1
|
Mustafa S, Abbas RZ, Saeed Z, Baazaoui N, Khan AMA. Use of Metallic Nanoparticles Against Eimeria-the Coccidiosis-Causing Agents: A Comprehensive Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04399-8. [PMID: 39354182 DOI: 10.1007/s12011-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Coccidiosis is a protozoan disease caused by Eimeria species and is a major threat to the poultry industry. Different anti-coccidial drugs (diclazuril, amprolium, halofuginone, ionophores, sulphaquinoxaline, clopidol, and ethopabate) and vaccines have been used for their control. Still, due to the development of resistance, their efficacy has been limited. It is continuously damaging the economy of the poultry industry because under its control, almost $14 billion is spent, globally. Recent research has been introducing better and more effective control of coccidiosis by using metallic and metallic oxide nanoparticles. Zinc, zinc oxide, copper, copper oxide, silver, iron, and iron oxide are commonly used because of their drug delivery mechanism. These nanoparticles combined with other drugs enhance the effect of these drugs and give their better results. Moreover, by using nanotechnology, the resistance issue is also solved because by using several mechanisms at a time, protozoa cannot evolve and thus resistance cannot develop. Green nanotechnology has been giving better results due to its less toxic effects. Utilization of metallic and metallic oxide nanoparticles may present a new, profitable, and economical method of controlling chicken coccidiosis, thus by changing established treatment approaches and improving the health and production of chickens. Thus, the objective of this review is to discuss about economic burden of avian coccidiosis, zinc, zinc oxide, iron, iron oxide, copper, copper oxide, silver nanoparticles use in the treatment of coccidiosis, their benefits, and toxicity.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Narjes Baazaoui
- Applied College Muhayil Assir, King Khalid University, 61421, Abha, Saudi Arabia
| | | |
Collapse
|
2
|
Fries-Craft K, Anderson C, Schmitz-Esser S, Bobeck EA. Sequencing approaches to identify distal jejunum microbial community composition and function in broiler chickens fed anti-interleukin-10 during coccidiosis and necrotic enteritis challenge. Poult Sci 2024; 103:104001. [PMID: 39002368 PMCID: PMC11298949 DOI: 10.1016/j.psj.2024.104001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Strategies to counteract interleukin (IL)-10-mediated immune evasion by Eimeria spp. during coccidiosis- like anti-IL-10 antibodies- may protect broiler chicken health and reduce incidence of secondary necrotic enteritis (Clostridium perfringens) via undetermined mechanisms. Objectives were to use sequencing techniques to evaluate jejunal microbial community composition and function in anti-IL-10-fed broilers during coccidiosis and necrotic enteritis. On d0, Ross 308 chicks were placed in 32 cages (15 chicks/ cage) for a 25-d study and randomly assigned to diets ± 0.03% anti-IL-10. Six chicks/ diet were euthanized for distal jejunum content and tissue collection on d 14 (baseline) before inoculating the remainder with saline or 15,000 E. maxima oocysts (M6 strain). Half the chicks challenged with E. maxima were challenged with C. perfringens (1×108 colony forming units) on d 18 and 19. Follow-up samples (6 chicks/treatment) were collected at 7 and 11 d postinoculation (pi) for the E. maxima-only group, or 3 and 7 dpi for the E. maxima + C. perfringens group with 3/7 dpi being designated as peak and 7/11dpi as postpeak challenge. DNA was extracted from digesta for microbiota composition analysis (16S rRNA gene sequencing) while RNA was extracted from tissue to evaluate the metatranscriptome (RNA sequencing). Alpha diversity and genus relative abundances were analyzed using the diet or challenge main effects with associated interactions (SAS 9.4; P ≤ 0.05). No baseline microbial changes were associated with dietary anti-IL-10. At peak challenge, a diet main effect reduced observed species 36.7% in chicks fed anti-IL-10 vs. control; however, the challenge effect reduced observed species and Shannon diversity 51.2-58.3% and 33.0 to 35.5%, respectively, in chicks challenged with E. maxima ± C. perfringens compared to their unchallenged counterparts (P ≤ 0.05). Low sequencing depth limited metatranscriptomic analysis of jejunal microbial function via RNA sequencing. This study demonstrates that challenge impacted the broiler distal jejunum microbiota more than anti-IL-10 while future research to characterize the microbial metatranscriptome may benefit from investigating other intestinal compartments.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - C Anderson
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - S Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
3
|
Jebessa E, Bello SF, Xu Y, Cai B, Tuli MD, Girma M, Bordbar F, Hanotte O, Nie Q. Comprehensive analysis of differentially expressed mRNA profiles in chicken jejunum and cecum following Eimeria maxima infection. Poult Sci 2024; 103:103716. [PMID: 38703453 PMCID: PMC11087723 DOI: 10.1016/j.psj.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/31/2024] [Indexed: 05/06/2024] Open
Abstract
Coccidiosis, a protozoan disease that substantially impacts poultry production, is characterized by an intracellular parasite. The study utilized 48 one-day-old Horro chickens, randomly divided into the infected (I) and control (C) groups. The challenge group of chickens were administered Eimeria maxima oocysts via oral gavage at 21-days-old, and each chicken received 2 mL containing 7×104 sporulated oocysts. The total RNAs of chicken jejunum and cecum tissues were isolated from three samples, each from I and C groups. Our study aimed to understand the host immune-parasite interactions and compare immune response mRNA profiles in chicken jejunum and cecum tissues at 4 and 7 days postinfection with Eimeria maxima. The results showed that 823 up- and 737 down-regulated differentially expressed mRNAs (DEmRNAs) in jejunum at 4 d infection and control (J4I vs. J4C), and 710 up- and 368 down-regulated DEmRNAs in jejunum at 7 days infection and control (J7I vs. J7C) were identified. In addition, DEmRNAs in cecum tissue, 1424 up- and 1930 down-regulated genes in cecum at 4 days infection and control (C4I vs. C4C), and 77 up- and 191 down-regulated genes in cecum at 7 days infection and control (C7I vs. C7C) were detected. The crucial DEmRNAs, including SLC7A5, IL1R2, GLDC, ITGB6, ADAMTS4, IL1RAP, TNFRSF11B, IMPG2, WNT9A, and FOXF1, played pivotal roles in the immune response during Eimeria maxima infection of chicken jejunum. In addition, the potential detection of FSTL3, RBP7, CCL20, DPP4, PRKG2, TFPI2, and CDKN1A in the cecum during the host immune response against Eimeria maxima infection is particularly noteworthy. Furthermore, our functional enrichment analysis revealed the primary involvement of DEmRNAs in small molecule metabolic process, immune response function, inflammatory response, and toll-like receptor 10 signaling pathway in the jejunum at 4 and 7 days postinfection. Similarly, in the cecum, DEmRNAs at 4 and 7 days postinfection were enriched in processes related to oxidative stress response and immune responses. Our findings provide new insights and contribute significantly to the field of poultry production and parasitology.
Collapse
Affiliation(s)
- Endashaw Jebessa
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China; LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Yibin Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Bolin Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Merga Daba Tuli
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Mekonnen Girma
- LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Farhad Bordbar
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Olivier Hanotte
- LiveGene-Centre for Tropical Livestock Genetics and Health (CTLGH), International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia; School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
4
|
Elsasser TH, Faulkenberg S. Physiology of Gut Water Balance and Pathomechanics of Diarrhea. PRODUCTION DISEASES IN FARM ANIMALS 2024:179-209. [DOI: 10.1007/978-3-031-51788-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Zhao W, Huang Y, Cui N, Wang R, Xiao Z, Su X. Glucose oxidase as an alternative to antibiotic growth promoters improves the immunity function, antioxidative status, and cecal microbiota environment in white-feathered broilers. Front Microbiol 2023; 14:1100465. [PMID: 36937262 PMCID: PMC10020722 DOI: 10.3389/fmicb.2023.1100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to demonstrate the effects of glucose oxidase (GOD) on broilers as a potential antibiotic substitute. A total of four hundred twenty 1-day-old male Cobb500 broilers were randomly assigned into five dietary treatments, each with six replicates (12 chicks per replicate). The treatments included two control groups (a basal diet and a basal diet with 50 mg/kg aureomycin) and three GOD-additive groups involving three different concentrations of GOD. Analysis after the t-test showed that, on day 21, the feed:gain ratio significantly decreased in the 1,200 U/kg GOD-supplied group (GOD1200) compared to the antibiotic group (Ant). The same effect was also observed in GOD1200 during days 22-42 and in the 600 U/kg GOD-supplied group (GOD600) when compared to the control group (Ctr). The serum tests indicated that, on day 21, the TGF-β cytokine was significantly decreased in both GOD600 and GOD1200 when compared with Ctr. A decrease in malondialdehyde and an increase in superoxide dismutase in GOD1200 were observed, which is similar to the effects seen in Ant. On day 42, the D-lactate and glutathione peroxidase activity changed remarkably in GOD1200 and surpassed Ant. Furthermore, GOD upregulated the expression of the jejunal barrier genes (MUC-2 and ZO-1) in two phases relative to Ctr. In the aureomycin-supplied group, the secretory immunoglobulin A significantly decreased in the jejunum at 42 days. Changes in microbial genera were also discovered in the cecum by sequencing 16S rRNA genes at 42 days. The biomarkers for GOD supplementation were identified as Colidextribacter, Oscillibacter, Flavonifractor, Oscillospira, and Shuttleworthia. Except for Shuttleworthia, all the abovementioned genera were n-butyrate producers known for imparting their various benefits to broilers. The PICRUSt prediction of microbial communities revealed 11 pathways that were enriched in both the control and GOD-supplied groups. GOD1200 accounted for an increased number of metabolic pathways, demonstrating their potential in aiding nutrient absorption and digestion. In conclusion, a diet containing GOD can be beneficial to broiler health, particularly at a GOD concentration of 1,200 U/kg. The improved feed conversion ratio, immunity, antioxidative capacity, and intestinal condition demonstrated that GOD could be a valuable alternative to antibiotics in broiler breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoou Su
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Meng YJ, Mu BJ, Liu XX, Yu LM, Zheng WB, Xie SC, Gao WW, Zhu XQ, Liu Q. Transcriptional changes in LMH cells induced by Eimeria tenella rhoptry kinase family protein 17. Front Vet Sci 2022; 9:956040. [PMID: 36016802 PMCID: PMC9395702 DOI: 10.3389/fvets.2022.956040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Though a number of Eimeria tenella rhoptry kinase family proteins have been identified, little is known about their molecular functions. In the present study, the gene fragment encoding the matured peptide of E. tenella rhoptry kinase family protein 17 (EtROP17) was used to construct a recombinant vector, followed by transfection into leghorn male hepatoma (LMH) cells. Then, the transcriptional changes in the transfected cells were determined by RNA-seq. The expression of EtROP17 in LMH cells was validated by both Western blot and indirect immunofluorescence analysis. Our analysis showed that EtROP17 altered the expression of 309 genes (114 downregulated genes and 195 upregulated genes) in LMH cells. The quantitative real-time polymerase chain reaction (qRT-PCR) results of the selected differentially expressed genes (DEGs) were consistent with the RNA-seq data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in nine pathways, such as toll-like receptor signaling pathway, ECM-receptor interaction, intestinal immune network for IgA production and focal adhesion. These findings reveal several potential roles of EtROP17, which contribute to understanding the molecular mechanisms underlying the host-parasite interplay.
Collapse
Affiliation(s)
- Yi-Jing Meng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Bing-Jin Mu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiao-Xin Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Lin-Mei Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Shi-Chen Xie
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Wen-Wei Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qing Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- *Correspondence: Qing Liu
| |
Collapse
|
7
|
Kim M, Chung Y, Manjula P, Seo D, Cho S, Cho E, Ediriweera TK, Yu M, Nam S, Lee JH. Time-series transcriptome analysis identified differentially expressed genes in broiler chicken infected with mixed Eimeria species. Front Genet 2022; 13:886781. [PMID: 36003329 PMCID: PMC9393255 DOI: 10.3389/fgene.2022.886781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Coccidiosis caused by the Eimeria species is a highly problematic disease in the chicken industry. Here, we used RNA sequencing to observe the time-dependent host responses of Eimeria-infected chickens to examine the genes and biological functions associated with immunity to the parasite. Transcriptome analysis was performed at three time points: 4, 7, and 21 days post-infection (dpi). Based on the changes in gene expression patterns, we defined three groups of genes that showed differential expression. This enabled us to capture evidence of endoplasmic reticulum stress at the initial stage of Eimeria infection. Furthermore, we found that innate immune responses against the parasite were activated at the first exposure; they then showed gradual normalization. Although the cytokine-cytokine receptor interaction pathway was significantly operative at 4 dpi, its downregulation led to an anti-inflammatory effect. Additionally, the construction of gene co-expression networks enabled identification of immunoregulation hub genes and critical pattern recognition receptors after Eimeria infection. Our results provide a detailed understanding of the host-pathogen interaction between chicken and Eimeria. The clusters of genes defined in this study can be utilized to improve chickens for coccidiosis control.
Collapse
Affiliation(s)
- Minjun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yoonji Chung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Prabuddha Manjula
- Department of Animal Science, Uva Wellassa University, Badulla, Sri Lanka
| | - Dongwon Seo
- Research Institute TNT Research Company, Jeonju, Korea
- Department of Bio AI Convergence, Chungnam National University, Daejeon, Korea
| | - Sunghyun Cho
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Eunjin Cho
- Department of Bio AI Convergence, Chungnam National University, Daejeon, Korea
| | | | - Myunghwan Yu
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Sunju Nam
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
- Department of Bio AI Convergence, Chungnam National University, Daejeon, Korea
- *Correspondence: Jun Heon Lee,
| |
Collapse
|
8
|
Zaheer T, Abbas RZ, Imran M, Abbas A, Butt A, Aslam S, Ahmad J. Vaccines against chicken coccidiosis with particular reference to previous decade: progress, challenges, and opportunities. Parasitol Res 2022; 121:2749-2763. [PMID: 35925452 PMCID: PMC9362588 DOI: 10.1007/s00436-022-07612-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Chicken coccidiosis is an economically significant disease of commercial chicken industry accounting for losses of more than £10.4 billion (according to 2016 prices). Additionally, the costs incurred in prophylaxis and therapeutics against chicken coccidiosis in developing countries (for instance Pakistan according to 2018 prices) reached US $45,000.00 while production losses for various categories of chicken ranges 104.74 to US $2,750,779.00. The infection has been reported from all types of commercial chickens (broiler, layer, breeder) having a range of reported prevalence of 7-90%. The concern of resistance towards major anticoccidials has provided a way forward to vaccine research and development. For prophylaxis of chicken coccidiosis, live virulent, attenuated, ionophore tolerant strains and recombinant vaccines have been extensively trialed and commercialized. Eimeria antigens and novel vaccine adjuvants have elicited the protective efficacy against coccidial challenge. The cost of production and achieving robust immune responses in birds are major challenges for commercial vaccine production. In the future, research should be focused on the development of multivalent anticoccidial vaccines for commercial poultry. Efforts should also be made on the discovery of novel antigens for incorporation into vaccine designs which might be more effective against multiple Eimeria species. This review presents a recap to the overall progress against chicken Eimeria with particular reference to previous decade. The article presents critical analysis of potential areas for future research in chicken Eimeria vaccine development.
Collapse
Affiliation(s)
- Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Asghar Abbas
- Faculty of Veterinary Science, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Ali Butt
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Sarfraz Aslam
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| | - Jameel Ahmad
- Institute of Physiology, Pharmacology and Pharmaceutics, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
9
|
Lu M, Lee Y, Li C, Lillehoj HS. Immunological characterization of chicken tumor necrosis factor-α (TNF-α) using new sets of monoclonal antibodies specific for poultry TNF-α. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104374. [PMID: 35157961 DOI: 10.1016/j.dci.2022.104374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a type II transmembrane protein with either membrane-bound or soluble forms and is a prototypical member of the TNF superfamily. TNF-α is a pleiotropic cytokine associated with the regulation of systemic inflammation and host defense. Chicken TNF-α (chTNF-α) is a long-missed avian ortholog, and its immunological properties remain largely unknown compared to those of its mammalian counterparts. Here, we report the functional characterization and immunomodulatory properties of chTNF-α using a panel of newly developed anti-chTNF-α mouse monoclonal antibodies (mAbs). Using anti-chTNF-α mAbs, we determined the tissue expression of chTNF-α in lymphoid and non-lymphoid organs. A chTNF-α-specific antigen-capture sandwich ELISA was developed using compatible mAb partners by screening and validation of ten different mAbs. Employing 3G11 and 12G6 as capture and detection antibodies, respectively, the levels of native chTNF-α in the circulation of Clostridium perfringens, Eimeria, or dual C. perfringens/Eimeria-infected chickens were determined. Furthermore, intracellular expression of chTNF-α in primary immune cells or cell lines derived from chickens was validated by immunocytochemistry and flow cytometry assays using both 3G11 and 12G6 mAbs. Notably, both 3G11 and 12G6 neutralized chTNF-α-induced nitric oxide production in chicken HD11 cells in vitro. Collectively, our results enhance our understanding of the functional characteristics of chTNF-α, and these anti-chTNF-α mAbs will serve as valuable immune reagents to inform on inflammatory responses and disease pathogenesis in the fundamental and applied studies of avian species.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| |
Collapse
|
10
|
Choi J, Tompkins YH, Teng PY, Gogal RM, Kim WK. Effects of Tannic Acid Supplementation on Growth Performance, Oocyst Shedding, and Gut Health of in Broilers Infected with Eimeria Maxima. Animals (Basel) 2022; 12:ani12111378. [PMID: 35681844 PMCID: PMC9179276 DOI: 10.3390/ani12111378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to evaluate effects of tannic acid (TA) on growth performance, fecal moisture content, oocyst shedding, gut permeability, lesion score, intestinal morphology, apparent ileal digestibility, and the antioxidant and immune system of broilers infected with Eimeria maxima. A total of 420 one-day-old broilers were distributed to five treatments with seven replicates of 12 birds. The five treatments were the (1) sham-challenged control (SCC; birds fed a control diet and administrated with PBS); (2) challenged control (CC; birds fed a control diet and inoculated with E. maxima); (3) tannic acid 0.5 (TA0.5; CC + 500 mg/kg TA); (4) tannic acid 2.75 (TA2.75; CC + 2750 mg/kg TA); and (5) tannic acid 5 (TA5; CC + 5000 mg/kg TA). The TA2.75 group had significantly lower gut permeability compared to the CC group at 5 days post-infection (dpi). Supplementation of TA linearly reduced oocyst shedding of E. maxima at 7 to 9 dpi (p < 0.05). At 13 dpi, the TA2.75 group had significantly greater apparent ileal digestibility (AID) of dry matter (DM) and organic matter (OM) compared to the CC group. At 13 dpi, supplementation of TA linearly increased jejunal villus height (VH). Thus, this study showed that supplementation of TA at levels of 500 to 2750 mg/kg has the potential to be an anti-coccidial agent against E. maxima in broilers.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Yuguo Huo Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Robert M. Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
- Correspondence: ; Tel.: +1-706-542-1346
| |
Collapse
|
11
|
Lu M, Yuan B, Yan X, Sun Z, Lillehoj HS, Lee Y, Baldwin-Bott C, Li C. Clostridium perfringens-Induced Host-Pathogen Transcriptional Changes in the Small Intestine of Broiler Chickens. Pathogens 2021; 10:pathogens10121607. [PMID: 34959561 PMCID: PMC8705629 DOI: 10.3390/pathogens10121607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens is an important opportunistic pathogen that may result in toxin-mediated diseases involving food poisoning/tissue gangrene in humans and various enterotoxaemia in animal species. It is a main etiological agent for necrotic enteritis (NE), the most financially devastating bacterial disease in broiler chickens, especially if raised under antibiotic-free conditions. Importantly, NE is responsible for losses of six billion US dollars annually in the global poultry industry. To investigate the molecular mechanisms of C. perfringens-induced pathogenesis in the gut and its microbiome mRNA levels in C. perfringens-infected and non-infected hosts, we used RNA sequencing technology to perform transcriptional analysis of both host intestine and microbiome using our NE model. The growth rate was significantly impaired in chickens infected by C. perfringens. In total, 13,473 annotated chicken genes were differentially expressed between these two groups, with ninety-six genes showing statistical significance (|absolute fold changes| > 2.0, adjusted p value < 0.05). Genes involved in energy production, MHC Class I antigen, translation, ribosomal structures, and amino acid, nucleotide and carbohydrate metabolism from infected gut tissues were significantly down-regulated. The upregulated genes were mainly engaged in innate and adaptive immunity, cellular processes, genetic information processing, and organismal systems. Additionally, the transcriptional levels of four crucial foodborne pathogens were significantly elevated in a synergic relationship with pathogenic C. perfringens infection. This study presents the profiling data that would likely be a relevant reference for NE pathogenesis and may provide new insights into the mechanism of host-pathogen interaction in C. perfringens-induced NE infection in broiler chickens.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
| | - Baohong Yuan
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
- School of Basic Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (X.Y.); (C.L.)
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
| | - Calder Baldwin-Bott
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
- Eleanor Roosevelt High School, Greenbelt, MD 20770, USA
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service-US Department of Agriculture, Beltsville, MD 20705, USA; (M.L.); (B.Y.); (Z.S.); (H.S.L.); (Y.L.); (C.B.-B.)
- Correspondence: (X.Y.); (C.L.)
| |
Collapse
|
12
|
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, Hu J, Tao J. Full-length transcriptome analysis and identification of transcript structures in Eimeria necatrix from different developmental stages by single-molecule real-time sequencing. Parasit Vectors 2021; 14:502. [PMID: 34579769 PMCID: PMC8474931 DOI: 10.1186/s13071-021-05015-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/14/2021] [Indexed: 03/08/2023] Open
Abstract
Background Eimeria necatrix is one of the most pathogenic parasites, causing high mortality in chickens. Although its genome sequence has been published, the sequences and complete structures of its mRNA transcripts remain unclear, limiting exploration of novel biomarkers, drug targets and genetic functions in E. necatrix. Methods Second-generation merozoites (MZ-2) of E. necatrix were collected using Percoll density gradients, and high-quality RNA was extracted from them. Single-molecule real-time (SMRT) sequencing and Illumina sequencing were combined to generate the transcripts of MZ-2. Combined with the SMRT sequencing data of sporozoites (SZ) collected in our previous study, the transcriptome and transcript structures of E. necatrix were studied. Results SMRT sequencing yielded 21,923 consensus isoforms in MZ-2. A total of 17,151 novel isoforms of known genes and 3918 isoforms of novel genes were successfully identified. We also identified 2752 (SZ) and 3255 (MZ-2) alternative splicing (AS) events, 1705 (SZ) and 1874 (MZ-2) genes with alternative polyadenylation (APA) sites, 4019 (SZ) and 2588 (MZ-2) fusion transcripts, 159 (SZ) and 84 (MZ-2) putative transcription factors (TFs) and 3581 (SZ) and 2039 (MZ-2) long non-coding RNAs (lncRNAs). To validate fusion transcripts, reverse transcription-PCR was performed on 16 candidates, with an accuracy reaching up to 87.5%. Sanger sequencing of the PCR products further confirmed the authenticity of chimeric transcripts. Comparative analysis of transcript structures revealed a total of 3710 consensus isoforms, 815 AS events, 1139 genes with APA sites, 20 putative TFs and 352 lncRNAs in both SZ and MZ-2. Conclusions We obtained many long-read isoforms in E. necatrix SZ and MZ-2, from which a series of lncRNAs, AS events, APA events and fusion transcripts were identified. Information on TFs will improve understanding of transcriptional regulation, and fusion event data will greatly improve draft versions of gene models in E. necatrix. This information offers insights into the mechanisms governing the development of E. necatrix and will aid in the development of novel strategies for coccidiosis control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05015-7.
Collapse
Affiliation(s)
- Yang Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Zeyang Suding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
13
|
Schwartz B, Vetvicka V. Review: β-glucans as Effective Antibiotic Alternatives in Poultry. Molecules 2021; 26:molecules26123560. [PMID: 34200882 PMCID: PMC8230556 DOI: 10.3390/molecules26123560] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
The occurrence of microbial challenges in commercial poultry farming causes significant economic losses. Antibiotics have been used to control diseases involving bacterial infection in poultry. As the incidence of antibiotic resistance turns out to be a serious problem, there is increased pressure on producers to reduce antibiotic use. With the reduced availability of antibiotics, poultry producers are looking for feed additives to stimulate the immune system of the chicken to resist microbial infection. Some β-glucans have been shown to improve gut health, to increase the flow of new immunocytes, increase macrophage function, stimulate phagocytosis, affect intestinal morphology, enhance goblet cell number and mucin-2 production, induce the increased expression of intestinal tight-junctions, and function as effective anti-inflammatory immunomodulators in poultry. As a result, β-glucans may provide a new tool for producers trying to reduce or eliminate the use of antibiotics in fowl diets. The specific activity of each β-glucan subtype still needs to be investigated. Upon knowledge, optimal β-glucan mixtures may be implemented in order to obtain optimal growth performance, exert anti-inflammatory and immunomodulatory activity, and optimized intestinal morphology and histology responses in poultry. This review provides an extensive overview of the current use of β glucans as additives and putative use as antibiotic alternative in poultry.
Collapse
Affiliation(s)
- Betty Schwartz
- Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel
- Correspondence:
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
14
|
Lu M, Panebra A, Kim WH, Lillehoj HS. Characterization of immunological properties of chicken chemokine CC motif ligand 5 using new monoclonal antibodies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104023. [PMID: 33497732 DOI: 10.1016/j.dci.2021.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
CCL5 (formerly RANTES) belongs to the CC (or β) chemokine family and is associated with a plethora of inflammatory disorders and pathologic states. CCL5 is mainly produced and secreted by T cells, macrophages, epithelial cells, and fibroblasts and acts as a chemoattractant to recruit effector cells to the inflammation sites. Chicken CCL5 (chCCL5) protein is closely related to avian CCL5 orthologs but distinct from mammalian orthologs, and its modulatory roles in the immune response are largely unknown. The present work was undertaken to characterize the immunological properties of chCCL5 using the new sets of anti-chCCL5 mouse monoclonal antibodies (mAbs). Eight different mAbs (6E11, 6H1, 8H11, 11G1, 11G11, 12H1, 13D1, and 13G3) were characterized for their specificity and binding ability toward chCCL5. Two (13G3 and 6E11) of them were selected to detect native chCCL5 in chCCL5-specific antigen-capture ELISA. Using 13G3 and 6E11 as capture and detection antibodies, respectively, the ELISA system detected serum chCCL5 secretions in Clostridium perfringens- and Eimeria-infected chickens. The intracellular expressions of chCCL5 in primary cells or cell lines derived from chickens were validated in immunocytochemistry and flow cytometry assays using both 13G3 and 6E11 mAbs. Furthermore, 6E11, but not 13G3, neutralized chCCL5-induced chemotaxis in vitro using chicken PBMCs. These molecular characteristics of chCCL5 demonstrate the potential application of anti-chCCL5 mAbs and CCL5-specific antigen-capture detection ELISA for detecting native chCCL5 in biological samples. The availability of these new immunological tools will be valuable for fundamental and applied studies in avian species.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Alfredo Panebra
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, 20705, USA.
| |
Collapse
|
15
|
Choi J, Kim WK. Dietary Application of Tannins as a Potential Mitigation Strategy for Current Challenges in Poultry Production: A Review. Animals (Basel) 2020; 10:ani10122389. [PMID: 33327595 PMCID: PMC7765034 DOI: 10.3390/ani10122389] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary There are diverse challenges in the poultry production industry that decrease the productivity and efficiency of poultry production, impair animal welfare, and pose issues to public health. Furthermore, the use of antibiotic growth promoters (AGP) in feed, which have been used to improve the growth performance and gut health of chickens, has been restricted in many countries. Tannins, polyphenolic compounds that precipitate proteins, are considered as alternatives for AGP in feed and provide solutions to mitigate challenges in poultry production due to their antimicrobial, antioxidant, anti-inflammatory and gut health promoting effects. However, because high dosages of tannins have antinutritional effects when fed to poultry, determining appropriate dosages of supplemental tannins is critical for their potential implementation as a solution for the challenges faced in poultry production. Abstract The poultry industry has an important role in producing sources of protein for the world, and the size of global poultry production continues to increase annually. However, the poultry industry is confronting diverse challenges including bacterial infection (salmonellosis), coccidiosis, oxidative stress, including that caused by heat stress, welfare issues such as food pad dermatitis (FPD) and nitrogen and greenhouse gasses emissions that cumulatively cause food safety issues, reduce the efficacy of poultry production, impair animal welfare, and induce environmental issues. Furthermore, restrictions on the use of AGP have exacerbated several of these negative effects. Tannins, polyphenolic compounds that possess a protein precipitation capacity, have been considered as antinutritional factors in the past because high dosages of tannins can decrease feed intake and negatively affect nutrient digestibility and absorption. However, tannins have been shown to have antimicrobial, antioxidant and anti-inflammatory properties, and as such, have gained interest as promising bioactive compounds to help alleviate the challenges of AGP removal in the poultry industry. In addition, the beneficial effects of tannins can be enhanced by several strategies including heat processing, combining tannins with other bioactive compounds, and encapsulation. As a result, supplementation of tannins alone or in conjunction with the above strategies could be an effective approach to decrease the need of AGP and otherwise improve poultry production efficiency.
Collapse
|
16
|
Lu M, Li RW, Zhao H, Yan X, Lillehoj HS, Sun Z, Oh S, Wang Y, Li C. Effects of Eimeria maxima and Clostridium perfringens infections on cecal microbial composition and the possible correlation with body weight gain in broiler chickens. Res Vet Sci 2020; 132:142-149. [PMID: 32575030 DOI: 10.1016/j.rvsc.2020.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/19/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023]
Abstract
With the voluntary and regulatory withdrawal of antibiotic growth promoters from animal feed, coccidiosis and necrotic enteritis (NE) emerge as the top two enteric poultry infectious diseases responsible for major economic loss worldwide. The objective of this study was to investigate the correlation between the cecal microbiota compositions with the growth trait after coccidiosis and NE. In this study, the effects of Eimeria maxima and/or Clostridium perfringens infections on the microbial composition and potential correlation with the body weight gain were investigated in broiler chickens using 16S rRNA gene sequencing. E. maxima and C. perfringens coinfection successfully induced NE with its typical gut lesions and significant reductions in the percentage of relative body weight gain (RBWG%). The NE challenge model did not affect cecal microbial diversity, but influenced the cecal microbial composition. KEGG enzymes in microbiota were significantly altered in abundance following dual infections. Furthermore, significant correlations between cecal microbiota modules and RBWG% were identified in the sham control, E. maxima or C. perfringens infected groups. Understanding of host-microbiota interaction in NE would enhance the development of antibiotics-independent strategies to reduce the harmful effect of NE on the gut microbiota structure, and improve the gut health and poultry production.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA
| | - Robert W Li
- Animal Genomics & Improvement Laboratory, ARS, USDA, Beltsville, MD, USA
| | - Hongyan Zhao
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xianghe Yan
- Environment Microbial and Food Safety Laboratory, ARS, USDA, Beltsville, MD, USA
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA
| | - Zhifeng Sun
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA
| | - SungTak Oh
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA
| | - Yueying Wang
- Animal Genomics & Improvement Laboratory, ARS, USDA, Beltsville, MD, USA; College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Charles Li
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service (ARS), US Department of Agriculture (USDA), Beltsville, MD, USA.
| |
Collapse
|
17
|
Yu H, Zou W, Xin S, Wang X, Mi C, Dai G, Zhang T, Zhang G, Xie K, Wang J, Qiu C. Association Analysis of Single Nucleotide Polymorphisms in the 5' Regulatory Region of the IL-6 Gene with Eimeria tenella Resistance in Jinghai Yellow Chickens. Genes (Basel) 2019; 10:genes10110890. [PMID: 31694169 PMCID: PMC6896108 DOI: 10.3390/genes10110890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023] Open
Abstract
Interleukin 6 (IL-6) is an immunoregulatory cytokine involved in various inflammatory and immune responses. To investigate the effects of single nucleotide polymorphisms (SNPs) and haplotypes of IL-6 on resistance to Eimeria tenella (E. tenella), SNPs in the 5' regulatory region of IL-6 were detected with direct sequencing, and the effects of SNPs and haplotypes on resistance to E. tenella were analyzed by the least square model in Jinghai yellow chickens. Nineteen SNPs were identified in the 5' regulation region of IL-6, among which three SNPs were newly discovered. The SNP association analysis results showed that nine of the SNPs were significantly associated with E. tenella resistance indexes; the A-483G locus was significantly associated with the GSH-Px, IL-2, and IL-17 indexes (p < 0.05); the C-447G locus was significantly associated with the SOD, GSH-Px, IL-17, and IL-2 indexes (p < 0.05); and the G-357A locus had significant effects on the CAT and IL-16 indexes (p < 0.05). Haplotype analysis showed that H2H3 and H2H5 were favorable haplotype combinations with good coccidium resistance. Furthermore, we used qRT-PCR and observed that the expression of IL-6 in the infection group was higher than that in the control group in the liver, proventriculus, small intestine, thymus, kidney, and bursa of Fabricius and extremely significantly different than that in the cecum especially (p < 0.01). In summary, SNPs and haplotypes in the 5' regulatory region of IL-6 have important effects on E. tenella resistance, and the results will provide a reference for molecular marker selection of E. tenella resistance in Jinghai yellow chickens.
Collapse
Affiliation(s)
- Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Wenbin Zou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Shijie Xin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Xiaohui Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Changhao Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
- Correspondence: ; Tel.: +86-139-5275-0903
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.Y.); (W.Z.); (S.X.); (X.W.); (C.M.); (T.Z.); (G.Z.); (K.X.); (J.W.)
| | - Cong Qiu
- Jiangsu Jinghai Poultry Group Co., Ltd., Haimen 226100, China;
| |
Collapse
|