1
|
Zhu XK, Elsheikha HM, Yang T, Li MY, Cong W. Urban estuary serves as a critical nexus for the land-sea transfer of the terrestrial pathogen Toxoplasma gondii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176983. [PMID: 39419207 DOI: 10.1016/j.scitotenv.2024.176983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Terrestrial runoff is a key pathway for the transmission of the terrestrial pathogen Toxoplasma gondii from land to sea, posing a significant threat to marine ecosystems. Understanding the mechanisms by which T. gondii is transported from terrestrial to marine environment is crucial for developing effective prevention and control strategies for toxoplasmosis in marine organisms. This study investigates the transport of T. gondii through terrestrial runoff in the Sow River, a representative watershed in Weihai, China. Surface water, bottom water and sediment samples were collected and analyzed for T. gondii DNA using PCR methods. Out of 5328 samples, the prevalence of T. gondii was found to be 8.61 % in surface water, 9.80 % in bottom water and 16.61 % in sediment, with sediment identified as a significant reservoir. Additionally, estuarine zones showed a higher prevalence of T. gondii (16.80 %) compared to riverine areas (9.00 %). The study further revealed that seasonal climate variations, such as temperature and precipitation, had no significant impact on the distribution of T. gondii. However, there was significant spatial variability, with estuarine conditions facilitating increased pathogen transmission. These findings highlight the importance of estuaries and sediments as key conduits for T. gondii entry in marine food webs. The results provide a theoretical basis for designing infection prevention and control strategies aimed at protecting marine ecosystems.
Collapse
Affiliation(s)
- Xin-Kun Zhu
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Tao Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Man-Yao Li
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong 264209, PR China.
| |
Collapse
|
2
|
Mukbel R, Hammad H, Enemark H, Alsabi R, Al-Sabi M. Molecular characterization of Giardia duodenalis, Cryptosporidium spp., and Entamoeba spp. infecting domestic and feral/stray cats in Jordan. Parasitol Res 2024; 123:351. [PMID: 39404859 DOI: 10.1007/s00436-024-08358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024]
Abstract
This study aimed to carry out a molecular screening for the presence of Giardia, Cryptosporidium, and/or Entamoeba in the feces of pet and stray/feral cats in Jordan. G. duodenalis was found in 27.9% (95% CI, 23.2-32.9) of the 348 sampled cats overall; E. histolytica was found in only 0.6% (95% CI, 0.1-2.1) of the cats, while none of the sampled cats had Cryptosporidium infections. The infection rate of G. duodenalis among indoor cats (32.3%) did not differ significantly from that among outdoor cats (24.1%). There were significantly more infections (p = 0.0004) geographically in the cold semiarid areas (67%) than in the cold desert areas (24%). Multilocus sequence typing analysis of amplicons based on the bg, tpi, and gdh genes revealed that the majority of G. duodenalis infections were zoonotic assemblage B (65.9%; 64 of 97 positive samples); followed by feline-specific assemblage F (18.5%, 18/97); cattle-specific assemblage E (5.2%, 5/97); and then assemblage C that was shared with canids (1.0%; 1/97). Within Giardia isolates, a substitution mutation (A/G) was found at position 297 of the complete protein coding sequence (cds) of tpi-assemblage B, which may represent a new spreading mutation within this gene among the cat population in Jordan. The results of the present study suggest that close human-cat interactions could play a role in zoonotic transmission of Giardia, but further research is needed to determine the possible contribution of cats to the transmission of other protozoa to humans.
Collapse
Affiliation(s)
- Rami Mukbel
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan.
| | - Haifa Hammad
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Heidi Enemark
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, Postboks 50, Tjele, DK-8830, Denmark
| | - Rania Alsabi
- Emergency Department, Princess Rahma Hospital, Ministry of Health, Irbid, 21110, Jordan
| | - Mohammad Al-Sabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
3
|
Omar M, Etewa SE, Mahmoud SAM, Farag TI. Assessment of the potential occurrence of Cryptosporidium species in various water sources in Sharqia Governorate, Egypt. J Parasit Dis 2024; 48:358-369. [PMID: 38840871 PMCID: PMC11147971 DOI: 10.1007/s12639-024-01675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
Cryptosporidium species are enteric apicomplexan parasites associated with diarrhoeal disease in humans and animals globally. Waterborne outbreaks resulting from contamination with the infective oocysts are common worldwide. Updated reports on waterborne protozoal infections are needed to identify emerging pathogens and susceptible populations. Therefore, this study aimed to assess the current profile of Cryptosporidium contamination of various water sources in Sharqia Governorate, Northeastern Egypt. For this purpose, eighty samples were collected from five different water types (canal, tap, tank, filtered, and groundwater), distributed in four major cities (El-Hessenia, Fakous, Zagazig, and Belbies) in Sharqia Governorate. All water samples were examined using conventional microscopy, ELISA, and real-time PCR (RT-PCR) techniques. Based on microscopic analysis, the Cryptosporidium protozoan was identified in 25% of the tested water samples. The RT-PCR assay has allowed for the quantification of Cryptosporidium oocysts in different types of water. Canal water exhibited the highest Cryptosporidium contamination levels (mean = 85.15 oocysts/L), followed by water tanks (mean = 12.031 oocysts/L). The study also provided a comparative evaluation of ELISA and RT-PCR for the diagnosis of Cryptosporidium infection. RT-PCR performed better than ELISA in terms of analytical accuracy (97.50% vs. 86.25%) and specificity (100% vs. 83.33%). However, ELISA showed a higher sensitivity (95.00% vs. 90.00%) for Cryptosporidium recovery. Our findings could serve as a platform for further investigations into the potential risks associated with water contamination in Sharqia Governorate. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-024-01675-1.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, Zagazig, 44511 Sharqia Governorate Egypt
| | - Samia E. Etewa
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, Zagazig, 44511 Sharqia Governorate Egypt
| | - Samar A. M. Mahmoud
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, Zagazig, 44511 Sharqia Governorate Egypt
| | - Tahani I. Farag
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, Zagazig, 44511 Sharqia Governorate Egypt
| |
Collapse
|
4
|
Cruz-Saavedra L, Arévalo VA, Garcia-Corredor D, Jiménez PA, Vega L, Pulido-Medellín M, Ortiz-Pineda M, Ramírez JD. Molecular detection and characterization of Giardia spp., Cryptosporidium spp., and Blastocystis in captive wild animals rescued from central Colombia. Int J Parasitol Parasites Wildl 2023; 22:1-5. [PMID: 37576459 PMCID: PMC10415623 DOI: 10.1016/j.ijppaw.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Cryptosporidium, Giardia, and Blastocystis are significant causes of diarrhea worldwide. However, studies on their prevalence in wild animals are limited, compared to humans and domestic animals. In this study, we collected 23 stool samples from captive wild rescued animals in Boyacá, Colombia. Using conventional PCR, we detected Cryptosporidium spp., Giardia spp., and Blastocystis in over half of the samples (69.6%). Cryptosporidium spp. (43.5%) were the most commonly found, followed by Giardia spp. (39.1%) and Blastocystis (13.0%). Co-infections involving these parasites were also observed. Subsequent genotyping revealed Cryptosporidium canis and Cryptosporidium ryanae as the predominant species. These findings contribute valuable information about the ecoepidemiology of intestinal parasites in Colombian wild animals.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Vivian Alejandra Arévalo
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Diego Garcia-Corredor
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (Uptc), Tunja, Colombia
| | - Paula Andrea Jiménez
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Martín Pulido-Medellín
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (Uptc), Tunja, Colombia
| | - Melissa Ortiz-Pineda
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (Uptc), Tunja, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología –UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
5
|
Barbosa AD, Egan S, Feng Y, Xiao L, Ryan U. How significant are bats as potential carriers of zoonotic Cryptosporidium and Giardia? CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100155. [PMID: 38149267 PMCID: PMC10750029 DOI: 10.1016/j.crpvbd.2023.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023]
Abstract
Bats are known to harbour various pathogens and are increasingly recognised as potential reservoirs for zoonotic diseases. This paper reviews the genetic diversity and zoonotic potential of Cryptosporidium and Giardia in bats. The risk of zoonotic transmission of Cryptosporidium from bats to humans appears low, with bat-specific Cryptosporidium genotypes accounting for 91.5% of Cryptosporidium-positive samples genotyped from bats worldwide, and C. parvum and C. hominis accounting for 3.4% each of typed positives, respectively. To date, there have only been sporadic detections of Giardia in bats, with no genetic characterisation of the parasite to species or assemblage level. Therefore, the role bats play as reservoirs of zoonotic Giardia spp. is unknown. To mitigate potential risks of zoonotic transmission and their public health implications, comprehensive research on Cryptosporidium and Giardia in bats is imperative. Future studies should encompass additional locations across the globe and a broader spectrum of bat species, with a focus on those adapted to urban environments.
Collapse
Affiliation(s)
- Amanda D. Barbosa
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF 70040-020, Brazil
| | - Siobhon Egan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
6
|
Berrouch S, Escotte-Binet S, Biary A, Nast E, Laaouidi Y, Aubert D, Maarouf A, Harrak R, Villena I, Hafid J. Investigation of the presence of Toxoplasma gondii, Giardia duodenalis and Cryptosporidium spp. in drinking waters in the region of Marrakech, Morocco. J Food Prot 2023:100112. [PMID: 37286083 DOI: 10.1016/j.jfp.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
The association between the parasitic illnesses and the consumption of contaminated water has been largely reported. However, there is still a lack of studies investigating the extent of parasitic contamination in water in Morocco. This is the first study in Morocco that aimed at assessing the presence of protozoan parasites, namely Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii, in drinking water consumed in the region of Marrakech. Samples processing was performed by membrane filtration and qPCR detection. A total of 104 drinking water samples (tap water, well and spring waters) was collected between 2016 and 2020. The analysis revealed an overall protozoa contamination rate of 67.3% (70/104), of which 35 samples were positive for Giardia duodenalis, 18 for Toxoplasma gondii and 17 for both parasites. Whereas no sample was positive for Cryptosporidium spp. This first study showed that drinking water in the region of Marrakech contained parasites which could represent a risk for consumers. For better understanding and estimation of the risk encountered by local inhabitants, further studies concerned with (oo)cyst viability, infectivity and genotype identification need to be performed.
Collapse
Affiliation(s)
- Salma Berrouch
- Bioresources and Food Safety Laboratory, Faculty of Sciences and Techniques, 40000 Marrakech, Morocco; Ecole Supérieure de Technologie Kelaa des Sraghna, Cadi Ayyad University, El Kelaa des Sraghna, Morocco
| | - Sandie Escotte-Binet
- Laboratory of Parasitology-Mycology, EA 7510 ESCAPE, SFR CAP-SANTE, University of Reims Champagne-Ardenne and CHU Reims, Hospital Maison Blanche, National Reference Centre of Toxoplasmosis, 51097, Reims, France
| | - Abdelkader Biary
- Bioresources and Food Safety Laboratory, Faculty of Sciences and Techniques, 40000 Marrakech, Morocco
| | - Eva Nast
- Laboratory of Parasitology-Mycology, EA 7510 ESCAPE, SFR CAP-SANTE, University of Reims Champagne-Ardenne and CHU Reims, Hospital Maison Blanche, National Reference Centre of Toxoplasmosis, 51097, Reims, France
| | - Younes Laaouidi
- Bioresources and Food Safety Laboratory, Faculty of Sciences and Techniques, 40000 Marrakech, Morocco
| | - Dominique Aubert
- Laboratory of Parasitology-Mycology, EA 7510 ESCAPE, SFR CAP-SANTE, University of Reims Champagne-Ardenne and CHU Reims, Hospital Maison Blanche, National Reference Centre of Toxoplasmosis, 51097, Reims, France
| | - Abdelmalek Maarouf
- Bioresources and Food Safety Laboratory, Faculty of Sciences and Techniques, 40000 Marrakech, Morocco
| | - Rajae Harrak
- Regional Laboratory for Epidemiological Diagnosis and Environmental Health, 40000 Marrakech, Morocco
| | - Isabelle Villena
- Laboratory of Parasitology-Mycology, EA 7510 ESCAPE, SFR CAP-SANTE, University of Reims Champagne-Ardenne and CHU Reims, Hospital Maison Blanche, National Reference Centre of Toxoplasmosis, 51097, Reims, France
| | - Jamaleddine Hafid
- Bioresources and Food Safety Laboratory, Faculty of Sciences and Techniques, 40000 Marrakech, Morocco.
| |
Collapse
|
7
|
Potes-Morales C, Crespo-Ortiz MDP. Molecular diagnosis of intestinal protozoa in young adults and their pets in Colombia, South America. PLoS One 2023; 18:e0283824. [PMID: 37220135 DOI: 10.1371/journal.pone.0283824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/20/2023] [Indexed: 05/25/2023] Open
Abstract
Intestinal parasitic infections have been considered a relevant public health problem due to the increased incidence worldwide. In developing countries, diarrhea and gastrointestinal symptoms cause impaired work capacity in adults and delayed rate growth in children. Enteric infections of unknown etiology can often lead to misdiagnosis, increased transmission, and morbidity. The aim of this study was to determine the prevalence of intestinal parasites in a young adult population and their pets. Stool samples from 139 university students and 44 companion animals were subjected to microscopy diagnosis using wet mounts, concentration by zinc sulphate flotation and staining techniques (Kinyoun and trichrome stain). Molecular diagnosis of protozoa was also performed by conventional PCR. The mean age was 24 years, 54% individuals were female, 46% were men, and 66% had at least one pet. The overall prevalence for at least one parasite was 74.8% and the rate of polyparasitism was 37.5%. Eighty-three patients (59.7%) were positive for Blastocystis spp., followed by Cryptosporidium spp. 24.5%, Endolimax nana 13.6%, Entamoeba dispar/E. moshkovskii 7.8% and Giardia intestinalis 1.4%. Molecular diagnosis substantially improved Cryptosporidium spp. and Blastocystis spp. detection and allowed to distinguish E. histolytica from commensals in the Entamoeba complex. Student's pets were also examined for parasitism. Samples from 27 dogs, 15 cats, one rabbit and one hen were analyzed, and parasites were detected in 30 (68.2%) as follows: Cryptosporidium spp. (24) Giardia spp. (4), hookworm (3), Endolimax nana (2) and Toxoplasma gondii (1). Overall, university students showed high prevalence of parasitism and polyparasitism suggesting exposure to parasite infected animals and contaminated environments. Cryptosporidium spp. was the predominant pathogen in human and domestic animals, and it was only detected by PCR, pointing out the need for sensitive tests in diagnosis and surveillance. Control strategies to prevent the effects of parasitic infections in young population should consider pets as reservoirs and transmission source.
Collapse
Affiliation(s)
- Caterine Potes-Morales
- Department of Microbiology, Section of Parasitology, Universidad del Valle, Cali, Colombia
| | | |
Collapse
|
8
|
Uran-Velasquez J, Alzate JF, Farfan-Garcia AE, Gomez-Duarte OG, Martinez-Rosado LL, Dominguez-Hernandez DD, Rojas W, Galvan-Diaz AL, Garcia-Montoya GM. Multilocus Sequence Typing helps understand the genetic diversity of Cryptosporidium hominis and Cryptosporidium parvum isolated from Colombian patients. PLoS One 2022; 17:e0270995. [PMID: 35802653 PMCID: PMC9269747 DOI: 10.1371/journal.pone.0270995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Multilocus Sequence Typing has become a useful tool for the study of the genetic diversity and population structure of different organisms. In this study, a MLST approach with seven loci (CP47, MS5, MS9, MSC6-7, TP14, and gp60) was used to analyze the genetic diversity of Cryptosporidium hominis and Cryptosporidium parvum isolated from 28 Colombian patients. Five Cryptosporidium species were identified: C. hominis, C. parvum, Cryptosporidium felis, Cryptosporidium meleagridis, and Cryptosporidium suis. Unilocus gp60 analysis identified four allelic families for C. hominis (Ia, Ib, Id, and Ie) and two for C. parvum (IIa and IIc). There was polymorphic behavior of all markers evaluated for both C. hominis and C. parvum, particularly with the CP47, MS5, and gp60 markers. Phylogenetic analysis with consensus sequences (CS) of the markers showed a taxonomic agreement with the results obtained with the 18S rRNA and gp60 gene. Additionally, two monophyletic clades that clustered the species C. hominis and C. parvum were detected, with a higher number of subclades within the monophyletic groups compared to those with the gp60 gene. Thirteen MLG were identified for C. hominis and eight for C. parvum. Haplotypic and nucleotide diversity were detected, but only the latter was affected by the gp60 exclusion from the CS analysis. The gene fixation index showed an evolutionary closeness between the C. hominis samples and a less evolutionary closeness and greater sequence divergence in the C. parvum samples. Data obtained in this work support the implementation of MLST analysis in the study of the genetic diversity of Cryptosporidium, considering the more detailed information that it provides, which may explain some genetic events that with an unilocus approach could not be established. This is the first multilocus analysis of the intra-specific variability of Cryptosporidium from humans in South America.
Collapse
Affiliation(s)
- Johanna Uran-Velasquez
- Centro Nacional de Secuenciación Genómica–CNSG, Sede de Investigación Universitaria–SIU, Medellín, Antioquia, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica–CNSG, Sede de Investigación Universitaria–SIU, Medellín, Antioquia, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
- Grupo Pediaciencias, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Ana E. Farfan-Garcia
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Bucaramanga, Colombia
| | - Oscar G. Gomez-Duarte
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States of America
- John R. Oishei Children’s Hospital, Buffalo, NY, United States of America
| | - Larry L. Martinez-Rosado
- Equipo Latinoamericano de Investigación en Infectología y Salud Pública (ELISAP), E.S.E. Hospital La María, Medellín, Colombia
| | - Diego D. Dominguez-Hernandez
- Equipo Latinoamericano de Investigación en Infectología y Salud Pública (ELISAP), E.S.E. Hospital La María, Medellín, Colombia
| | - Winston Rojas
- Grupo de Investigación en Genética Molecular (GENMOL), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Ana Luz Galvan-Diaz
- Grupo de Microbiología Ambiental, Escuela de Microbiología, Universidad de Antioquia, Medellín, Antioquia, Colombia
- * E-mail:
| | - Gisela M. Garcia-Montoya
- Centro Nacional de Secuenciación Genómica–CNSG, Sede de Investigación Universitaria–SIU, Medellín, Antioquia, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
- Grupo Pediaciencias, Facultad de Medicina, Universidad de Antioquia, Medellín, Antioquia, Colombia
| |
Collapse
|
9
|
Fradette MS, Culley AI, Charette SJ. Detection of Cryptosporidium spp. and Giardia spp. in Environmental Water Samples: A Journey into the Past and New Perspectives. Microorganisms 2022; 10:microorganisms10061175. [PMID: 35744692 PMCID: PMC9228427 DOI: 10.3390/microorganisms10061175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
Among the major issues linked with producing safe water for consumption is the presence of the parasitic protozoa Cryptosporidium spp. and Giardia spp. Since they are both responsible for gastrointestinal illnesses that can be waterborne, their monitoring is crucial, especially in water sources feeding treatment plants. Although their discovery was made in the early 1900s and even before, it was only in 1999 that the U.S. Environmental Protection Agency (EPA) published a standardized protocol for the detection of these parasites, modified and named today the U.S. EPA 1623.1 Method. It involves the flow-through filtration of a large volume of the water of interest, the elution of the biological material retained on the filter, the purification of the (oo)cysts, and the detection by immunofluorescence of the target parasites. Since the 1990s, several molecular-biology-based techniques were also developed to detect Cryptosporidium and Giardia cells from environmental or clinical samples. The application of U.S. EPA 1623.1 as well as numerous biomolecular methods are reviewed in this article, and their advantages and disadvantages are discussed guiding the readers, such as graduate students, researchers, drinking water managers, epidemiologists, and public health specialists, through the ever-expanding number of techniques available in the literature for the detection of Cryptosporidium spp. and Giardia spp. in water.
Collapse
Affiliation(s)
- Marie-Stéphanie Fradette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Aménagement et Développement du Territoire (CRAD), Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence:
| | - Alexander I. Culley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Cunha FDS, Jann HW, Lugon JR, Peralta JM, Peralta RHS. Molecular characterization of Cryptosporidium spp. obtained from fecal samples of immunosuppressed patients from Brazil. Rev Soc Bras Med Trop 2022; 55:e05552021. [PMID: 35416875 PMCID: PMC9009872 DOI: 10.1590/0037-8682-0555-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Cryptosporidium spp. are pathogenic protozoans that play an important role in developing diseases in the elderly, children, and immunosuppressed individuals. Methods: The objective of this study was to detect and genetically characterize Cryptosporidium spp. in kidney transplanted patients (n = 97 samples; group 1) and immunosuppressed individuals from an outpatient clinic suspected of having Cryptosporidium infection (n = 53 samples; group 2). All fecal samples were analyzed by parasitological stool examination, immunochromatographic test, and real-time polymerase chain reaction (real-time PCR). Cryptosporidium-positive samples were tested using nested PCR for the gp60 gene, followed by sequencing for subtype determination. Results: Parasitological examination was negative in all Group 1, and positive in four Group 2 samples. Real-time PCR revealed Cryptosporidium in 13 samples: four in Group 1 (three C. hominis and one C. parvum) and nine in Group 2 (seven C. hominis, one C. parvum, and one mixed C. hominis/C. parvum). The immunochromatographic test was reactive in 11 samples (four in Group 1 and seven in Group 2). All 11 C. hominis isolates were identified as subtype IbA10G2 and one C. parvum as subtype IIbA15G2R1. All C. hominis belonged to subtype IbA10G2, which is recognized as the most prevalent and pathogenic subtype. Conclusions: This study showed, for the first time, that the presence of Cryptosporidium subtypes is considered more virulent in Brazilian transplanted kidney patients.
Collapse
Affiliation(s)
- Flávia de Souza Cunha
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, Niterói, RJ, Brasil
| | - Higor Wilson Jann
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, Niterói, RJ, Brasil
| | - Jocemir Ronaldo Lugon
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Nefrologia, Niterói, RJ, Brasil
| | - José Mauro Peralta
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Imunologia, Rio de Janeiro, RJ, Brasil
| | | |
Collapse
|
11
|
Development and evaluation of a molecular based protocol for detection and quantification of Cryptosporidium spp. In wastewater. Exp Parasitol 2022; 234:108216. [DOI: 10.1016/j.exppara.2022.108216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
|
12
|
Menu E, Mosnier E, Cotrel A, Favennec L, Razakandrainibe R, Valot S, Blanchet D, Dalle F, Costa D, Gaillet M, Demar M, de Laval F. Cryptosporidiosis outbreak in Amazonia, French Guiana, 2018. PLoS Negl Trop Dis 2022; 16:e0010068. [PMID: 35100286 PMCID: PMC8803148 DOI: 10.1371/journal.pntd.0010068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cryptosporidiosis outbreaks in South America are poorly documented. In March 2018, 51 cases of cryptosporidiosis were reported in Maripasoula, a village located in a remote forest area along the border between Surinam and French Guiana. METHOD To identify the origin of the epidemic, we performed epidemiological, microbiological, and environmental investigations. Only the cases involving diarrhoea and Cryptosporidium-positive stool were considered as bona fide, while cases involving diarrhoea and close contact with a confirmed case were classified as "possible". RESULTS We identified 16 confirmed cases and 35 possible ones. Confirmed cases comprised nine children (median age of 18 months, range: 6-21), one immunocompromised adult and six soldiers. One child required a hospitalisation for rehydration. All 16 Cryptosporidium stools were PCR positive, and sequencing of the gp60 gene confirmed only one Cryptosporidium hominis subtype IbA10G2. Tap water consumption was the only common risk factor identified. Contamination of the water network with Cryptosporidium parvum subtype IIdA19G2 was found. CONCLUSION Water quality is a major public health issue in Amazonian French Guiana, especially for population at risk (children, people with comorbidity, travelers). For them, alternative water supply or treatment should be implemented.
Collapse
Affiliation(s)
- Estelle Menu
- Laboratoire Hospitalo-Universitaire de Parasitologie-Mycologie, Centre Hospitalier Andrée-Rosemon, Cayenne, French Guiana
- Laboratoire Hospitalo-Universitaire de Parasitologie-Mycologie, Institut Hospitalo-Universitaire, Méditerranée Infection, Marseille, France
- Aix Marseille Université, IRD, AP-HM, IHU-Méditerranée Infection, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Emilie Mosnier
- Unité des Maladies Infectieuses et Tropicales (UMIT), Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Aix Marseille University, INSERM, IRD, SESSTIM, Marseille, France
| | - Arnaud Cotrel
- French Armed Forces Health Service in French Guiana, Cayenne, French Guiana
| | - Loic Favennec
- CNR-LE Cryptosporidioses, Laboratoire de Parasitologie Mycologie, CHU Rouen, Rouen, France
- University of Medicine Pharmacy Rouen EA ESCAPE 7510, Rouen, France
| | - Romy Razakandrainibe
- CNR-LE Cryptosporidioses, Laboratoire de Parasitologie Mycologie, CHU Rouen, Rouen, France
- University of Medicine Pharmacy Rouen EA ESCAPE 7510, Rouen, France
| | - Stéphane Valot
- Laboratoire de Parasitologie Mycologie, Laboratoire Collaborateur du CNR-LE Cryptosporidioses, CHU Dijon, Dijon, France
| | - Denis Blanchet
- Laboratoire Hospitalo-Universitaire de Parasitologie-Mycologie, Centre Hospitalier Andrée-Rosemon, Cayenne, French Guiana
- Ecosystèmes amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
| | - Frédéric Dalle
- Laboratoire de Parasitologie Mycologie, Laboratoire Collaborateur du CNR-LE Cryptosporidioses, CHU Dijon, Dijon, France
- UMR PAM, Equipe VAlMiS, Université Bourgogne Franche-Comté, Dijon, France
| | - Damien Costa
- CNR-LE Cryptosporidioses, Laboratoire de Parasitologie Mycologie, CHU Rouen, Rouen, France
- University of Medicine Pharmacy Rouen EA ESCAPE 7510, Rouen, France
| | - Mélanie Gaillet
- Pôle des Centres Délocalisés de Prévention et de Soins, Centre hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Magalie Demar
- Laboratoire Hospitalo-Universitaire de Parasitologie-Mycologie, Centre Hospitalier Andrée-Rosemon, Cayenne, French Guiana
- Ecosystèmes amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
| | - Franck de Laval
- Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Aix Marseille University, INSERM, IRD, SESSTIM, Marseille, France
- French Armed Forces Health Service in French Guiana, Cayenne, French Guiana
- SSA, Service de Santé des Armées, CESPA, Centre d’épidémiologie et de santé publique des armées, Marseille, France
| |
Collapse
|
13
|
Bourouache M, Mimouni R, Ait Alla A, Hamadi F, El Boulani A, Bihadassen B, Laktib A, Moustaoui F, Aghrouch M. Occurrence and removal of intestinal parasites in two wastewater treatment plants in the south of Morocco. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1425-1434. [PMID: 34900277 PMCID: PMC8617139 DOI: 10.1007/s40201-021-00697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/21/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Agadir city plans to reuse treated wastewater on a large scale to irrigate these green spaces. This study aims to evaluate the risk of intestinal parasites, to which human and animal populations are exposed during the reuse of treated wastewaters. METHODS Over 21 months, wastewater samples were collected in Bensergao and Mzar wastewater treatment plants, in Agadir city, southern Morocco. The occurrences and removal of intestinal parasites were inspected using the modified Bailenger method. RESULTS The biodiversity of helminths is higher than protozoa, while the protozoa cysts are more abundant and more prevalent. Generally, the highest parasitic loads were recorded during the hot season. For raw waters, the average concentration of protozoa cysts was 173.33 ± 70.81 cysts per L for Bensergao plant and 179.33 ± 129.22 cysts per L for Mzar plant. However, the helminths average concentration was 48.70 ± 39.91 eggs/larvae per L for Bensergao plant and 51.10 ± 31.76 eggs/larvae per L for Mzar plant. The purified water of the Mzar plant does not contain parasites, unlike the Bensergao plant where a small numbers of parasites were detected, included 2.33 ± 1.53 cysts per L for protozoa and 0.45 ± 0.58 eggs/larvae per L for helminths. CONCLUSIONS Considering parasitological risks, the purified waters of Bensergao plant cannot be used without risks to the public health and environment. In contrast, the purified waters and the purified waters disinfected by ultraviolet radiation from the Mzar plant can be used safely to water the green spaces of Agadir city.
Collapse
Affiliation(s)
- M. Bourouache
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - R. Mimouni
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - A. Ait Alla
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - F. Hamadi
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - A. El Boulani
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - B. Bihadassen
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - A. Laktib
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, Ibn Zohr University, Agadir, BP 8106, Morocco
| | - F. Moustaoui
- Medical Analysis Laboratory, Hassan II Regional Hospital, Agadir, 80000 Morocco
| | - M. Aghrouch
- Medical Analysis Laboratory, Hassan II Regional Hospital, Agadir, 80000 Morocco
| |
Collapse
|
14
|
Mthethwa NP, Amoah ID, Reddy P, Bux F, Kumari S. A review on application of next-generation sequencing methods for profiling of protozoan parasites in water: Current methodologies, challenges, and perspectives. J Microbiol Methods 2021; 187:106269. [PMID: 34129906 DOI: 10.1016/j.mimet.2021.106269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023]
Abstract
The advancement in metagenomic techniques has provided novel tools for profiling human parasites in environmental matrices, such as water and wastewater. However, application of metagenomic techniques for the profiling of protozoan parasites in environmental matrices is not commonly reported in the literature. The key factors leading to the less common use of metagenomics are the complexity and large eukaryotic genome, the prevalence of small parasite populations in environmental samples compared to bacteria, difficulties in extracting DNA from (oo)cysts, and limited reference databases for parasites. This calls for further research to develop optimized methods specifically looking at protozoan parasites in the environment. This study reviews the current workflow, methods and provide recommendations for the standardization of techniques. The article identifies and summarizes the key methods, advantages, and limitations associated with metagenomic analysis, like sample pre-processing, DNA extraction, sequencing approaches, and analysis methods. The study enhances the understanding and application of standardized protocols for profiling of protozoan parasite community from highly complexe samples and further creates a resourceful comparison among datasets without any biases.
Collapse
Affiliation(s)
- N P Mthethwa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa; Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - I D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - P Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - F Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - S Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| |
Collapse
|
15
|
Cong W, Li MY, Zou Y, Ma JY, Wang B, Jiang ZY, Elsheikha HM. Prevalence, genotypes and risk factors for Toxoplasma gondii contamination in marine bivalve shellfish in offshore waters in eastern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112048. [PMID: 33610941 DOI: 10.1016/j.ecoenv.2021.112048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
We conducted a large-scale epidemiological investigation to detect the prevalence of Toxoplasma gondii in four marine bivalve shellfish species collected from six representative coastal regions of Weihai, eastern China. Between January 2018 and December 2018, 14,535 marine bivalve shellfish pooled into 2907 samples were randomly collected and examined for T. gondii DNA by a nested PCR assay targeting B1 gene. The results showed that 2.8% (82) of the 2907 pooled samples were tested positive for T. gondii DNA. Two T. gondii genotype (ToxoDB Genotype #9 and ToxoDB Genotype #1) were identified PCR-restriction fragment length polymorphism analysis. Factors that were found significantly associated with the presence of T. gondii DNA in marine bivalve shellfish included the source of samples (being wild) (odds ratio [OR], 3.34; 95% confidence interval [CI], 2.00-5.84; p < 0.01), surface runoff near the sampling site (OR, 2.64; 95% CI, 1.47-4.72; p < 0.01), and presence of cats near the sampling site (OR, 1.77; 95% CI, 1.02-3.07; p = 0.04). Moreover, the prevalence of T. gondii DNA in marine bivalve shellfish correlated with temperature (Pearson's correlation: R = 0.75, p = 0.0049) and precipitation (R = 0.87, p = 0.00021). These findings provide new insights into the presence of T. gondii DNA in marine bivalve shellfish and highlight the impact of human activity on marine pollution by such an important terrestrial pathogen pollutant.
Collapse
Affiliation(s)
- Wei Cong
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Man-Yao Li
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Yang Zou
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Street, Harbin 150030, PR China
| | - Jun-Yang Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Bo Wang
- School of Mathematics and Actuarial Science, University of Leicester, Leicester LE1 7RH, UK
| | - Zhao-Yang Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| |
Collapse
|
16
|
Pedrosa de Macena LDG, Castiglia Feitosa R, Vieira CB, Araújo IT, Taniuchi M, Miagostovich MP. Microbiological assessment of an urban lagoon system in the coastal zone of Rio de Janeiro, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1170-1180. [PMID: 32839906 DOI: 10.1007/s11356-020-10479-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
This study aims to assess microbiological contamination using a molecular tool for detection of multiple enteropathogens in a coastal ecosystem area in Rio de Janeiro, Brazil. Ten litres of superficial water samples were obtained during the spring ebb tide from sampling sites along the Jacarepaguá watershed. Samples were concentrated using skimmed milk flocculation method for TaqMan array card (TAC), designed to identify 35 enteric pathogens simultaneously, and single TaqMan qPCR analysis for detecting human adenovirus (HAdV) and JC human polyomavirus (JCPyV) as faecal indicator viruses (FIV). TAC results identified 17 enteric pathogens including 4/5 viral species investigated, 8/15 bacteria, 4/6 protozoa and 1/7 helminths. Escherichia coli concentration was also measured as faecal indicator bacteria (FIB) using Colilert Quanti-Tray System with positivity in all samples studied. HAdV and JCPyV qPCR were detected in 8 and 4 samples, respectively, with concentration ranging from 8 × 102 to 2 × 106 genome copies/L. Partial nucleotide sequencing demonstrated the occurrence of species HAdV A, C, D, and F, present in faeces of individuals with enteric and non-enteric infections, and JCPyV type 3 (Af2), prevalent in a high genetically mixed population like the Brazilian. The diversity of enteropathogens detected by TAC emphasizes the utility of this methodology for quick assessment of microbiological contamination of the aquatic ecosystems, speeding up mitigation actions where the risk of the exposed population is detected, as well as pointing out the infrastructure gaps in areas where accelerated urban growth is observed.
Collapse
Affiliation(s)
- Lorena da Graça Pedrosa de Macena
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Helio e Peggy Pereira Pavilion, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Renato Castiglia Feitosa
- Department of Sanitation and Environmental Health, National School of Public Health (ENSP), Oswaldo Cruz Foundation (FIOCRUZ), Rua Leopoldo Bulhões, 1.480, Manguinhos, Rio de Janeiro, RJ, 21041-210, Brazil
| | - Carmen Baur Vieira
- Department of Microbiology and Parasitology (MIP), Biomedical Institute, Federal Fluminense University (UFF), Rua Professor Hernani Melo, 101, São Domingos, Niterói, RJ, 24210-130, Brazil
| | - Irene Trigueiros Araújo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Helio e Peggy Pereira Pavilion, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, VA, 22903, USA
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Helio e Peggy Pereira Pavilion, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
17
|
Higuera A, Villamizar X, Herrera G, Giraldo JC, Vasquez-A LR, Urbano P, Villalobos O, Tovar C, Ramírez JD. Molecular detection and genotyping of intestinal protozoa from different biogeographical regions of Colombia. PeerJ 2020; 8:e8554. [PMID: 32195042 PMCID: PMC7067185 DOI: 10.7717/peerj.8554] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Intestinal parasitic protozoa represent a serious problem of public health particularly in developing countries. Protozoa such as Blastocystis, Giardia intestinalis, Entamoeba histolytica and Cryptosporidium spp. are associated with diarrheal symptoms. In Colombia, there is little region-specific data on the frequency and circulating genotypes/species of these microorganisms. Therefore, the main objective of our study was to employ molecular detection and genotyping of G. intestinalis and Blastocystis, Cryptosporidium and Entamoeba spp. in samples from different biogeographical regions of Colombia. Methods We collected 649 human fecal samples from five biogeographical regions of Colombia: the Amazon, Andean, Caribbean, Orinoco and Pacific regions. Blastocystis, G. intestinalis, Cryptosporidium spp. and Entamoeba complex were detected by microscopy and conventional PCR. Molecular genotyping was conducted to identify Blastocystis subtypes (STs) (18s), G. intestinalis assemblages (triose phosphate isomerase and glutamate dehydrogenase) and Cryptosporidium species (18s). Genetic diversity indices were determined using dnasp.5. Results We detected G. intestinalis in 45.4% (n = 280) of samples, Blastocystis in 54.5% (n = 336) of samples, Cryptosporidium spp. in 7.3% (n = 45) of samples, Entamoeba dispar in 1.5% (n = 9) of samples, and Entamoeba moshkovskii in 0.32% (n = 2) of samples. Blastocystis STs 1–4, 8 and 9 and G. intestinalis assemblages AII, BIII, BIV, D and G were identified. The following Cryptosporidium species were identified: C. hominis, C. parvum, C. bovis, C. andersoni, C. muris, C. ubiquitum and C. felis. The Caribbean region had the highest frequency for each of the microorganisms evaluated (91.9% for G. duodenalis, 97.3% for Blastocystis, 10.8% for Cryptosporidium spp., 13.5% for E. dispar and 2.7% for E. moshkovskii). The Orinoco region had a high frequency of Blastocystis (97.2%) and the Andean region had a high frequency of G. intestinalis (69.4%). High and active transmission was apparent in several regions of the country, implying that mechanisms for prevention and control of intestinal parasitosis in different parts of the country must be improved.
Collapse
Affiliation(s)
- Adriana Higuera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ximena Villamizar
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | | | - Luis Reinel Vasquez-A
- Centro de Estudios en Microbiología y Parasitología (CEMPA), Departamento de Medicina Interna, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayan, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de la Orinoquia, Unitrópico, Yopal, Colombia
| | - Oswaldo Villalobos
- Hospital Local Santa María de Mompox, Programas Especiales (Lepra y TB), Mompox, Bolivar, Colombia
| | - Catalina Tovar
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Monteria, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
18
|
Han X, Ji X, Ma X, Liu JL, He ZY, Chang W, Tang F, Liu AL. An investigation of changes in water quality throughout the drinking water production/distribution chain using toxicological and fluorescence analyses. J Environ Sci (China) 2020; 87:310-318. [PMID: 31791504 DOI: 10.1016/j.jes.2019.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Changes in water quality from source water to finished water and tap water at two conventional drinking water treatment plants (DWTPs) were monitored. Beside the routine water quality testing, Caenorhabditis elegans-based toxicity assays and the fluorescence excitation-emission matrices technique were also applied. Both DWTPs supplied drinking water that met government standards. Under current test conditions, both the investigated finished water and tap water samples exhibited stronger lethal, genotoxic and reprotoxic potential than the relative source water sample, and the tap water sample was more lethal but tended to be less genotoxic than the corresponding finished water sample. Meanwhile, the nearly complete removal of tryptophan-like substances and newly generated tyrosine-like substances were observed after the treatment of drinking water, and humic-like substances were identified in the tap water. Based on these findings, toxic pollutants, including genotoxic/reproductive toxicants, are produced in the drinking water treatment and/or distribution processes. Moreover, further studies are needed to clarify the potentially important roles of tyrosine-like and humic-like substances in mediating drinking water toxicity and to identify the potential sources of these contaminants. Additionally, tryptophan-like fluorescence may be adopted as a useful parameter to monitor the treatment performance of DWTPs. Our observations provided insights into the importance of utilizing biotoxicity assays and fluorescence spectroscopy as tools to complement the routine evaluation of drinking water.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Ji
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun-Ling Liu
- Wuhan Center for Disease Control and Prevention, Wuhan 430015, China
| | - Zhen-Yu He
- Wuhan Center for Disease Control and Prevention, Wuhan 430015, China
| | - Wei Chang
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430030, China
| | - Fei Tang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ai-Lin Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
19
|
Thompson RCA, Ash A. Molecular epidemiology of Giardia and Cryptosporidium infections - What's new? INFECTION GENETICS AND EVOLUTION 2019; 75:103951. [PMID: 31279819 DOI: 10.1016/j.meegid.2019.103951] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
New information generated since 2016 from the application of molecular tools to infections with Giardia and Cryptosporidium is critically summarised. In the context of molecular epidemiology, nomenclature, taxonomy, in vitro culture, detection, zoonoses, population genetics and pathogenicity, are covered. Whole genome sequencing has had the greatest impact in the last three years. Future advances will provide a much better understanding of the zoonotic potential of both parasites, their diversity and how this is linked to pathogenesis in different hosts.
Collapse
Affiliation(s)
- R C A Thompson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | - A Ash
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
20
|
Pignata C, Bonetta S, Bonetta S, Cacciò SM, Sannella AR, Gilli G, Carraro E. Cryptosporidium Oocyst Contamination in Drinking Water: A Case Study in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2055. [PMID: 31185673 PMCID: PMC6604028 DOI: 10.3390/ijerph16112055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the occurrence of Cryptosporidium oocysts in a drinking water treatment plant (DWTP) located in a rural area of northern Italy. Influent and effluent samples were collected at the DWTP over three years (2013-2016). In parallel, tap water samples from a public drinking fountain were collected as well. All samples were analyzed for the presence of Cryptosporidium spp. oocysts by a common method based on an immunomagnetic separation (IMS)/immunofluorescence assay (IFA), complemented by 4,6-diamidino-2-phenylindole (DAPI) staining. A reverse transcriptase-PCR (RT-PCR) protocol was added to evaluate oocyst viability. The results highlighted a high variability of oocyst concentrations across all samples (mean 4.3 ± 5.8/100 L) and a high variability in the percentage of DAPI-positive specimens (mean 48.2% ± 40.3%). Conversely, RT-PCR did not reveal the presence of viable C. parvum and C. hominis oocysts. A nested PCR targeting Cryptosporidium 18S ribosomal DNA, carried out in two water samples, confirmed the presence of a Cryptosporidium genotype associated with wild animals in the river and in tap water. The results obtained underline the vulnerability of the investigated surface water to Cryptosporidium spp. contamination. Although the recovered Cryptosporidium genotype is not a human pathogen, its presence demonstrates the existence of a potential pathogen Cryptosporidium spp. contamination risk. Moreover, these results underline the importance of also considering unconventional (not bacterial) biological contaminations (protozoa) in water resources in rural areas, including those of developed countries.
Collapse
Affiliation(s)
- Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Silvia Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Simone M Cacciò
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | - Anna R Sannella
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5bis, 10126 Torino, Italy.
| |
Collapse
|
21
|
Sulfonamide Inhibition Studies of a New β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. Int J Mol Sci 2018; 19:ijms19123946. [PMID: 30544802 PMCID: PMC6321117 DOI: 10.3390/ijms19123946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022] Open
Abstract
A newly described β-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic protozoan Entamoeba histolytica, EhiCA, was recently shown to possess a significant catalytic activity for the physiologic CO2 hydration reaction (kcat of 6.7 × 105 s−1 and a kcat/Km of 8.9 × 107 M−1 s−1). A panel of sulfonamides and one sulfamate, some of which are clinically used drugs, were investigated for their inhibitory properties against EhiCA. The best inhibitors detected in the study were 4-hydroxymethyl/ethyl-benzenesulfonamide (KIs of 36–89 nM), whereas some sulfanilyl-sulfonamides showed activities in the range of 285–331 nM. Acetazolamide, methazolamide, ethoxzolamide, and dichlorophenamide were less effective inhibitors (KIs of 509–845 nM) compared to other sulfonamides investigated here. As β-CAs are not present in vertebrates, the present study may be useful for detecting lead compounds for the design of more effective inhibitors with potential to develop anti-infectives with alternative mechanisms of action.
Collapse
|