1
|
Yimer M, Takele Y, Yizengaw E, Nibret E, Sumova P, Volf P, Yismaw G, Alehegn M, Rowan A, Müller I, Cotton JA, Chapman LAC, Kropf P. Demographic characteristics and prevalence of asymptomatic Leishmania donovani infection in migrant workers working in an endemic area in Northwest Ethiopia. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1367387. [PMID: 38655403 PMCID: PMC11035784 DOI: 10.3389/fepid.2024.1367387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Introduction Visceral leishmaniasis (VL), a neglected tropical disease that causes substantial morbidity and mortality, is a serious health problem in Ethiopia. Infections are caused by Leishmania (L.) donovani parasites. Most individuals remain asymptomatic, but some develop VL, which is generally fatal if not treated. We identified the area of Metema-Humera in Northwest Ethiopia as a setting in which we could follow migrant workers when they arrived in an endemic area. The demographic characteristics of this population and factors associated with their risk of asymptomatic infection are poorly characterised. Methods We divided our cohort into individuals who visited this area for the first time (first comers, FC) and those who had already been in this area (repeat comers, RC). We followed them from the beginning (Time 1, T1) to the end of the agricultural season (Time 2, T2), performing tests for sand fly bite exposure (anti-sand fly saliva antibody ELISA) and serology for Leishmania infection (rK39 rapid diagnostic test and the direct agglutination test) at each time point and collecting information on risk factors for infection. Results Our results show that most migrant workers come from non-endemic areas, are male, young (median age of 20 years) and are farmers or students. At T1, >80% of them had been already exposed to sand fly bites, as shown by the presence of anti-saliva antibodies. However, due to seasonality of sand flies there was no difference in exposure between FC and RC, or between T1 and T2. The serology data showed that at T1, but not at T2, a significantly higher proportion of RC were asymptomatic. Furthermore, 28.6% of FC became asymptomatic between T1 and T2. Over the duration of this study, one FC and one RC developed VL. In multivariable logistic regression of asymptomatic infection at T1, only age and the number of visits to Metema/Humera were significantly associated with asymptomatic infection. Conclusion A better understanding of the dynamics of parasite transmission and the risk factors associated with the development of asymptomatic infections and potentially VL will be essential for the development of new strategies to prevent leishmaniasis.
Collapse
Affiliation(s)
- Mulat Yimer
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | - Yegnasew Takele
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Endalew Yizengaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Amhara Public Health Institute, Bahir Dar, Ethiopia
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Endalkachew Nibret
- Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, College of Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Petra Sumova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Michael Alehegn
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Aileen Rowan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Ingrid Müller
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - James A. Cotton
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lloyd A. C. Chapman
- Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Pascale Kropf
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
de Araujo FF, Abdeladhim M, Teixeira C, Hummer K, Wilkerson MD, Ressner R, Lakhal-Naouar I, Ellis MW, Meneses C, Nurmukhambetova S, Gomes R, Tolbert WD, Turiansky GW, Pazgier M, Oliveira F, Valenzuela JG, Kamhawi S, Aronson N. Immune response profiles from humans experimentally exposed to Phlebotomus duboscqi bites. Front Immunol 2024; 15:1335307. [PMID: 38633260 PMCID: PMC11021656 DOI: 10.3389/fimmu.2024.1335307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Cutaneous leishmaniasis is a neglected vector-borne parasitic disease prevalent in 92 countries with approximately one million new infections annually. Interactions between vector saliva and the human host alter the response to infection and outcome of disease. Methods To characterize the human immunological responses developed against saliva of Phlebotomus duboscqi, a Leishmania major (L. major) vector, we repeatedly exposed the arms of 14 healthy U.S volunteers to uninfected P. duboscqi bites. Blood was collected a week after each exposure and used to assess total IgG antibodies against the proteins of P. duboscqi salivary gland homogenate (SGH) and the levels of IFN-gamma and IL-10 from peripheral blood mononuclear cells (PBMCs) stimulated with SGH or recombinant sand fly proteins. We analyzed skin punch biopsies of the human volunteer arms from the insect bite site and control skin site after multiple P. duboscqi exposures (four volunteers) using immunohistochemical staining. Results A variety of immediate insect bite skin reactions were observed. Late skin reactions to insect bites were characterized by macular hyperpigmentation and/or erythematous papules. Hematoxylin and eosin staining showed moderate mononuclear skin infiltrate with eosinophils in those challenged recently (within 2 months), eosinophils were not seen in biopsies with recall challenge (6 month post bites). An increase in plasma antigen-specific IgG responses to SGH was observed over time. Western Blot results showed strong plasma reactivity to five P. duboscqi salivary proteins. Importantly, volunteers developed a cellular immunity characterized by the secretion of IFN-gamma upon PBMC stimulation with P. duboscqi SGH and recombinant antigens. Discussion Our results demonstrate that humans mounted a local and systemic immune response against P. duboscqi salivary proteins. Specifically, PduM02/SP15-like and PduM73/adenosine deaminase recombinant salivary proteins triggered a Th1 type immune response that might be considered in future development of a potential Leishmania vaccine.
Collapse
Affiliation(s)
- Fernanda Fortes de Araujo
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Clarissa Teixeira
- Department of Biotechnology, Laboratory of Immunoparasitology, Oswaldo Cruz Foundation, Eusébio, CE, Brazil
| | - Kelly Hummer
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Matthew D. Wilkerson
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roseanne Ressner
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ines Lakhal-Naouar
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Saule Nurmukhambetova
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Regis Gomes
- Department of Biotechnology, Laboratory of Immunoparasitology, Oswaldo Cruz Foundation, Eusébio, CE, Brazil
| | - W. David Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - George W. Turiansky
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Naomi Aronson
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
3
|
Fayaz S, Bahrami F, Parvizi P, Fard-Esfahani P, Ajdary S. An overview of the sand fly salivary proteins in vaccine development against leishmaniases. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:792-801. [PMID: 36721440 PMCID: PMC9867623 DOI: 10.18502/ijm.v14i6.11253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leishmaniases are a group of vector-borne parasitic diseases transmitted through the infected sand flies. Leishmania parasites are inoculated into the host skin along with sand fly saliva. The sand fly saliva consists of biologically active molecules with anticoagulant, anti-inflammatory, and immunomodulatory properties. Such properties help the parasite circumvent the host's immune responses. The salivary compounds support the survival and multiplication of the parasite and facilitate the disease progression. It is documented that frequent exposure to uninfected sand fly bites produces neutralizing antibodies against specific salivary proteins and further activates the cellular mechanisms to prevent the establishment of the disease. The immune responses due to sand fly saliva are highly specific and depend on the composition of the salivary molecules. Hence, thorough knowledge of these compounds in different sand fly species and information about their antigenicity are paramount to designing an effective vaccine. Herein, we review the composition of the sand fly saliva, immunomodulatory properties of some of its components, immune responses to its proteins, and potential vaccine candidates against leishmaniases.
Collapse
Affiliation(s)
- Shima Fayaz
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Corresponding author: Soheila Ajdary, Ph.D, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran. Tel: +98-2166968857 Fax: +98-2166968857 ;
| |
Collapse
|
4
|
Assessment of circulating immune complexes in canine leishmaniosis and dirofilariosis. Vet Res Commun 2022; 47:707-712. [DOI: 10.1007/s11259-022-10031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
5
|
Willen L, Milton P, Hamley JID, Walker M, Osei-Atweneboana MY, Volf P, Basáñez MG, Courtenay O. Demographic patterns of human antibody levels to Simulium damnosum s.l. saliva in onchocerciasis-endemic areas: An indicator of exposure to vector bites. PLoS Negl Trop Dis 2022; 16:e0010108. [PMID: 35020729 PMCID: PMC8789114 DOI: 10.1371/journal.pntd.0010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/25/2022] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In onchocerciasis endemic areas in Africa, heterogenous biting rates by blackfly vectors on humans are assumed to partially explain age- and sex-dependent infection patterns with Onchocerca volvulus. To underpin these assumptions and further improve predictions made by onchocerciasis transmission models, demographic patterns in antibody responses to salivary antigens of Simulium damnosum s.l. are evaluated as a measure of blackfly exposure. METHODOLOGY/PRINCIPAL FINDINGS Recently developed IgG and IgM anti-saliva immunoassays for S. damnosum s.l. were applied to blood samples collected from residents in four onchocerciasis endemic villages in Ghana. Demographic patterns in antibody levels according to village, sex and age were explored by fitting generalized linear models. Antibody levels varied between villages but showed consistent patterns with age and sex. Both IgG and IgM responses declined with increasing age. IgG responses were generally lower in males than in females and exhibited a steeper decline in adult males than in adult females. No sex-specific difference was observed in IgM responses. CONCLUSIONS/SIGNIFICANCE The decline in age-specific antibody patterns suggested development of immunotolerance or desensitization to blackfly saliva antigen in response to persistent exposure. The variation between sexes, and between adults and youngsters may reflect differences in behaviour influencing cumulative exposure. These measures of antibody acquisition and decay could be incorporated into onchocerciasis transmission models towards informing onchocerciasis control, elimination, and surveillance.
Collapse
Affiliation(s)
- Laura Willen
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- Centre for the Evaluation of Vaccinations, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
- * E-mail: (LW); (OC)
| | - Philip Milton
- MRC Centre for Global Infectious Disease Analysis and London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Jonathan I. D. Hamley
- MRC Centre for Global Infectious Disease Analysis and London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research and Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maria-Gloria Basáñez
- MRC Centre for Global Infectious Disease Analysis and London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Orin Courtenay
- Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research and School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail: (LW); (OC)
| |
Collapse
|
6
|
Human immune response against salivary antigens of Simulium damnosum s.l.: A new epidemiological marker for exposure to blackfly bites in onchocerciasis endemic areas. PLoS Negl Trop Dis 2021; 15:e0009512. [PMID: 34157020 PMCID: PMC8253393 DOI: 10.1371/journal.pntd.0009512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/02/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Simulium damnosum sensu lato (s.l.) blackflies transmit Onchocerca volvulus, a filarial nematode that causes human onchocerciasis. Human landing catches (HLCs) is currently the sole method used to estimate blackfly biting rates but is labour-intensive and questionable on ethical grounds. A potential alternative is to measure host antibodies to vector saliva deposited during bloodfeeding. In this study, immunoassays to quantify human antibody responses to S. damnosum s.l. saliva were developed, and the salivary proteome of S. damnosum s.l. was investigated. METHODOLOGY/PRINCIPAL FINDINGS Blood samples from people living in onchocerciasis-endemic areas in Ghana were collected during the wet season; samples from people living in Accra, a blackfly-free area, were considered negative controls and compared to samples from blackfly-free locations in Sudan. Blackflies were collected by HLCs and dissected to extract their salivary glands. An ELISA measuring anti-S. damnosum s.l. salivary IgG and IgM was optimized and used to quantify the humoral immune response of 958 individuals. Both immunoassays differentiated negative controls from endemic participants. Salivary proteins were separated by gel-electrophoresis, and antigenic proteins visualized by immunoblot. Liquid chromatography mass spectrometry (LC-MS/MS) was performed to characterize the proteome of S. damnosum s.l. salivary glands. Several antigenic proteins were recognized, with the major ones located around 15 and 40 kDa. LC-MS/MS identified the presence of antigen 5-related protein, apyrase/nucleotidase, and hyaluronidase. CONCLUSIONS/SIGNIFICANCE This study validated for the first time human immunoassays that quantify humoral immune responses as potential markers of exposure to blackfly bites. These assays have the potential to facilitate understanding patterns of exposure as well as evaluating the impact of vector control on biting rates. Future studies need to investigate seasonal fluctuations of these antibody responses, potential cross-reactions with other bloodsucking arthropods, and thoroughly identify the most immunogenic proteins.
Collapse
|
7
|
Lakhal-Naouar I, Mukbel R, DeFraites RF, Mody RM, Massoud LN, Shaw D, Co EM, Sherwood JE, Kamhawi S, Aronson NE. The human immune response to saliva of Phlebotomus alexandri, the vector of visceral leishmaniasis in Iraq, and its relationship to sand fly exposure and infection. PLoS Negl Trop Dis 2021; 15:e0009378. [PMID: 34081700 PMCID: PMC8174707 DOI: 10.1371/journal.pntd.0009378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/10/2021] [Indexed: 11/29/2022] Open
Abstract
Background Sand fly saliva exposure plays an important role in immunity against leishmaniasis where it has mostly been associated with protection. Phlebotomus (Ph.) alexandri transmits Leishmania (L.) infantum, the causative agent of visceral leishmaniasis (VL), in Iraq. Our group recently demonstrated that 20% of Operation Iraqi Freedom (OIF) deployers had asymptomatic VL (AVL) indicative of prior infection by the parasite L. infantum. Little is known about Ph. alexandri saliva, and the human immune response to it has never been investigated. Here, we characterize the humoral and cellular immune response to vector saliva in OIF deployers naturally exposed to bites of Ph. alexandri and characterize their immunological profiles in association to AVL. Methodology/Principal findings The humoral response to Ph. alexandri salivary gland homogenate (SGH) showed that 64% of 200 OIF deployers developed an antibody response. To assess the cellular immune response to saliva, we selected a subcohort of subjects based on their post-travel (median 4 months; range 1–22 months) antibody response (SGH Antibody [Ab] positive or negative) as well as their AVL status; ten never-traveled controls were also included. Banked peripheral blood mononuclear cells (PBMC), collected ~10 years after end of deployment, were stimulated with SGH for 96 hours. The levels of IFN- γ, IL-6, IL-10, IL-13 and IL-17 were determined by ELISA. Our findings indicate that OIF deployers mounted a cellular response to SGH where the anti-SGH+ asymptomatic subjects developed the highest cytokine levels. Further, stimulation with SGH produced a mixture of pro-inflammatory and anti-inflammatory cytokines. Contrary to our hypothesis, we observed no correlation between the cellular immune response to Ph. alexandri SGH and prevention from asymptomatic infection with L. infantum. Conclusions/Significance As we found, although all infected deployers demonstrated persistent disease control years after deployment, this did not correlate with anti-saliva systemic cellular response. More exposure to this vector may facilitate transmission of the L. infantum parasite. Since exposure to saliva of Ph. alexandri may alter the human immune response to bites of this vector, this parameter should be taken into consideration when considering the VL risk. This is the first report of human immune responses to Phlebotomus alexandri. Phlebotomus alexandri is a sand fly found in Southwest Asia and is the vector for transmission of the parasite Leishmania infantum, agent of visceral leishmaniasis. During the bite of this sand fly, a small amount of saliva is injected into the skin. In this study, we report the human immune response to Phlebotomus alexandri saliva. We found that 64% of people who traveled to endemic Iraq developed antibodies directed toward this sand fly’s saliva. This suggests that saliva is very immunogenic and that anti-saliva immune responses could be a good indicator of vector exposure. Additionally, we studied the cellular immune responses in saliva-stimulated white blood cells and found a Th2 biased cytokine profile.
Collapse
Affiliation(s)
- Ines Lakhal-Naouar
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| | - Rami Mukbel
- Department of Basic Veterinary Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Robert F. DeFraites
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Rupal M. Mody
- Infectious Diseases Service, William Beaumont Army Medical Center, El Paso, Texas, United States of America
| | - Lina N. Massoud
- Department of Basic Veterinary Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Dutchabong Shaw
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Edgie M. Co
- Infectious Diseases Service, Walter Reed National Military Medical Center, Bethesda Maryland, United States of America
| | - Jeffrey E. Sherwood
- Infectious Diseases Service, William Beaumont Army Medical Center, El Paso, Texas, United States of America
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Naomi E. Aronson
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Cheke RA, Little KE, Young S, Walker M, Basáñez MG. Taking the strain out of onchocerciasis? A reanalysis of blindness and transmission data does not support the existence of a savannah blinding strain of onchocerciasis in West Africa. ADVANCES IN PARASITOLOGY 2021; 112:1-50. [PMID: 34024357 DOI: 10.1016/bs.apar.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Onchocerciasis (also known as 'river blindness'), is a neglected tropical disease (NTD) caused by the (Simulium-transmitted) filarial nematode Onchocerca volvulus. The occurrence of 'blinding' (savannah) and non-blinding (forest) parasite strains and the existence of corresponding, locally adapted Onchocerca-Simulium complexes were postulated to explain greater blindness prevalence in savannah than in forest foci. As a result, the World Health Organization (WHO) Onchocerciasis Control Programme in West Africa (OCP) focused anti-vectorial and anti-parasitic interventions in savannah endemic areas. In this paper, village-level data on blindness prevalence, microfilarial prevalence, and transmission intensity (measured by the annual transmission potential, the number of infective, L3, larvae per person per year) were extracted from 16 West-Central Africa-based publications, and analysed according to habitat (forest, forest-savannah mosaic, savannah) to test the dichotomous strain hypothesis in relation to blindness. When adjusting for sample size, there were no statistically significant differences in blindness prevalence between the habitats (one-way ANOVA, P=0.68, mean prevalence for forest=1.76±0.37 (SE); mosaic=1.49±0.38; savannah=1.89±0.26). The well-known relationship between blindness prevalence and annual transmission potential for savannah habitats was confirmed and shown to hold for (but not to be statistically different from) forest foci (excluding data from southern Côte d'Ivoire, in which blindness prevalence was significantly lower than in other West African forest communities, but which had been the focus of studies leading to the strain-blindness hypothesis that was accepted by OCP planners). We conclude that the evidence for a savannah blinding onchocerciasis strain in simple contrast with a non-blinding forest strain is equivocal. A re-appraisal of the strain hypothesis to explain patterns of ocular disease is needed to improve understanding of onchocerciasis epidemiology and disease burden estimates in the light of the WHO 2030 goals for onchocerciasis.
Collapse
Affiliation(s)
- Robert A Cheke
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom; London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Stephen Young
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Pathobiology and Populations Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
9
|
Immune response dynamics and Lutzomyia longipalpis exposure characterize a biosignature of visceral leishmaniasis susceptibility in a canine cohort. PLoS Negl Trop Dis 2021; 15:e0009137. [PMID: 33617528 PMCID: PMC7943000 DOI: 10.1371/journal.pntd.0009137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/09/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background Reports have shown correlations between the immune response to vector saliva and Leishmaniasis outcome. We followed dogs in an endemic area for two years characterizing resistance or susceptibility to canine visceral leishmaniasis (CVL) according to Leishmania infantum diagnosis and clinical development criteria. Then, we aimed to identify a biosignature based on parasite load, serum biological mediators’ interactions, and vector exposure intensity associated with CVL resistance and susceptibility. Methodology/Principal findings A prospective two-year study was conducted in an area endemic for CVL. Dogs were evaluated at 6-month intervals to determine infection, clinical manifestations, immune profile, and sandfly exposure. CVL resistance or susceptibility was determined upon the conclusion of the study. After two years, 78% of the dogs were infected with L. infantum (53% susceptible and 47% resistant to CVL). Susceptible dogs presented higher splenic parasite load as well as persistence of the parasite during the follow-up, compared to resistant ones. Susceptible dogs also displayed a higher number of correlations among the investigated biological mediators, before and after infection diagnosis. At baseline, anti-saliva antibodies, indicative of exposure to the vector, were detected in 62% of the dogs, reaching 100% in one year. Higher sandfly exposure increased the risk of susceptibility to CVL by 1.6 times (CI: 1.11–2.41). We identified a discriminatory biosignature between the resistant and susceptible dogs assessing splenic parasite load, interaction of biological mediators, PGE2 serum levels and intensity of exposure to sandfly. All these parameters were elevated in susceptible dogs compared to resistant animals. Conclusions/Significance The biosignature identified in our study reinforces the idea that CVL is a complex multifactorial disease that is affected by a set of factors which are correlated and, for a better understanding of CVL, should not be evaluated in an isolated way. Visceral Leishmaniasis (VL) is a disease that can affect humans and dogs, caused by a parasite called Leishmania transmitted through the bite of sandfly insects. During the bite, together with the parasite, the insects also inoculate their saliva into the host. The host immune response produces molecules to the sandfly saliva, such as antibodies and cytokines that can impact VL resistance or susceptibility. The presence of these molecules also indicates if the insects bit the hosts. We followed dogs of a VL endemic area for two years to study Canine Visceral Leishmaniasis (CVL) and immune response to sandfly saliva. Dogs were evaluated at 6-month intervals to determine Leishmania infection, clinical manifestations, parasite load, immune response, and sandfly exposure. CVL resistance or susceptibility was determined upon the conclusion of the study. Dogs living in the endemic area were intensely bitten, as at the beginning of the study, 62% of the dogs present anti-saliva antibodies, reaching 100% after one year. Our findings revealed a biosignature of CVL susceptibility characterized by elevated parasite load, interaction of cytokines, and higher exposure to the sandfly. This data reinforced that CVL is a complex disease affected by several factors related to each other.
Collapse
|
10
|
Hamley JID, Walker M, Coffeng LE, Milton P, de Vlas SJ, Stolk WA, Basáñez MG. Structural Uncertainty in Onchocerciasis Transmission Models Influences the Estimation of Elimination Thresholds and Selection of Age Groups for Seromonitoring. J Infect Dis 2021; 221:S510-S518. [PMID: 32173745 PMCID: PMC7289547 DOI: 10.1093/infdis/jiz674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The World Health Organization recommends monitoring Onchocerca volvulus Ov16 serology in children aged <10 years for stopping mass ivermectin administration. Transmission models can help to identify the most informative age groups for serological monitoring and investigate the discriminatory power of serology-based elimination thresholds. Model predictions depend on assumed age-exposure patterns and transmission efficiency at low infection levels. METHODS The individual-based transmission model, EPIONCHO-IBM, was used to assess (1) the most informative age groups for serological monitoring using receiver operating characteristic curves for different elimination thresholds under various age-dependent exposure assumptions, including those of ONCHOSIM (another widely used model), and (2) the influence of within-human density-dependent parasite establishment (included in EPIONCHO-IBM but not ONCHOSIM) on positive predictive values for different serological thresholds. RESULTS When assuming EPIONCHO-IBM exposure patterns, children aged <10 years are the most informative for seromonitoring; when assuming ONCHOSIM exposure patterns, 5-14 year olds are the most informative (as published elsewhere). Omitting density-dependent parasite establishment results in more lenient seroprevalence thresholds, even for higher baseline infection prevalence and shorter treatment durations. CONCLUSIONS Selecting appropriate seromonitoring age groups depends critically on age-dependent exposure patterns. The role of density dependence on elimination thresholds largely explains differing EPIONCHO-IBM and ONCHOSIM elimination predictions.
Collapse
Affiliation(s)
- Jonathan I D Hamley
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.,Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.,London Centre for Neglected Tropical Disease Research, Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, UK
| | - Luc E Coffeng
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Philip Milton
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.,Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Sake J de Vlas
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilma A Stolk
- Department of Public Health, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.,Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
11
|
Cavalera MA, Iatta R, Panarese R, Mendoza-Roldan JA, Gernone F, Otranto D, Paltrinieri S, Zatelli A. Seasonal variation in canine anti-Leishmania infantum antibody titres. Vet J 2021; 271:105638. [PMID: 33840483 DOI: 10.1016/j.tvjl.2021.105638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Quantitative anti-Leishmania antibody titres are critical in the management of dogs with leishmaniosis, from diagnosis to treatment and follow-up, and there is a paucity of data relating changes in antibody titres to sand fly vector seasonality. This study aimed to evaluate seasonal variations in anti-Leishmania infantum antibody titres in dogs from a hyperendemic area for canine leishmaniosis (CanL). Leishmania infantum-seropositive and clinically healthy dogs (n=65) were sampled in June 2019 (sand fly season) and again in February-March 2020 (non-transmission season) to monitor clinical status and serological titres. There was a reduction in anti-L. infantum antibody titres during the non-transmission season in most dogs (n=36; 55.4%), and 44% of those dogs (n=16/36) became seronegative (i.e. below the cut-off value of 1:80). Given the relevance of serology to epidemiological, preventive and clinical studies related to CanL, seasonal variations in antibody titres are important in areas where phlebotomine vectors have seasonal patterns of activity. Sand fly seasonal period must be considered in the interpretation of annual anti-L. infantum antibody screening test results in asymptomatic dogs, to make clinical decisions about staging, treatment and prevention.
Collapse
Affiliation(s)
- M A Cavalera
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - R Iatta
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - R Panarese
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - J A Mendoza-Roldan
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - F Gernone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy
| | - D Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy; Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - S Paltrinieri
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - A Zatelli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Bari, Italy.
| |
Collapse
|
12
|
Veysi A, Mahmoudi AR, Yaghoobi-Ershadi MR, Jeddi-Tehrani M, Rassi Y, Zahraei-Ramazani A, Hosseini-Vasoukolaei N, Zareie B, Khamesipour A, Akhavan AA. Human immune response to Phlebotomus sergenti salivary gland antigens in a leishmaniasis-endemic focus in Iran. Pathog Glob Health 2020; 114:323-332. [PMID: 32643589 DOI: 10.1080/20477724.2020.1789399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Salivary proteins specific antibodies have been shown to be useful biomarkers of exposure to sand fly bites. This study aimed to investigate the level, duration, and dynamics of the human immune response against the SGL of Phlebotomus sergenti Parrot, 1917 (Diptera: Psychodidae), and to assess the immunoreactivity of human sera with SGL components in an endemic area of anthroponotic cutaneous leishmaniasis (ACL) in Iran. The study was carried out in 2-phase; longitudinal and cross-sectional. Sand flies were collected monthly from indoors and outdoors. In the longitudinal study, sera from healthy volunteers were collected monthly, and in the cross-sectional study, sera from healthy volunteers and patients with ACL lesion/s, were collected for immunoassay studies. The level of anti-P. sergenti saliva IgG was detected using the ELISA. Immunoreactivity of individual human sera with saliva components was also assessed by western blotting. Phlebotomus sergenti was the predominant sand fly species in the study area. The maximum and minimum percentages of IgG responses were seen in October (66%) and March (29%), respectively. Additionally, the cross-sectional study showed that 59.3% of the healthy volunteers and 80% of the patients were IgG positive. The antibody response against P. sergenti salivary gland was high during the sand fly active season and declined by the end of the activity of the vectors. Antibody response against the SGL components of P. sergenti was transient and individual-specific. Some individuals shared a strong reaction against certain individual antigens, which could be considered as vector exposure markers for further investigation. LIST OF ABBREVIATIONS ELISA: Enzyme-Linked Immunosorbent Assay; SDS PAGE: Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis; SGL: Salivary Gland Lysate; ACL: Anthroponotic Cutaneous Leishmaniasis; PBS: Phosphate Buffered Saline; BCA: Bicinchoninic Acid; PBS-T: Phosphate Buffered Saline Tween; FBS: Fetal Bovine Serum; HRP: Horseradish Peroxidase; TMB: 3,3',5,5'-Tetramethylbenzidine; PVDF: Polyvinylidene Difluoride; SGA: Salivary Gland Antigens; OD: Optical Density; KDa: Kilodalton; VL: Visceral Leishmaniasis; CL: Cutaneous Leishmaniasis; SGs: Salivary glands.
Collapse
Affiliation(s)
- Arshad Veysi
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences , Sanandaj, Iran.,Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Ahmad Reza Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences , Tehran, Iran
| | - Mohammad Reza Yaghoobi-Ershadi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR , Tehran, Iran
| | - Yavar Rassi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Alireza Zahraei-Ramazani
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Nasibeh Hosseini-Vasoukolaei
- Department of Medical Entomology and Vector Control, Health Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences , Sari, Iran
| | - Bushra Zareie
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences , Hamadan, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences , Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
13
|
Maia C, Cristóvão J, Pereira A, Kostalova T, Lestinova T, Sumova P, Volf P, Campino L. Monitoring Leishmania infection and exposure to Phlebotomus perniciosus using minimal and non-invasive canine samples. Parasit Vectors 2020; 13:119. [PMID: 32312325 PMCID: PMC7171869 DOI: 10.1186/s13071-020-3993-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In endemic areas of zoonotic leishmaniosis caused by L. infantum, early detection of Leishmania infection in dogs is essential to control the dissemination of the parasite to humans. The aim of this study was to evaluate the serological and/or molecular diagnostic performance of minimally and non-invasive samples (conjunctiva cells (CS) and peripheral blood (PB)) for monitoring Leishmania infection/exposure to Phlebotomus perniciosus salivary antigens in dogs at the beginning and the end of sand fly seasonal activity (May and October, respectively) and to assess associated risks factors. METHODS A total of 208 sheltered dogs from endemic areas of leishmaniosis were screened. Leishmania DNA detection in PB on filter paper and CS was performed by nested-PCR (nPCR), while the detection of anti-Leishmania antibodies was performed using IFAT and ELISA. The exposure to P. perniciosus salivary antigens (SGH, rSP01 and rSP03B + rSP01) was measured by ELISA. RESULTS Ninety-seven (46.6%) and 116 (55.8%) of the 208 dogs were positive to Leishmania antibodies or DNA by at least one test at the beginning and end of the sand fly season, respectively. IFAT and ELISA presented a substantial agreement in the serodiagnosis of leishmaniosis. Discrepant PB nPCR results were obtained between sampling points. Leishmania DNA was detected in CS of 72 dogs at the end of the phlebotomine season. The presence of antibodies to the parasite measured by ELISA was significantly higher in dogs presenting clinical signs compatible with leishmaniosis at both sampling points. Phlebotomus perniciosus salivary antibodies were detected in 179 (86.1%) and 198 (95.2%) of the screened dogs at the beginning and end of the phlebotomine season, respectively. CONCLUSIONS The association between ELISA positivity and clinical signs suggests its usefulness to confirm a clinical suspicion. CS nPCR seems to be an effective and non-invasive method for assessing early exposure to the parasite. PB nPCR should not be used as the sole diagnostic tool to monitor Leishmania infection. The correlation between the levels of antibodies to P. perniciosus saliva and Leishmania antibodies suggests the use of a humoral response to sand fly salivary antigens as biomarkers of L. infantum infection.
Collapse
Affiliation(s)
- Carla Maia
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal. .,Medical Parasitology Unit, IHMT-UNL, Lisbon, Portugal.
| | - José Cristóvão
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal.,Medical Parasitology Unit, IHMT-UNL, Lisbon, Portugal
| | - André Pereira
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Lisbon, Portugal.,Medical Parasitology Unit, IHMT-UNL, Lisbon, Portugal
| | - Tatiana Kostalova
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petra Sumova
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lenea Campino
- Medical Parasitology Unit, IHMT-UNL, Lisbon, Portugal
| |
Collapse
|
14
|
Burnham AC, Ordeix L, Alcover MM, Martínez-Orellana P, Montserrat-Sangrà S, Willen L, Spitzova T, Volf P, Solano-Gallego L. Exploring the relationship between susceptibility to canine leishmaniosis and anti-Phlebotomus perniciosus saliva antibodies in Ibizan hounds and dogs of other breeds in Mallorca, Spain. Parasit Vectors 2020; 13:129. [PMID: 32312306 PMCID: PMC7171783 DOI: 10.1186/s13071-020-3992-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Background Canine leishmaniosis caused by Leishmania infantum is a neglected zoonosis transmitted by sand flies like Phlebotomus perniciosus. Clinical signs and disease susceptibility vary according to various factors, including host immune response and breed. In particular, Ibizan hounds appear more resistant. This immunocompetence could be attributed to a more frequent exposure to uninfected sand flies, eliciting a stronger anti-sand fly saliva antibody response. Methods This study aimed to investigate the prevalence of anti-P. perniciosus saliva antibodies in Ibizan hounds and dogs of other breeds in the Leishmania-endemic area of Mallorca, Spain, and to correlate these antibody levels with clinical, immunological and parasitological parameters. Anti-sand fly saliva IgG was examined in 47 Ibizan hounds and 45 dogs of other breeds using three methods: P. perniciosus whole salivary gland homogenate (SGH) ELISA; recombinant protein rSP03B ELISA; and rSP03B rapid tests (RT). Additionally, diagnostic performance was evaluated between methods. Results Results indicate significantly higher anti-SGH antibodies (P = 0.0061) and a trend for more positive SGH ELISA and RT results in Ibizan hounds compared to other breeds. General linear model analysis also found breed to be a significant factor in SGH ELISA units and a marginally significant factor in RT result. Although infection rates were similar between groups, Ibizan hounds included significantly more IFN-γ producers (P = 0.0122) and papular dermatitis cases (P < 0.0001). Older age and L. infantum seropositivity were also considered significant factors in sand fly saliva antibody levels according to at least one test. Fair agreement was found between all three tests, with the highest value between SGH and rSP03B RT. Conclusions To our knowledge, this is the first study elaborating the relationship between anti-P. perniciosus saliva antibodies and extensive clinical data in dogs in an endemic area. Our results suggest that Ibizan hounds experience a higher frequency of exposure to sand flies and have a stronger cellular immune response to L. infantum infection than other breed dogs. Additional sampling is needed to confirm results, but anti-P. perniciosus saliva antibodies appear to negatively correlate with susceptibility to L. infantum infection and could possibly contribute to the resistance observed in Ibizan hounds.![]()
Collapse
Affiliation(s)
- Alexis C Burnham
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Ordeix
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Servei de Dermatologia, Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M Magdalena Alcover
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Pamela Martínez-Orellana
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sara Montserrat-Sangrà
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Willen
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tatiana Spitzova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
15
|
Nweze JA, Nweze EI, Onoja US. Nutrition, malnutrition, and leishmaniasis. Nutrition 2019; 73:110712. [PMID: 32078915 DOI: 10.1016/j.nut.2019.110712] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is a vector-borne infectious disease with a long history of infecting humans and other animals. It is a known emerging or resurging disease. The host nutritional state has an indispensable role in defense against pathogens. The host defense system disorganization as a result of undernutrition is responsible for asymptomatic infections and even severe diseases. Host susceptibility and pathophysiologic severity to infection can be aggravated owing to undernourishment in a number of pathways, and infection also may aggravate preexisting poor nutrition or further increase host susceptibility. This study suggests that there may be some relationship between malnutrition and the endemicity of the parasite. The susceptibility to and severity of leishmanial infection can be altered by the body weight and serum levels of micronutrients. Nutrition not only affects the vulnerability of the host but also may affect the desire of sandfly to bite a specific host. Apart from host defense mechanism, nutritional stress also greatly influences vector competence and host-seeking behavior, especially during larvae development. The host and sandfly vector nutritional states could also influence the evolution of the parasite. It is essential to elucidate the roles that diets and nutrition play in the leishmanial life cycle. The aim of this article is to review the influences of nutrition and diets on the host susceptibility and severity of infection, preemptive and therapeutic strategy feedback, parasite evolution, and vector competence.
Collapse
Affiliation(s)
- Justus Amuche Nweze
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Emeka Innocent Nweze
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Uwakwe Simon Onoja
- Department of Nutrition and Dietetics, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
16
|
Hamley JID, Milton P, Walker M, Basáñez MG. Modelling exposure heterogeneity and density dependence in onchocerciasis using a novel individual-based transmission model, EPIONCHO-IBM: Implications for elimination and data needs. PLoS Negl Trop Dis 2019; 13:e0007557. [PMID: 31805049 PMCID: PMC7006940 DOI: 10.1371/journal.pntd.0007557] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/07/2020] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Density dependence in helminth establishment and heterogeneity in exposure to infection are known to drive resilience to interventions based on mass drug administration (MDA). However, the interaction between these processes is poorly understood. We developed a novel individual-based model for onchocerciasis transmission, EPIONCHO-IBM, which accounts for both processes. We fit the model to pre-intervention epidemiological data and explore parasite dynamics during MDA with ivermectin. METHODOLOGY/PRINCIPAL FINDINGS Density dependence and heterogeneity in exposure to blackfly (vector) bites were estimated by fitting the model to matched pre-intervention microfilarial prevalence, microfilarial intensity and vector biting rate data from savannah areas of Cameroon and Côte d'Ivoire/Burkina Faso using Latin hypercube sampling. Transmission dynamics during 25 years of annual and biannual ivermectin MDA were investigated. Density dependence in parasite establishment within humans was estimated for different levels of (fixed) exposure heterogeneity to understand how parametric uncertainty may influence treatment dynamics. Stronger overdispersion in exposure to blackfly bites results in the estimation of stronger density-dependent parasite establishment within humans, consequently increasing resilience to MDA. For all levels of exposure heterogeneity tested, the model predicts a departure from the functional forms for density dependence assumed in the deterministic version of the model. CONCLUSIONS/SIGNIFICANCE This is the first, stochastic model of onchocerciasis, that accounts for and estimates density-dependent parasite establishment in humans alongside exposure heterogeneity. Capturing the interaction between these processes is fundamental to our understanding of resilience to MDA interventions. Given that uncertainty in these processes results in very different treatment dynamics, collecting data on exposure heterogeneity would be essential for improving model predictions during MDA. We discuss possible ways in which such data may be collected as well as the importance of better understanding the effects of immunological responses on establishing parasites prior to and during ivermectin treatment.
Collapse
Affiliation(s)
- Jonathan I. D. Hamley
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
- * E-mail:
| | - Philip Milton
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, Untied Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary’s campus), Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Rodrigues de Oliveira A, Pinheiro GRG, Tinoco HP, Loyola ME, Coelho CM, Dias ES, Monteiro ÉM, de Oliveira Lara e Silva F, Pessanha AT, Souza AGM, Pereira NCL, Gontijo NF, Fujiwara RT, Alves da Paixão T, Santos RL. Competence of non-human primates to transmit Leishmania infantum to the invertebrate vector Lutzomyia longipalpis. PLoS Negl Trop Dis 2019; 13:e0007313. [PMID: 30995227 PMCID: PMC6488095 DOI: 10.1371/journal.pntd.0007313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/29/2019] [Accepted: 03/19/2019] [Indexed: 12/02/2022] Open
Abstract
Leishmaniasis is a zoonotic disease of worldwide relevance. Visceral leishmaniasis is endemic in Brazil, where it is caused by Leishmania infantum with Lutzomyia longipalpis being the most important invertebrate vector. Non-human primates are susceptible to L. infantum infection. However, little is known about the role of these species as reservoirs. The aim of this study was to evaluate the transmissibility potential of visceral leishmaniasis by non-human primates through xenodiagnosis using the phlebotomine Lu. longipalpis as well as to identify phlebotomine species prevalent in the area where the primates were kept in captivity, and assess infection by Leishmania in captured phlebotomine specimens. Fifty two non-human primates kept in captivity in an endemic area for leishmaniasis were subjected to xenodiagnosis. All primates were serologically tested for detection of anti-Leishmania antibodies. Additionally, an anti-Lu. longipalpis saliva ELISA was performed. Sand flies fed on all animals were tested by qPCR to identify and quantify L. infantum promastigotes. Eight of the 52 non-human primates were positive by xenodiagnosis, including three Pan troglodytes, three Leontopithecus rosalia, one Sapajus apella, and one Miopithecus talapoin, with estimated numbers of promastigotes ranging from 5.67 to 1,181.93 per μg of DNA. Positive animals had higher levels of IgG anti-Lu. longipalpis saliva when compared to negative animals, prior to xenodiagnosis. Captive non-human primates are capable of infecting Lu. longipalpis with L. infantum. Our findings also demonstrate the relevance of non-human primates as sentinels to zoonotic diseases. Several phlebotomine species, including Lu. longipalpis, have been identified in the area where the primates were maintained, but only one pool of Lutzomyia lenti was infected with L. infantum. This study has implications for public health strategies and conservation medicine. Visceral leishmaniasis is a zoonotic disease with worldwide distribution. The disease is endemic in several Brazilian regions, including the city of Belo Horizonte, where visceral leishmaniasis is caused by Leishmania infantum and transmitted by Lutzomyia longipalpis. This study evaluated the competence of non-human primates to infect Lutzomyia longipalpis with Leishmania infantum. Eight of 52 non-human primates were positive to leishmaniasis by xenodiagnosis, i.e. capable of infecting sand flies, with averages of 5.67 to 1,181.93 promastigotes/μg of DNA. Positive animals had higher levels of IgG anti-Lu. longipalpis saliva when compared to negative animals, prior to xenodiagnosis. This study highlights the importance of non-human primates in the leishmaniasis cycle, providing information that is relevant for development of better public health strategies, and to conservation medicine.
Collapse
Affiliation(s)
- Ayisa Rodrigues de Oliveira
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Rafael Gomide Pinheiro
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Herlandes P. Tinoco
- Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Elvira Loyola
- Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Carlyle Mendes Coelho
- Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Angela Tinoco Pessanha
- Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Nelder F. Gontijo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane Alves da Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
18
|
Antibody response to Phlebotomus perniciosus saliva in cats naturally exposed to phlebotomine sand flies is positively associated with Leishmania infection. Parasit Vectors 2019; 12:128. [PMID: 30909940 PMCID: PMC6434892 DOI: 10.1186/s13071-019-3376-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/05/2019] [Indexed: 11/10/2022] Open
Abstract
Background Zoonotic leishmaniosis, caused by the protozoan Leishmania infantum, is a public and animal health problem in Asia, Central and South America, the Middle East and the Mediterranean Basin. Several phlebotomine sand fly species from the subgenus Larroussius are vectors of L. infantum. Data from dogs living in endemic areas of leishmaniosis advocate the use of antibody response to phlebotomine sand fly saliva as an epidemiological biomarker for monitoring vector exposure. The aim of this study was to analyse the exposure of cats to phlebotomine sand flies using detection of IgG antibodies to Phlebotomus perniciosus saliva. The association between phlebotomine sand fly exposure and the presence of Leishmania infection was also investigated. Results IgG antibodies to P. perniciosus saliva were detected in 167 (47.7%) out of 350 cats; higher antibody levels were present in sera collected during the period of phlebotomine sand fly seasonal activity (OR = 19.44, 95% CI: 9.84–38.41). Cats of 12–35 months had higher antibody levels than younger ones (OR = 3.56, 95% CI: 1.39–9.16); this difference was also significant with older cats (for 36–95 months-old, OR = 9.43, 95% CI: 3.62–24.48; for older than 95 months, OR = 9.68, 95% CI: 3.92–23.91). Leishmania spp. DNA was detected in the blood of 24 (6.9%) cats, while antibodies to L. infantum were detected in three (0.9%). Only one cat was positive to Leishmania by both techniques. Cats presenting IgG antibodies to P. perniciosus had a significantly higher risk of being positive for Leishmania infection. Conclusions To our knowledge, this is the first study demonstrating anti-sand fly saliva antibodies in cats. The evaluation of the contact of this animal species with the vector is important to the development of prophylactic measures directed to cats, with the aim of reducing the prevalence of infection in an endemic area. Therefore, studies evaluating whether the use of imidacloprid/flumethrin collars reduces the frequency of P. perniciosus bites in cats are needed. It is also important to evaluate if there is a correlation between the number of phlebotomine sand fly bites and IgG antibody levels.
Collapse
|
19
|
Risueño J, Spitzová T, Bernal LJ, Muñoz C, López MC, Thomas MC, Infante JJ, Volf P, Berriatua E. Longitudinal monitoring of anti-saliva antibodies as markers of repellent efficacy against Phlebotomus perniciosus and Phlebotomus papatasi in dogs. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:99-109. [PMID: 30450832 DOI: 10.1111/mve.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/25/2018] [Accepted: 09/01/2018] [Indexed: 06/09/2023]
Abstract
A 2-year longitudinal study of enzyme-linked immunosorbent assay (ELISA) antibodies against Phlebotomus perniciosus and Phlebotomus papatasi (Diptera: Psychodidae) sandfly saliva was performed in 32 Beagle dogs treated preventively with an imidacloprid-permethrin topical insecticide in an endemic area in Spain. Dogs were grouped into three sandfly exposure groups according to the time of inclusion in the study. Assays analysed immunoglobulin G (IgG) against salivary gland homogenates (SGH) of both species and recombinant P. papatasi rSP32 and P. perniciosus rSP03B proteins in serum. The dogs were participating in a Leishmania infantum (Kinetoplastida: Trypanosomatidae) vaccine trial and were experimentally infected with the parasite in the second year. No dog acquired natural L. infantum infections during the first year, but most developed anti-saliva antibodies, and median log-transformed optical densities (LODs) were seasonal, mimicking those of local sandflies. This indicates that the repellent efficacy of the insecticide used is below 100%. Multi-level modelling of LODs revealed variability among dogs, autocorrelation and differences according to the salivary antigen and the dog's age. However, dog seroprevalence, estimated using pre-exposure LODs as cut-offs, was relatively low. This, and the fact that dogs did not become naturally infected with L. infantum, would support the efficacy and usefulness of this imidacloprid-permethrin topical insecticide in canine leishmaniasis control.
Collapse
Affiliation(s)
- J Risueño
- Department of Animal Health, Faculty of Veterinary Science, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - T Spitzová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - L J Bernal
- Department of Medicine and Surgery, Faculty of Veterinary Science, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - C Muñoz
- Department of Animal Health, Faculty of Veterinary Science, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - M C López
- Molecular Biology Department, Institute of Parasitology and Biomedicine 'López Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - M C Thomas
- Molecular Biology Department, Institute of Parasitology and Biomedicine 'López Neyra', Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - J J Infante
- Bioorganic Research and Services, SA, Jerez de la Frontera, Spain
| | - P Volf
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - E Berriatua
- Department of Animal Health, Faculty of Veterinary Science, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| |
Collapse
|
20
|
Velez R, Spitzova T, Domenech E, Willen L, Cairó J, Volf P, Gállego M. Seasonal dynamics of canine antibody response to Phlebotomus perniciosus saliva in an endemic area of Leishmania infantum. Parasit Vectors 2018; 11:545. [PMID: 30309376 PMCID: PMC6182812 DOI: 10.1186/s13071-018-3123-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023] Open
Abstract
Background Canine leishmaniosis (CanL) is an important zoonotic parasitic disease, endemic in the Mediterranean basin. In this region, transmission of Leishmania infantum, the etiological agent of CanL, is through the bite of phlebotomine sand flies. Therefore, monitoring host-vector contact represents an important epidemiological tool, and could be used to assess the effectiveness of vector-control programmes in endemic areas. Previous studies have shown that canine antibodies against the saliva of phlebotomine sand flies are specific markers of exposure to Leishmania vectors. However, this method needs to be further validated in natural heterogeneous dog populations living in CanL endemic areas. Methods In this study, 176 dogs living in 12 different locations of an L. infantum endemic area in north-east Spain were followed for 14 months. Blood samples were taken at 5 pre-determined time points (February, August and October 2016; January and April 2017) to assess the canine humoral immune response to whole salivary gland homogenate (SGH) and to the single salivary 43 kDa yellow-related recombinant protein (rSP03B) of Phlebotomus perniciosus, a proven vector of L. infantum naturally present in this region. Simultaneously, in all dogs, L. infantum infection status was assessed by serology. The relationship between anti-SGH and anti-rSP03B antibodies with the sampling month, L. infantum infection and the location was tested by fitting multilevel linear regression models. Results The dynamics of canine anti-saliva IgG for both SGH and rSP03B followed the expected trends of P. perniciosus activity in the region. Statistically significant associations were detected for both salivary antigens between vector exposure and sampling month or dog seropositivity to L. infantum. The correlation between canine antibodies against SGH and rSP03B was moderate. Conclusions Our results confirm the frequent presence of CanL vectors in the study area in Spain and support the applicability of SGH- and rSP03B-based ELISA tests to study canine exposure to P. perniciosus in L. infantum endemic areas.
Collapse
Affiliation(s)
- Rita Velez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.
| | - Tatiana Spitzova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Laura Willen
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Montserrat Gállego
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Maia C, Campino L. Biomarkers Associated With Leishmania infantum Exposure, Infection, and Disease in Dogs. Front Cell Infect Microbiol 2018; 8:302. [PMID: 30237985 PMCID: PMC6136405 DOI: 10.3389/fcimb.2018.00302] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Canine leishmaniosis (CanL) is a vector-borne disease caused by the protozoan Leishmania (Leishmania) infantum species [syn. L. (L.) infantum chagasi species in the Americas] which is transmitted by the bite of a female phlebotomine sand fly. This parasitosis is endemic and affect millions of dogs in Asia, the Americas and the Mediterranean basin. Domestic dogs are the main hosts and the main reservoir hosts for human zoonotic leishmaniosis. The outcome of infection is a consequence of intricate interactions between the protozoan and the immunological and genetic background of the host. Clinical manifestations can range from subclinical infection to very severe disease. Early detection of infected dogs, their close surveillance and treatment are essential to control the dissemination of the parasite among other dogs, being also a pivotal element for the control of human zoonotic leishmaniosis. Hence, the identification of biomarkers for the confirmation of Leishmania infection, disease and determination of an appropriate treatment would represent an important tool to assist clinicians in diagnosis, monitoring and in giving a realistic prognosis to subclinical infected and sick dogs. Here, we review the recent advances in the identification of Leishmania infantum biomarkers, focusing on those related to parasite exposure, susceptibility to infection and disease development. Markers related to the pathogenesis of the disease and to monitoring the evolution of leishmaniosis and treatment outcome are also summarized. Data emphasizes the complexity of parasite-host interactions and that a single biomarker cannot be used alone for CanL diagnosis or prognosis. Nevertheless, results are encouraging and future research to explore the potential clinical application of biomarkers is warranted.
Collapse
Affiliation(s)
- Carla Maia
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Lenea Campino
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
22
|
Brodskyn CI, Kamhawi S. Biomarkers for Zoonotic Visceral Leishmaniasis in Latin America. Front Cell Infect Microbiol 2018; 8:245. [PMID: 30175073 PMCID: PMC6108378 DOI: 10.3389/fcimb.2018.00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
In Latin America, zoonotic visceral leishmaniasis (ZVL) arising from infection by L. infantum is primarily transmitted by Lutzomyia longipalpis sand flies. Dogs, which are chronic reservoirs of L. infantum, are considered a significant risk factor for acquisition of ZVL due to their close proximity to humans. In addition, as a vector-borne disease the intensity of exposure to vector sand flies can also enhance the risk of developing ZVL. Traditionally, IFN-γ and IL-10 are considered as the two main cytokines which determine the outcome of visceral leishmaniasis. However, more recently, the literature has demonstrated that different mediators, such as lipid mediators (PGE-2, PGF-2 alfa, LTB-4, resolvins) and other important inflammatory and anti-inflammatory cytokines are also involved in the pathogenicity of ZVL. Analysis of a greater number of mediators allows for a more complete view of disease immunopathogenesis. Additionally, our knowledge has expanded to encompass different biomarkers associated to disease severity and healing after specific treatments. These parameters can also be used to better define new potential targets for vaccines and chemotherapy for ZVL. Here, we will provide an overview of ZVL biomarkers identified for both humans and dogs and discuss their merits and shortcomings. We will also discuss biomarkers of vector exposure as an additional tool in our arsenal to combat ZVL.
Collapse
Affiliation(s)
| | - Shaden Kamhawi
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|