rangeli in the gut or hemolymph of Rhodnius prolixus triggers different systemic immune responses, which influence the number of parasites that survive inside the vector. Thus, we investigated groups of insects with infections in the gut and/or hemolymph, and evaluated the parasite load and the expression in the fat body of transcription factors (Rp-Relish, Rp-Dorsal, and Rp-STAT) and inhibitors (Rp-Cactus and Rp-Caspar) of the IMD, Toll, and Jak/STAT pathways. We detected lower parasite counts in the gut of insects without hemolymph infection, compared to hemolymph-infected groups. Besides, we measured higher parasite numbers in the gut of bugs that were first inoculated with T. rangeli and then fed on infected mice, compared with control insects, indicating that hemolymph infection increases parasite numbers in the gut. Interestingly, we observed that genes from the three immune pathways where differentially modulated, depending on the region parasites were present, as we found (1) Rp-Relish downregulated in gut-and/or-hemolymph-infected insects, compared with controls; (2) Rp-Cactus upregulated in gut-infected insect, compared with controls and gut-and-hemolymph-infected groups; and (3) Rp-STAT downregulated in all groups of hemolymph-infected insects. Finally, we uncovered negative correlations between parasite loads in the gut and Rp-Relish and Rp-Cactus expression, and between parasite counts in the hemolymph and Rp-Relish levels, suggesting an association between parasite numbers and the IMD and Toll pathways. Overall, our findings reveal new players in R. prolixus-T. rangeli interactions that could be key for the capacity of the bug to transmit the pathogen.
Collapse
Affiliation(s)
- Agustín Rolandelli
- Centro de Bioinvestigaciones (CeBio), Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT-NOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Adeisa E C Nascimento
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Leticia S Silva
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones (CeBio), Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT-NOBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pergamino, Argentina
| | - Alessandra A Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
19
|
Vieira CS, Figueiredo MB, Moraes CDS, Pereira SB, Dyson P, Mello CB, Castro DP, Azambuja P. Azadirachtin interferes with basal immunity and microbial homeostasis in the Rhodnius prolixus midgut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103864. [PMID: 32918931 DOI: 10.1016/j.dci.2020.103864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 05/08/2023]
Abstract
Rhodnius prolixus is an insect vector of two flagellate parasites, Trypanosoma rangeli and Trypanosoma cruzi, the latter being the causative agent of Chagas disease in Latin America. The R. prolixus neuroendocrine system regulates the synthesis of the steroid hormone ecdysone, which is essential for not only development and molting but also insect immunity. Knowledge for how this modulates R. prolixus midgut immune responses is essential for understanding interactions between the vector, its parasites and symbiotic microbes. In the present work, we evaluated the effects of ecdysone inhibition on R. prolixus humoral immunity and homeostasis with its microbiota, using the triterpenoid natural product, azadirachtin. Our results demonstrated that azadirachtin promoted a fast and lasting inhibitory effect on expression of both RpRelish, a nuclear factor kappa B transcription factor (NF-kB) component of the IMD pathway, and several antimicrobial peptide (AMP) genes. On the other hand, RpDorsal, encoding the equivalent NF-kB transcription factor in the Toll pathway, and the defC AMP gene were upregulated later in azadirachtin treated insects. The treatment also impacted on proliferation of Serratia marcescens, an abundant commensal bacterium. The simultaneous administration of ecdysone and azadirachtin in R. prolixus blood meals counteracted the azadirachtin effects on insect molting and also on expression of RpRelish and AMPs genes. These results support the direct involvement of ecdysone in regulation of the IMD pathway in the Rhodnius prolixus gut.
Collapse
Affiliation(s)
- Cecilia Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Marcela Barbosa Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Caroline da Silva Moraes
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Suelen Bastos Pereira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Paul Dyson
- School of Medicine, Swansea University, Swansea, UK
| | - Cícero Brasileiro Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niteroi, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Em Ciências e Biotecnologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil
| | - Daniele Pereira Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Patrícia Azambuja
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Em Ciências e Biotecnologia, Universidade Federal Fluminense, Niteroi, RJ, Brazil.
| |
Collapse
|
20
|
Salcedo-Porras N, Noor S, Cai C, Oliveira PL, Lowenberger C. Rhodnius prolixus uses the peptidoglycan recognition receptor rpPGRP-LC/LA to detect Gram-negative bacteria and activate the IMD pathway. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100006. [PMID: 36003603 PMCID: PMC9387487 DOI: 10.1016/j.cris.2020.100006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 05/05/2023]
Abstract
Insects rely on an innate immune system to recognize and eliminate pathogens. Key components of this system are highly conserved across all invertebrates. To detect pathogens, insects use Pattern recognition receptors (PRRs) that bind to signature motifs on the surface of pathogens called Pathogen Associated Molecular Patterns (PAMPs). In general, insects use peptidoglycan recognition proteins (PGRPs) in the Immune Deficiency (IMD) pathway to detect Gram-negative bacteria, and other PGRPs and Gram-negative binding proteins (GNBPs) in the Toll pathway to detect Gram-positive bacteria and fungi, although there is crosstalk and cooperation between these and other pathways. Once pathogens are recognized, these pathways activate the production of potent antimicrobial peptides (AMPs). Most PRRs in insects have been reported from genome sequencing initiatives but few have been characterized functionally. The initial studies on insect PRRs were done using established dipteran model organisms such as Drosophila melanogaster, but there are differences in the numbers and functional role of PRRs in different insects. Here we describe the genomic repertoire of PGRPs in Rhodnius prolixus, a hemimetabolous hemipteran vector of the parasite Trypanosoma cruzi that causes Chagas disease in humans. Using a de novo transcriptome from the fat body of immune activated insects, we found 5 genes encoding PGRPs. Phylogenetic analysis groups R. prolixus PGRPs with D. melanogaster PGRP-LA, which is involved in the IMD pathway in the respiratory tract. A single R. prolixus PGRP gene encodes isoforms that contain an intracellular region or motif (cryptic RIP Homotypic Interaction Motif-cRHIM) that is involved in the IMD signaling pathway in D. melanogaster. We characterized and silenced this gene using RNAi and show that the PGRPs that contain cRHIMs are involved in the recognition of Gram-negative bacteria, and activation of the IMD pathway in the fat body of R. prolixus, similar to the PGRP-LC of D. melanogaster. This is the first functional characterization of a PGRP containing a cRHIM motif that serves to activate the IMD pathway in a hemimetabolous insect.
Collapse
Key Words
- AMP, Antimicrobial Peptide
- Antimicrobial peptides
- GNBP, Gram-negative Binding Protein
- Gr+, Gram-positive
- Gr-, Gram-negative
- IMD pathway
- IMD, Immune Deficiency
- Innate immunity
- ML, Maximum Likelihood
- PAMP, Pathogen-Associated Molecular Pattern
- PGN, Peptidoglycan
- PGRP
- PGRP, Peptidoglycan Recognition Protein
- PRR, Pattern Recognition Receptor
- RHIM
- RNAi, RNA interference
- SMOC, Supramolecular Organizing Centres
- TPM, Transcripts Per Million
- Triatomines
- cRHIM, cryptic RIP Homotypic Interaction Motif
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Corresponding author.
| | - Shireen Noor
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Charley Cai
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
21
|
Gumiel M, de Mattos DP, Vieira CS, Moraes CS, Moreira CJDC, Gonzalez MS, Teixeira-Ferreira A, Waghabi M, Azambuja P, Carels N. Proteome of the Triatomine Digestive Tract: From Catalytic to Immune Pathways; Focusing on Annexin Expression. Front Mol Biosci 2020; 7:589435. [PMID: 33363206 PMCID: PMC7755933 DOI: 10.3389/fmolb.2020.589435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Rhodnius prolixus, Panstrongylus megistus, Triatoma infestans, and Dipetalogaster maxima are all triatomines and potential vectors of the protozoan Trypanosoma cruzi responsible for human Chagas' disease. Considering that the T. cruzi's cycle occurs inside the triatomine digestive tract (TDT), the analysis of the TDT protein profile is an essential step to understand TDT physiology during T. cruzi infection. To characterize the protein profile of TDT of D. maxima, P. megistus, R. prolixus, and T. infestans, a shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was applied in this report. Most proteins were found to be closely related to metabolic pathways such as gluconeogenesis/glycolysis, citrate cycle, fatty acid metabolism, oxidative phosphorylation, but also to the immune system. We annotated this new proteome contribution gathering it with those previously published in accordance with Gene Ontology and KEGG. Enzymes were classified in terms of class, acceptor, and function, while the proteins from the immune system were annotated by reference to the pathways of humoral response, cell cycle regulation, Toll, IMD, JNK, Jak-STAT, and MAPK, as available from the Insect Innate Immunity Database (IIID). These pathways were further subclassified in recognition, signaling, response, coagulation, melanization and none. Finally, phylogenetic affinities and gene expression of annexins were investigated for understanding their role in the protection and homeostasis of intestinal epithelial cells against the inflammation.
Collapse
Affiliation(s)
- Marcia Gumiel
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Research Department, Universidad Privada Franz Tamayo (UNIFRANZ), La Paz, Bolivia
| | - Debora Passos de Mattos
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cecília Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Caroline Silva Moraes
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Marcelo Salabert Gonzalez
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | | | - Mariana Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Leyria J, Orchard I, Lange AB. What happens after a blood meal? A transcriptome analysis of the main tissues involved in egg production in Rhodnius prolixus, an insect vector of Chagas disease. PLoS Negl Trop Dis 2020; 14:e0008516. [PMID: 33057354 PMCID: PMC7591069 DOI: 10.1371/journal.pntd.0008516] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/27/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The blood-sucking hemipteran Rhodnius prolixus is a vector of Chagas disease, one of the most neglected tropical diseases affecting several million people, mostly in Latin America. The blood meal is an event with a high epidemiological impact since adult mated females feed several times, with each meal resulting in a bout of egg laying, and thereby the production of hundreds of offspring. By means of RNA-Sequencing (RNA-Seq) we have examined how a blood meal influences mRNA expression in the central nervous system (CNS), fat body and ovaries in order to promote egg production, focusing on tissue-specific responses under controlled nutritional conditions. We illustrate the cross talk between reproduction and a) lipids, proteins and trehalose metabolism, b) neuropeptide and neurohormonal signaling, and c) the immune system. Overall, our molecular evaluation confirms and supports previous studies and provides an invaluable molecular resource for future investigations on different tissues involved in successful reproductive events. These analyses serve as a starting point for new investigations, increasing the chances of developing novel strategies for vector population control by translational research, with less impact on the environment and more specificity for a particular organism.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
23
|
Hou HX, Guo MY, Geng J, Wei XQ, Huang DW, Xiao JH. Genome-Wide Analysis of Peptidoglycan Recognition Protein Genes in Fig Wasps (Hymenoptera, Chalcidoidea). INSECTS 2020; 11:insects11090597. [PMID: 32899607 PMCID: PMC7565001 DOI: 10.3390/insects11090597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary Insects live in a complex and diverse environment, threatened by a variety of microorganisms, and the innate immunity of which plays an important role in defending the invasion of pathogens. From an evolutionary perspective, different living environments and lifestyles drive the different evolutionary patterns of immune systems of insects. Fig wasps are closely associated with the fig syconia, divided into pollinators and non-pollinators according to whether they pollinate the figs. The pollinators are all herbivorous, and fulfil their development within the fig syconia, presenting different lifestyles and diets to non-pollinators, which lead to the chances of exposure to the pathogens varying greatly. The recognition of pathogens is the first step in innate immunity. Therefore, we focused on the different evolutionary patterns of peptidoglycan recognition protein genes between pollinators and non-pollinators, and found that the number of peptidoglycan recognition protein genes was significantly smaller than that of non-pollinators, and the initiation of Toll pathway of pollinators was simpler than that of non-pollinators. All the results suggested a streamlined innate immune recognition system of pollinators, and this information will provide more insights into the adaptive evolution of innate immunity in insects of host specificity. Abstract The innate immunity is the most important defense against pathogen of insects, and the peptidoglycan recognition proteins (PGRPs) play an important role in the processes of immune recognition and initiation of Toll, IMD and other signal pathways. In fig wasps, pollinators and non-pollinators present different evolutionary histories and lifestyles, even though both are closely associated with fig syconia, which may indicate their different patterns in the evolution of PGRPs. By manual annotation, we got all the PGRP genes of 12 fig wasp species, containing seven pollinators and five non-pollinators, and investigated their putative different evolutionary patterns. We found that the number of PGRP genes in pollinators was significantly lower than in non-pollinators, and the number of catalytic PGRP presented a declining trend in pollinators. More importantly, PGRP-SA is associated with initiating the Toll pathway, as well as gram-negative bacteria-binding proteins (GNBPs), which were completely lost in pollinators, which led us to speculate that the initiation of Toll pathway was simpler in pollinators than in non-pollinators. We concluded that fig pollinators owned a more streamlined innate immune recognition system than non-pollinators. Our results provide molecular evidence for the adaptive evolution of innate immunity in insects of host specificity.
Collapse
Affiliation(s)
- Hong-Xia Hou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Meng-Yuan Guo
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Jin Geng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Xian-Qin Wei
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
| | - Da-Wei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (D.-W.H.); (J.-H.X.); Tel.: +86-139-1025-6670 (D.-W.H.); +86-185-2245-2108 (J.-H.X.)
| | - Jin-Hua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.-X.H.); (M.-Y.G.); (J.G.); (X.-Q.W.)
- Correspondence: (D.-W.H.); (J.-H.X.); Tel.: +86-139-1025-6670 (D.-W.H.); +86-185-2245-2108 (J.-H.X.)
| |
Collapse
|
24
|
Santiago PB, Charneau S, Mandacaru SC, Bentes KLDS, Bastos IMD, de Sousa MV, Ricart CAO, de Araújo CN, Santana JM. Proteomic Mapping of Multifunctional Complexes Within Triatomine Saliva. Front Cell Infect Microbiol 2020; 10:459. [PMID: 32984079 PMCID: PMC7492717 DOI: 10.3389/fcimb.2020.00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022] Open
Abstract
Triatomines are hematophagous insects that transmit Trypanosoma cruzi, the etiological agent of Chagas disease. This neglected tropical disease represents a global health issue as it is spreading worldwide. The saliva of Triatominae contains miscellaneous proteins crucial for blood feeding acquisition, counteracting host's hemostasis while performing vasodilatory, anti-platelet and anti-coagulant activities, besides modulating inflammation and immune responses. Since a set of biological processes are mediated by protein complexes, here, the sialocomplexomes (salivary protein complexes) of five species of Triatominae were studied to explore the protein-protein interaction networks. Salivary multiprotein complexes from Triatoma infestans, Triatoma dimidiata, Dipetalogaster maxima, Rhodnius prolixus, and Rhodnius neglectus were investigated by Blue-Native- polyacrylamide gel electrophoresis coupled with liquid chromatography tandem mass spectrometry. More than 70 protein groups, uncovering the landscape of the Triatominae salivary interactome, were revealed. Triabin, actin, thioredoxin peroxidase and an uncharacterized protein were identified in sialocomplexes of the five species, while hexamerin, heat shock protein and histone were identified in sialocomplexes of four species. Salivary proteins related to triatomine immunity as well as those required during blood feeding process such as apyrases, antigen 5, procalins, and nitrophorins compose different complexes. Furthermore, unique proteins for each triatomine species were revealed. This study represents the first Triatominae sialocomplexome reference to date and shows that the approach used is a reliable tool for the analysis of Triatominae salivary proteins assembled into complexes.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | | | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Carlos André O Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| |
Collapse
|
25
|
Potts R, King JG, Pietri JE. Ex vivo characterization of the circulating hemocytes of bed bugs and their responses to bacterial exposure. J Invertebr Pathol 2020; 174:107422. [PMID: 32526226 PMCID: PMC9254597 DOI: 10.1016/j.jip.2020.107422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Bed bugs (Cimex spp.) are urban pests of global importance. Knowledge of the immune system of bed bugs has implications for understanding their susceptibility to biological control agents, their potential to transmit human pathogens, and the basic comparative immunology of insects. Nonetheless, the immunological repertoire of the family Cimicidae remains poorly characterized. Here, we use microscopy, flow cytometry, and RNA sequencing to provide a basal characterization of the circulating hemocytes of the common bed bug, Cimex lectularius. We also examine the responses of these specialized cells to E. coli exposure using the same techniques. Our results show that circulating hemocytes are comprised of at least four morphologically distinct cell types that are capable of phagocytosis, undergo degranulation, and exhibit additional markers of activation following stimulation, including size shift and DNA replication. Furthermore, transcriptomic profiling reveals expression of predicted Toll/IMD signaling pathway components, antimicrobial effectors and other potentially immunoresponsive genes in these cells. Together, our data demonstrate the conservation of several canonical cellular immune responses in the common bed bug and provide a foundation for additional mechanistic immunological studies with specific pathogens of interest.
Collapse
Affiliation(s)
- Rashaun Potts
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, United States
| | - Jonas G King
- Mississippi State University, Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Starkville, MS, United States
| | - Jose E Pietri
- University of South Dakota, Sanford School of Medicine, Division of Basic Biomedical Sciences, Vermillion, SD, United States.
| |
Collapse
|
26
|
Ma L, Liu L, Zhao Y, Yang L, Chen C, Li Z, Lu Z. JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. PLoS Pathog 2020; 16:e1008627. [PMID: 32584915 PMCID: PMC7343183 DOI: 10.1371/journal.ppat.1008627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Different from holometabolous insects, the hemipteran species such as pea aphid Acyrthosiphon pisum exhibit reduced immune responses with the absence of the genes coding for antimicrobial peptide (AMP), immune deficiency (IMD), peptidoglycan recognition proteins (PGRPs), and other immune-related molecules. Prior studies have proved that phenoloxidase (PO)-mediated melanization, hemocyte-mediated phagocytosis, and reactive oxygen species (ROS) participate in pea aphid defense against bacterial infection. Also, the conserved signaling, Jun N-terminal kinase (JNK) pathway, has been suggested to be involved in pea aphid immune defense. However, the precise role of the JNK signaling, its interplay with other immune responses and its regulation in pea aphid are largely unknown. In this study, using in vitro biochemical assays and in vivo bioassays, we demonstrated that the JNK pathway regulated hemolymph PO activity, hydrogen peroxide concentration and hemocyte phagocytosis in bacteria infected pea aphids, suggesting that the JNK pathway plays a central role in regulating immune responses in pea aphid. We further revealed the JNK pathway is regulated by microRNA-184 in response to bacterial infection. It is possible that in common the JNK pathway plays a key role in immune system of hemipteran insects and microRNA-184 regulates the JNK pathway in animals.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Zhao
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Yang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Caihua Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
27
|
Salcedo-Porras N, Lowenberger C. The innate immune system of kissing bugs, vectors of chagas disease. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:119-128. [PMID: 31014953 DOI: 10.1016/j.dci.2019.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 05/08/2023]
Abstract
Kissing bugs have long served as models to study many aspects of insect physiology. They also serve as vectors for the parasite Trypanosoma cruzi that causes Chagas disease in humans. The overall success of insects is due, in part, to their ability to recognize parasites and pathogens as non-self and to eliminate them using their innate immune system. This immune system comprises physical barriers, cellular responses (phagocytosis, nodulation and encapsulation), and humoral factors (antimicrobial peptides and the prophenoloxidase cascade). Trypanosoma cruzi survives solely in the gastrointestinal (GI) tract of the vector; if it migrates to the hemocoel it is eliminated. Kissing bugs may not mount a vigorous immune response in the GI tract to avoid eliminating obligate symbiotic microbes on which they rely for survival. Here we describe the current knowledge of innate immunity in kissing bugs and new opportunities using genomic and transcriptomic approaches to study the complex triatomine-trypanosome-microbiome interactions.
Collapse
Affiliation(s)
- Nicolás Salcedo-Porras
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, V5A 1S6, BC, Canada.
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, V5A 1S6, BC, Canada.
| |
Collapse
|
28
|
Salcedo-Porras N, Guarneri A, Oliveira PL, Lowenberger C. Rhodnius prolixus: Identification of missing components of the IMD immune signaling pathway and functional characterization of its role in eliminating bacteria. PLoS One 2019; 14:e0214794. [PMID: 30943246 PMCID: PMC6447187 DOI: 10.1371/journal.pone.0214794] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
The innate immune system in insects is regulated by specific signalling pathways. Most immune related pathways were identified and characterized in holometabolous insects such as Drosophila melanogaster, and it was assumed they would be highly conserved in all insects. The hemimetabolous insect, Rhodnius prolixus, has served as a model to study basic insect physiology, but also is a major vector of the human parasite, Trypanosoma cruzi, that causes 10,000 deaths annually. The publication of the R. prolixus genome revealed that one of the main immune pathways, the Immune-deficiency pathway (IMD), was incomplete and probably non-functional, an observation shared with other hemimetabolous insects including the pea aphid (Acyrthosiphon pisum) and the bedbug (Cimex lectularius). It was proposed that the IMD pathway is inactive in R. prolixus as an adaptation to prevent eliminating beneficial symbiont gut bacteria. We used bioinformatic analyses based on reciprocal BLAST and HMM-profile searches to find orthologs for most of the "missing" elements of the IMD pathway and provide data that these are regulated in response to infection with Gram-negative bacteria. We used RNAi strategies to demonstrate the role of the IMD pathway in regulating the expression of specific antimicrobial peptides (AMPs) in the fat body of R. prolixus. The data indicate that the IMD pathway is present and active in R. prolixus, which opens up new avenues of research on R. prolixus-T. cruzi interactions.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alessandra Guarneri
- Instituto René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
29
|
Nishide Y, Kageyama D, Yokoi K, Jouraku A, Tanaka H, Futahashi R, Fukatsu T. Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. Proc Biol Sci 2019; 286:20182207. [PMID: 30963836 PMCID: PMC6408883 DOI: 10.1098/rspb.2018.2207] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
In insects, antimicrobial humoral immunity is governed by two distinct gene cascades, IMD pathway mainly targeting Gram-negative bacteria and Toll pathway preferentially targeting Gram-positive bacteria, which are widely conserved among diverse metazoans. However, recent genomic studies uncovered that IMD pathway is exceptionally absent in some hemipteran lineages like aphids and assassin bugs. How the apparently incomplete immune pathways have evolved with functionality is of interest. Here we report the discovery that, in the hemipteran stinkbug Plautia stali, both IMD and Toll pathways are present but their functional differentiation is blurred. Injection of Gram-negative bacteria and Gram-positive bacteria upregulated effector genes of both pathways. Notably, RNAi experiments unveiled significant functional permeation and crosstalk between IMD and Toll pathways: RNAi of IMD pathway genes suppressed upregulation of effector molecules of both pathways, where the suppression was more remarkable for IMD effectors; and RNAi of Toll pathway genes reduced upregulation of effector molecules of both pathways, where the suppression was more conspicuous for Toll effectors. These results suggest the possibility that, in hemipterans and other arthropods, IMD and Toll pathways are intertwined to target wider and overlapping arrays of microbes, which might have predisposed and facilitated the evolution of incomplete immune pathways.
Collapse
Affiliation(s)
- Yudai Nishide
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ohwashi, Tsukuba 305-8634, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ohwashi, Tsukuba 305-8634, Japan
| | - Kakeru Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ohwashi, Tsukuba 305-8634, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ohwashi, Tsukuba 305-8634, Japan
| | - Hiromitsu Tanaka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ohwashi, Tsukuba 305-8634, Japan
| | - Ryo Futahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
30
|
Sackton TB. Comparative genomics and transcriptomics of host-pathogen interactions in insects: evolutionary insights and future directions. CURRENT OPINION IN INSECT SCIENCE 2019; 31:106-113. [PMID: 31109663 DOI: 10.1016/j.cois.2018.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Classical evolutionary studies of protein-coding genes have established that genes in the canonical immune system are often among the most rapidly evolving within and between species. As more genomes and transcriptomes across insects are sequenced, it is becoming clear that duplications and losses of immune genes are also a likely consequence of host-pathogen interactions. Furthermore, particular species respond to diverse pathogenic challenges with a wide range of challenge-specific responses that are still poorly understood. Transcriptional studies, using RNA-seq to characterize the infection-regulated transcriptome of diverse insects, are crucial for additional progress in understanding the ecology and evolution of the full complexity of the host response.
Collapse
Affiliation(s)
- Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
31
|
Mesías AC, Sasoni N, Arias DG, Pérez Brandán C, Orban OCF, Kunick C, Robello C, Comini MA, Garg NJ, Zago MP. Trypanothione synthetase confers growth, survival advantage and resistance to anti-protozoal drugs in Trypanosoma cruzi. Free Radic Biol Med 2019; 130:23-34. [PMID: 30359758 PMCID: PMC6331241 DOI: 10.1016/j.freeradbiomed.2018.10.436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/09/2018] [Accepted: 10/20/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Chagas cardiomyopathy, caused by Trypanosoma cruzi infection, continues to be a neglected illness, and has a major impact on global health. The parasite undergoes several stages of morphological and biochemical changes during its life cycle, and utilizes an elaborated antioxidant network to overcome the oxidants barrier and establish infection in vector and mammalian hosts. Trypanothione synthetase (TryS) catalyzes the biosynthesis of glutathione-spermidine adduct trypanothione (T(SH)2) that is the principal intracellular thiol-redox metabolite in trypanosomatids. METHODS AND RESULTS We utilized genetic overexpression (TryShi) and pharmacological inhibition approaches to examine the role of TryS in T. cruzi proliferation, tolerance to oxidative stress and resistance to anti-protozoal drugs. Our data showed the expression and activity of TryS was increased in all morphological stages of TryShi (vs. control) parasites. In comparison to controls, the TryShi epimastigotes (insect stage) recorded shorter doubling time, and both epimastigotes and infective trypomastigotes of TryShi exhibited 36-71% higher resistance to H2O2 (50-1000 μM) and heavy metal (1-500 μM) toxicity. Treatment with TryS inhibitors (5-30 μM) abolished the proliferation and survival advantages against H2O2 pressure in a dose-dependent manner in both TryShi and control parasites. Further, epimastigote and trypomastigote forms of TryShi (vs. control) T. cruzi tolerated higher doses of benznidazole and nifurtimox, the drugs currently administered for acute Chagas disease treatment. CONCLUSIONS TryS is essential for proliferation and survival of T. cruzi under normal and oxidant stress conditions, and provides an advantage to the parasite to develop resistance against currently used anti-trypanosomal drugs. TryS indispensability has been chemically validated with inhibitors that may be useful for drug combination therapy against Chagas disease.
Collapse
Affiliation(s)
- Andrea C Mesías
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Natalia Sasoni
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Santa Fe, Argentina
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - CONICET, Santa Fe, Argentina
| | - Cecilia Pérez Brandán
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Oliver C F Orban
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Conrad Kunick
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, and Departamento de Bioquímica, Facultad de Medicina, Uruguay
| | - Marcelo A Comini
- Redox Biology of Trypanosomes - Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nisha J Garg
- Departments of Microbiology and Immunology and Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina.
| |
Collapse
|
32
|
Díaz-Garrido P, Sepúlveda-Robles O, Martínez-Martínez I, Espinoza B. Variability of defensin genes from a Mexican endemic Triatominae: Triatoma (Meccus) pallidipennis (Hemiptera: Reduviidae). Biosci Rep 2018; 38:BSR20180988. [PMID: 30181380 PMCID: PMC6165835 DOI: 10.1042/bsr20180988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 01/19/2023] Open
Abstract
Chagas disease remains a serious health problem for countries where the most common mode of transmission is infection contracted from the feces of a Triatominae insect vector. In México, 32 species of Triatoma have been identified; amongst them, Triatoma (Meccus) pallidipennis is an endemic species reported to have high percentages of infection with T. cruzi Defensins, cysteine-rich cationic peptides, are a family of antimicrobial peptides (AMPs); the synthesis of these molecules is crucial for insect's immune defense. In the present study, the genes encoding defensins in T. pallidipennis were sequenced with the purpose of identifying the variability of these genes in a Mexican vector of T. cruzi We found 12 different genes encoding three mature peptides, all of which had the typical folding of a functional insect defensin. In this work two Defensins type 1 and one type 4 were identified. The pro-peptide domain was highly variable and the mature peptide was not. This is the first report focus on variability of defensins from an epidemiologically important Triatoma in Mexico.
Collapse
Affiliation(s)
- Paulina Díaz-Garrido
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM 04510, Ciudad de México, México
| | - Omar Sepúlveda-Robles
- Catedrático CONACyT - Unidad de Investigación Médica en Epidemiología Clínica UMAE-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México
| | - Ignacio Martínez-Martínez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM 04510, Ciudad de México, México
| | - Bertha Espinoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, UNAM 04510, Ciudad de México, México
| |
Collapse
|
33
|
Martínez-Barnetche J, Lavore A, Beliera M, Téllez-Sosa J, Zumaya-Estrada FA, Palacio V, Godoy-Lozano E, Rivera-Pomar R, Rodríguez MH. Adaptations in energy metabolism and gene family expansions revealed by comparative transcriptomics of three Chagas disease triatomine vectors. BMC Genomics 2018; 19:296. [PMID: 29699489 PMCID: PMC5921304 DOI: 10.1186/s12864-018-4696-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Background Chagas disease is a parasitic infection caused by Trypanosoma cruzi. It is an important public health problem affecting around seven to eight million people in the Americas. A large number of hematophagous triatomine insect species, occupying diverse natural and human-modified ecological niches transmit this disease. Triatomines are long-living hemipterans that have evolved to explode different habitats to associate with their vertebrate hosts. Understanding the molecular basis of the extreme physiological conditions including starvation tolerance and longevity could provide insights for developing novel control strategies. We describe the normalized cDNA, full body transcriptome analysis of three main vectors in North, Central and South America, Triatoma pallidipennis, T. dimidiata and T. infestans. Results Two-thirds of the de novo assembled transcriptomes map to the Rhodnius prolixus genome and proteome. A Triatoma expansion of the calycin family and two types of protease inhibitors, pacifastins and cystatins were identified. A high number of transcriptionally active class I transposable elements was documented in T. infestans, compared with T. dimidiata and T. pallidipennis. Sequence identity in Triatoma-R. prolixus 1:1 orthologs revealed high sequence divergence in four enzymes participating in gluconeogenesis, glycogen synthesis and the pentose phosphate pathway, indicating high evolutionary rates of these genes. Also, molecular evidence suggesting positive selection was found for several genes of the oxidative phosphorylation I, III and V complexes. Conclusions Protease inhibitors and calycin-coding gene expansions provide insights into rapidly evolving processes of protease regulation and haematophagy. Higher evolutionary rates in enzymes that exert metabolic flux control towards anabolism and evidence for positive selection in oxidative phosphorylation complexes might represent genetic adaptations, possibly related to prolonged starvation, oxidative stress tolerance, longevity, and hematophagy and flight reduction. Overall, this work generated novel hypothesis related to biological adaptations to extreme physiological conditions and diverse ecological niches that sustain Chagas disease transmission. Electronic supplementary material The online version of this article (10.1186/s12864-018-4696-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Andrés Lavore
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Melina Beliera
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Federico A Zumaya-Estrada
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Victorio Palacio
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Ernestina Godoy-Lozano
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina.,Laboratorio de Genética y Genómica Funcional. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México.
| |
Collapse
|