1
|
Kafle A, Tenorio JCB, Mahato RK, Dhakal S, Heikal MF, Suttiprapa S. Construction and validation of a novel multi-epitope in silico vaccine design against the paramyosin protein of Opisthorchis viverrini using immunoinformatics analyses. Acta Trop 2024; 260:107389. [PMID: 39251174 DOI: 10.1016/j.actatropica.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Liver fluke infection caused by Opisthorchis viverrini (O. viverrini) remains a significant but neglected health threat across Southeastern Asia. The early infective anabolic growth stage of O. viverrini expresses and exposes proteins integral for the growth and maturation of immature worms to the adult catabolic stage. Among these proteins, paramyosin emerged as a distinct immunogenic protein during opisthorchiasis. The functional region of the paramyosin protein known as myosin tail was selected to design a multi-epitope vaccine (MEV) to elicit T and B cell immune responses in susceptible human hosts utilizing various immunoinformatics and in silico vaccinology tools. The vaccine candidate had several B- and T-cell epitopes that stimulate both humoral and cellular immune responses. Moreover, in silico structural, docking, and dynamic analyses showed that the construct interacted with target immune receptors effectively, which may result in sufficient immunological stimulation. Analysis of simulated coverage efficacy also supports vaccine application in the field. Cloning and expression of the vaccine candidate were determined to be viable based on physicochemical and in silico assessments. These results reveal that the vaccine candidate developed herein is stable and potentially useful in addressing opisthorchiasis. The promising result of this study establishes a strong platform for initiating laboratory and efficacy trials for the vaccine candidate.
Collapse
Affiliation(s)
- Alok Kafle
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jan Clyden B Tenorio
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Sahara Dhakal
- Master of Nursing Science, Faculty of Nursing, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Muhammad F Heikal
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; WHO Collaborating Center for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Diseases), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Smout MJ, Laha T, Chaiyadet S, Brindley PJ, Loukas A. Mechanistic insights into liver-fluke-induced bile-duct cancer. Trends Parasitol 2024; 40:1183-1196. [PMID: 39521672 DOI: 10.1016/j.pt.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Liver fluke infection is a major risk for cholangiocarcinoma (CCA). It has been established that the Asian liver flukes, Clonorchis sinensis and Opisthorchis viverrini secrete growth factors, digestive enzymes, and extracellular vesicles (EVs) which contribute to abnormal cell development in the bile ducts where the worms reside. These secretions - combined with aberrant inflammation and repeated cycles of chronic wounding at the site of parasite attachment and grazing on the epithelium - promote biliary hyperplasia and fibrosis and ultimately malignant transformation. Application of post-genomic and gene-editing tools to the study of liver fluke immunobiology and pathogenesis has accelerated the discovery of essential virulence factors to which targeted therapies and diagnostics can be directed.
Collapse
Affiliation(s)
- Michael J Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Thailand
| | - Sujittra Chaiyadet
- Tropical Medicine Graduate Program, Academic Affairs, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul J Brindley
- Department of Microbiology, Immunology, and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, George Washington University, Washington, DC, USA
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
3
|
Schemczssen-Graeff Z, Silva CR, de Freitas PNN, Constantin PP, Pileggi SAV, Olchanheski LR, Pileggi M. Probiotics as a strategy for addressing helminth infections in low-income countries: Working smarter rather than richer. Biochem Pharmacol 2024; 226:116363. [PMID: 38871336 DOI: 10.1016/j.bcp.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Helminth infections, which affect approximately 1.5 billion individuals worldwide (mainly children), are common in low- and middle-income tropical countries and can lead to various diseases. One crucial factor affecting the occurrence of these diseases is the reduced diversity of the gut microbiome due to antibiotic use. This reduced diversity compromises immune health in hosts and alters host gene expression through epigenetic mechanisms. Helminth infections may produce complex biochemical signatures that could serve as therapeutic targets. Such therapies include next-generation probiotics, live biotherapeutic products, and biochemical drug approaches. Probiotics can bind ferric hydroxide, reducing the iron that is available to opportunistic microorganisms. They also produce short-chain fatty acids associated with immune response modulation, oral tolerance facilitation, and inflammation reduction. In this review, we examine the potential link between these effects and epigenetic changes in immune response-related genes by analyzing methyltransferase-related genes within probiotic strains discussed in the literature. The identified genes were only correlated with methylation in bacterial genes. Various metabolic interactions among hosts, helminth parasites, and intestinal microbiomes can impact the immune system, potentially aiding or hindering worm expulsion through chemical signaling. Implementing a comprehensive strategy using probiotics may reduce the impact of drug-resistant helminth strains.
Collapse
Affiliation(s)
- Zelinda Schemczssen-Graeff
- Comparative Immunology Laboratory, Department of Microbiology, Parasitology, and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Caroline Rosa Silva
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | - Paola Pereira Constantin
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sônia Alvim Veiga Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Luiz Ricardo Olchanheski
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil.
| |
Collapse
|
4
|
Chen B, Yang Y, Wang Z, Dai X, Cao Y, Zhang M, Zhang D, Ni X, Zeng Y, Pan K. Surface Display of Duck Hepatitis A Virus Type 1 VP1 Protein on Bacillus subtilis Spores Elicits Specific Systemic and Mucosal Immune Responses on Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10323-2. [PMID: 39002060 DOI: 10.1007/s12602-024-10323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Duck viral hepatitis, primarily caused by duck hepatitis A virus type 1 (DHAV-1), poses a significant threat to the global duck industry. Bacillus subtilis is commonly utilized as a safe probiotic in the development of mucosal vaccines. In this study, a recombinant strain of B. subtilis, designated as B. subtilis RV, was constructed to display the DHAV-1 capsid protein VP1 on its spore surface using the outer coat protein B as an anchoring agent. The immunogenicity of this recombinant strain was evaluated in a mouse model through mixed feeding immunization. The results indicated that B. subtilis RV could elicit specific systemic and mucosal immune responses in mice, as evidenced by the high levels of serum IgG, intestinal secretory IgA, and potent virus-neutralizing antibodies produced. Furthermore, the recombinant strain significantly upregulated the expression levels of IL-2, IL-6, IL-10, TNF-α, and IFN-γ in the intestinal mucosa. Thus, the recombinant strain maintained the balance of the Th1/Th2 immune response and demonstrated an excellent mucosal immune adjuvant function. In summary, this study suggests that B. subtilis RV can be a novel alternative for effectively controlling DHAV-1 infection as a vaccine-based feed additive.
Collapse
Affiliation(s)
- Bin Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yang Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhenhua Wang
- College of Animal Husbandry and Veterinary, Chengdu Agricultural College, Chengdu, 611130, China
| | - Xixi Dai
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, China
- Chongqing Three Gorges Vocational College, Chongqing, 404155, China
| | - Yuheng Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Mengwei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
5
|
Qian MB, Keiser J, Utzinger J, Zhou XN. Clonorchiasis and opisthorchiasis: epidemiology, transmission, clinical features, morbidity, diagnosis, treatment, and control. Clin Microbiol Rev 2024; 37:e0000923. [PMID: 38169283 PMCID: PMC10938900 DOI: 10.1128/cmr.00009-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/18/2023] [Indexed: 01/05/2024] Open
Abstract
Clonorchis sinensis, Opisthorchis viverrini, and Opisthorchis felineus are important liver flukes that cause a considerable public health burden in eastern Asia, southeastern Asia, and eastern Europe, respectively. The life cycles are complex, involving humans, animal reservoirs, and two kinds of intermediate hosts. An interplay of biological, cultural, ecological, economic, and social factors drives transmission. Chronic infections are associated with liver and biliary complications, most importantly cholangiocarcinoma. With regard to diagnosis, stool microscopy is widely used in epidemiologic surveys and for individual diagnosis. Immunologic techniques are employed for screening purposes, and molecular techniques facilitate species differentiation in reference laboratories. The mainstay of control is preventive chemotherapy with praziquantel, usually combined with behavioral change through information, education and communication, and environmental control. Tribendimidine, a drug registered in the People's Republic of China for soil-transmitted helminth infections, shows potential against both C. sinensis and O. viverrini and, hence, warrants further clinical development. Novel control approaches include fish vaccine and biological control. Considerable advances have been made using multi-omics which may trigger the development of new interventions. Pressing research needs include mapping the current distribution, disentangling the transmission, accurately estimating the disease burden, and developing new diagnostic and treatment tools, which would aid to optimize control and elimination measures.
Collapse
Affiliation(s)
- Men-Bao Qian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People’s Republic of China
- NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, People’s Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People’s Republic of China
- NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People’s Republic of China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, People’s Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Li Z, Peng C, Chen L, Wang P, Wang F. Construction and Immunogenicity Evaluation of Recombinant Bacillus subtilis Expressing HA1 Protein of H9N2 Avian Influenza Virus. Curr Microbiol 2023; 81:25. [PMID: 38040977 DOI: 10.1007/s00284-023-03548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
The H9N2 subtype of the avian influenza virus (AIV) is one of the main subtypes of low pathogenic AIV, and it seriously affects the poultry breeding industry. Currently, vaccination is still one of China's main strategies for controlling H9N2 avian influenza. In this study, we selected MW548848.1 on the current popular main branch h9.4.2.5 as the reference strain, and we optimized the amino acid sequence of HA1 to make it suitable for expression in Bacillus subtilis. The B. subtilis expression vector showed good safety and stress resistance; therefore, this study constructed a recombinant B. subtilis expressing H9N2 HA1 protein and evaluated its immunogenicity in mice. The following results were obtained: the sIgA level of HA1 protein in small intestine fluid and the IgG level of PHT43-HA1/B. subtilis in serum were significantly improved (P < 0.01); PHT43-HA1/B. subtilis can cause a special immune response in mice; and cytokine detection interferon-gamma (IFN-γ) (P < 0.05) and Interleukin 2 (IL-2) (P < 0.01) expressions significantly increased. Additionally, the study found that PHT43-HA1/B. subtilis can alleviate the attack of H9N2 AIV in the spleen, lungs, and small intestine of mice. This study was the first to use an oral recombinant B. subtilis-HA1 vaccine candidate, and it provides theoretical data and technical reference for the creation of a new live vector vaccine against H9N2 AIV.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Chong Peng
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Lijun Chen
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Wang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Fangkun Wang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
7
|
Peng C, Zhang Y, Chen L, Li Z, Lv P, Wang P, Li N, Wang F. Bacillus subtilis expressing duck Tembusu virus E protein induces immune protection in ducklings. Microb Pathog 2023; 185:106419. [PMID: 37866549 DOI: 10.1016/j.micpath.2023.106419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Duck Tembusu virus (DTMUV) is an infectious disease that emerged in China in 2010. It has caused serious economic losses to the poultry industry and may pose a threat to public health. We aimed to develop a new Bacillus subtilis (B. subtilis)-based oral vaccine to control DTMUV transmission among poultry; to this end, we constructed a B. subtilis strain that can secrete DTMUV E protein. Ducklings were orally immunized, and serum antibodies, mucosal antibodies, and splenic cytokines were detected. The results showed that, in addition to high levels of specific IgG, there were also high levels of specific secretory immunoglobulin A (sIgA) in ducklings orally treated with recombinant B. subtilis. In addition, the levels of IFN-γ, IL-2, IL-4, and IL-10 in spleens were significantly boosted by recombinant B. subtilis. Recombinant B. subtilis could effectively enhance ducklings resistance to DTMUV and significantly reduce viral load (p<0.01), along with pathological damage in the brain, heart, and spleen. This is the first study to apply a B. subtilis live-vector vaccine platform for DTMUV disease prevention and control, and our results suggest that B. subtilis expressing DTMUV E protein may be a candidate vaccine against DTMUV.
Collapse
Affiliation(s)
- Chong Peng
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yuxuan Zhang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Lijun Chen
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Zixuan Li
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Penghao Lv
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Peng Wang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Fangkun Wang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China.
| |
Collapse
|
8
|
Zhang Y, Wu Y, Peng C, Li Z, Wang G, Wang H, Yu L, Wang F. Both recombinant Bacillus subtilis Expressing PCV2d Cap protein and PCV2d-VLPs can stimulate strong protective immune responses in mice. Heliyon 2023; 9:e22941. [PMID: 38058449 PMCID: PMC10696252 DOI: 10.1016/j.heliyon.2023.e22941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is one of the most serious pathogens in pig herds worldwide. The Capsid protein (Cap), a structural protein of PCV2, is involved in the host's immune response; it induces neutralizing-antibody production and has good immunogenicity. The main PCV2 subtype currently prevalent in the Chinese pig herd is PCV2d. In this study, We constructed a recombinant Bacillus subtilis (B. subtilis) capable of secreting Cap protein, named pHT43-Cap/B. subtilis; we concentrated the supernatant of the recombinant bacteria and observed virus-like particles (VLPs) of PCV2d formed by Cap protein under transmission electron microscopy, named PCV2d-VLPs. The immunocompetence of the pHT43-Cap/B. subtilis and PCV2d-VLPs were then assessed by oral administration and by intramuscular injection into mice, respectively. The results showed that the levels of PCV2d-Cap protein-specific IgG in the serum and of PCV2d-Cap protein-specific sIgA in the small intestinal fluid of pHT43-Cap/B. subtilis immunized mice were elevated compared to the control group, both of them highly significant (p < 0.01), and the corresponding serum-specific IgG antibodies were effective in neutralizing PCV2d virulence. The virus load in the liver of the immunized mice was significantly lower than that in the control group (p < 0.01), as was the virus load in the spleen and lungs of the immunized mice (p < 0.05). In addition, the serum levels of PCV2d-Cap-specific IgG in mice immunized with PCV2d-VLPs by intramuscular injection were significantly elevated compared to the control group (p < 0.05), and the viral load in all tissues was significantly lower in immunized mice (p < 0.05). In conclusion, the recombinant bacterium pHT43-Cap/B. subtilis can induce effective mucosal and humoral immunity in mice, PCV2d-VLPs can induce humoral immunity in mice, and both vaccines have good immunogenicity; these results provide a theoretical and material basis for the development of a new vaccine against PCV2d.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yao Wu
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Chong Peng
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Zixuan Li
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Gang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
- Aquaculture Research Lab, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Lanping Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
- Aquaculture Research Lab, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Fangkun Wang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| |
Collapse
|
9
|
Saggese A, Baccigalupi L, Donadio G, Ricca E, Isticato R. The Bacterial Spore as a Mucosal Vaccine Delivery System. Int J Mol Sci 2023; 24:10880. [PMID: 37446054 DOI: 10.3390/ijms241310880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The development of efficient mucosal vaccines is strongly dependent on the use of appropriate vectors. Various biological systems or synthetic nanoparticles have been proposed to display and deliver antigens to mucosal surfaces. The Bacillus spore, a metabolically quiescent and extremely resistant cell, has also been proposed as a mucosal vaccine delivery system and shown able to conjugate the advantages of live and synthetic systems. Several antigens have been displayed on the spore by either recombinant or non-recombinant approaches, and antigen-specific immune responses have been observed in animals immunized by the oral or nasal route. Here we review the use of the bacterial spore as a mucosal vaccine vehicle focusing on the advantages and drawbacks of using the spore and of the recombinant vs. non-recombinant approach to display antigens on the spore surface. An overview of the immune responses induced by antigen-displaying spores so far tested in animals is presented and discussed.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University, 80126 Naples, Italy
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University, 80126 Naples, Italy
| | - Rachele Isticato
- Department of Biology, Federico II University, 80126 Naples, Italy
| |
Collapse
|
10
|
Isticato R. Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines. Biomolecules 2023; 13:947. [PMID: 37371527 DOI: 10.3390/biom13060947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal vaccines offer several advantages over injectable conventional vaccines, such as the induction of adaptive immunity, with secretory IgA production at the entry site of most pathogens, and needle-less vaccinations. Despite their potential, only a few mucosal vaccines are currently used. Developing new effective mucosal vaccines strongly relies on identifying innovative antigens, efficient adjuvants, and delivery systems. Several approaches based on phages, bacteria, or nanoparticles have been proposed to deliver antigens to mucosal surfaces. Bacterial spores have also been considered antigen vehicles, and various antigens have been successfully exposed on their surface. Due to their peculiar structure, spores conjugate the advantages of live microorganisms with synthetic nanoparticles. When mucosally administered, spores expressing antigens have been shown to induce antigen-specific, protective immune responses. This review accounts for recent progress in the formulation of spore-based mucosal vaccines, describing a spore's structure, specifically the spore surface, and the diverse approaches developed to improve its efficiency as a vehicle for heterologous antigen presentation.
Collapse
Affiliation(s)
- Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| |
Collapse
|
11
|
Lv P, Zhang X, Song M, Hao G, Wang F, Sun S. Oral administration of recombinant Bacillus subtilis expressing a multi-epitope protein induces strong immune responses against Salmonella Enteritidis. Vet Microbiol 2023; 276:109632. [PMID: 36521295 DOI: 10.1016/j.vetmic.2022.109632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
The S. Enteritidis causes serious economic losses to the poultry industry every year. Vaccines that induce a mucosal immune response may be successful against an S. Enteritidis infection because mucosa plays an important role in preventing S. Enteritidis from entering the body. In order to develop novel and potent oral vaccines based on Bacillus subtilis (B. subtilis) to control the spread of S. Enteritidis in the poultry industry, we constructed a B. subtilis that can secrete a multi-epitope protein (OmpC-FliC-SopF-SseB-IL-18). Oral immunization of chickens was performed, and serum antibodies, mucosal antibodies, specific cellular immunity and serum cytokines were detected. Immunizing chicks with S. Enteritidis was evaluated. The results showed high levels of specific IgG in addition to high levels of specific secretory immunoglobulin A (sIgA) in chickens who received oral administrations of recombinant B. subtilis. Additionally, recombinant B. subtilis may significantly increase the levels of IL-2 and T cell-mediated immunity. Recombinant B. subtilis effectively protected chickens against S. Enteritidis and reduced pathological damage to the spleen and jejunum. Our study's outcomes indicate that the expression of the multi-epitope protein OmpC-FliC-SopF-SseB-IL-18 by B. subtilis could generate a mucosal vaccine candidate for animals to defend against S. Enteritidis in the future.
Collapse
Affiliation(s)
- Penghao Lv
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xuesong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Mengze Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Guijuan Hao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Fangkun Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
12
|
Transcriptional responses of human intestinal epithelial HT-29 cells to spore-displayed p40 derived from Lacticaseibacillus rhamnosus GG. BMC Microbiol 2022; 22:316. [PMID: 36550414 PMCID: PMC9772600 DOI: 10.1186/s12866-022-02735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUNDS The aims of this study were to construct spore-displayed p40, a Lacticaseibacillus rhamnosus GG-derived soluble protein, using spore surface display technology and to evaluate transcriptional responses in human intestinal epithelial cells. RESULTS p40 was displayed on the surface of Bacillus subtilis spores using spore coat protein CotG as an anchor protein. Effects of spore-displayed p40 (CotG-p40) on gene expression of intestinal epithelial cell line HT-29 were evaluated by transcriptome analysis using RNA-sequencing. As a result of differentially expressed gene (DEG) analysis, 81 genes were up-regulated and 82 genes were down-regulated in CotG-p40 stimulated cells than in unstimulated cells. Gene ontology enrichment analysis showed that CotG-p40 affected biological processes such as developmental process, metabolic process, cell surface receptor linked signaling pathway, and retinoic acid metabolic process. Gene-gene network analysis suggested that 10 DEGs (EREG, FOXF1, GLI2, PTGS2, SPP1, MMP19, TNFRSF1B, PTGER4, CLDN18, and ALDH1A3) activated by CotG-p40 were associated with probiotic action. CONCLUSIONS This study demonstrates the regulatory effects of CotG-p40 on proliferation and homeostasis of HT-29 cells. This study provided comprehensive insights into the transcriptional response of human intestinal epithelial cells stimulated by CotG-p40.
Collapse
|
13
|
Li W, Li J, Dai X, Liu M, Khalique A, Wang Z, Zeng Y, Zhang D, Ni X, Zeng D, Jing B, Pan K. Surface Display of porcine circovirus type 2 antigen protein cap on the spores of bacillus subtilis 168: An effective mucosal vaccine candidate. Front Immunol 2022; 13:1007202. [PMID: 36189301 PMCID: PMC9520567 DOI: 10.3389/fimmu.2022.1007202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The oral mucosal vaccine has great potential in preventing a series of diseases caused by porcine circovirus type 2 (PCV2) infection. This study constructed a recombinant Bacillus subtilis RB with PCV2 Capsid protein (Cap) on its spore surface and cotB as a fusion partner. The immune properties of the recombinant strain were evaluated in a mouse model. IgA in intestinal contents and IgG in serum were detected by enzyme-linked immunosorbent assay (ELISA). The results demonstrated that recombinant spores could activate strong specific mucosal and humoral immune responses. In addition, spores showed good mucosal immune adjuvant function, promoting the proliferation of CD3+, CD4+ and CD8+ T cells and other immune cells. We also found that the relative expression of inflammatory cytokines such as IL-1β, IL-6, IL-10, TNF-α and IFN in the small intestinal mucosa was significantly up-regulated under the stimulation of recombinant bacteriophage. These effects are important for the balance of Th1/Th2-like responses. In summary, our results suggest that recombinant B. subtilis RB as a feed additive provides a new strategy for the development of novel and safe PCV2 mucosal subunit vaccines.
Collapse
Affiliation(s)
- Weijie Li
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianzhen Li
- College of Animal Husbandry and Veterinary, Chengdu Agricultural College, Chengdu, China
| | - Xixi Dai
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Minggang Liu
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Abdul Khalique
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhenghua Wang
- College of Animal Husbandry and Veterinary, Chengdu Agricultural College, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongmei Zhang
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Kangcheng Pan,
| |
Collapse
|
14
|
Docando F, Nuñez-Ortiz N, Gonçalves G, Serra CR, Gomez-Casado E, Martín D, Abós B, Oliva-Teles A, Tafalla C, Díaz-Rosales P. Bacillus subtilis Expressing the Infectious Pancreatic Necrosis Virus VP2 Protein Retains Its Immunostimulatory Properties and Induces a Specific Antibody Response. Front Immunol 2022; 13:888311. [PMID: 35720351 PMCID: PMC9198257 DOI: 10.3389/fimmu.2022.888311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis has been documented in the past years as an effective probiotic for different aquacultured species, with recognized beneficial effects on water quality, fish growth and immune status. Furthermore, its potential as a vaccine adjuvant has also been explored in different species. In the current work, we have used B. subtilis spores as delivery vehicles for the presentation of the VP2 protein from infectious pancreatic necrosis virus (IPNV). For this, the VP2 gene was amplified and translationally fused to the crust protein CotY. The successful expression of VP2 on the spores was confirmed by Western blot. We then compared the immunostimulatory potential of this VP2-expressing strain (CRS208) to that of the original B. subtilis strain (168) on rainbow trout (Oncorhynchus mykiss) leukocytes obtained from spleen, head kidney and the peritoneal cavity. Our results demonstrated that both strains significantly increased the percentage of IgM+ B cells and the number of IgM-secreting cells in all leukocyte cultures. Both strains also induced the transcription of a wide range of immune genes in these cultures, with small differences between them. Importantly, specific anti-IPNV antibodies were detected in fish intraperitoneally or orally vaccinated with the CRS208 strain. Altogether, our results demonstrate B. subtilis spores expressing foreign viral proteins retain their immunomodulatory potential while inducing a significant antibody response, thus constituting a promising vaccination strategy.
Collapse
Affiliation(s)
- Félix Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain.,Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Gabriela Gonçalves
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Cláudia R Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Eduardo Gomez-Casado
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Diana Martín
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Beatriz Abós
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Aires Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
15
|
Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. Int J Mol Sci 2022; 23:ijms23063405. [PMID: 35328823 PMCID: PMC8953710 DOI: 10.3390/ijms23063405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have suggested a major role for endospore forming bacteria within the gut microbiota, not only as pathogens but also as commensal and beneficial members contributing to gut homeostasis. In this review the sporulation processes, spore properties, and germination processes will be explained within the scope of the human gut. Within the gut, spore-forming bacteria are known to interact with the host’s immune system, both in vegetative cell and spore form. Together with the resistant nature of the spore, these characteristics offer potential for spores’ use as delivery vehicles for therapeutics. In the last part of the review, the therapeutic potential of spores as probiotics, vaccine vehicles, and drug delivery systems will be discussed.
Collapse
|
16
|
Koda S, Zhu XQ, Zheng KY, Yan C. Molecular Mechanisms of Clonorchis sinensis-Host Interactions and Implications for Vaccine Development. Front Cell Dev Biol 2022; 9:781768. [PMID: 35118069 PMCID: PMC8804234 DOI: 10.3389/fcell.2021.781768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Infections caused by Clonorchis sinensis remain a significant public health challenge for both humans and animals, causing pyogenic cholangitis, cholelithiasis, cholecystitis, biliary fibrosis, and even cholangiocarcinoma. However, the strategies used by the parasite and the immunological mechanisms used by the host have not yet been fully understood. With the advances in technologies and the accumulated knowledge of host-parasite interactions, many vaccine candidates against liver flukes have been investigated using different strategies. In this review, we explore and analyze in-depth the immunological mechanisms involved in the pathogenicity of C. sinensis. We highlight the different mechanisms by which the parasite interacts with its host to induce immune responses. All together, these data will allow us to have a better understanding of molecular mechansism of host-parasite interactions, which may shed lights on the development of an effective vaccine against C. sinensis.
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Kui-Yang Zheng, ; Chao Yan,
| |
Collapse
|
17
|
Gao Y, Huo X, Wang Z, Yuan G, Liu X, Ai T, Su J. Oral Administration of Bacillus subtilis Subunit Vaccine Significantly Enhances the Immune Protection of Grass Carp against GCRV-II Infection. Viruses 2021; 14:v14010030. [PMID: 35062234 PMCID: PMC8779733 DOI: 10.3390/v14010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Grass carp reovirus (GCRV) is a severe virus that causes great losses to grass carp culture every year, and GCRV-II is the current popular and fatal strain. VP56, fibrin on the outer surface of GCRV-II, mediates cell attachment. In this study, we firstly divided the VP56 gene into four fragments to screen the optimal antigen by enzyme-linked immunosorbent assay and neutralizing antibody methods. The second fragment VP56-2 demonstrates the optimal efficiency and was employed as an antigen in the following experiments. Bacillus subtilis were used as a carrier, and VP56-2 was expressed on the surface of the spores. Then, we performed the oral immunization for grass carp and the challenge with GCRV-II. The survival rate was remarkably raised, and mRNA expressions of IgM were significantly up-regulated in spleen and head kidney tissues in the B. s-CotC-VP56-2 group. Three crucial immune indexes (complement C3, lysozyme and total superoxide dismutase) in the sera were also significantly enhanced. mRNA expressions of four important genes (TNF-α, IL-1β, IFN1 and MHC-II) were significantly strengthened. Tissue lesions were obviously attenuated by histopathological slide examination in trunk kidney and spleen tissues. Tissue viral burdens were significantly reduced post-viral challenge. These results indicated that the oral recombinant B. subtilis VP56-2 subunit vaccine is effective for controlling GCRV infection and provides a feasible strategy for the control of fish virus diseases.
Collapse
Affiliation(s)
- Yang Gao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
| | - Taoshan Ai
- Wuhan Chopper Fishery Bio-Tech Co., Ltd., Wuhan Academy of Agricultural Science, Wuhan 430207, China;
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Y.G.); (X.H.); (Z.W.); (G.Y.); (X.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
- Correspondence: ; Tel./Fax: +86-27-87282227
| |
Collapse
|
18
|
Zhang J, Sun Y, Zheng J. Prospects for liver fluke vaccines. Exp Parasitol 2021; 230:108170. [PMID: 34699916 DOI: 10.1016/j.exppara.2021.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022]
Abstract
Fasciola spp., Opisthorchis spp. and Clonorchis sinensis are common liver flukes that can cause a variety of diseases, mainly cholangiocarcinoma induced by clonorchiasis and liver damage and associated pathology induced by fascioliasis. Because these trematodes are parasites of humans and domestic animals, they have greatly affected the economy of agricultural industries and public health worldwide. Due to the emergence of drug resistance and the living habits of flukes, among other reasons, a possibility of reinfection remains even when antiparasitic drugs are used. Therefore, developing a safe, efficient and cost-effective vaccine against trematodes is an important goal. Here, we briefly describe the progress in the development of vaccines against liver flukes. Related innovations may provide effective protection against these helminths and the diseases that they cause.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, Jilin, Changchun, Xinmin Street NO.71, 130021, China; Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Jilin, Changchun Xinmin Street NO.126, 130000, China.
| | - Ying Sun
- Department of Respiratory and Critical Care Medicine, First Hospital of Jilin University, Changchun, Xinmin Street NO.71, 130021, China.
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Jilin, Changchun Xinmin Street NO.126, 130000, China.
| |
Collapse
|
19
|
Brindley PJ, Bachini M, Ilyas SI, Khan SA, Loukas A, Sirica AE, Teh BT, Wongkham S, Gores GJ. Cholangiocarcinoma. Nat Rev Dis Primers 2021; 7:65. [PMID: 34504109 PMCID: PMC9246479 DOI: 10.1038/s41572-021-00300-2] [Citation(s) in RCA: 364] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Cholangiocarcinoma (CCA) is a highly lethal adenocarcinoma of the hepatobiliary system, which can be classified as intrahepatic, perihilar and distal. Each anatomic subtype has distinct genetic aberrations, clinical presentations and therapeutic approaches. In endemic regions, liver fluke infection is associated with CCA, owing to the oncogenic effect of the associated chronic biliary tract inflammation. In other regions, CCA can be associated with chronic biliary tract inflammation owing to choledocholithiasis, cholelithiasis, or primary sclerosing cholangitis, but most CCAs have no identifiable cause. Administration of the anthelmintic drug praziquantel decreases the risk of CCA from liver flukes, but reinfection is common and future vaccination strategies may be more effective. Some patients with CCA are eligible for potentially curative surgical options, such as resection or liver transplantation. Genetic studies have provided new insights into the pathogenesis of CCA, and two aberrations that drive the pathogenesis of non-fluke-associated intrahepatic CCA, fibroblast growth factor receptor 2 fusions and isocitrate dehydrogenase gain-of-function mutations, can be therapeutically targeted. CCA is a highly desmoplastic cancer and targeting the tumour immune microenvironment might be a promising therapeutic approach. CCA remains a highly lethal disease and further scientific and clinical insights are needed to improve patient outcomes.
Collapse
Affiliation(s)
- Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | | | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Shahid A. Khan
- Liver Unit, Division of Digestive Diseases, Imperial College London, London, UK
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alphonse E. Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre, Singapore, Singapore
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA,
| |
Collapse
|
20
|
Mat Rahim N, Lee H, Strych U, AbuBakar S. Facing the challenges of multidrug-resistant Acinetobacter baumannii: progress and prospects in the vaccine development. Hum Vaccin Immunother 2021; 17:3784-3794. [PMID: 34106809 PMCID: PMC8437540 DOI: 10.1080/21645515.2021.1927412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In 2017, the World Health Organization (WHO) named A. baumannii as one of the three antibiotic-resistant bacterial species on its list of global priority pathogens in dire need of novel and effective treatment. With only polymyxin and tigecycline antibiotics left as last-resort treatments, the need for novel alternative approaches to the control of this bacterium becomes imperative. Vaccines against numerous bacteria have had impressive records in reducing the burden of the respective diseases and addressing antimicrobial resistance; as in the case of Haemophilus influenzae type b . A similar approach could be appropriate for A. baumannii. Toward this end, several potentially protective antigens against A. baumannii were identified and evaluated as vaccine antigen candidates. A licensed vaccine for the bacteria, however, is still not in sight. Here we explore and discuss challenges in vaccine development against A. baumannii and the promising approaches for improving the vaccine development process.
Collapse
Affiliation(s)
- NorAziyah Mat Rahim
- Tropical Infectious Diseases Research and Education Center (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia.,Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Virology Unit, Institute for Medical Research, National Institute of Health Complex, Setia Alam, Malaysia
| | - HaiYen Lee
- Tropical Infectious Diseases Research and Education Center (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Center (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Wu PX, Cui XJ, Cao MX, Lv LH, Dong HM, Xiao SW, Liu JZ, Hu YH. Evaluation on two types of paramyosin vaccines for the control of Haemaphysalis longicornis infestations in rabbits. Parasit Vectors 2021; 14:309. [PMID: 34099029 PMCID: PMC8185926 DOI: 10.1186/s13071-021-04812-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Haemaphysalis longicornis is an obligate hematophagous ectoparasite that transmits a variety of pathogens causing life-threatening diseases in humans and animals. Paramyosin (Pmy) is not only an invertebrate-specific myofibrillar protein but also an important immunomodulatory protein. Therefore, it is one of the ideal candidate antigens for vaccines. METHODS We conducted two vaccine trials to evaluate the protective efficacy of Pmy recombinant protein (rPmy) and peptide vaccine (KLH-LEE). Each rabbit was immunized with three doses of rPmy or KLH-LEE adjuvanted with Freund's complete/incomplete at 500 μg/dose at 2-week intervals before challenge with 40 female H. longicornis/rabbit. PBS plus adjuvant, Trx or KLH was used as control group. The antibodies of rabbits were detected by ELISA. Then, female ticks were fed on the rabbits until detachment. RESULTS ELISA results showed that both vaccines induced rabbits to produce antibodies. Compared with the Trx group, the engorgement weight, oviposition and hatchability of the rPmy group decreased by 8.87%, 26.83% and 38.86%, respectively. On the other hand, engorgement weight, oviposition and hatchability of female ticks in the KLH-LEE group correspondingly resulted in 27.03%, 53.15% and 38.40% reduction compared with that of the KLH group. Considering the cumulative effect of vaccination on the evaluated parameters, results showed 60.37% efficacy of the rPmy vaccine formulation and 70.86% efficacy in the KLH-LEE group. CONCLUSIONS Pmy and particularly epitope LEE have potential for further development of an effective candidate vaccine to protect the host against tick infection. GRAPHIC ABSTARCT.
Collapse
Affiliation(s)
- Pin-Xing Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Xue-Jiao Cui
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Mi-Xue Cao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Li-Hong Lv
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Hong-Meng Dong
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Shu-Wen Xiao
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China
| | - Jing-Ze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China.
| | - Yong-Hong Hu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 East Road of 2nd South Ring, Shijiazhuang, 050024, People's Republic of China.
| |
Collapse
|
22
|
Yu C, Gao X, Lin H, Lin H, Zhang Z, Khan MU, Li Y, Chen Y, Li Z. Identification and Amino Acid Analysis of Allergenic Epitopes of a Novel Allergen Paramyosin (Rap v 2) from Rapana venosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5381-5391. [PMID: 33929822 DOI: 10.1021/acs.jafc.1c00775] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Besides tropomyosin (TM) that is widely recognized as a major allergen in molluscs, a 99-kDa novel allergen (Rap v 2) was recently found in the sea snail Rapana venosa and identified as paramyosin (PM). However, the allergenic epitopes of PM in any molluscs have not been identified yet. In the present study, seven allergenic epitopes of Rap v 2 were identified by immunoinformatics tools, dot-blot inhibition assay, and basophil degranulation assay. Based on the analysis of PM and allergenic epitope amino acids, it was found that highly hydrophobic and positively charged amino acid residues play an important role in the formation of Rap v 2 epitopes. In addition, three potential critical amino acids that may account for TM and PM cross-reactivity in molluscs were found by sequence- and structure-based methods. These findings could be of major importance for improving the understanding of relevant paramyosin epitopes and the prevention and therapy of mollusc allergy.
Collapse
Affiliation(s)
- Chuang Yu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P.R. China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P.R. China
| | - Hang Lin
- Department of Allergy, Department of Otorhinolaryngology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P.R. China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P.R. China
| | - Yonghong Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, P.R. China
| |
Collapse
|
23
|
Li X, Jiang S, Wang X, Hui W, Jia B. iTRAQ-based comparative proteomic analysis in different developmental stages of Echinococcus granulosus. ACTA ACUST UNITED AC 2021; 28:15. [PMID: 33666550 PMCID: PMC7934609 DOI: 10.1051/parasite/2021012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Cystic echinococcosis, caused by infection with the larval stage of the cestode Echinococcus granulosus, is a chronic zoonosis. The lifecycle of the E. granulosus parasite includes three consecutive stages that require specific gene regulation or protein expression to survive environmental shifts between definitive hosts and intermediate hosts. The aim of the present study is to screen and analyze the stage differential antigens to be considered for vaccine development against E. granulosus. By using the iTRAQ (isobaric tags for relative and absolute quantification) method, the differentially expressed proteins were selected from the three consecutive developmental stages of E. granulosus: oncosphere, adult tapeworms, and protoscolex. Through a bioinformatics analysis including Clusters of Orthologous Groups (COG), Gene Ontology (GO), and pathway metabolic annotation, we identified some proteins of interest from each stage. The results showed that a large number of differentially expressed proteins (375: oncosphere vs. adult, 346: oncosphere vs. protoscolex, and 391: adult vs. protoscolex) were identified from the three main lifecycle stages. Analysis of the differential protein pathways showed that these differential proteins are mainly enriched in metabolic pathways, Huntington’s diseases, Alzheimer’s diseases, and ribosome metabolic pathways. Interestingly, among these differential proteins, expression levels of paramyosin, HSP60, HSP70, HSP90, cathepsin L1, cathepsin D, casein kinase, and calmodulin were significantly higher in the oncosphere than in the adult or protoscolex (p < 0.05). We hope our findings will help to identify potential targets for diagnosis or for therapeutic and prophylactic intervention.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China - College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Song Jiang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Xuhai Wang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Wenqiao Hui
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Road Nongkenan, Hefei 230031, Anhui, PR China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| |
Collapse
|
24
|
Tang Z, Wu Z, Sun H, Zhao L, Shang M, Shi M, Jiang H, Lin Z, Zhou X, Li X, Yu X, Huang Y. The storage stability of Bacillus subtilis spore displaying cysteine protease of Clonorchis sinensis and its effect on improving the gut microbiota of mice. Appl Microbiol Biotechnol 2021; 105:2513-2526. [PMID: 33606075 DOI: 10.1007/s00253-021-11126-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 01/17/2023]
Abstract
Bacillus subtilis (B. subtilis) spore can serve as an ideal vehicle for expressing heterologous antigens, and elicit specific immune responses by oral administration. In previous studies, we successfully constructed the recombinant B. subtilis spores expressing cysteine protease of Clonorchis sinensis (C. sinensis, B.s-CsCP), and confirmed that oral administration of B.s-CsCP could elicit good protective immune responses in mice. In this study, Gram staining was used to observe the morphology of B.s-CsCP in different form, and the storage of liquid spores and lyophilized spores at different temperatures was compared. The mice were orally immunized with three different doses of spores (2×108, 1×109, and 5×109 CFU/day) for three times in total at biweekly interval. Then, antibody levels of mice were measured, the safety of spores was evaluated, and the changes of gut microbiota after oral gavage of spores (1×109 dose) were investigated. Results showed that B. subtilis was a typical Gram-positive bacterium, and its spore had good resistance to chemical dye. Liquid B. subtilis spores resuspended in sterile water could be stored for a long time at 4 °C or below, while lyophilized spores could be well stored even at RT and better at lower temperatures. Oral administration of B. subtilis spores to mice could stimulate both local mucosal and systemic immune responses in a dose-dependent manner without toxic side effects. Besides, beneficial bacteria producing butyrate such as Odoribacter were increased, while potential pathogens such as Escherichia-Shigella were decreased in mice intestine. Therefore, our work further confirmed that B. subtilis spores expressing CsCP could be a promising oral vaccine against C. sinensis with the advantages of stability, safety, easy storage, and promotion of intestinal health.Key Points• Recombinant CsCP B. subtilis spores could be easily preserved in either liquid or freeze-dried state.• Oral immunization of recombinant spores in mice could increase both local and system immune levels in a dose-dependent manner.• Oral administration of recombinant spores increased the number of beneficial bacteria and reduced the number of harmful bacteria in the intestinal tract of mice.
Collapse
Affiliation(s)
- Zeli Tang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, China
| | - Hengchang Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Zhao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Shang
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hongye Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xinyi Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Lv P, Song Y, Liu C, Yu L, Shang Y, Tang H, Sun S, Wang F. Application of Bacillus subtilis as a live vaccine vector: A review. J Vet Med Sci 2020; 82:1693-1699. [PMID: 33071249 PMCID: PMC7719876 DOI: 10.1292/jvms.20-0363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacillus subtilis is widely used as a probiotic in various fields as it regulates intestinal flora, improves animal growth performance,
enhances body immunity, has short fermentation cycle, and is economic. With the rapid development of DNA recombination technology, B. subtilis
has been used as a potential vaccine expression vector for the treatment and prevention of various diseases caused by bacteria, viruses, and parasites as it can
effectively trigger an immune response in the body. In this review, we refer to previous literature and provide a comprehensive analysis and overview of the
feasibility of using B. subtilis as a vaccine expression vector, with an aim to provide a valuable reference for the establishment of efficient
vaccines.
Collapse
Affiliation(s)
- Penghao Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Yanying Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Cong Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Lanping Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
26
|
Applications of Bacillus subtilis Spores in Biotechnology and Advanced Materials. Appl Environ Microbiol 2020; 86:AEM.01096-20. [PMID: 32631858 DOI: 10.1128/aem.01096-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The bacterium Bacillus subtilis has long been an important subject for basic studies. However, this organism has also had industrial applications due to its easy genetic manipulation, favorable culturing characteristics for large-scale fermentation, superior capacity for protein secretion, and generally recognized as safe (GRAS) status. In addition, as the metabolically dormant form of B. subtilis, its spores have attracted great interest due to their extreme resistance to many environmental stresses, which makes spores a novel platform for a variety of applications. In this review, we summarize both conventional and emerging applications of B. subtilis spores, with a focus on how their unique characteristics have led to innovative applications in many areas of technology, including generation of stable and recyclable enzymes, synthetic biology, drug delivery, and material sciences. Ultimately, this review hopes to inspire the scientific community to leverage interdisciplinary approaches using spores to address global concerns about food shortages, environmental protection, and health care.
Collapse
|
27
|
Lee JE, Kye YC, Park SM, Shim BS, Yoo S, Hwang E, Kim H, Kim SJ, Han SH, Park TS, Park BC, Yun CH. Bacillus subtilis spores as adjuvants against avian influenza H9N2 induce antigen-specific antibody and T cell responses in White Leghorn chickens. Vet Res 2020; 51:68. [PMID: 32448402 PMCID: PMC7245620 DOI: 10.1186/s13567-020-00788-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
Low-pathogenicity avian influenza H9N2 remains an endemic disease worldwide despite continuous vaccination, indicating the need for an improved vaccine strategy. Bacillus subtilis (B. subtilis), a gram-positive and endospore-forming bacterium, is a non-pathogenic species that has been used in probiotic formulations for both animals and humans. The objective of the present study was to elucidate the effect of B. subtilis spores as adjuvants in chickens administered inactivated avian influenza virus H9N2. Herein, the adjuvanticity of B. subtilis spores in chickens was demonstrated by enhancement of H9N2 virus-specific IgG responses. B. subtilis spores enhanced the proportion of B cells and the innate cell population in splenocytes from chickens administered both inactivated H9N2 and B. subtilis spores (Spore + H9N2). Furthermore, the H9N2 and spore administration induced significantly increased expression of the pro-inflammatory cytokines IL-1β and IL-6 compared to that in the H9N2 only group. Additionally, total splenocytes from chickens immunized with inactivated H9N2 in the presence or absence of B. subtilis spores were re-stimulated with inactivated H9N2. The subsequent results showed that the extent of antigen-specific CD4+ and CD8+ T cell proliferation was higher in the Spore + H9N2 group than in the group administered only H9N2. Taken together, these data demonstrate that B. subtilis spores, as adjuvants, enhance not only H9N2 virus-specific IgG but also CD4+ and CD8+ T cell responses, with an increase in pro-inflammatory cytokine production. This approach to vaccination with inactivated H9N2 together with a B. subtilis spore adjuvant in chickens produces a significant effect on antigen-specific antibody and T cell responses against avian influenza virus.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Moo Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | | | - Sungsik Yoo
- Choong-Ang Vaccine Laboratory, Daejeon, Republic of Korea
| | - Eunmi Hwang
- Department of Biotechnology, Hoseo University, Asan, Chungcheongnam-do, Republic of Korea
| | - Hyungkuen Kim
- Department of Biotechnology, Hoseo University, Asan, Chungcheongnam-do, Republic of Korea
| | - Sung-Jo Kim
- Department of Biotechnology, Hoseo University, Asan, Chungcheongnam-do, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea. .,Graduate School of International Agricultural Technology, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea.
| |
Collapse
|
28
|
Wang Y, Miao Y, Hu LP, Kai W, Zhu R. Immunization of mice against alpha, beta, and epsilon toxins of Clostridium perfringens using recombinant rCpa-b-x expressed by Bacillus subtilis. Mol Immunol 2020; 123:88-96. [PMID: 32447084 DOI: 10.1016/j.molimm.2020.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
The anaerobic pathogen Clostridium perfringens is the most potent cause of intestinal diseases, such as enterotoxemia, hemorrhagic enteritis, and lamb dysentery, in sheep. Three toxinotypes (B, C, and D) are usually the cause of these diseases and are mainly mediated via three important exotoxins: alpha toxin (CPA), beta toxin (CPB), and epsilon toxin (ETX). We have designed a chimeric protein, rCpa-b-x, that contains the C-terminal binding region of CPA, partial sequence of CPB, and ETX (Cpa247-370, Cpb108-305, and EtxH118P, respectively) according to the principle of structural vaccinology. The rCpa-b-x protein was then expressed by pHT43 plasmid in vivo using Bacillus subtilis as a delivery vector (Bs-pHT43-Cpa-b-x). The immunological activity of the rCpa-b-x protein was verified by western blot and its immunological efficacy was evaluated in a murine model. Oral administration with a recombinant agent caused local mucosal and systemic immune responses, and serum lgG and intestinal mucosal secretory IgA (sIgA) antibody titers were significantly increased. Levels of IL-2, IL-4, and IFN-γ were significantly higher in lymphocytes isolated from the Bs-pHT43-Cpa-b-x group compared with levels from the control groups. The percentages of CD4+ and CD8+ T lymphocytes in the Bs-pHT43-Cpa-b-x and inactivated vaccine (IV) groups were in the normal range. Mice of vaccine groups and control groups were challenged with 1x LD100 unit filtrate containing alpha, beta, and epsilon toxins. Mice in the Bs-pHT43-Cpa-b-x group were found to have lower rates of morbidity. The active immunization of mice with Bs-pHT43-Cpa-b-x still maintained 85% to 90% survival at the end of the 10-day observation period, whereas mice of control groups died within two to five days. The results of this study demonstrate the effectiveness of Bs-pHT43-Cpa-b-x in preventing C. perfringens infection in mice, and that Bs-pHT43-Cpa-b-x could be considered a potential vaccine against C. perfringens.
Collapse
Affiliation(s)
- Yujian Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China
| | - Yongqiang Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China
| | - Li-Ping Hu
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province, Jinan, China
| | - Wei Kai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China.
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China.
| |
Collapse
|
29
|
Evaluation of immune response to Bacillus subtilis spores expressing Clonorchis sinensis serpin3. Parasitology 2020; 147:1080-1087. [PMID: 32404215 DOI: 10.1017/s0031182020000797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clonorchis sinensis (C. sinensis) is one of the most serious food-borne parasites, which can lead to liver fibrosis or cholangiocarcinoma. Effective measures for clonorchiasis prevention are still urgently needed. Bacillus subtilis (B. subtilis) is an effective antigen delivery platform for oral vaccines. Chonorchis sinensis serpin (CsSerpin) was proved to be potential vaccine candidates. In this study, CsSerpin3 was displayed on the surface of B. subtilis spore and recombinant spores were orally administrated to BALB/C mice. CsSerpin3-specific IgA levels in faecal, bile and intestinal mucous increased at 4-8 weeks after the first administration compared with those in control groups. The mucus production and the number of goblet cells in intestinal mucosa elevated in B.s-CotC-CsSerpin3 (CotC, coat protein of B. subtilis spore) spores treated group compared to those in blank control. No significant difference in the activities of glutamic-pyruvic transaminase/ alanine aminotransferase and glutamic oxalacetic transaminase/aspartate aminotransferase were observed between groups. There was no side effect inflammation and observable pathological damage in the liver tissue of mice after administration. Moreover, collagen deposition and Ishak score were statistically reduced in B.s-CotC-CsSerpin3 spores treated mice. In conclusion, B. subtilis spores displaying CsSerpin3 could be investigated further as an oral vaccine against clonorchiasis.
Collapse
|
30
|
Recombinant HcGAPDH Protein Expressed on Probiotic Bacillus subtilis Spores Protects Sheep from Haemonchus contortus Infection by Inducing both Humoral and Cell-Mediated Responses. mSystems 2020; 5:5/3/e00239-20. [PMID: 32398277 PMCID: PMC7219552 DOI: 10.1128/msystems.00239-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Probiotic Bacillales are effective in controlling pathogens. Live probiotic bacteria improve the composition of the gastrointestinal microbiota, leading to a reduction in pathogen colonization. However, it remains largely unknown how probiotics regulate the host's immunologic responses and protect the host from parasitic infection. In this study, we addressed whether Bacillales were effective against Haemonchus contortus, a parasitic nematode that infects small ruminants worldwide. Using 16S rRNA sequencing, we found that Bacillales were largely depleted in the abomasal microbiota of sheep infected with H. contortus We constructed a recombinant Bacillus subtilis named rBS CotB-HcG that express the glyceraldehyde-3-phosphate dehydrogenase of H. contortus (HcGAPDH) on its spore surface using the Bacillus subtilis spore coat protein B (CotB) as a carrier. Mice receiving rBS CotB-HcG orally showed strong Th1-dominated immune responses. More importantly, sheep administered BS CotB-HcG per os showed increasing proliferation of the peripheral blood mononucleates, elevated anti-HcGAPDH IgG in sera, and higher anti-HcGAPDH sIgA in the intestinal mucus than the control sheep. The average weight gain of H. contortus-infected sheep treated with rBS CotB-HcG (Hc+rBS CotB-HcG ) was 48.73% greater than that of unvaccinated sheep. Furthermore, these Hc+rBS CotB-HcG sheep had fewer eggs per gram of feces by 84.1% and adult worms by 71.5%. They also demonstrated greatly lessened abomasal damage by H. contortus with an abundance of probiotic species in the abomasal microbiota. Collectively, our data unequivocally demonstrate the protective roles of CotB-HcGAPDH-expressing B. subtilis spores in against H. contortus infection and showed great potential of using probiotic-based strategy in controlling parasitic nematodes of socioeconomic importance in general.IMPORTANCE Initial analyses of the abomasal microbiota of sheep using 16S rRNA sequencing suggested that probiotic bacteria played a protective role in against H. contortus infection. A recombinant Bacillus subtilis expressing a fusion protein CotB-HcGAPDH on its spore's surface induced strong Th1 immune response in a murine model. The same probiotic recombinant, upon only one oral application, protected sheep against H. contortus infection by reducing egg shedding and decreasing adult worm loads of the parasite and increasing body weight gain of infected sheep. Both Th1 and Th2 immune responses were evident in these immunized sheep.
Collapse
|
31
|
Bai X, Song JH, Dai F, Lee JY, Hong SJ. Clonorchis sinensis secretory protein CsAg17 vaccine induces immune protection. Parasit Vectors 2020; 13:215. [PMID: 32334611 PMCID: PMC7183723 DOI: 10.1186/s13071-020-04083-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/13/2020] [Indexed: 01/25/2023] Open
Abstract
Background Clonorchiasis is endemic in East and Southeast Asian countries. For a preventive strategy against infectious diseases, vaccination is the most effective. Here, we evaluated the molecular characteristics and immune responses of CsAg17 protein from Clonorchis sinensis, and investigated its protective effects against C. sinensis challenge. Methods A cDNA clone encoding CsAg17 protein and containing a secretory signal peptide at the N-terminus was retrieved from the C. sinensis transcriptome bank. Recombinant CsAg17 B-cell epitope protein and cDNA vaccines were produced and their immune responses were evaluated in FVB mice. The proportional changes of CD3+/CD4+ and CD3+/CD8+ T cells were detected by flow cytometry, and immune effectors were measured by ELISA. Results The CsAg17 mRNA was transcribed at a higher level in C. sinensis adults than in metacercariae. The CsAg17 protein was distributed in the sperms, oral and ventral suckers, and mesenchymal tissues of C. sinensis adults. In mice challenged with C. sinensis metacercariae, vaccination with CsAg17 protein and cDNA resulted in a reduction to 64% and 69% in worm burden, respectively. Both CsAg17 protein and cDNA vaccines increased the proportion of CD3+/CD4+ and CD3+/CD8+ T cells and stimulated the production of Th1 type cytokines such as interleukin (IL)-2, IL-12, and interferon-γ, while maintaining minimum levels of Th2 cytokines. The levels of IgG specific to CsAg17 protein steeply increased in the two vaccinated groups from 2 weeks after immunization. The liver tissue retained good morphology in the mice vaccinated with CsAg17 protein or cDNA, whereas severe inflammation and large serous cysts were observed in the liver of the unvaccinated mice. Conclusions Vaccination with CsAg17 protein and cDNA reduced the pathological changes in the bile duct and liver, and ameliorated the worm burden via cellular and humoral immune responses. Thus, they may serve as good vaccine candidates against C. sinensis infections.![]()
Collapse
Affiliation(s)
- Xuelian Bai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea. .,Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China.
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea.,Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Progress in research and application development of surface display technology using Bacillus subtilis spores. Appl Microbiol Biotechnol 2020; 104:2319-2331. [PMID: 31989224 PMCID: PMC7223921 DOI: 10.1007/s00253-020-10348-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/02/2023]
Abstract
Bacillus subtilis is a widely distributed aerobic Gram-positive species of bacteria. As a tool in the lab, it has the advantages of nonpathogenicity and limited likelihood of becoming drug resistant. It is a probiotic strain that can be directly used in humans and animals. It can be induced to produce spores under nutrient deficiency or other adverse conditions. B. subtilis spores have unique physical, chemical, and biochemical characteristics. Expression of heterologous antigens or proteins on the surface of B. subtilis spores has been successfully performed for over a decade. As an update and supplement to previously published research, this paper reviews the latest research on spore surface display technology using B. subtilis. We have mainly focused on the regulation of spore coat protein expression, display and application of exogenous proteins, and identification of developing research areas of spore surface display technology.
Collapse
|
33
|
Sun H, Shang M, Tang Z, Jiang H, Dong H, Zhou X, Lin Z, Shi C, Ren P, Zhao L, Shi M, Zhou L, Pan H, Chang O, Li X, Huang Y, Yu X. Oral delivery of Bacillus subtilis spores expressing Clonorchis sinensis paramyosin protects grass carp from cercaria infection. Appl Microbiol Biotechnol 2020; 104:1633-1646. [PMID: 31912200 PMCID: PMC7223688 DOI: 10.1007/s00253-019-10316-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Clonorchis sinensis (C. sinensis), an important fishborne zoonotic parasite threatening public health, is of major socioeconomic importance in epidemic areas. Effective strategies are still urgently expected to prevent against C. sinensis infection. In the present study, paramyosin of C. sinensis (CsPmy) was stably and abundantly expressed on the surface of Bacillus subtilis spores. The recombinant spores (B.s-CotC-CsPmy) were incorporated in the basal pellets diet in three different dosages (1 × 105, 1 × 108, 1 × 1011 CFU/g pellets) and orally administrated to grass carp (Ctenopharyngodon idella). The immune responses and intestinal microbiota in the treated grass carp were investigated. Results showed that specific anti-CsPmy IgM levels in sera, skin mucus, bile, and intestinal mucus, as well as mRNA levels of IgM and IgZ in the spleen and head kidney, were significantly increased in B.s-CotC-CsPmy-1011 group. Besides, transcripts levels of IL-8 and TNF-αin the spleen and head kidney were also significantly elevated than the control groups. Moreover, mRNA levels of tight junction proteins in the intestines of B.s-CotC-CsPmy-1011 group increased. Potential pathogenetic bacteria with lower abundance and higher abundances of candidate probiotics and bacteria associated with digestion in 1 × 1011 CFU/g B.s-CotC-CsPmy spores administrated fishes could be detected compared with control group. The amount of metacercaria in per gram fish flesh was statistically decreased in 1 × 1011 CFU/g B.s-CotC-CsPmy spores orally immunized group. Our work demonstrated that B. subtilis spores presenting CsPmy on the surface could be a promising effective, safe, and needle-free candidate vaccine against C. sinensis infection for grass carp.
Collapse
Affiliation(s)
- Hengchang Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Mei Shang
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Hongye Jiang
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Huimin Dong
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Zhou
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zhipeng Lin
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River, Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Pengli Ren
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Lu Zhao
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Mengchen Shi
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Lina Zhou
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Houjun Pan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River, Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Ouqin Chang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River, Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Xuerong Li
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Yan Huang
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| | - Xinbing Yu
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
34
|
Wang F, Song T, Jiang H, Pei C, Huang Q, Xi H. Bacillus subtilis Spore Surface Display of Haloalkane Dehalogenase DhaA. Curr Microbiol 2019; 76:1161-1167. [PMID: 31278426 DOI: 10.1007/s00284-019-01723-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
The haloalkane dehalogenase DhaA can degrade sulfur mustard (2,2'-dichlorethyl sulfide; also known by its military designation HD) in a rapid and environmentally safe manner. However, DhaA is sensitive to temperature and pH, which limits its applications in natural or harsh environments. Spore surface display technology using resistant spores as a carrier to ensure enzymatic activity can reduce production costs and extend the range of applications of DhaA. To this end, we cloned recombinant Bacillus subtilis spores pHY300PLK-cotg-dhaa-6his/DB104(FH01) for the delivery of DhaA from Rhodococcus rhodochrous NCIMB 13064. A dot blotting showed that the fusion protein CotG-linker-DhaA accounted for 0.41% ± 0.03% (P < 0.01) of total spore coat proteins. Immunofluorescence analyses confirmed that DhaA was displayed on the spore surface. The hydrolyzing activity of DhaA displayed on spores towards the HD analog 2-chloroethyl ethylsulfide was 1.74 ± 0.06 U/mL (P < 0.01), with a specific activity was 0.34 ± 0.04 U/mg (P < 0.01). This is the first demonstration that DhaA displayed on the surface of B. subtilis spores retains enzymatic activity, which suggests that it can be used effectively in real-world applications including bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Fuli Wang
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Tianyu Song
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Hui Jiang
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Chengxin Pei
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Qibin Huang
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Hailing Xi
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China. .,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China.
| |
Collapse
|
35
|
Effects of dietary supplementation with S. platensis and probiotics on the growth performance, immune response and the fecal Lactobacillus spp. and E. coli contents of weaned piglets. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
36
|
Jiang H, Bian Q, Zeng W, Ren P, Sun H, Lin Z, Tang Z, Zhou X, Wang Q, Wang Y, Wang Y, Wu MX, Li X, Yu X, Huang Y. Oral delivery of Bacillus subtilis spores expressing grass carp reovirus VP4 protein produces protection against grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:768-780. [PMID: 30300738 DOI: 10.1016/j.fsi.2018.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Grass carp (Ctenopharyngodon idellus) hemorrhagic disease (GCHD), caused by grass carp reovirus (GCRV), has given rise to an enormous loss in grass carp industry during the past years. Up to date, vaccination remained to be the most effective way to protect grass carp from GCHD. Oral vaccination is of major interest due to its advantages of noninvasive, time-saving, and easily-operated. The introduction of oral vaccination has profound impact on aquaculture industry because of its feasibility of extensive application for fish in various size and age. However, the main challenge in developing oral vaccine is that antigens are easily degraded and are easy to induce tolerance. Bacillus subtilis (B. subtilis) spores would be an ideal oral vaccine delivery system for their robust specialty, gene operability, safety and adjuvant property. VP4 protein is the major outer capsid protein encoded by GCRV segment 6 (S6), which plays an important role in viral invasion and replication. In this study, we used B. subtilis spores as the oral delivery system and successfully constructed the B. subtilis CotC-VP4 recombinant spores (CotC-VP4 spores) to evaluate its protective efficacy in grass carp. Grass carp orally immunized with CotC-VP4 spores showed a survival rate of 57% and the relative percent survival (RPS) of 47% after the viral challenge. Further, the specific IgM levels in serum and the specific IgZ levels in intestinal mucus were significantly higher in the CotC-VP4 group than those in the Naive group. The immune-related genes including three innate immune-related genes (IL-4/13A, IL-4/13B, CSF1R), four adaptive immune-related genes (BAFF, CD4L, MHC-II, CD8), three inflammation-related genes (IL-1β, TNF-α, TGF-β) and interferon type I (IFN-I) related signaling pathway genes were significantly up-regulated in the CotC-VP4 group. The study demonstrated that the CotC-VP4 spores produced protection in grass carp against GCRV infection, and triggered both innate and adaptive immunity post oral immunization. This work highlighted that Bacillus subtilis spores were powerful platforms for oral vaccine delivery, and the combination of Bacillus subtilis spores with GCRV VP4 protein was a promising oral vaccine.
Collapse
Affiliation(s)
- Hongye Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Qing Bian
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Weiwei Zeng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, China
| | - Pengli Ren
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Xinyi Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Qing Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, China
| | - Yingying Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, Guangdong, China
| | - Yensheng Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Vogt CM, Hilbe M, Ackermann M, Aguilar C, Eichwald C. Mouse intestinal microbiota reduction favors local intestinal immunity triggered by antigens displayed in Bacillus subtilis biofilm. Microb Cell Fact 2018; 17:187. [PMID: 30477481 PMCID: PMC6258259 DOI: 10.1186/s12934-018-1030-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We previously engineered Bacillus subtilis to express an antigen of interest fused to TasA in a biofilm. B. subtilis has several properties such as sporulation, biofilm formation and probiotic ability that were used for the oral application of recombinant spores harboring Echinococcus granulosus paramyosin and tropomyosin immunogenic peptides that resulted in the elicitation of a specific humoral immune response in a dog model. RESULTS In order to advance our understanding of the research in oral immunization practices using recombinant B. subtilis spores, we describe here an affordable animal model. In this study, we show clear evidence indicating that a niche is required for B. subtilis recombinant spores to colonize the densely populated mice intestinal microbiota. The reduction of intestinal microbiota with an antibiotic treatment resulted in a positive elicitation of local humoral immune response in BALB/c mice after oral application of recombinant B. subtilis spores harboring TasA fused to E. granulosus (102-207) EgTrp immunogenic peptide. Our results were supported by a lasting prevalence of spores in mice feces up to 50 days after immunization and by the presence of specific secretory IgA, isolated from feces, against E. granulosus tropomyosin. CONCLUSIONS The reduction of mouse intestinal microbiota allowed the elicitation of a local humoral immune response in mice after oral application with spores of B. subtilis harboring immunogenic peptides against E. granulosus.
Collapse
Affiliation(s)
- Cédric M Vogt
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | - Monika Hilbe
- Laboratory for Animal Model Pathology, Institute of Pathology, Vetsuisse, University of Zurich, Zurich, Switzerland
| | - Mathias Ackermann
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| |
Collapse
|