1
|
Akorli EA, Andoh NE, Egyirifa RK, Dorcoo C, Otoo S, Tetteh SNA, Pul RM, Sackitey DB, Oware SKD, Dadzie SK, Akorli J. Mosquito breeding water parameters are important determinants for Microsporidia MB in the aquatic stages of Anopheles species. Parasit Vectors 2024; 17:509. [PMID: 39695866 DOI: 10.1186/s13071-024-06596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Microsporidia MB disrupts Plasmodium development in Anopheles mosquitoes, making it a possible biocontrol tool for malaria. As a tool for vector/disease control, its ecological distribution and the factors that determine their occurrence must be defined. We investigated the frequency of Microsporidia MB in Anopheles mosquitoes across selected sites in northern and southern Ghana, as well as the physicochemical parameters of mosquito breeding water that are associated with the occurrence of the fungus, by fitting regression models. METHODS A non-column extraction method was used to extract DNA from the abdomens of 4255 adult Anopheles mosquitoes that emerged from larvae and pupae collected between August and October of 2021 and 2022. Detection of Microsporidia MB was achieved using quantitative PCR (qPCR), while mosquito species were molecularly identified using short interspersed nuclear elements (SINE), restriction fragment length polymorphism (RFLP) methods, and the ANOSPP algorithm. RESULTS Overall Microsporidia MB distribution was 2.2% (92/4255). Male mosquitoes exhibited a higher frequency of infections and had a predicted probability of infection that was 85% higher than that of females. Sites in Ghana's Savannah zone had the highest Microsporidia MB distribution (68.5%). Biochemical oxygen demand in mosquito breeding water was estimated to be positively associated with and significantly predicts Microsporidia MB in mosquitoes with an accuracy of 94%. Increasing ammonium ion concentrations reduced the chances of finding Microsporidia MB-positive mosquitoes. According to our data, all Anopheles mosquitoes, including minor species such as An. squamosus, An. pretoriensis and An. rufipes, had equal probability of Microsporidia MB infection. CONCLUSIONS These results provide preliminary information on micro-ecological factors that potentially support the sustainability of Microsporidia MB infection in mosquitoes during their aquatic life stages. It will be important, therefore, to explore the impact of strategies for larval source management on these factors to ensure that the symbiont's persistence during the host's aquatic stages may not be adversely affected should it be used as an integrated approach for mosquito/disease control.
Collapse
Affiliation(s)
- Esinam A Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | - Nana Efua Andoh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
- Department of Pathology, University of Cambridge, 10 Tennis Ct Rd, Cambridge, CB2 1QP, UK
| | - Richardson K Egyirifa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | - Christopher Dorcoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | - Seraphim N A Tetteh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | - Reuben Mwimson Pul
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | - Derrick B Sackitey
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | - Stephen K D Oware
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | - Samuel K Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, P.O. Box LG 581, Accra, Ghana.
| |
Collapse
|
2
|
Ayana GM, Jalilian A, Ashine T, Molla E, Hailemeskel E, Yemane DH, Yirgu H, Negash N, Teferi N, Teshome D, Reynolds AM, Weetman D, Wilson AL, Kenate B, Donnelly MJ, Sedda L, Gadisa E. Larval source management in Ethiopia: modelling to assess its effectiveness in curbing malaria surge in dire Dawa and Batu Towns. Malar J 2024; 23:366. [PMID: 39627824 PMCID: PMC11613928 DOI: 10.1186/s12936-024-05189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Ethiopia faces several severe challenges in terms of malaria elimination, including drug resistance and diagnostic evasion in the Plasmodium falciparum parasite, insecticide resistance in the primary Anopheles malaria vector, and, most recently, the invasion of the Asian malaria vector Anopheles stephensi. Novel malaria control methods are therefore needed, and in this paper, we describe the evaluation of a larval source management (LSM) strategy implemented in response to An. stephensi. The primary outcome was the malaria incidence rate compared between intervention and non-intervention sites in the presence of An. stephensi. METHODS Intervention (Batu and Dire Dawa) and control (Metehara) towns were selected, and weekly malaria passive case detection data collected between 2014 and 2023 were obtained from the Oromia regional state and Dire Dawa City Administration Health Bureau. In addition, data regarding intervention were obtained from the President's Malaria Initiative (PMI) reports. Weekly malaria passive case data were used to evaluate the change in the estimated malaria incidence rate and trends of temporal patterns of the estimated malaria incidence rate before and after interventions. An interrupted time series model with a cyclic second-order random walk structure periodic seasonal term was used to assess the impact of LSM on malaria incidence rate in the intervention and control settings. RESULTS An upsurge in malaria cases occurred after 2020 at both the intervention and control sites. The temporal patterns of malaria incidence rate showed an increasing trend after the intervention. The ITS model depicted that the LSM has no impact in reducing the malaria incidence rate at both intervention site Dire Dawa [immediate impact = 1.462 (0.891, 2.035)], [Lasting impact = 0.003 (- 0.012, 0.018)], and Batu [Immediate impact 0.007 (- 0.235, 0.249), [Lasting impact = 0.008 (- 0.003, 0.013)]. CONCLUSIONS An overall increasing trend in the malaria incidence rate was observed irrespective of the implementation of LSM in the urban settings of Ethiopia, where An. stephensi has been found. Further investigations and validations of the incorporation of LSM into control activities are warranted.
Collapse
Affiliation(s)
- Galana Mamo Ayana
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abdollah Jalilian
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Lancaster, UK.
| | - Temesgen Ashine
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Eshetu Molla
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Elifaged Hailemeskel
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Dagmawi Hailu Yemane
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hailegiorgis Yirgu
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Nigatu Negash
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Natnael Teferi
- Public Health Emergency Management, Research, and Blood Bank Service Directorate, Oromia Region Health Bureau, P.O. Box 24341, Addis Ababa, Ethiopia
| | - Daniel Teshome
- Public Health Emergency Management, Research, Dire Dawa Region Health Bureau, Dire Dawa, Ethiopia
| | - Alison M Reynolds
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Anne L Wilson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Birhanu Kenate
- Public Health Emergency Management, Research, and Blood Bank Service Directorate, Oromia Region Health Bureau, P.O. Box 24341, Addis Ababa, Ethiopia
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Endalamaw Gadisa
- Malaria and Neglected Tropical Disease, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Ramirez-Lachmann S, Hart J, Su T, Latham M, Lesser C. COMPARATIVE LABORATORY ACTIVITY AND SEMI-FIELD EFFICACY OF OMNIPRENE® G AND ALTOSID® PELLETS AGAINST AEDES AEGYPTI. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:162-168. [PMID: 39209320 DOI: 10.2987/24-7186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mosquito larval control by biorational larvicides plays a crucial role in mosquito and mosquito-borne disease management. However, the availability of larvicides that meet the criteria of efficacy, safety, and quality is limited and conventional pesticides are no longer preferred for larval control. Although efforts are made to research new active ingredients (AIs), it is equally important to innovate new formulations based on currently available AIs such as microbial agents and insect growth regulators. Studies were therefore conducted to compare the laboratory activity and semi-field efficacy of OmniPrene® G and Altosid® Pellets with DR-tech, both containing 4.25% S-methoprene, at 2.8 kg/ha and 11.2 kg/ha against the yellow fever mosquito Aedes aegypti (L.) in outdoor microcosms. Both products performed equally in bioassays against the test species with comparable inhibition of emergence activities. In the semi-field study, the lower dose of Altosid Pellets at 2.8 kg/ha, showed lower efficacy than OmniPrene G during the initial 6 weeks; this difference became negligible on week 7, followed by higher efficacy in Altosid Pellets on weeks 8 and 9. More uniform efficacy was observed at the higher dose of 11.2 kg/ha. Equal performance was revealed during weeks 2 to 6, with the OmniPrene G outperforming the Altosid Pellets in week 1, but the opposite during weeks 7 to 9. Mortality patterns were similar in both products, i.e., majority of mortality occurred before emergence, although more incomplete emergence was noted in lower doses, particularly in Altosid Pellets. Overall, newly available OmniPrene G provided comparable activity and efficacy with Altosid Pellets against the test species, with the advantages of fast initial AI release and even coverage, particularly when applied at low doses.
Collapse
Affiliation(s)
- Samantha Ramirez-Lachmann
- Manatee County Mosquito Control District, 1420 28th Avenue East, Ellenton, FL 34222
- Current affiliation: Valent BioSciences, Libertyville, IL
| | - Jacob Hart
- Manatee County Mosquito Control District, 1420 28th Avenue East, Ellenton, FL 34222
| | - Tianyun Su
- EcoZone International LLC, 7237 Boice Lane, Riverside, CA 92506
| | - Mark Latham
- Manatee County Mosquito Control District, 1420 28th Avenue East, Ellenton, FL 34222
| | - Christopher Lesser
- Manatee County Mosquito Control District, 1420 28th Avenue East, Ellenton, FL 34222
| |
Collapse
|
4
|
Longo-Pendy NM, Sevidzem SL, Makanga BK, Ndotit-Manguiengha S, Boussougou-Sambe ST, Obame Ondo Kutomy P, Obame-Nkoghe J, Nkoghe-Nkoghe LC, Ngossanga B, Mvoubou FK, Koumba CRZ, Adegnika AA, Razack AS, Mavoungou JF, Mintsa-Nguema R. Assessment of environmental and spatial factors influencing the establishment of Anopheles gambiae larval habitats in the malaria endemic province of Woleu-Ntem, northern Gabon. Malar J 2024; 23:158. [PMID: 38773512 PMCID: PMC11106858 DOI: 10.1186/s12936-024-04980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND This study aimed to assess the spatial distribution of Anopheles mosquito larval habitats and the environmental factors associated with them, as a prerequisite for the implementation of larviciding. METHODS The study was conducted in December 2021, during the transition period between the end of the short rainy season (September-November) and the short dry season (December-February). Physical, biological, and land cover data were integrated with entomological observations to collect Anopheles larvae in three major towns: Mitzic, Oyem, and Bitam, using the "dipping" method during the transition from rainy to dry season. The collected larvae were then reared in a field laboratory established for the study period. After the Anopheles mosquitoes had emerged, their species were identified using appropriate morphological taxonomic keys. To determine the influence of environmental factors on the breeding of Anopheles mosquitoes, multiple-factor analysis (MFA) and a binomial generalized linear model were used. RESULTS According to the study, only 33.1% out of the 284 larval habitats examined were found to be positive for Anopheles larvae, which were primarily identified as belonging to the Anopheles gambiae complex. The findings of the research suggested that the presence of An. gambiae complex larvae in larval habitats was associated with various significant factors such as higher urbanization, the size and type of the larval habitats (pools and puddles), co-occurrence with Culex and Aedes larvae, hot spots in ambient temperature, moderate rainfall, and land use patterns. CONCLUSIONS The results of this research mark the initiation of a focused vector control plan that aims to eradicate or lessen the larval habitats of An. gambiae mosquitoes in Gabon's Woleu Ntem province. This approach deals with the root causes of malaria transmission through larvae and is consistent with the World Health Organization's (WHO) worldwide objective to decrease malaria prevalence in regions where it is endemic.
Collapse
Affiliation(s)
- Neil-Michel Longo-Pendy
- Unité de Recherche en Ecologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon.
| | - Silas Lendzele Sevidzem
- Laboratoire d'Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville, Gabon
| | | | - Saturnin Ndotit-Manguiengha
- Institut de Recherche en Écologie Tropicale (IRET), Libreville, Gabon
- Agence Gabonaise d'Etudes et d'Observations Spatiales (AGEOS), Libreville, Gabon
| | | | - Piazzy Obame Ondo Kutomy
- Programme National de Lutte Contre Le Paludisme (PNLP), Libreville, Gabon
- Universite Cheikh Anta Diop de Dakar (UCAD), Dakar, Sénégal
| | - Judicaël Obame-Nkoghe
- Unité de Recherche en Ecologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Université des Sciences et Techniques de Masuku (USTM), Franceville, Gabon
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, Phuthaditjhaba, Republic of South Africa
| | - Lynda-Chancelya Nkoghe-Nkoghe
- Unité de Recherche en Ecologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | | | | | - Ayôla Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut Für Tropenmedizin, Eberhard Karls Universität, Tübingen, Germany
- Fondation Pour la Recherche Scientifique (FORS), P.O. Box 88, Cotonou, Benin
- German Center for Infection Research (DZIF), Partner site Tübingen, Tübingen, Germany
| | | | | | - Rodrigue Mintsa-Nguema
- Laboratoire d'Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville, Gabon
- Institut de Recherche en Écologie Tropicale (IRET), Libreville, Gabon
| |
Collapse
|
5
|
Scussel S, Gaudillat B, Esnault J, Lejarre Q, Duployer M, Lebon C, Benlali A, Mavingui P, Tortosa P, Cattel J. Combining transinfected Wolbachia and a genetic sexing strain to control Aedes albopictus in laboratory-controlled conditions. Proc Biol Sci 2024; 291:20240429. [PMID: 38628128 PMCID: PMC11021938 DOI: 10.1098/rspb.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
The global expansion of Aedes albopictus has stimulated the development of environmentally friendly methods aiming to control disease transmission through the suppression of natural vector populations. Sterile male release programmes are currently being deployed worldwide, and are challenged by the availability of an efficient sex separation which can be achieved mechanically at the pupal stage and/or by artificial intelligence at the adult stage, or through genetic sexing, which allows separating males and females at an early development stage. In this study, we combined the genetic sexing strain previously established based on the linkage of dieldrin resistance to the male locus with a Wolbachia transinfected line. For this, we introduced either the wPip-I or the wPip-IV strain from Culex pipiens in an asymbiotic Wolbachia-free Ae. albopictus line. We then measured the penetrance of cytoplasmic incompatibility and life-history traits of both transinfected lines, selected the wPip-IV line and combined it with the genetic sexing strain. Population suppression experiments demonstrated a 90% reduction in population size and a 50% decrease in hatching rate. Presented results showed that such a combination has a high potential in terms of vector control but also highlighted associated fitness costs, which should be reduced before large-scale field assay.
Collapse
Affiliation(s)
- Sarah Scussel
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Benjamin Gaudillat
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Jérémy Esnault
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Quentin Lejarre
- Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche Cyroi, 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Marianne Duployer
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Cyrille Lebon
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Aude Benlali
- Groupement d'Intérêt Public Cyclotron Océan Indien (CYROI), 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| | - Patrick Mavingui
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249. Plateforme de recherché CYROI, 2 rue Maxime Rivière, 97490 Ste Clotilde, La Réunion, France
| | - Pablo Tortosa
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT), CNRS 9192, INSERM 1187, IRD 249. Plateforme de recherché CYROI, 2 rue Maxime Rivière, 97490 Ste Clotilde, La Réunion, France
| | - Julien Cattel
- Symbiosis Technologies for Insect Control (SymbioTIC), Plateforme de Recherche Cyroi, 2 rue Maxime Rivière, 97490 Ste Clotilde, Ste Clotilde, France
| |
Collapse
|
6
|
Negri A, Pezzali G, Pitton S, Piazzoni M, Gabrieli P, Lazzaro F, Mastrantonio V, Porretta D, Lenardi C, Caccia S, Bandi C, Epis S. MosChito rafts as a promising biocontrol tool against larvae of the common house mosquito, Culex pipiens. PLoS One 2023; 18:e0295665. [PMID: 38096210 PMCID: PMC10721080 DOI: 10.1371/journal.pone.0295665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Mosquito control is of paramount importance, in particular, in light of the major environmental alterations associated with human activities, from climate change to the altered distribution of pathogens, including those transmitted by Arthropods. Here, we used the common house mosquito, Culex pipiens to test the efficacy of MosChito raft, a novel tool for mosquito larval control. MosChito raft is a floating hydrogel matrix, composed of chitosan, genipin and yeast cells, as bio-attractants, developed for the delivery of a Bacillus thuringiensis israeliensis (Bti)-based bioinsecticide to mosquito larvae. To this aim, larvae of Cx. pipiens were collected in field in Northern Italy and a novel colony of mosquito species (hereafter: Trescore strain) was established. MosChito rafts, containing the Bti-based formulation, were tested on Cx. pipiens larvae from the Trescore strain to determine the doses to be used in successive experiments. Thus, bioassays with MosChito rafts were carried out under semi-field conditions, both on larvae from the Trescore strain and on pools of larvae collected from the field, at different developmental stages. Our results showed that MosChito raft is effective against Cx. pipiens. In particular, the observed mortality was over 50% after two days exposure of the larvae to MosChito rafts, and over 70-80% at days three to four, in both laboratory and wild larvae. In conclusion, our results point to the MosChito raft as a promising tool for the eco-friendly control of a mosquito species that is not only a nuisance insect but is also an important vector of diseases affecting humans and animals.
Collapse
Affiliation(s)
- Agata Negri
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| | - Giulia Pezzali
- Department of Biosciences, University of Milan, Milan, Italy
| | - Simone Pitton
- Department of Biosciences, University of Milan, Milan, Italy
| | - Marco Piazzoni
- Department of Physics, University of Milan, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Paolo Gabrieli
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| | | | | | - Daniele Porretta
- Department of Environmental Biology, “La Sapienza” University of Rome, Rome, Italy
| | | | - Silvia Caccia
- Department of Biosciences, University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| | - Sara Epis
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Okafor MA, Ekpo ND, Opara KN, Udoidung NI, Ataya FS, Yaro CA, Batiha GES, Alexiou A, Papadakis M. Pyrethroid insecticides susceptibility profiles and evaluation of L1014F kdr mutant alleles in Culex quinquefasciatus from lymphatic filariasis endemic communities. Sci Rep 2023; 13:18716. [PMID: 37907533 PMCID: PMC10618241 DOI: 10.1038/s41598-023-44962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
This study investigated the dynamics in pyrethriod resistance and the presence/frequencies of L1014F knockdown resistance mutant allelles in Culex quinquefasciatus vector populations from Uruan Local Government Area of AkwaIbom State, Southern Nigeria between the months of March and November, 2021. Uruan LGA is among the endemic LGAs for lymphatic filariasis in AkwaIbomState. Female Anopheles mosquitoes from Eman Uruan, Ituk Mbang and Idu Uruan were exposed to permethrin, deltamethrin and alphacypermethrin in CDC insecticide coated bottles for susceptibility bioassay following standard protocols. The mosquitoes were obtained as aquatic forms from the study sites and reared under laboratory conditions to adults. The adult mosquitoes were used for this study. All the mosquitoes used for the insecticide susceptibility bioassay were morphologically identified. Standard Polymerase chain reaction (PCR) was used for authenticating the Culex quinquefasciatus species. A portion of the vgsc (917 bp) gene spanning the entire intron and the exon containing the L1014F mutation associated with knockdown resistance (kdr) in the vectorswere amplified using Allele-SPECIFIC POLYMERASE CHAIN REACTION (AS-PCR) in order to detect target site insensitivity in the vectors from the study sites. Results obtained revealed that vectors from all the study sites were resistant to permethrin insecticide (mortality rate: 18-23%). Suspected resistance (mortality rate: 90-93%) to deltamethrin and low resistance (mortality rate: 82-85%) to alphacypermethrin insecticides were detected. knockdown was more rapid with deltamethrin and alphacypermethrin than with permethrin across the study sites considering their KDT50 and KDT95. The frequency of the resistant phenotypes ranged from 35.14 to 55.3% across the study sites with a net of 45.1% resistant phenotype recorded in this study. The 1014F allelic frequency calculated from Hardy-Weinberg principle for vector populations across the study sites ranged from 0.500 (50.00%) to 0.7763 (77.63%). All populations witnessed significant (p < 0.05) deviations from Hardy-Weinberg equilibrium in the distribution of these alleles. The findings of this study show that there is a tendency to record an entire population of resistant vectors in this study area over time due to natural selection. The public health implication of these findings is that the use of pyrethroid based aerosols, coils, sprays, LLITNs and others for the purpose of controlling vectors of lymphatic filariasis and other diseases may be effort in futility.
Collapse
Affiliation(s)
- Martina Anurika Okafor
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Ndifreke Daniel Ekpo
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria.
| | - Kenneth Nnamdi Opara
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Nsima Ibanga Udoidung
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia.
| | - Clement Ameh Yaro
- Department of Animal and Environmental Biology, University of Uyo, Uyo, Akwa Ibom State, Nigeria.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
8
|
Orondo PW, Zhou G, Ochwedo KO, Wang X, Ondeto BM, Lee MC, Nyanjom SG, Atieli H, Githeko AK, Kazura JW, Yan G. Effect of predators on Anopheles arabiensis and Anopheles funestus larval survivorship in Homa Bay County Western Kenya. Malar J 2023; 22:298. [PMID: 37798779 PMCID: PMC10557226 DOI: 10.1186/s12936-023-04741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The rise of insecticide resistance against malaria vectors in sub-Saharan Africa has resulted in the need to consider other methods of vector control. The potential use of biological methods, including larvivorous fish, Bacillus thuringiensis israelensis (Bti) and plant shading, is sustainable and environmentally friendly options. This study examined the survivorship of Anopheles arabiensis and Anopheles funestus larvae and habitat productivity in four permanent habitat types in Homa Bay county, western Kenya. METHODS Predator densities were studied in a laboratory setup while habitat productivity and larval survivorship was studied in field setup. RESULTS Fish were observed as the most efficient predator (75.8% larval reduction rate) followed by water boatman (69%), and dragonfly nymph (69.5%) in predation rates. Lower predation rates were observed in backswimmers (31%), water beetles (14.9%), water spiders (12.2%), mayflies (7.3%), and tadpoles (6.9%). Increase in predator density in the field setup resulted in decreased Culex larval density. Larval and pupa age-specific distribution was determined and their survivorship curves constructed. Combined larvae (Stage I-IV) to pupa mortality was over 97% for An. arabiensis and 100% for An. funestus. The highest larval stage survival rate was from larval stages I to II and the lowest from larval stage IV to pupa. Stage-specific life tables indicated high mortality rates at every developmental stage, especially at the larval stage II and III. CONCLUSION Determination of the efficiency of various larval predators and habitat productivity will help with the correct identification of productive habitats and selection of complementary vector control methods through environmental management and/or predator introduction (for instance fish) in the habitats.
Collapse
Affiliation(s)
- Pauline Winnie Orondo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya.
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Kevin O Ochwedo
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Benyl M Ondeto
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Steven G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University, College of Maseno University, Homa Bay, Kenya
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA.
| |
Collapse
|
9
|
Talipouo A, Doumbe-Belisse P, Ngadjeu CS, Djamouko-Djonkam L, Nchoutpouen E, Bamou R, Sonhafouo-Chiana N, Mayi APM, Dadji Foko GA, Awono-Ambene P, Kekeunou S, Wondji CS, Antonio-Nkondjio C. Larviciding intervention targeting malaria vectors also affects Culex mosquito distribution in the city of Yaoundé, Cameroon. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100136. [PMID: 37693015 PMCID: PMC10491826 DOI: 10.1016/j.crpvbd.2023.100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
Although Culex species are considered to be equally affected by control measures targeting malaria vectors, there is still not enough evidence of the impact of interventions such as larviciding on the distribution of these mosquito species. The present study assessed the impact of a larviciding trial targeting malaria vectors on Culex mosquito species in the city of Yaoundé, Cameroon. A cluster randomized trial comparing 13 treated clusters and 13 untreated clusters was implemented. Data were collected at baseline and during the larviciding intervention, from March 2017 to November 2020. The microbial larvicide VectoMax G was applied once every 2 weeks in the intervention areas. Adult mosquitoes were collected using CDC light traps in both intervention and non-intervention areas and compared between arms. Globally, larviciding intervention was associated with 69% reduction in aquatic habitats with Culex larvae and 36.65% reduction of adult Culex densities in houses. Adult Culex densities were reduced both indoors (35.26%) and outdoors (42.37%). No change in the composition of Culex species was recorded. The study suggests a high impact of larviciding on Culex mosquito species distribution. The impact of the intervention can be improved if typical Culex breeding habitats including pit latrines are targeted.
Collapse
Affiliation(s)
- Abdou Talipouo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Patricia Doumbe-Belisse
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Carmène S. Ngadjeu
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Landre Djamouko-Djonkam
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Sciences, University of Dschang, Box 337, Dschang, Cameroon
| | - Elysée Nchoutpouen
- Centre for Research in Infectious Disease (CRID), Yaoundé, P.O. Box 13591, Cameroon
| | - Roland Bamou
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Sciences, University of Dschang, Box 337, Dschang, Cameroon
| | - Nadège Sonhafouo-Chiana
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Audrey Paul Marie Mayi
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Faculty of Sciences, University of Dschang, Box 337, Dschang, Cameroon
| | - Gisèle Aurélie Dadji Foko
- Laboratory of Zoology, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Sévilor Kekeunou
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Disease (CRID), Yaoundé, P.O. Box 13591, Cameroon
- Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
| | - Christophe Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
10
|
Rants'o TA, Koekemoer LL, van Zyl RL. Bioactivity of select essential oil constituents against life stages of Anopheles arabiensis (Diptera: Culicidae). Exp Parasitol 2023:108569. [PMID: 37330107 DOI: 10.1016/j.exppara.2023.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Malaria is transmitted by infected female Anopheles mosquitoes, and An. arabiensis is a main malaria vector in arid African countries. Like other anophelines, its life cycle comprises of three aquatic stages; egg, larva, and pupa, followed by a free flying adult stage. Current vector control interventions using synthetic insecticides target these stages using adulticides or less commonly, larvicides. With escalating insecticide resistance against almost all conventional insecticides, identification of agents that simultaneously act at multiple stages of Anopheles life cycle presents a cost-effective opportunity. A further cost-effective approach would be the discovery of such insecticides from natural origin. Interestingly, essential oils present as potential sources of cost-effective and eco-friendly bioinsecticides. This study aimed to identify essential oil constituents (EOCs) with potential toxic effects against multiple stages of An. arabiensis life cycle. Five EOCs were assessed for inhibition of Anopheles egg hatching and ability to kill larvae, pupae and adult mosquitoes of An. arabiensis species. One of these EOCs, namely methyleugenol, exhibited potent Anopheles egg hatchability inhibition with an IC50 value of 0.51 ± 0.03 μM compared to propoxur (IC50: 5.13 ± 0.62 μM). Structure-activity relationship study revealed that methyleugenol and propoxur share a 1,2-dimethoxybenze moiety that may be responsible for the observed egg-hatchability inhibition. On the other hand, all five EOCs exhibited potent larvicidal activity with LC50 values less than 5 μM, with four of them; cis-nerolidol, trans-nerolidol, (-)-α-bisabolol, and farnesol, also possessing potent pupicidal effects (LC50 < 5 μM). Finally, all EOCs showed only moderate lethality against adult mosquitoes. This study reports for the first time, methyleugenol, (-)-α-bisabolol and farnesol as potent bioinsecticides against early life stages of An. arabiensis. This synchronized activity against Anopheles aquatic stages shows a prospect to integrate EOCs into existing adulticide-based vector control interventions.
Collapse
Affiliation(s)
- Thankhoe A Rants'o
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Robyn L van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
11
|
Alenou LD, Nwane P, Mbakop LR, Piameu M, Ekoko W, Mandeng S, Bikoy EN, Toto JC, Onguina H, Etang J. Burden of mosquito-borne diseases across rural versus urban areas in Cameroon between 2002 and 2021: prospective for community-oriented vector management approaches. Parasit Vectors 2023; 16:136. [PMID: 37076896 PMCID: PMC10114431 DOI: 10.1186/s13071-023-05737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/12/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Over the past two decades, Cameroon has recorded one of the highest rates of urban population growth in sub-Saharan Africa. It is estimated that more than 67% of Cameroon's urban population lives in slums, and the situation is far from improving as these neighbourhoods are growing at an annual rate of 5.5%. However, it is not known how this rapid and uncontrolled urbanization affects vector populations and disease transmission in urban versus rural areas. In this study, we analyse data from studies conducted on mosquito-borne diseases in Cameroon between 2002 and 2021 to determine the distribution of mosquito species and the prevalence of diseases they transmit with regards to urban areas versus rural areas. METHODS A search of various online databases, such as PubMed, Hinari, Google and Google Scholar, was conducted for relevant articles. A total of 85 publications/reports were identified and reviewed for entomological and epidemiological data from the ten regions of Cameroon. RESULTS Analysis of the findings from the reviewed articles revealed 10 diseases transmitted by mosquitoes to humans across the study regions. Most of these diseases were recorded in the Northwest Region, followed by the North, Far North and Eastern Regions. Data were collected from 37 urban and 28 rural sites. In the urban areas, dengue prevalence increased from 14.55% (95% confidence interval [CI] 5.2-23.9%) in 2002-2011 to 29.84% (95% CI 21-38.7%) in 2012-2021. In rural areas, diseases such as Lymphatic filariasis and Rift valley fever, which were not present in 2002-2011, appeared in 2012-2021, with a prevalence of 0.4% (95% CI 0.0- 2.4%) and 10% (95% CI 0.6-19.4%), respectively. Malaria prevalence remained the same in urban areas (67%; 95% CI 55.6-78.4%) between the two periods, while it significantly decreased in rural areas from 45.87% (95% CI 31.1-60.6%) in 2002-2011 to 39% (95% CI 23.7-54.3%) in the 2012-2021 period (*P = 0.04). Seventeen species of mosquitoes were identified as involved in the transmission of these diseases, of which 11 were involved in the transmission of malaria, five in the transmission of arboviruses and one in the transmission of malaria and lymphatic filariasis. The diversity of mosquito species was greater in rural areas than in urban areas during both periods. Of the articles reviewed for the 2012-2021 period, 56% reported the presence of Anopheles gambiae sensu lato in urban areas compared to 42% reported in 2002-2011. The presence of Aedes aegypti increased in urban areas in 2012-2021 but this species was absent in rural areas. Ownership of long-lasting insecticidal nets varied greatly from one setting to another. CONCLUSIONS The current findings suggest that, in addition to malaria control strategies, vector-borne disease control approaches in Cameroon should include strategies against lymphatic filariasis and Rift Valley fever in rural areas, and against dengue and Zika viruses in urban areas.
Collapse
Affiliation(s)
- Leo Dilane Alenou
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701, Douala, Cameroon.
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases' Control in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.
| | - Philippe Nwane
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases' Control in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Lili Ranaise Mbakop
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases' Control in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Michael Piameu
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases' Control in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- School of Health Sciences, Catholic University of Central Africa, P.O. Box 1110, Yaounde, Cameroon
| | - Wolfgang Ekoko
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases' Control in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, University of Bamenda, Bambili, P.O. Box 39, Douala, Cameroon
| | - Stanislas Mandeng
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases' Control in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Elisabeth Ngo Bikoy
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Jean Claude Toto
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases' Control in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Hugues Onguina
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases' Control in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Josiane Etang
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701, Douala, Cameroon.
- Malaria Research Laboratory, Yaoundé Research Institute (IRY), Organization for the Coordination of Endemic Diseases' Control in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Faculty 09-Agricultural Sciences, Nutritional Sciences and Environmental Management, Justus-Liebig-University Gießen, Winchester Str. 2, 35394, Giessen, Germany.
| |
Collapse
|
12
|
MosChito rafts as effective and eco-friendly tool for the delivery of a Bacillus thuringiensis-based insecticide to Aedes albopictus larvae. Sci Rep 2023; 13:3041. [PMID: 36810640 PMCID: PMC9944263 DOI: 10.1038/s41598-023-29501-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Adult mosquito females, through their bites, are responsible for the transmission of different zoonotic pathogens. Although adult control represents a pillar for the prevention of disease spread, larval control is also crucial. Herein we characterized the effectiveness of a suitable tool, named "MosChito raft", for the aquatic delivery of a Bacillus thuringiensis var. israelensis (Bti) formulate, a bioinsecticide active by ingestion against mosquito larvae. MosChito raft is a floating tool composed by chitosan cross-linked with genipin in which a Bti-based formulate and an attractant have been included. MosChito rafts (i) resulted attractive for the larvae of the Asian tiger mosquito Aedes albopictus, (ii) induced larval mortality within a few hours of exposure and, more importantly, (iii) protected the Bti-based formulate, whose insecticidal activity was maintained for more than one month in comparison to the few days residual activity of the commercial product. The delivery method was effective in both laboratory and semi-field conditions, demonstrating that MosChito rafts may represent an original, eco-based and user-friendly solution for larval control in domestic and peri-domestic aquatic habitats such as saucers and artificial containers in residential or urban environments.
Collapse
|
13
|
Knowledge, practices and perceptions of communities during a malaria larviciding randomized trial in the city of Yaoundé, Cameroon. PLoS One 2022; 17:e0276500. [PMID: 36327271 PMCID: PMC9632894 DOI: 10.1371/journal.pone.0276500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
Background Urban malaria is becoming a major public health concern in major cities in Cameroon. To improve malaria vector control, a pilot larviciding trial was conducted to assess its impact on mosquito density and malaria transmission intensity in Yaoundé. The present study investigated perceptions and practices of communities on malaria control during the larviciding trial implemented in Yaoundé. Methods Quantitative and qualitative data were collected in non-intervention and intervention areas. Quantitative data were collected during three cross-sectional surveys using a structured pre-tested questionnaire while qualitative data were obtained through interviews. A total of 26 in-depth interviews and eight focus group discussions with community members were performed. A binary logistic regression model was used to assess the perception of the community on larviciding impact on some malaria or bed nets use indicators. Results People living in intervention areas were 2.64 times more likely to know the mode of malaria transmission (95% CI: 1.82–3.84; p<0.001) and 1.3 time more likely to know mosquito breeding habitats (95% CI: 1.06–1.56; p = 0.009) compared to those living in non-intervention areas. In intervention areas, interviewee opinions on larviciding were generally good i.e. most interviewees reported having noticed a reduction in mosquito nuisance and malaria cases following larviciding implementation; whereas in non-intervention areas no report of reduction of mosquito nuisance was recorded. LLINs were regularly used by the population despite the implementation of larviciding treatments. There was high interest in larviciding program and demand for continuation, even if this needs the community involvement. Conclusion The larviciding program in the city of Yaoundé did not negatively affected community members’ behaviour and practices concerning the use of treated nets. The study indicated the acceptance of larviciding program by the population. This positive environment could favour the implementation of future antilarval control activities in the city of Yaoundé.
Collapse
|
14
|
Matindo AY, Kalolo A, Kengia JT, Kapologwe NA, Munisi DZ. The Role of Community Participation in Planning and Executing Malaria Interventions: Experience from Implementation of Biolarviciding for Malaria Vector Control in Southern Tanzania. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8046496. [PMID: 36193319 PMCID: PMC9525780 DOI: 10.1155/2022/8046496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 07/25/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Background Malaria remains a disease of great public health importance in 85 countries globally. Developing countries face resource constraints in implementing public health interventions aiming at controlling malaria. Promoting community participation may contribute to rational and effective use of resources and therefore facilitating achievement of intervention goals in a cost-effective manner while fostering sustainability. However, this can be possible if the community is engaged at all stages of the intervention, from designing, implementation, monitoring, and evaluation of results. This study aimed at understanding community participation in the implementation of a biolarviciding intervention for malaria vectors control in Southern Tanzania. Methods The current study adopted explanatory mixed method study design in collecting data. Quantitative data were collected from 400 community members and 12 vector control coordinators using structured questionnaire while qualitative data was collected through key informant interviews to 32 participants and in-depth interviews to 5 vector control coordinators who were purposively selected from the 12 councils. Quantitative data analysis involved descriptive and inferential statistics. Thematic analysis was used to analyse qualitative data. Results Of 400 community members, only 90 (22.5%) participated in biolarviciding implementation. Predictors of community participation were willingness to participate (AOR = 3.15, 95%CI = 1.14 - 8.71, P value = 0.027) and community involvement (AOR = 6.07, 95%CI = 2.69 - 13.71, P value < 0.001). The study revealed that the main barriers to community participation were lack of effective involvement and lack of incentive to community volunteers while high willingness to participate was a facilitating factor for community participation. Conclusion The study revealed low community participation in biolarviciding implementation in Southern Tanzania with willingness to participate and community involvement being the main predictors for community participation while lack of incentive to community volunteers was one major barrier to community participation. This explains the persistence of an unresolved challenge of community participation in malaria interventions. Therefore, more efforts are needed to improve the participation of community members in Malaria interventions through advocacy, awareness creation of respective roles, and responsibilities of the community members and fostering community ownership. Additionally, councils need to design customized motivation package for the community members.
Collapse
Affiliation(s)
- Athuman Yusuph Matindo
- Department of Health, Musoma District Council, Mara Region, Tanzania
- Department of Public Health and Community Nursing, School of Nursing and Public Health, The University of Dodoma, Tanzania
| | - Albino Kalolo
- Department of Public Health, St. Francis University College of Health and Allied Sciences, Ifakara, Tanzania
- Center for Reforms, Innovation, Health Policies and Implementation Research (CeRIHI), P.O. Box 749, Morogoro Road, Makole (Near Bunge Premises) P.O. Box 749, Dodoma, Tanzania
| | - James Tumaini Kengia
- Center for Reforms, Innovation, Health Policies and Implementation Research (CeRIHI), P.O. Box 749, Morogoro Road, Makole (Near Bunge Premises) P.O. Box 749, Dodoma, Tanzania
- Department of Health, Social Welfare and Nutrition Services, President's Office Regional Administration and Local Government (PORALG), Dodoma, Tanzania
| | - Ntuli Angyelile Kapologwe
- Center for Reforms, Innovation, Health Policies and Implementation Research (CeRIHI), P.O. Box 749, Morogoro Road, Makole (Near Bunge Premises) P.O. Box 749, Dodoma, Tanzania
- Department of Health, Social Welfare and Nutrition Services, President's Office Regional Administration and Local Government (PORALG), Dodoma, Tanzania
| | - David Zadock Munisi
- Department of Microbiology and Parasitology, School of Medicine and Dentistry, The University of Dodoma, Tanzania
| |
Collapse
|
15
|
David Forfuet F, Mayi MPA, Fru-Cho J, Kowo C, Nota Anong D, Esack Fonda A, Djomo C, Tchuinkam T, Brisco KK, Sehgal R, John Cornel A. Efficacy of Trapping Methods in the Collection of Eretmapodites (Diptera: Culicidae) Mosquitoes in an Afrotropical Rainforest Region, South western Cameroon. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1394-1403. [PMID: 35640028 DOI: 10.1093/jme/tjac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 06/15/2023]
Abstract
Very little data exist on the biology of an afrotropical rainforest mosquito Eretmapodites (Er.) in a world undergoing dramatic changes due to deforestation. The aim was to assess the efficacy of different trapping methods in the collection of Er. mosquito in forested area. This was a longitudinal study involving collection of mosquitoes for over two years. Multiple collection methods (grouped into two categories), were used; i) net baited and un-baited traps to collect adults, ii) techniques that target immature stages subsequently reared to adults. All males were identified by genitalia dissection. Five thousand seven hundred and four mosquitoes representing 11 genera among which 2,334 Er. were identified. Mosquito abundance was highest in the net traps (n = 1276 (56.4%)) and sweep nets (n = 393(17.4%)) respectively. The abundance was highest in green colored net traps (435(34.09%)) with significant value of χ2= 40.000, P < 0.001 and in pigeons baited traps (473 (37.06%)) with significant value of χ2= 42.000, P = 0.003. The diversity ranges from H' = 2.65; DS = 0.84; SR = 24; ACE = 24.77 in sweep net to H' = 0; DS = 0; SR = 1; ACE = 1 in rock pool among males mosquitoes. While for females, H = 1.14; DS = 0.71; SR = 5; ACE = 5.16, in sweep net to H = 0; DS = 0; SR = 1; ACE = 1 in rock pool, tarpaulin, resting cage. Net traps, bamboo pot, and sweep netting are efficient in collecting high abundance of forest mosquitoes in the Talanagaye rainforest.
Collapse
Affiliation(s)
| | - Marie Paul Audrey Mayi
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, Cameroon
| | - Jerome Fru-Cho
- Department of Microbiology and Parasitology, University of Buea, Cameroon
| | - Cyril Kowo
- Department of Microbiology and Parasitology, University of Buea, Cameroon
| | - Damian Nota Anong
- Department of Microbiology and Parasitology, University of Buea, Cameroon
| | | | - Charlene Djomo
- Higher Institute of Environmental Science, Department of Environmental Health, PO Box 35460, Yaounde, Cameroon
| | - Timoleon Tchuinkam
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Sciences of the University of Dschang, Dschang, Cameroon
| | - Katherine K Brisco
- Mosquito Control Research Laboratory, Department of Entomology and Nematology and Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California at Davis, Parlier, CA, USA
| | - Ravinder Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Anthony John Cornel
- Mosquito Control Research Laboratory, Department of Entomology and Nematology and Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California at Davis, Parlier, CA, USA
| |
Collapse
|
16
|
Bano K, Kaushal S, Singh PP. A review on photocatalytic degradation of hazardous pesticides using heterojunctions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Sinzinkayo D, Baza D, Gnanguenon V, Koepfli C. The lead-up to epidemic transmission: malaria trends and control interventions in Burundi 2000 to 2019. Malar J 2021; 20:298. [PMID: 34215270 PMCID: PMC8249825 DOI: 10.1186/s12936-021-03830-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
Burundi has experienced an increase in malaria cases since 2000, reaching 843,000 cases per million inhabitants in 2019, a more than twofold increase compared to the early 2000s. Burundi thus contrasts the decreasing number of cases in many other African countries. To evaluate the impact of malaria control on this increase, data on interventions from 2000 to 2019 were compiled. Over this period, the number of health facilities increased threefold, and the number of tests 20-fold. The test positivity rate remained stable at around 50-60% in most years. Artemisinin-based combination therapy was introduced in 2003, initially using artesunate-amodiaquine and changed to artemether-lumefantrine in 2019/2020. Mass distribution campaigns of insecticide-treated bed nets were conducted, and indoor residual spraying and intermittent preventive treatment in pregnancy introduced. Thus, the increase in cases was not the result of faltering control activities. Increased testing was likely a key contributor to higher case numbers. Despite the increase in testing, the test positivity rate remined high, indicating that current case numbers might still underestimate the true burden.
Collapse
Affiliation(s)
- Denis Sinzinkayo
- University of Burundi, Bujumbura, Burundi.,National Malaria Control Program, Ministry of Health, Bujumbura, Burundi
| | - Dismas Baza
- World Health Organization, Burundi Country Office, Bujumbura, Burundi
| | - Virgile Gnanguenon
- PMI VectorLink Project, U.S. Agency for International Development, Abt Associates, Bujumbura, Burundi
| | | |
Collapse
|
18
|
Talipouo A, Mavridis K, Nchoutpouen E, Djiappi-Tchamen B, Fotakis EA, Kopya E, Bamou R, Kekeunou S, Awono-Ambene P, Balabanidou V, Balaska S, Wondji CS, Vontas J, Antonio-Nkondjio C. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci Rep 2021; 11:7322. [PMID: 33795804 PMCID: PMC8017000 DOI: 10.1038/s41598-021-86850-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Culex mosquitoes particularly Culex quinquefasciatus are important arboviral and filariasis vectors, however despite this important epidemiological role, there is still a paucity of data on their bionomics. The present study was undertaken to assess the insecticide resistance status of Cx. quinquefasciatus populations from four districts of Yaoundé (Cameroon). All Culex quinquefasciatus populations except one displayed high resistance to bendiocarb and malathion with mortalities ranging from 0 to 89% while high resistance intensity against both permethrin and deltamethrin was recorded. Molecular analyses revealed high frequencies of the ACE-1 G119S mutation (ranging from 0 to 33%) and kdr L1014F allele (ranging from 55 to 74%) in all Cx. quinquefasciatus populations. Significant overexpression was detected for cytochrome P450s genes CYP6AA7 and CYP6Z10, as well as for Esterase A and Esterase B genes. The total cuticular hydrocarbon content, a proxy of cuticular resistance, was significantly increased (compared to the S-lab strain) in one population. The study confirms strong insecticide resistance mediated by different mechanisms in Cx. quinquefasciatus populations from the city of Yaoundé. The expansion of insecticide resistance in Culex populations could affect the effectiveness of current vector control measures and stress the need for the implementation of integrated vector control strategies in urban settings.
Collapse
Affiliation(s)
- Abdou Talipouo
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun.
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon.
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Elysée Nchoutpouen
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
| | - Borel Djiappi-Tchamen
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Emmanouil Alexandros Fotakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Edmond Kopya
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon
| | - Roland Bamou
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Sévilor Kekeunou
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Sofia Balaska
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Charles Sinclair Wondji
- Department of Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroun
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun.
- Department of Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
19
|
Nkya TE, Fillinger U, Dlamini M, Sangoro OP, Marubu R, Zulu Z, Chanda E, Mutero CM, Dlamini Q. Malaria in Eswatini, 2012-2019: a case study of the elimination effort. Malar J 2021; 20:159. [PMID: 33743727 PMCID: PMC7980328 DOI: 10.1186/s12936-021-03699-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/12/2021] [Indexed: 11/10/2022] Open
Abstract
Eswatini was the first country in sub-Saharan Africa to pass a National Malaria Elimination Policy in 2011, and later set a target for elimination by the year 2020. This case study aimed to review the malaria surveillance data of Eswatini collected over 8 years between 2012 and 2019 to evaluate the country's efforts that targeted malaria elimination by 2020. Coverage of indoor residual spraying (IRS) for vector control and data on malaria cases were provided by the National Malaria Programme (NMP) of Eswatini. The data included all cases treated for malaria in all health facilities. The data was analysed descriptively. Over the 8 years, a total of 5511 patients reported to the health facilities with malaria symptoms. The case investigation rate through the routine surveillance system increased from 50% in 2012 to 84% in 2019. Incidence per 1000 population at risk fluctuated over the years, but in general increased from 0.70 in 2012 to 1.65 in 2019, with the highest incidence of 3.19 reported in 2017. IRS data showed inconsistency in spraying over the 8 years. Most of the cases were diagnosed by rapid diagnostic test (RDT) kits in government (87.6%), mission (89.1%), private (87%) and company/industry-owned facilities (84.3%), either singly or in combination with microscopy. Eswatini has fallen short of achieving malaria elimination by 2020. Malaria cases are still consistently reported, albeit at low rates, with occasional localized outbreaks. To achieve elimination, it is critical to optimize timely and well-targeted IRS and to consider rational expansion of tools for an integrated malaria control approach in Eswatini by including tools such as larval source management, long-lasting insecticidal nets (LLINs), screening of mosquito house entry points, and chemoprophylaxis. The establishment of rigorous routine entomological surveillance should also be prioritized to determine the local malaria vectors' ecology, potential species diversity, the role of secondary vectors and insecticide resistance.
Collapse
Affiliation(s)
- Theresia Estomih Nkya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya. .,University of Dar Es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania.
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Onyango P Sangoro
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Rose Marubu
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Zulisile Zulu
- National Malaria Programme, Ministry of Health, Mbabane, Eswatini
| | - Emmanuel Chanda
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Clifford Maina Mutero
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, Pretoria, South Africa
| | - Quinton Dlamini
- National Malaria Programme, Ministry of Health, Mbabane, Eswatini
| |
Collapse
|
20
|
Lupenza ET, Kihonda J, Limwagu AJ, Ngowo HS, Sumaye RD, Lwetoijera DW. Using pastoralist community knowledge to locate and treat dry-season mosquito breeding habitats with pyriproxyfen to control Anopheles gambiae s.l. and Anopheles funestus s.l. in rural Tanzania. Parasitol Res 2021; 120:1193-1202. [PMID: 33409645 DOI: 10.1007/s00436-020-07040-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Fundamentally, larviciding with pyriproxyfen (PPF) has potential to complement Long Lasting Insecticide Nets (LLINs) and indoor residual sprays (IRS) in settings where resistance to pyrethroids and residual malaria transmission exist. In this study, we evaluated the field effectiveness of larviciding using PPF to reduce dry season productivity of mosquito breeding habitats that were located by pastoralists within the study area. Using pastoralist knowledge, dry season breeding habitats in Mofu village rural Tanzania were located and monitored for larval productivity for a period of 8 months before PPF intervention. During the intervention, six out of twelve breeding habitats were treated with Sumilarv 0.5G PPF granules. The impact of deposited PPF was monitored by recording emergence inhibition of larvae collected from treated habitats compared to the appropriate control group for a period of three months and half post-intervention. During baseline, the average proportion (+SD) of adult emerged was similar between two clusters, with (0.89 + 0.22) for the control cluster and (0.93 + 0.16) for the treatment cluster of breeding habitats. Following treatment with PPF, the average proportion (+SD) of adult emerged in the treated breeding habitats was significantly low (0.096 + 0.22) compared to adults that emerged from larvae in the untreated habitats (0.99 + 0.22) (p < 0.0001). Of all emerged adults, approximately 94% were An. gambiae s.l. and the remaining 6% were An. funestus s.l. This is the first study demonstrating the usefulness of engaging pastoralist community to locate and identify hard to find mosquito breeding habitats. Reduced productivity of the targeted habitats with PPF offers prospect of implementing PPF larviciding in dry season when habitats are few and permanent to control mosquito population in rural settings.
Collapse
Affiliation(s)
- Eliza T Lupenza
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Japhet Kihonda
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Alex J Limwagu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Halfan S Ngowo
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Robert D Sumaye
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Dickson W Lwetoijera
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania. .,School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| |
Collapse
|
21
|
Zhou G, Lo E, Githeko AK, Afrane YA, Yan G. Long-lasting microbial larvicides for controlling insecticide resistant and outdoor transmitting vectors: a cost-effective supplement for malaria interventions. Infect Dis Poverty 2020; 9:162. [PMID: 33243294 PMCID: PMC7691065 DOI: 10.1186/s40249-020-00767-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
The issues of pyrethroid resistance and outdoor malaria parasite transmission have prompted the WHO to call for the development and adoption of viable alternative vector control methods. Larval source management is one of the core malaria vector interventions recommended by the Ministry of Health in many African countries, but it is rarely implemented due to concerns on its cost-effectiveness. New long-lasting microbial larvicide can be a promising cost-effective supplement to current vector control and elimination methods because microbial larvicide uses killing mechanisms different from pyrethroids and other chemical insecticides. It has been shown to be effective in reducing the overall vector abundance and thus both indoor and outdoor transmission. In our opinion, the long-lasting formulation can potentially reduce the cost of larvicide field application, and should be evaluated for its cost-effectiveness, resistance development, and impact on non-target organisms when integrating with other malaria vector control measures. In this opinion, we highlight that long-lasting microbial larvicide can be a potential cost-effective product that complements current front-line long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) programs for malaria control and elimination. Microbial larviciding targets immature mosquitoes, reduces both indoor and outdoor transmission and is not affected by vector resistance to synthetic insecticides. This control method is a shift from the conventional LLINs and IRS programs that mainly target indoor-biting and resting adult mosquitoes.
Collapse
Affiliation(s)
- Guofa Zhou
- Program in Public Health, University of California, Irvine, CA 92697 USA
| | - Eugenia Lo
- Program in Public Health, University of California, Irvine, CA 92697 USA
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Andrew K. Githeko
- Central for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697 USA
| |
Collapse
|
22
|
Rocha EM, Katak RDM, Campos de Oliveira J, Araujo MDS, Carlos BC, Galizi R, Tripet F, Marinotti O, Souza-Neto JA. Vector-Focused Approaches to Curb Malaria Transmission in the Brazilian Amazon: An Overview of Current and Future Challenges and Strategies. Trop Med Infect Dis 2020; 5:E161. [PMID: 33092228 PMCID: PMC7709627 DOI: 10.3390/tropicalmed5040161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023] Open
Abstract
In Brazil, malaria transmission is mostly confined to the Amazon, where substantial progress has been made towards disease control in the past decade. Vector control has been historically considered a fundamental part of the main malaria control programs implemented in Brazil. However, the conventional vector-control tools have been insufficient to control or eliminate local vector populations due to the complexity of the Amazonian rainforest environment and ecological features of malaria vector species in the Amazon, especially Anopheles darlingi. Malaria elimination in Brazil and worldwide eradication will require a combination of conventional and new approaches that takes into account the regional specificities of vector populations and malaria transmission dynamics. Here we present an overview on both conventional and novel promising vector-focused tools to curb malaria transmission in the Brazilian Amazon. If well designed and employed, vector-based approaches may improve the implementation of malaria-control programs, particularly in remote or difficult-to-access areas and in regions where existing interventions have been unable to eliminate disease transmission. However, much effort still has to be put into research expanding the knowledge of neotropical malaria vectors to set the steppingstones for the optimization of conventional and development of innovative vector-control tools.
Collapse
Affiliation(s)
- Elerson Matos Rocha
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Ricardo de Melo Katak
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Juan Campos de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Maisa da Silva Araujo
- Laboratory of Medical Entomology, Oswaldo Cruz Foundation, FIOCRUZ RONDONIA, Porto Velho, RO 76812-245, Brazil;
| | - Bianca Cechetto Carlos
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Roberto Galizi
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | | | - Jayme A. Souza-Neto
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| |
Collapse
|
23
|
Finda MF, Christofides N, Lezaun J, Tarimo B, Chaki P, Kelly AH, Kapologwe N, Kazyoba P, Emidi B, Okumu FO. Opinions of key stakeholders on alternative interventions for malaria control and elimination in Tanzania. Malar J 2020; 19:164. [PMID: 32321534 PMCID: PMC7178586 DOI: 10.1186/s12936-020-03239-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/16/2020] [Indexed: 03/03/2023] Open
Abstract
Background Malaria control in Tanzania currently relies primarily on long-lasting insecticidal nets and indoor residual spraying, alongside effective case management and behaviour change communication. This study explored opinions of key stakeholders on the national progress towards malaria elimination, the potential of currently available vector control interventions in helping achieve elimination by 2030, and the need for alternative interventions that could be used to supplement malaria elimination efforts in Tanzania. Methods In this exploratory qualitative study, Focus group discussions were held with policy-makers, regulators, research scientists and community members. Malaria control interventions discussed were: (a) improved housing, (b) larval source management, (c) mass drug administration (MDA) with ivermectin to reduce vector densities, (d) release of modified mosquitoes, including genetically modified or irradiated mosquitoes, (e) targeted spraying of mosquito swarms, and (f) spatial repellents. Results Larval source management and spatial repellents were widely supported across all stakeholder groups, while insecticide-spraying of mosquito swarms was the least preferred. Support for MDA with ivermectin was high among policy makers, regulators and research scientists, but encountered opposition among community members, who instead expressed strong support for programmes to improve housing for poor people in high transmission areas. Policy makers, however, challenged the idea of government-supported housing improvement due to its perceived high costs. Techniques of mosquito modification, specifically those involving gene drives, were viewed positively by community members, policy makers and regulators, but encountered a high degree of scepticism among scientists. Overall, policy-makers, regulators and community members trusted scientists to provide appropriate advice for decision-making. Conclusion Stakeholder opinions regarding alternative malaria interventions were divergent except for larval source management and spatial repellents, for which there was universal support. MDA with ivermectin, housing improvement and modified mosquitoes were also widely supported, though each faced concerns from at least one stakeholder group. While policy-makers, regulators and community members all noted their reliance on scientists to make informed decisions, their reasoning on the benefits and disadvantages of specific interventions included factors beyond technical efficiency. This study suggests the need to encourage and strengthen dialogue between research scientists, policy makers, regulators and communities regarding new interventions.
Collapse
Affiliation(s)
- Marceline F Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania. .,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 1 Smuts Avenue, Braamfontein, 2000, South Africa.
| | - Nicola Christofides
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 1 Smuts Avenue, Braamfontein, 2000, South Africa
| | - Javier Lezaun
- Institute for Science, Innovation and Society, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - Brian Tarimo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Prosper Chaki
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Ann H Kelly
- Department of Global Health and Social Medicine, King's College, London, UK
| | - Ntuli Kapologwe
- President's Office, Regional Administration and Local Government, P. O Box 1923, Dodoma, Tanzania
| | - Paul Kazyoba
- National Institute for Medical Research, 3 Barack Obama Drive, Dar es Salaam, Tanzania
| | - Basiliana Emidi
- National Institute for Medical Research, 3 Barack Obama Drive, Dar es Salaam, Tanzania.,National Malaria Control Programme, P. O. Box 743, Dodoma, Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 1 Smuts Avenue, Braamfontein, 2000, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| |
Collapse
|
24
|
Antonio-Nkondjio C, Ndo C, Njiokou F, Bigoga JD, Awono-Ambene P, Etang J, Ekobo AS, Wondji CS. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit Vectors 2019; 12:501. [PMID: 31655608 PMCID: PMC6815446 DOI: 10.1186/s13071-019-3753-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/18/2019] [Indexed: 11/30/2022] Open
Abstract
Malaria still has a devastating impact on public health and welfare in Cameroon. Despite the increasing number of studies conducted on disease prevalence, transmission patterns or treatment, there are to date, not enough studies summarising findings from previous works in order to identify gaps in knowledge and areas of interest where further evidence is needed to drive malaria elimination efforts. The present study seeks to address these gaps by providing a review of studies conducted so far on malaria in Cameroon since the 1940s to date. Over 250 scientific publications were consulted for this purpose. Although there has been increased scale-up of vector control interventions which significantly reduced the morbidity and mortality to malaria across the country from a prevalence of 41% of the population reporting at least one malaria case episode in 2000 to a prevalence of 24% in 2017, the situation is not yet under control. There is a high variability in disease endemicity between epidemiological settings with prevalence of Plasmodium parasitaemia varying from 7 to 85% in children aged 6 months to 15 years after long-lasting insecticidal nets (LLINs) scale-up. Four species of Plasmodium have been recorded across the country: Plasmodium falciparum, P. malariae, P. ovale and P. vivax. Several primate-infecting Plasmodium spp. are also circulating in Cameroon. A decline of artemisinin-based combinations therapeutic efficacy from 97% in 2006 to 90% in 2016 have been reported. Several mutations in the P. falciparum chloroquine resistance (Pfcrt) and P. falciparum multidrug resistance 1 (Pfmdr1) genes conferring resistance to either 4-amino-quinoleine, mefloquine, halofanthrine and quinine have been documented. Mutations in the Pfdhfr and Pfdhps genes involved in sulfadoxine-pyrimethamine are also on the rise. No mutation associated with artemisinin resistance has been recorded. Sixteen anopheline species contribute to malaria parasite transmission with six recognized as major vectors: An. gambiae, An. coluzzii, An. arabiensis, An. funestus, An. nili and An. moucheti. Studies conducted so far, indicated rapid expansion of DDT, pyrethroid and carbamate resistance in An. gambiae, An. coluzzii, An. arabiensis and An. funestus threatening the performance of LLINs. This review highlights the complex situation of malaria in Cameroon and the need to urgently implement and reinforce integrated control strategies in different epidemiological settings, as part of the substantial efforts to consolidate gains and advance towards malaria elimination in the country.
Collapse
Affiliation(s)
- Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, UK
| | - Cyrille Ndo
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Flobert Njiokou
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Jude D. Bigoga
- Laboratory for Vector Biology and control, National Reference Unit for Vector Control, The Biotechnology Center, Nkolbisson-University of Yaounde I, P.O. Box 3851, Messa, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaounde I, Yaounde, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
| | - Josiane Etang
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B. P.288 Yaoundé, Cameroun
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Institute for Insect Biotechnology, Justus Liebig University Gießen, Winchester Str. 2, 35394 Gießen, Germany
| | - Albert Same Ekobo
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, UK
| |
Collapse
|
25
|
Ricotta E, Kwan J. Artemisinin-Resistant Malaria as a Global Catastrophic Biological Threat. Curr Top Microbiol Immunol 2019; 424:33-57. [PMID: 31218504 DOI: 10.1007/82_2019_163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The global spread of artemisinin resistance brings with it the threat of incurable malaria. Already, this disease threatens over 219 million lives per year and causes 5-6% losses in GDP in endemic areas, even with current advances in prevention and treatment. This chapter discusses the currently tenuous position we are in globally, and the impact that could be seen if artemisinin treatment is lost, whether due to the unchecked spread of K13 mutations or poor global investment in treatment and prevention advances. Artemisinin is the backbone of current ACT treatment programs and severe malarial treatment; without it, the success of future malaria eradication programs will be in jeopardy.
Collapse
Affiliation(s)
- Emily Ricotta
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Quarters 15B-1, 8 West Dr, Bethesda, MD, 20892, USA.
- Kelly Government Solutions, Bethesda, USA.
| | - Jennifer Kwan
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Quarters 15B-1, 8 West Dr, Bethesda, MD, 20892, USA
| |
Collapse
|