1
|
Wu KY, Chen YJ, Lin SF, Hsu HM. Iron triggers TvPI4P5K proteostasis and Arf-mediated cell membrane trafficking to regulate PIP 2 signaling crucial for multiple pathogenic activities of the parasitic protozoan Trichomonas vaginalis. mBio 2024:e0186424. [PMID: 39714186 DOI: 10.1128/mbio.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Trichomonas vaginalis is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP2) signaling in the actin-dependent pathogenicity of T. vaginalis. This study further demonstrated that iron transiently regulated T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor TvArf220, facilitating co-trafficking to the plasma membrane, crucial for PIP2 production. In dominant-active HA-TvArf220 Q71L mutant, TvPI4P5K plasma membrane trafficking, PIP2 production, and intracellular calcium levels were increased, while these processes were inhibited in dominant-negative T31N mutant or those by Brefeldin A (BFA) treatment. Additionally, PIP2 replenishment reversed these inhibitions in the T31N mutant, suggesting the critical role of TvArf220 activation in PIP2-calcium signaling. Also, T31N mutant and BFA treatment impaired actin dynamics and cytoskeleton-dependent processes in T. vaginalis, further linking the role of TvArf220 to PIP2-calcium-dependent actin dynamics. Beyond cytoadherence, during host-parasite interactions, TvArf220 influenced both contact-dependent and -independent cytotoxicity, as well as phagocytotic capacity, contributing to the cytopathogenesis of human vaginal epithelial cells. Our findings underscore the key upstream regulation mechanisms of the PIP2 signaling, orchestrating the interplay between TvArf220-PIP2-calcium signaling and downstream actin cytoskeleton-driven pathogenicity in T. vaginalis.IMPORTANCETrichomonas vaginalis actin cytoskeleton-centric pathogenicity is regulated by the phosphatidylinositol 4,5-bisphosphates (PIP2)-triggered calcium signaling cascade in response to environmental iron, though the detailed mechanism by which iron modulates PIP2 signaling remains unclear. Our findings reveal that iron rapidly induces T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) translation followed by its degradation, while simultaneously activating TvArf220 binding, which facilitates TvPI4P5K localization to the plasma membrane for PIP2 production. In contrast to the TvArf220 Q71L mutant, the reduced PIP2 production, intracellular calcium, actin assembly, morphogenesis, and cytoadherence in the dominant-negative T31N mutant were recovered by PIP2 supplementation, indicating the essential role of TvArf220 in PIP2-dependent calcium signaling. Additionally, the contact-dependent or -independent cytotoxicity, along with the phagocytosis, was impaired in the TvPI4P5K- or TvArf220-deficient parasites, as well as in those treated with BAPTA or Latrunculin B. These findings highlight that TvArf220-mediated PIP2-calcium signaling cascade regulates actin cytoskeleton and cytopathogenicity of T. vaginalis. This study uncovers a novel pathogenic mechanism and suggests potential therapeutic targets for parasite control.
Collapse
Affiliation(s)
- Kuan-Yi Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ju Chen
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Fan Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Abu-Elmakarem H, Taerum SJ, Petitjean C, Kotyk M, Kay C, Čepička I, Bass D, Gile GH, Williams TA. Transcriptome and Evolutionary Analysis of Pseudotrichomonas keilini, a Free-Living Anaerobic Eukaryote. Genome Biol Evol 2024; 16:evae262. [PMID: 39656733 DOI: 10.1093/gbe/evae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
The early evolution of eukaryotes and their adaptations to low-oxygen environments are fascinating open questions in biology. Genome-scale data from novel eukaryotes, and particularly from free-living lineages, are the key to answering these questions. The Parabasalia are a major group of anaerobic eukaryotes that form the most speciose lineage of Metamonada. The most well-studied are parasitic parabasalids, including Trichomonas vaginalis and Tritrichomonas foetus, but very little genome-scale data are available for free-living members of the group. Here, we sequenced the transcriptome of Pseudotrichomonas keilini, a free-living parabasalian. Comparative genomic analysis indicated that P. keilini possesses a metabolism and gene complement that are in many respects similar to its parasitic relative T. vaginalis and that in the time since their most recent common ancestor, it is the T. vaginalis lineage that has experienced more genomic change, likely due to the transition to a parasitic lifestyle. Features shared between P. keilini and T. vaginalis include a hydrogenosome (anaerobic mitochondrial homolog) that we predict to function much as in T. vaginalis and a complete glycolytic pathway that is likely to represent one of the primary means by which P. keilini obtains ATP. Phylogenomic analysis indicates that P. keilini branches within a clade of endobiotic parabasalids, consistent with the hypothesis that different parabasalid lineages evolved toward parasitic or free-living lifestyles from an endobiotic, anaerobic, or microaerophilic common ancestor.
Collapse
Affiliation(s)
- Hend Abu-Elmakarem
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Stephen J Taerum
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Celine Petitjean
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Michael Kotyk
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Christopher Kay
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, UK
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TH, UK
| |
Collapse
|
3
|
Blasco Pedreros M, Salas N, Dos Santos Melo T, Miranda-Magalhães A, Almeida-Lima T, Pereira-Neves A, de Miguel N. Role of a novel uropod-like cell membrane protrusion in the pathogenesis of the parasite Trichomonas vaginalis. J Cell Sci 2024; 137:jcs262210. [PMID: 39129707 DOI: 10.1242/jcs.262210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Trichomonas vaginalis causes trichomoniasis, the most common non-viral sexually transmitted disease worldwide. As an extracellular parasite, adhesion to host cells is essential for the development of infection. During attachment, the parasite changes its tear ovoid shape to a flat ameboid form, expanding the contact surface and migrating through tissues. Here, we have identified a novel structure formed at the posterior pole of adherent parasite strains, resembling the previously described uropod, which appears to play a pivotal role as an anchor during the attachment process. Moreover, our research demonstrates that the overexpression of the tetraspanin T. vaginalis TSP5 protein (TvTSP5), which is localized on the cell surface of the parasite, notably enhances the formation of this posterior anchor structure in adherent strains. Finally, we demonstrate that parasites that overexpress TvTSP5 possess an increased ability to adhere to host cells, enhanced aggregation and reduced migration on agar plates. Overall, these findings unveil novel proteins and structures involved in the intricate mechanisms of T. vaginalis interactions with host cells.
Collapse
Affiliation(s)
- Manuela Blasco Pedreros
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| | - Nehuen Salas
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| | - Tuanne Dos Santos Melo
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Abigail Miranda-Magalhães
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Thainá Almeida-Lima
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Antonio Pereira-Neves
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco CEP 50740-465, Brazil
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires CP 7130, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús CP 1650, Argentina
| |
Collapse
|
4
|
Dib LV, Barbosa ADS, Correa LL, Torres BDS, Pissinatti A, Moreira SB, Teixeira RHF, Costa ALMD, Muniz JAPC, Junglos AM, Hirano ZMB, Amendoeira MRR. Morphological and molecular characterization of parabasilids isolated from ex situ nonhuman primates and their keepers at different institutions in Brazil. Int J Parasitol Parasites Wildl 2024; 24:100946. [PMID: 38827824 PMCID: PMC11141158 DOI: 10.1016/j.ijppaw.2024.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Intestinal protozoa, which can be asymptomatic or cause diarrhea, dysentery and even death, are among the main agents that affect nonhuman primates (NHPs) kept under human care. Nevertheless, information on the molecular and morphometric profiles of parabasilids in the Neotropics is still scarce. In this context, the objective of this study was to isolate the Parabasalia protozoa detected in the feces of NHPs and their keepers in Pavlova and TYSGM9 media and to characterize the isolates by molecular biology and morphometry. Fecal samples from NHPs from five Brazilian institutions were analyzed. Direct examination was performed immediately after obtaining the samples. A total of 511 fecal samples from NHPs were collected, and 10.6% contained parabasilids. Regarding the handlers, of the 74 samples analyzed, three were positive. In vitro-generated parabasilid isolates were successfully obtained from all positive samples, as identified via microscopy. Isolates of the parasite were obtained both from New World NHPs, including the genera Leontopithecus, Saguinus, Leontocebus, Aotus, Saimiri, Sapajus, and Alouatta, and from the Old World primate Pan troglodytes. Forty-nine NHP isolates were molecularly identified: Pentatrichomonas hominis (16), Trichomitus batrachorum (14), Tetratrichomonas brumpti (13) and Hypotrichomonas hampli (6). The human isolates were identified as Tetratrichomonas sp. (2) and T. batrachorum (1). Visualization and morphometric analysis revealed trophozoites with piriform or rounded shapes that presented variable measurements. The isolates previously characterized as P. hominis had up to five free flagella, while T. batrachorum and Tetratrichomonas sp. had up to four free flagella, and H. hampli had a maximum of three free flagella. These morphometric characteristics corroborated the molecular identification. In general, a variety of parabasilids were observed to infect NHPs, and T. batrachorum was isolated from biological samples from both NHPs and their keepers, a finding that reinforces the susceptibility of these hosts to infections by parabasilids in Brazil.
Collapse
Affiliation(s)
- Lais Verdan Dib
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
- Medicine Faculty of Campos (FMC), Campos Dos Goytacazes, 28035-581, Brazil
| | - Alynne da Silva Barbosa
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
- Department of Parasitology and Microbiology, Fluminense Federal University, Niterói, 24020-140, Brazil
| | - Lais Lisboa Correa
- Department of Parasitology and Microbiology, Fluminense Federal University, Niterói, 24020-140, Brazil
| | - Breno da Silva Torres
- Department of Parasitology and Microbiology, Fluminense Federal University, Niterói, 24020-140, Brazil
| | - Alcides Pissinatti
- Primatology Center of Rio de Janeiro (CPRJ), Instituto Estadual Do Ambiente (INEA), Guapimirim, 25940-000, Brazil
| | - Silvia Bahadian Moreira
- Primatology Center of Rio de Janeiro (CPRJ), Instituto Estadual Do Ambiente (INEA), Guapimirim, 25940-000, Brazil
| | - Rodrigo Hidalgo Friciello Teixeira
- Quinzinho de Barros Municipal Zoological Park (Zoo Sorocaba), Sorocaba, 18020-268, Brazil
- Wild Animals Graduate Program, Faculty of Veterinary Medicine and Zootechnics, Paulista University “Julio de Mesquita Filho” (UNESP-Botucatu), Botucatu, 18618-970, Brazil
- Faculty of Veterinary Medicine, University of Sorocaba (UNISO), Sorocaba, 18023-000, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Rivero MB, Alonso AM, Abdala ME, Luque ME, Carranza PG, Coceres VM, Rivero FD. Comparative membrane proteomic analysis of Tritrichomonas foetus isolates. Sci Rep 2024; 14:17033. [PMID: 39043862 PMCID: PMC11266394 DOI: 10.1038/s41598-024-67827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Tritrichomonas foetus is a flagellated and anaerobic parasite able to infect cattle and felines. Despite its prevalence, there is no effective standardized or legal treatment for T. foetus-infected cattle; the vaccination still has limited success in mitigating infections and reducing abortion risk; and nowadays, the diagnosis of T. foetus presents important limitations in terms of sensitivity and specificity in bovines. Here, we characterize the plasma membrane proteome of T. foetus and identify proteins that are represented in different isolates of this protozoan. Additionally, we performed a bioinformatic analysis that revealed the antigenicity potential of some of those proteins. This analysis is the first study to identify common proteins at the plasma membrane of different T. foetus isolates that could be targets for alternative diagnostic or vaccine techniques in the future.
Collapse
Affiliation(s)
- Maria B Rivero
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
| | - Andrés M Alonso
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, B7130IWA, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Maria E Abdala
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Melchor E Luque
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Pedro G Carranza
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Veronica M Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, B7130IWA, Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina.
| | - Fernando D Rivero
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina.
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina.
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina.
| |
Collapse
|
6
|
Mpeyako LA, Hart AJ, Bailey NP, Carlton JM, Henrissat B, Sullivan SA, Hirt RP. Comparative genomics between Trichomonas tenax and Trichomonas vaginalis: CAZymes and candidate virulence factors. Front Microbiol 2024; 15:1437572. [PMID: 39086644 PMCID: PMC11288935 DOI: 10.3389/fmicb.2024.1437572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The oral trichomonad Trichomonas tenax is increasingly appreciated as a likely contributor to periodontitis, a chronic inflammatory disease induced by dysbiotic microbiota, in humans and domestic animals and is strongly associated with its worst prognosis. Our current understanding of the molecular basis of T. tenax interactions with host cells and the microbiota of the oral cavity are still rather limited. One laboratory strain of T. tenax (Hs-4:NIH/ATCC 30207) can be grown axenically and two draft genome assemblies have been published for that strain, although the structural and functional annotation of these genomes is not available. Methods GenSAS and Galaxy were used to annotate two publicly available draft genomes for T. tenax, with a focus on protein-coding genes. A custom pipeline was used to annotate the CAZymes for T. tenax and the human sexually transmitted parasite Trichomonas vaginalis, the most well-characterized trichomonad. A combination of bioinformatics analyses was used to screen for homologs of T. vaginalis virulence and colonization factors within the T. tenax annotated proteins. Results Our annotation of the two T. tenax draft genome sequences and their comparison with T. vaginalis proteins provide evidence for several candidate virulence factors. These include candidate surface proteins, secreted proteins and enzymes mediating potential interactions with host cells and/or members of the oral microbiota. The CAZymes annotation identified a broad range of glycoside hydrolase (GH) families, with the majority of these being shared between the two Trichomonas species. Discussion The presence of candidate T. tenax virulence genes supports the hypothesis that this species is associated with periodontitis through direct and indirect mechanisms. Notably, several GH proteins could represent potential new virulence factors for both Trichomonas species. These data support a model where T. tenax interactions with host cells and members of the oral microbiota could synergistically contribute to the damaging inflammation characteristic of periodontitis, supporting a causal link between T. tenax and periodontitis.
Collapse
Affiliation(s)
- Lenshina A. Mpeyako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adam J. Hart
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicholas P. Bailey
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane M. Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Lyngby, Denmark
| | - Steven A. Sullivan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Shinde AP, Kučerová J, Dacks JB, Tachezy J. The retromer and retriever systems are conserved and differentially expanded in parabasalids. J Cell Sci 2024; 137:jcs261949. [PMID: 38884339 PMCID: PMC11267458 DOI: 10.1242/jcs.261949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
Early endosomes sort transmembrane cargo either for lysosomal degradation or retrieval to the plasma membrane or the Golgi complex. Endosomal retrieval in eukaryotes is governed by the anciently homologous retromer or retriever complexes. Each comprises a core tri-protein subcomplex, membrane-deformation proteins and interacting partner complexes, together retrieving a variety of known cargo proteins. Trichomonas vaginalis, a sexually transmitted human parasite, uses the endomembrane system for pathogenesis. It has massively and selectively expanded its endomembrane protein complement, the evolutionary path of which has been largely unexplored. Our molecular evolutionary study of retromer, retriever and associated machinery in parabasalids and its free-living sister lineage of Anaeramoeba demonstrates specific expansion of the retromer machinery, contrasting with the retriever components. We also observed partial loss of the Commander complex and sorting nexins in Parabasalia but complete retention in Anaeramoeba. Notably, we identified putative parabasalid sorting nexin analogs. Finally, we report the first retriever protein localization in a non-metazoan group along with retromer protein localization in T. vaginalis.
Collapse
Affiliation(s)
- Abhishek Prakash Shinde
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences,University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Jitka Kučerová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Joel Bryan Dacks
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences,University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005České Budějovice (Budweis), Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| |
Collapse
|
8
|
Kochanowsky JA, Mira PM, Elikaee S, Muratore K, Rai AK, Riestra AM, Johnson PJ. Trichomonas vaginalis extracellular vesicles up-regulate and directly transfer adherence factors promoting host cell colonization. Proc Natl Acad Sci U S A 2024; 121:e2401159121. [PMID: 38865261 PMCID: PMC11194581 DOI: 10.1073/pnas.2401159121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Trichomonas vaginalis, a common sexually transmitted parasite that colonizes the human urogenital tract, secretes extracellular vesicles (TvEVs) that are taken up by human cells and are speculated to be taken up by parasites as well. While the crosstalk between TvEVs and human cells has led to insight into host:parasite interactions, roles for TvEVs in infection have largely been one-sided, with little known about the effect of TvEV uptake by T. vaginalis. Approximately 11% of infections are found to be coinfections of multiple T. vaginalis strains. Clinical isolates often differ in their adherence to and cytolysis of host cells, underscoring the importance of understanding the effects of TvEV uptake within the parasite population. To address this question, our lab tested the ability of a less adherent strain of T. vaginalis, G3, to take up fluorescently labeled TvEVs derived from both itself (G3-EVs) and TvEVs from a more adherent strain of the parasite (B7RC2-EVs). Here, we showed that TvEVs generated from the more adherent strain are internalized more efficiently compared to the less adherent strain. Additionally, preincubation of G3 parasites with B7RC2-EVs increases parasite aggregation and adherence to host cells. Transcriptomics revealed that TvEVs up-regulate expression of predicted parasite membrane proteins and identified an adherence factor, heteropolysaccharide binding protein (HPB2). Finally, using comparative proteomics and superresolution microscopy, we demonstrated direct transfer of an adherence factor, cadherin-like protein, from TvEVs to the recipient parasite's surface. This work identifies TvEVs as a mediator of parasite:parasite communication that may impact pathogenesis during mixed infections.
Collapse
Affiliation(s)
- Joshua A. Kochanowsky
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Portia M. Mira
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Samira Elikaee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Katherine Muratore
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Anand Kumar Rai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Angelica M. Riestra
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Department of Biology, San Diego State University, San Diego, CA92182
| | - Patricia J. Johnson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| |
Collapse
|
9
|
Cervantes PW, Segelke BW, Lau EY, Robinson BV, Abisoye-Ogunniyan A, Pal S, de la Maza LM, Coleman MA, D’haeseleer P. Sequence, structure prediction, and epitope analysis of the polymorphic membrane protein family in Chlamydia trachomatis. PLoS One 2024; 19:e0304525. [PMID: 38861498 PMCID: PMC11166332 DOI: 10.1371/journal.pone.0304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The polymorphic membrane proteins (Pmps) are a family of autotransporters that play an important role in infection, adhesion and immunity in Chlamydia trachomatis. Here we show that the characteristic GGA(I,L,V) and FxxN tetrapeptide repeats fit into a larger repeat sequence, which correspond to the coils of a large beta-helical domain in high quality structure predictions. Analysis of the protein using structure prediction algorithms provided novel insight to the chlamydial Pmp family of proteins. While the tetrapeptide motifs themselves are predicted to play a structural role in folding and close stacking of the beta-helical backbone of the passenger domain, we found many of the interesting features of Pmps are localized to the side loops jutting out from the beta helix including protease cleavage, host cell adhesion, and B-cell epitopes; while T-cell epitopes are predominantly found in the beta-helix itself. This analysis more accurately defines the Pmp family of Chlamydia and may better inform rational vaccine design and functional studies.
Collapse
Affiliation(s)
- Patrick W. Cervantes
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Brent W. Segelke
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Edmond Y. Lau
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Beverly V. Robinson
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Abisola Abisoye-Ogunniyan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Patrik D’haeseleer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| |
Collapse
|
10
|
Motta H, Reuwsaat JCV, Lopes FC, Viezzer G, Volpato FCZ, Barth AL, de Tarso Roth Dalcin P, Staats CC, Vainstein MH, Kmetzsch L. Comparative microbiome analysis in cystic fibrosis and non-cystic fibrosis bronchiectasis. Respir Res 2024; 25:211. [PMID: 38762736 PMCID: PMC11102160 DOI: 10.1186/s12931-024-02835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Bronchiectasis is a condition characterized by abnormal and irreversible bronchial dilation resulting from lung tissue damage and can be categorized into two main groups: cystic fibrosis (CF) and non-CF bronchiectasis (NCFB). Both diseases are marked by recurrent infections, inflammatory exacerbations, and lung damage. Given that infections are the primary drivers of disease progression, characterization of the respiratory microbiome can shed light on compositional alterations and susceptibility to antimicrobial drugs in these cases compared to healthy individuals. METHODS To assess the microbiota in the two studied diseases, 35 subjects were recruited, comprising 10 NCFB and 13 CF patients and 12 healthy individuals. Nasopharyngeal swabs and induced sputum were collected, and total DNA was extracted. The DNA was then sequenced by the shotgun method and evaluated using the SqueezeMeta pipeline and R. RESULTS We observed reduced species diversity in both disease cohorts, along with distinct microbial compositions and profiles of antimicrobial resistance genes, compared to healthy individuals. The nasopharynx exhibited a consistent microbiota composition across all cohorts. Enrichment of members of the Burkholderiaceae family and an increased Firmicutes/Bacteroidetes ratio in the CF cohort emerged as key distinguishing factors compared to NCFB group. Staphylococcus aureus and Prevotella shahii also presented differential abundance in the CF and NCFB cohorts, respectively, in the lower respiratory tract. Considering antimicrobial resistance, a high number of genes related to antibiotic efflux were detected in both disease groups, which correlated with the patient's clinical data. CONCLUSIONS Bronchiectasis is associated with reduced microbial diversity and a shift in microbial and resistome composition compared to healthy subjects. Despite some similarities, CF and NCFB present significant differences in microbiome composition and antimicrobial resistance profiles, suggesting the need for customized management strategies for each disease.
Collapse
Affiliation(s)
- Heryk Motta
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlia Catarina Vieira Reuwsaat
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Cortez Lopes
- Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Graciele Viezzer
- Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fabiana Caroline Zempulski Volpato
- Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Afonso Luís Barth
- Laboratório de Pesquisa em Resistência Bacteriana, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Paulo de Tarso Roth Dalcin
- Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Charley Christian Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene Henning Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Microrganismos de Importância Médica e Biotecnológica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Laboratório de Biologia Molecular de Patógenos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
11
|
Zhu Y, Cai H, Fang S, Shen H, Yan Z, Wang D, Qi N, Li J, Lv M, Lin X, Hu J, Song Y, Chen X, Yin L, Zhang J, Liao S, Sun M. Unraveling the pathogenic potential of the Pentatrichomonas hominis PHGD strain: impact on IPEC-J2 cell growth, adhesion, and gene expression. Parasite 2024; 31:18. [PMID: 38530211 DOI: 10.1051/parasite/2024014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Pentatrichomonas hominis, a flagellated parasitic protozoan, predominantly infects the mammalian digestive tract, often causing symptoms such as abdominal pain and diarrhea. However, studies investigating its pathogenicity are limited, and the mechanisms underlying P. hominis-induced diarrhea remain unclear. Establishing an in vitro cell model for P. hominis infection is imperative. This study investigated the interaction between P. hominis and IPEC-J2 cells and its impact on parasite growth, adhesion, morphology, and cell viability. Co-cultivation of P. hominis with IPEC-J2 cells resulted in exponential growth of the parasite, with peak densities reaching approximately 4.8 × 105 cells/mL and 1.2 × 106 cells/mL at 48 h for initial inoculation concentrations of 104 cells/mL and 105 cells/mL, respectively. The adhesion rate of P. hominis to IPEC-J2 cells reached a maximum of 93.82% and 86.57% at 24 h for initial inoculation concentrations of 104 cells/mL and 105 cells/mL, respectively. Morphological changes in IPEC-J2 cells co-cultivated with P. hominis were observed, manifesting as elongated and irregular shapes. The viability of IPEC-J2 cells exhibited a decreasing trend with increasing P. hominis concentration and co-cultivation time. Additionally, the mRNA expression levels of IL-6, IL-8, and TNF-α were upregulated, whereas those of CAT and CuZn-SOD were downregulated. These findings provide quantitative evidence that P. hominis can promote its growth by adhering to IPEC-J2 cells, inducing morphological changes, reducing cell viability, and triggering inflammatory responses. Further in vivo studies are warranted to confirm these results and enhance our understanding of P. hominis infection.
Collapse
Affiliation(s)
- Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Siyun Fang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong 527400, China
| | - Hanqin Shen
- Guangdong Jingjie Inspection and Testing Co., Ltd., Xinxing, Guangdong 527400, China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong 527400, China
| | - Dingai Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong 527400, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Sharma SP, Purcell CM, Hyde JR, Severin AJ. Spirochaete genome identified in red abalone sample represents a novel genus Candidatus Haliotispira gen. nov. within the order Spirochaetales. Int J Syst Evol Microbiol 2024; 74. [PMID: 38179990 DOI: 10.1099/ijsem.0.006198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A fully assembled spirochaete genome was identified as a contaminating scaffold in our red abalone (Haliotis rufescens) genome assembly. In this paper, we describe the analysis of this bacterial genome. The assembled spirochaete genome is 3.25 Mb in size with 48.5 mol% G+C content. The proteomes of 38 species were compared with the spirochaete genome and it was discovered to form an independent branch within the family Spirochaetaceae on the phylogenetic tree. The comparison of 16S rRNA sequences and average nucleotide identity scores between the spirochaete genome with known species of different families in Spirochaetia indicate that it is an unknown species. Further, the percentage of conserved proteins compared to neighbouring taxa confirm that it does not belong to a known genus within Spirochaetaceae. We propose the name Candidatus Haliotispira prima gen. nov., sp. nov. based on its taxonomic placement and origin. We also tested for the presence of this species in different species of abalone and found that it is also present in white abalone (Haliotis sorenseni). In addition, we highlight the need for better classification of taxa within the class Spirochaetia.
Collapse
Affiliation(s)
| | - Catherine M Purcell
- NOAA Fisheries Southwest Fisheries Science Center, La Jolla, California, USA
| | - John R Hyde
- NOAA Fisheries Southwest Fisheries Science Center, La Jolla, California, USA
| | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
13
|
Debrine AM, Karplus PA, Rockey DD. A structural foundation for studying chlamydial polymorphic membrane proteins. Microbiol Spectr 2023; 11:e0324223. [PMID: 37882824 PMCID: PMC10715098 DOI: 10.1128/spectrum.03242-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Infections by bacteria in the genus Chlamydia cause a range of widespread and potentially debilitating conditions in humans and other animals. We analyzed predicted structures of a family of proteins that are potential vaccine targets found in all Chlamydia spp. Our findings deepen the understanding of protein structure, provide a descriptive framework for discussion of the protein structure, and outline regions of the proteins that may be key targets in host-microbe interactions and anti-chlamydial immunity.
Collapse
Affiliation(s)
- Abigail M. Debrine
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - P. Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Daniel D. Rockey
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
14
|
Chen YJ, Wu KY, Lin SF, Huang SH, Hsu HC, Hsu HM. PIP2 regulating calcium signal modulates actin cytoskeleton-dependent cytoadherence and cytolytic capacity in the protozoan parasite Trichomonas vaginalis. PLoS Pathog 2023; 19:e1011891. [PMID: 38109416 PMCID: PMC10758264 DOI: 10.1371/journal.ppat.1011891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/01/2024] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Trichomonas vaginalis is a prevalent causative agent that causes trichomoniasis leading to uropathogenic inflammation in the host. The crucial role of the actin cytoskeleton in T. vaginalis cytoadherence has been established but the associated signaling has not been fully elucidated. The present study revealed that the T. vaginalis second messenger PIP2 is located in the recurrent flagellum of the less adherent isolate and is more abundant around the cell membrane of the adherent isolates. The T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) with conserved activity phosphorylating PI(4)P to PI(4, 5)P2 was highly expressed in the adherent isolate and partially colocalized with PIP2 on the plasma membrane but with discrete punctate signals in the cytoplasm. Plasma membrane PIP2 degradation by phospholipase C (PLC)-dependent pathway concomitant with increasing intracellular calcium during flagellate-amoeboid morphogenesis. This could be inhibited by Edelfosine or BAPTA simultaneously repressing parasite actin assembly, morphogenesis, and cytoadherence with inhibitory effects similar to the iron-depleted parasite, supporting the significance of PIP2 and iron in T. vaginalis colonization. Intriguingly, iron is required for the optimal expression and cell membrane trafficking of TvPI4P5K for in situ PIP2 production, which was diminished in the iron-depleted parasites. TvPI4P5K-mediated PIP2 signaling may coordinate with iron to modulate T. vaginalis contact-dependent cytolysis to influence host cell viability. These observations provide novel insights into T. vaginalis cytopathogenesis during the host-parasite interaction.
Collapse
Affiliation(s)
- Yen-Ju Chen
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuan-Yi Wu
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Fan Lin
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsi Huang
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Heng-Cheng Hsu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Surgery, National Taiwan University Cancer Center, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
15
|
Kučerová J, Zdrha A, Shinde A, Harant K, Hrdý I, Tachezy J. The divergent ER-mitochondria encounter structures (ERMES) are conserved in parabasalids but lost in several anaerobic lineages with hydrogenosomes. BMC Biol 2023; 21:259. [PMID: 37968591 PMCID: PMC10648710 DOI: 10.1186/s12915-023-01765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER)-mitochondria membrane contact sites (MCS) are extensively studied in aerobic eukaryotes; however, little is known about MCS in anaerobes with reduced forms of mitochondria named hydrogenosomes. In several eukaryotic lineages, the direct physical tether between ER and the outer mitochondrial membrane is formed by ER-mitochondria encounter structure (ERMES). The complex consists of four core proteins (Mmm1, Mmm2, Mdm12, and Mdm10) which are involved in phospholipid trafficking. Here we investigated ERMES distribution in organisms bearing hydrogenosomes and employed Trichomonas vaginalis as a model to estimate ERMES cellular localization, structure, and function. RESULTS Homology searches revealed that Parabasalia-Anaeramoebae, anaerobic jakobids, and anaerobic fungi are lineages with hydrogenosomes that retain ERMES, while ERMES components were gradually lost in Fornicata, and are absent in Preaxostyla and Archamoebae. In T. vaginalis and other parabasalids, three ERMES components were found with the expansion of Mmm1. Immunofluorescence microscopy confirmed that Mmm1 localized in ER, while Mdm12 and Mmm2 were partially localized in hydrogenosomes. Pull-down assays and mass spectrometry of the ERMES components identified a parabasalid-specific Porin2 as a substitute for the Mdm10. ERMES modeling predicted a formation of a continuous hydrophobic tunnel of TvMmm1-TvMdm12-TvMmm2 that is anchored via Porin2 to the hydrogenosomal outer membrane. Phospholipid-ERMES docking and Mdm12-phospholipid dot-blot indicated that ERMES is involved in the transport of phosphatidylinositol phosphates. The absence of enzymes involved in hydrogenosomal phospholipid metabolism implies that ERMES is not involved in the exchange of substrates between ER and hydrogenosomes but in the unidirectional import of phospholipids into hydrogenosomal membranes. CONCLUSIONS Our investigation demonstrated that ERMES mediates ER-hydrogenosome interactions in parabasalid T. vaginalis, while the complex was lost in several other lineages with hydrogenosomes.
Collapse
Affiliation(s)
- Jitka Kučerová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Alois Zdrha
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Abhishek Shinde
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Karel Harant
- OMICS Proteomics Laboratory, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242, Vestec, Czech Republic.
| |
Collapse
|
16
|
Bailey NP, Shao Y, Du S, Foster PG, Fettweis J, Hall N, Wang Z, Hirt RP. Evolutionary conservation of Trichomonas-mycoplasma symbiosis across the host species barrier. Front Microbiol 2023; 14:1242275. [PMID: 37808290 PMCID: PMC10557491 DOI: 10.3389/fmicb.2023.1242275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The protozoan parasite Trichomonas vaginalis is the most common cellular sexually transmitted disease in humans, and the closely related species Trichomonas gallinae is an avian parasite of ecological and economic importance. Phylogenetic evidence suggests T. vaginalis arose during bird to human transmission of a T. gallinae-like ancestor. Trichomonas vaginalis shares a strong clinical association with the independent sexually transmitted pathogen Metamycoplasma (formerly Mycoplasma) hominis, and the uncultured bacterium "Candidatus Malacoplasma (formerly Mycoplasma) girerdii," with the latter association being an order of magnitude stronger. Both bacterial species have been shown to profoundly influence T. vaginalis growth, energy production and virulence-associated mechanisms. Methods Evidence for a novel Malacoplasma sp. was discovered by in vivo Illumina metatranscriptomics sequencing of the T. gallinae-infected pigeon mouth. We leveraged published 16S rDNA profiling data from digestive tract of 12 healthy and 24 T. gallinae-infected pigeons to investigate association between the novel Malacoplasma sp. and T. gallinae. We utilised Illumina metagenomics sequencing targeted to pigeon oral and crop samples infected with the novel Malacoplasma sp. to generate its full-length genome sequence. Sequence similarity network analysis was used to compare annotated proteins from the novel Malacoplasma sp. with a range of other related species. Results Here we present evidence for a novel Malacoplasma species, related to "Ca. M. girerdii," that is strongly associated with T. gallinae in the upper digestive tract of domestic pigeons. Analysis of the genome sequence revealed gene features apparently specific to a Trichomonas-symbiotic Malacoplasma lineage. Discussion These data support a model of long-term association between Trichomonas and Malacoplasma spp. that has been conserved across diversification of the Trichomonas lineage and the host species barrier from birds to human.
Collapse
Affiliation(s)
- Nicholas P. Bailey
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shaodua Du
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | | | | | - Neil Hall
- Earlham Institute, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
17
|
Takkouche A, Qiu X, Sedova M, Jaroszewski L, Godzik A. Unusual structural and functional features of TpLRR/BspA-like LRR proteins. J Struct Biol 2023; 215:108011. [PMID: 37562586 DOI: 10.1016/j.jsb.2023.108011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Leucine Rich Repeat (LRR) domains, are present in hundreds of thousands of proteins across all kingdoms of life and are typically involved in protein-protein interactions and ligand recognition. LRR domains are classified into eight classes and when examined in three dimensions seven, of them form curved solenoid-like super-helices, also described as toruses, with a beta sheet on the concave (inside) and stacked alpha-helices on the convex (outside) of the torus. Here we present an overview of the least characterized 8th class of LRR proteins, the TpLRR-like LRRs, named after the Treponema pallidum protein Tp0225. Proteins from the TpLRR class differ from the proteins in all other known LRR classes by having a flipped curvature, with the beta sheet on the convex side of the torus and irregular secondary structure instead of helices on the opposite, now concave site. TpLRR proteins also present highly divergent sequence pattern of individual repeats and can associate with specific types of additional domains. Several of the characterized proteins from this class, specifically the BspA-like proteins, were found in human bacterial and protozoan pathogens, playing an important role in the interactions between the pathogens and the host immune system. In this paper we surveyed all existing experimental structures and selected AlphaFold models of the best-known proteins containing this class of LRR repeats, analyzing the relation between the pattern of conserved residues, specific structural features and functions of these proteins.
Collapse
Affiliation(s)
- Abraham Takkouche
- Undergraduate Research Project, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA.
| | - Xinru Qiu
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, CA, USA; Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA.
| | - Mayya Sedova
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA.
| | - Lukasz Jaroszewski
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA.
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
18
|
Roy M, Chakraborty S, Kumar Srivastava S, Kaushik S, Jyoti A, Kumar Srivastava V. Entamoeba histolytica induced NETosis and the dual role of NETs in amoebiasis. Int Immunopharmacol 2023; 118:110100. [PMID: 37011501 DOI: 10.1016/j.intimp.2023.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
Entamoeba histolytica (Eh), a microaerophilic parasite, causes deadly enteric infections that result in Amoebiasis. Every year, the count of invasive infections reaches 50 million approximately and 40,000 to 1,00,000 deaths occurring due to amoebiasis are reported globally. Profound inflammation is the hallmark of severe amoebiasis which is facilitated by immune first defenders, neutrophils. Due to size incompatibility, neutrophils are unable to phagocytose Eh and thus, came up with the miraculous antiparasitic mechanism of neutrophil extracellular traps (NETs). This review provides an in-depth analysis of NETosis induced by Eh including the antigens involved in the recognition of Eh and the biochemistry of NET formation. Additionally, it underscores its novelty by describing the dual role of NETs in amoebiasis where it acts as a double-edged sword in terms of both clearing and exacerbating amoebiasis. It also provides a comprehensive account of the virulence factors discovered to date that are implicated directly and indirectly in the pathophysiology of Eh infections through the lens of NETs and can be interesting drug targets.
Collapse
Affiliation(s)
- Mrinalini Roy
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Shreya Chakraborty
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | | | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Anupam Jyoti
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, NH-95, Chandigarh-Ludhiana Highway, Mohali, India
| | - Vijay Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India.
| |
Collapse
|
19
|
Chen QG, Zhang YM, Chen C, Wang S, Li ZF, Hou ZF, Liu DD, Tao JP, Xu JJ. Tandem mass tag-based quantitative proteomics analyses of a chicken-original virulent and its attenuated Histomonas meleagridis strain in China. Front Vet Sci 2023; 10:1106807. [PMID: 37008342 PMCID: PMC10063853 DOI: 10.3389/fvets.2023.1106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionHistomonas meleagridis can cause histomonosis in poultry. Due to the prohibition of effective drugs, the prevention and treatment of the disease requires new strategies. Questions about its pathogenic mechanisms and virulence factors remain puzzling.MethodsTo address these issues, a tandem mass tag (TMT) comparative proteomic analysis of a virulent strain and its attenuated strain of Chinese chicken-origin was performed.ResultsA total of 3,494 proteins were identified in the experiment, of which 745 proteins were differentially expressed (fold change ≥1.2 or ≤0.83 and p < 0.05), with 192 up-regulated proteins and 553 down-regulated proteins in the virulent strain relative to the attenuated strain.DiscussionSurface protein BspA like, digestive cysteine proteinase, actin, and GH family 25 lysozyme were noted among the proteins up regulated in virulent strains, and these several proteins may be directly related to the pathogenic capacity of the histomonad. Ferredoxin, 60S ribosomal protein L6, 40S ribosomal protein S3, and NADP-dependent malic enzyme which associated with biosynthesis and metabolism were also noted, which have the potential to be new drug targets. The up-regulation of alpha-amylase, ras-like protein 1, ras-like protein 2, and involucrin in attenuated strains helps to understand how it is adapted to the long-term in vitro culture environment. The above results provide some candidate protein-coding genes for further functional verification, which will help to understand the molecular mechanism of pathogenicity and attenuation of H. meleagridis more comprehensively.
Collapse
Affiliation(s)
- Qiao-Guang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Yu-Ming Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Shuang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Zai-Fan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Zhao-Feng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Dan-Dan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Jian-Ping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Jin-Jun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
- *Correspondence: Jin-Jun Xu
| |
Collapse
|
20
|
Maciejowski WJ, Gile GH, Jerlström-Hultqvist J, Dacks JB. Ancient and pervasive expansion of adaptin-related vesicle coat machinery across Parabasalia. Int J Parasitol 2023; 53:233-245. [PMID: 36898426 DOI: 10.1016/j.ijpara.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 03/11/2023]
Abstract
The eukaryotic phylum Parabasalia is composed primarily of anaerobic, endobiotic organisms such as the veterinary parasite Tritrichomonas foetus and the human parasite Trichomonas vaginalis, the latter causing the most prevalent, non-viral, sexually transmitted disease world-wide. Although a parasitic lifestyle is generally associated with a reduction in cell biology, T. vaginalis provides a striking counter-example. The 2007 T. vaginalis genome paper reported a massive and selective expansion of encoded proteins involved in vesicle trafficking, particularly those implicated in the late secretory and endocytic systems. Chief amongst these were the hetero-tetrameric adaptor proteins or 'adaptins', with T. vaginalis encoding ∼3.5 times more such proteins than do humans. The provenance of such a complement, and how it relates to the transition from a free-living or endobiotic state to parasitism, remains unclear. In this study, we performed a comprehensive bioinformatic and molecular evolutionary investigation of the heterotetrameric cargo adaptor-derived coats, comparing the molecular complement and evolution of these proteins between T. vaginalis, T. foetus and the available diversity of endobiotic parabasalids. Notably, with the recent discovery of Anaeramoeba spp. as the free-living sister lineage to all parabasalids, we were able to delve back to time points earlier in the lineage's history than ever before. We found that, although T. vaginalis still encodes the most HTAC subunits amongst parabasalids, the duplications giving rise to the complement took place more deeply and at various stages across the lineage. While some duplications appear to have convergently shaped the parasitic lineages, the largest jump is in the transition from free-living to endobiotic lifestyle with both gains and losses shaping the encoded complement. This work details the evolution of a cellular system across an important lineage of parasites and provides insight into the evolutionary dynamics of an example of expansion of protein machinery, counter to the more common trends observed in many parasitic systems.
Collapse
Affiliation(s)
- William J Maciejowski
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Gillian H Gile
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, Arizona, USA
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, BMC, Box 586, Uppsala Universitet, SE-751 24 Uppsala, Sweden. https://twitter.com/jon_hultqvist
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
21
|
Revisiting fecal metatranscriptomics analyses of macaques with idiopathic chronic diarrhoea with a focus on trichomonad parasites. Parasitology 2023; 150:248-261. [PMID: 36503585 PMCID: PMC10090643 DOI: 10.1017/s0031182022001688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trichomonads, anaerobic microbial eukaryotes members of the phylum Parabasalia, are common obligate extracellular symbionts that can lead to pathological or asymptomatic colonization of various mucosal surfaces in a wide range of animal hosts. Results from previous in vitro studies have suggested a number of intriguing mucosal colonization strategies by Trichomonads, notably highlighting the importance of interactions with bacteria. However, in vivo validation is currently lacking. A previous metatranscriptomics study into the cause of idiopathic chronic diarrhoea in macaques reported the presence of an unidentified protozoan parasite related to Trichomonas vaginalis. In this work, we performed a reanalysis of the published data in order to identify the parasite species present in the macaque gut. We also leveraged the information-rich metatranscriptomics data to investigate the parasite behaviour in vivo. Our results indicated the presence of at least 3 genera of Trichomonad parasite; Tetratrichomonas, Pentatrichomonas and Trichomitus, 2 of which had not been previously reported in the macaque gut. In addition, we identified common in vivo expression profiles shared amongst the Trichomonads. In agreement with previous findings for other Trichomonads, our results highlighted a relationship between Trichomonads and mucosal bacterial diversity which could be influential in health and disease.
Collapse
|
22
|
Hsu HM, Yang YY, Huang YH, Chu CH, Tu TJ, Wu YT, Chiang CJ, Yang SB, Hsu DK, Liu FT, Tai JH. Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates. PLoS Negl Trop Dis 2023; 17:e0011016. [PMID: 36595499 PMCID: PMC9810166 DOI: 10.1371/journal.pntd.0011016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
Cytoadherence of Trichomonas vaginalis to human vaginal epithelial cells (hVECs) was previously shown to involve surface lipoglycans and several reputed adhesins on the parasite. Herein, we report some new observations on the host-parasite interactions of adherent versus nonadherent T. vaginalis isolates to hVECs. The binding of the TH17 adherent isolate to hVECs exhibited an initial discrete phase followed by an aggregation phase inhibited by lactose. T. vaginalis infection immediately induced surface expression of galectin-1 and -3, with extracellular amounts in the spent medium initially decreasing and then increasing thereafter over the next 60 min. Extracellular galectin-1 and -3 were detected on the parasite surface but only the TH17 adherent isolate could uptake galectin-3 via the lysosomes. Only the adherent isolate could morphologically transform from the round-up flagellate with numerous transient protrusions into a flat amoeboid form on contact with the solid surface. Cytochalasin D challenge revealed that actin organization was essential to parasite morphogenesis and cytoadherence. Real-time microscopy showed that parasite exploring and anchoring on hVECs via the axostyle may be required for initial cytoadherence. Together, the parasite cytoskeleton behaviors may collaborate with cell surface adhesion molecules for cytoadherence. The nonadherent isolate migrated faster than the adherent isolate, with motility transiently increasing in the presence of hVECs. Meanwhile, differential histone acetylation was detected between the two isolates. Also, TH17 without Mycoplasma symbiosis suggests that symbiont might not determine TH17 innate cytoadherence. Our findings regarding distinctive host-parasite interactions of the isolates may provide novel insights into T. vaginalis infection.
Collapse
Affiliation(s)
- Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Yen-Yu Yang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsin Huang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsin Chu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Jui Tu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Ting Wu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- High School Talent Student in Life Science Project at Academia Sinica and Taipei Municipal Chenggong High School, Taipei, Taiwan
| | - Chu-Jen Chiang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- High School Talent Student in Life Science Project at Academia Sinica and Taipei Municipal Chenggong High School, Taipei, Taiwan
| | - Shi-Bing Yang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Daniel K. Hsu
- Department of Dermatology, University of California Davis, Sacramento, California, United States of America
| | - Fu-Tong Liu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Dermatology, University of California Davis, Sacramento, California, United States of America
| | - Jung-Hsiang Tai
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Margarita V, Bailey NP, Rappelli P, Diaz N, Dessì D, Fettweis JM, Hirt RP, Fiori PL. Two Different Species of Mycoplasma Endosymbionts Can Influence Trichomonas vaginalis Pathophysiology. mBio 2022; 13:e0091822. [PMID: 35608298 PMCID: PMC9239101 DOI: 10.1128/mbio.00918-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Trichomonas vaginalis can host the endosymbiont Mycoplasma hominis, an opportunistic pathogenic bacterium capable of modulating T. vaginalis pathobiology. Recently, a new noncultivable mycoplasma, "Candidatus Mycoplasma girerdii," has been shown to be closely associated with women affected by trichomoniasis, suggesting a biological association. Although several features of "Ca. M. girerdii" have been investigated through genomic analysis, the nature of the potential T. vaginalis-"Ca. M. girerdii" consortium and its impact on the biology and pathogenesis of both microorganisms have not yet been explored. Here, we investigate the association between "Ca. M. girerdii" and T. vaginalis isolated from patients affected by trichomoniasis, demonstrating their intracellular localization. By using an in vitro model system based on single- and double-Mycoplasma infection of Mycoplasma-free isogenic T. vaginalis, we investigated the ability of the protist to establish a relationship with the bacteria and impact T. vaginalis growth. Our data indicate likely competition between M. hominis and "Ca. M. girerdii" while infecting trichomonad cells. Comparative dual-transcriptomics data showed major shifts in parasite gene expression in response to the presence of Mycoplasma, including genes associated with energy metabolism and pathogenesis. Consistent with the transcriptomics data, both parasite-mediated hemolysis and binding to host epithelial cells were significantly upregulated in the presence of either Mycoplasma species. Taken together, these results support a model in which this microbial association could modulate the virulence of T. vaginalis. IMPORTANCE T. vaginalis and M. hominis form a unique case of endosymbiosis that modulates the parasite's pathobiology. Recently, a new nonculturable mycoplasma species ("Candidatus Mycoplasma girerdii") has been described as closely associated with the protozoon. Here, we report the characterization of this endosymbiotic relationship. Clinical isolates of the parasite demonstrate that mycoplasmas are common among trichomoniasis patients. The relationships are studied by devising an in vitro system of single and/or double infections in isogenic protozoan recipients. Comparative growth experiments and transcriptomics data demonstrate that the composition of different microbial consortia influences the growth of the parasite and significantly modulates its transcriptomic profile, including metabolic enzymes and virulence genes such as adhesins and pore-forming proteins. The data on modulation from RNA sequencing (RNA-Seq) correlated closely with those of the cytopathic effect and adhesion to human target cells. We propose the hypothesis that the presence and the quantitative ratios of endosymbionts may contribute to modulating protozoan virulence. Our data highlight the importance of considering pathogenic entities as microbial ecosystems, reinforcing the importance of the development of integrated diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Nicholas P. Bailey
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control (MCDC), Sassari, Italy
| | - Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Daniele Dessì
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control (MCDC), Sassari, Italy
| | - Jennifer M. Fettweis
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert P. Hirt
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control (MCDC), Sassari, Italy
| |
Collapse
|
24
|
In-depth comparative analysis of Tritrichomonas foetus transcriptomics reveals novel genes linked with adaptation to feline host. Sci Rep 2022; 12:10057. [PMID: 35710931 PMCID: PMC9203502 DOI: 10.1038/s41598-022-14310-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
Tritrichomonas foetus is a flagellated parasite able to infect cattle, cats, and pigs. Despite its prevalence, feline tritrichomonosis has received markedly less attention than venereal infection, and little information about the molecular mechanisms that participate in feline host infection is available. Through a bioinformatics approach, we integrated public transcriptomic data for three T. foetus isolates and explored the differences at transcript level with a focus on pathogenesis and adaptation processes, particularly for the feline isolate. Our analysis revealed higher abundance levels of predicted virulence factors, such as proteases and surface antigens. Additionally, by a comparative and expression analysis of T. foetus genes, we proposed putative virulence factors that could be involved in feline infection. Finally, we identified a great proportion of predicted transcription factors of the MYB protein family and, by a promoter analysis, we revealed that MYB-related proteins could participate in the regulation of gene transcription in T. foetus. In conclusion, this integrated approach is a valuable resource for future studies of host–pathogen interactions and identifying new gene targets for improved feline tritrichomonosis diagnosis and treatment.
Collapse
|
25
|
Rada P, Hrdý I, Zdrha A, Narayanasamy RK, Smutná T, Horáčková J, Harant K, Beneš V, Ong SC, Tsai CY, Luo HW, Chiu CH, Tang P, Tachezy J. Double-Stranded RNA Viruses Are Released From Trichomonas vaginalis Inside Small Extracellular Vesicles and Modulate the Exosomal Cargo. Front Microbiol 2022; 13:893692. [PMID: 35602021 PMCID: PMC9114709 DOI: 10.3389/fmicb.2022.893692] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Trichomonas vaginalis is a parasitic protist that infects the human urogenital tract. During the infection, trichomonads adhere to the host mucosa, acquire nutrients from the vaginal/prostate environment, and release small extracellular vesicles (sEVs) that contribute to the trichomonad adherence and modulate the host-parasite communication. Approximately 40–70% of T. vaginalis strains harbor a double-stranded RNA virus called Trichomonasvirus (TVV). Naked TVV particles have the potential to stimulate a proinflammatory response in human cells, however, the mode of TVV release from trichomonads to the environment is not clear. In this report, we showed for the first time that TVV particles are released from T. vaginalis cells within sEVs. The sEVs loaded with TVV stimulated a higher proinflammatory response of human HaCaT cells in comparison to sEVs from TVV negative parasites. Moreover, a comparison of T. vaginalis isogenic TVV plus and TVV minus clones revealed a significant impact of TVV infection on the sEV proteome and RNA cargo. Small EVs from TVV positive trichomonads contained 12 enriched and 8 unique proteins including membrane-associated BspA adhesine, and about a 2.5-fold increase in the content of small regulatory tsRNA. As T. vaginalis isolates are frequently infected with TVV, the release of TVV via sEVs to the environment represents an important factor with the potential to enhance inflammation-related pathogenesis during trichomoniasis.
Collapse
Affiliation(s)
- Petr Rada
- Department of Parasitology, Faculty of Science, Charles University, Biotechnology and Biomedicine Center in Vestec (BIOCEV), Vestec, Czechia
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, Biotechnology and Biomedicine Center in Vestec (BIOCEV), Vestec, Czechia
| | - Alois Zdrha
- Department of Parasitology, Faculty of Science, Charles University, Biotechnology and Biomedicine Center in Vestec (BIOCEV), Vestec, Czechia
| | - Ravi Kumar Narayanasamy
- Department of Parasitology, Faculty of Science, Charles University, Biotechnology and Biomedicine Center in Vestec (BIOCEV), Vestec, Czechia
| | - Tamara Smutná
- Department of Parasitology, Faculty of Science, Charles University, Biotechnology and Biomedicine Center in Vestec (BIOCEV), Vestec, Czechia
| | - Jana Horáčková
- Department of Parasitology, Faculty of Science, Charles University, Biotechnology and Biomedicine Center in Vestec (BIOCEV), Vestec, Czechia
| | - Karel Harant
- Department of Parasitology, Faculty of Science, Charles University, Biotechnology and Biomedicine Center in Vestec (BIOCEV), Vestec, Czechia
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Seow-Chin Ong
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Yu Tsai
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hong-Wei Luo
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Petrus Tang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, Biotechnology and Biomedicine Center in Vestec (BIOCEV), Vestec, Czechia
| |
Collapse
|
26
|
Salas N, Coceres VM, Melo TDS, Pereira-Neves A, Maguire VG, Rodriguez TM, Sabatke B, Ramirez MI, Sha J, Wohlschlegel JA, de Miguel N. VPS32, a member of the ESCRT complex, modulates adherence to host cells in the parasite Trichomonas vaginalis by affecting biogenesis and cargo sorting of released extracellular vesicles. Cell Mol Life Sci 2021; 79:11. [PMID: 34951683 PMCID: PMC11073171 DOI: 10.1007/s00018-021-04083-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Trichomonas vaginalis is a common sexually transmitted extracellular parasite that adheres to epithelial cells in the human urogenital tract. Extracellular vesicles (EVs) have been described as important players in the pathogenesis of this parasite as they deliver proteins and RNA into host cells and modulate parasite adherence. EVs are heterogeneous membrane vesicles released from virtually all cell types that collectively represent a new dimension of intercellular communication. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery contributes to several key mechanisms in which it reshapes membranes. Based on this, some components of the ESCRT have been implicated in EVs biogenesis in other cells. Here, we demonstrated that VPS32, a member of ESCRTIII complex, contribute to the biogenesis and cargo sorting of extracellular vesicles in the parasite T. vaginalis. Moreover, we observe that parasites overexpressing VPS32 have a striking increase in adherence to host cells compared to control parasites; demonstrating a key role for this protein in mediating host: parasite interactions. These results provide valuable information on the molecular mechanisms involved in extracellular vesicles biogenesis, cargo-sorting, and parasite pathogenesis.
Collapse
Affiliation(s)
- Nehuén Salas
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA, Chascomús, Buenos Aires, Argentina
| | - Veronica M Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA, Chascomús, Buenos Aires, Argentina
| | - Tuanne Dos Santos Melo
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, Brazil
| | - Antonio Pereira-Neves
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, Brazil
| | - Vanina G Maguire
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA, Chascomús, Buenos Aires, Argentina
| | - Tania M Rodriguez
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA, Chascomús, Buenos Aires, Argentina
| | - Bruna Sabatke
- Laboratorio de Biologia Molecular e Sistémica de Tripanossomatideos, Instituto Carlos Chagas, Fiocruz Curitiba, Parana, Brazil
| | - Marcel I Ramirez
- Laboratorio de Biologia Molecular e Sistémica de Tripanossomatideos, Instituto Carlos Chagas, Fiocruz Curitiba, Parana, Brazil
| | - Jihui Sha
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1489, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1489, USA
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA, Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Huang PJ, Huang CY, Li YX, Liu YC, Chu LJ, Yeh YM, Cheng WH, Chen RM, Lee CC, Chen LC, Lin HC, Chiu SF, Lin WN, Lyu PC, Tang P, Huang KY. Dissecting the Transcriptomes of Multiple Metronidazole-Resistant and Sensitive Trichomonas vaginalis Strains Identified Distinct Genes and Pathways Associated with Drug Resistance and Cell Death. Biomedicines 2021; 9:biomedicines9121817. [PMID: 34944632 PMCID: PMC8698965 DOI: 10.3390/biomedicines9121817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent non-viral sexually transmitted infection worldwide. Metronidazole (MTZ) is the mainstay of anti-trichomonal chemotherapy; however, drug resistance has become an increasingly worrying issue. Additionally, the molecular events of MTZ-induced cell death in T. vaginalis remain elusive. To gain insight into the differential expression of genes related to MTZ resistance and cell death, we conducted RNA-sequencing of three paired MTZ-resistant (MTZ-R) and MTZ-sensitive (MTZ-S) T. vaginalis strains treated with or without MTZ. Comparative transcriptomes analysis identified that several putative drug-resistant genes were exclusively upregulated in different MTZ-R strains, such as ATP-binding cassette (ABC) transporters and multidrug resistance pumps. Additionally, several shared upregulated genes among all the MTZ-R transcriptomes were not previously identified in T. vaginalis, such as 5′-nucleotidase surE and Na+-driven multidrug efflux pump, which are a potential stress response protein and a multidrug and toxic compound extrusion (MATE)-like protein, respectively. Functional enrichment analysis revealed that purine and pyrimidine metabolisms were suppressed in MTZ-S parasites upon drug treatment, whereas the endoplasmic reticulum-associated degradation (ERAD) pathway, proteasome, and ubiquitin-mediated proteolysis were strikingly activated, highlighting the novel pathways responsible for drug-induced stress. Our work presents the most detailed analysis of the transcriptional changes and the regulatory networks associated with MTZ resistance and MTZ-induced signaling, providing insights into MTZ resistance and cell death mechanisms in trichomonads.
Collapse
Affiliation(s)
- Po-Jung Huang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 333, Taiwan;
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan; (Y.-M.Y.); (C.-C.L.)
| | - Ching-Yun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114, Taiwan; (C.-Y.H.); (S.-F.C.)
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City 114, Taiwan
| | - Yu-Xuan Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-X.L.); (L.-J.C.); (P.T.)
| | - Yi-Chung Liu
- Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-C.L.); (P.-C.L.)
| | - Lichieh-Julie Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-X.L.); (L.-J.C.); (P.T.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan; (Y.-M.Y.); (C.-C.L.)
| | - Wei-Hung Cheng
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung City 824, Taiwan;
| | - Ruei-Ming Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan; (R.-M.C.); (H.-C.L.)
| | - Chi-Ching Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan; (Y.-M.Y.); (C.-C.L.)
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Hsin-Chung Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan; (R.-M.C.); (H.-C.L.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City 114, Taiwan
| | - Shu-Fang Chiu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114, Taiwan; (C.-Y.H.); (S.-F.C.)
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City 114, Taiwan
- Department of Inspection, Taipei City Hospital, Renai Branch, Taipei City 114, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-C.L.); (P.-C.L.)
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-X.L.); (L.-J.C.); (P.T.)
| | - Kuo-Yang Huang
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City 114, Taiwan
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923100 (ext. 18564)
| |
Collapse
|
28
|
Palmieri N, de Jesus Ramires M, Hess M, Bilic I. Complete genomes of the eukaryotic poultry parasite Histomonas meleagridis: linking sequence analysis with virulence / attenuation. BMC Genomics 2021; 22:753. [PMID: 34674644 PMCID: PMC8529796 DOI: 10.1186/s12864-021-08059-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 10/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background Histomonas meleagridis is a protozoan parasite and the causative agent of histomonosis, an important poultry disease whose significance is underlined by the absence of any treatment and prophylaxis. The recent successful in vitro attenuation of the parasite urges questions about the underlying mechanisms. Results Whole genome sequence data from a virulent and an attenuated strain originating from the same parental lineage of H. meleagridis were recruited using Oxford Nanopore Technology (ONT) and Illumina platforms, which were combined to generate megabase-sized contigs with high base-level accuracy. Inspecting the genomes for differences identified two substantial deletions within a coding sequence of the attenuated strain. Additionally, one single nucleotide polymorphism (SNP) and indel targeting coding sequences caused the formation of premature stop codons, which resulted in the truncation of two genes in the attenuated strain. Furthermore, the genome of H. meleagridis was used for characterizing protein classes of clinical relevance for parasitic protists. The comparative analysis with the genomes of Trichomonas vaginalis, Tritrichomonas foetus and Entamoeba histolytica identified ~ 2700 lineage-specific gene losses and 9 gene family expansions in the H. meleagridis lineage. Conclusions Taken as a whole, the obtained data provide the first hints to understand the molecular basis of attenuation in H. meleagridis and constitute a genomics platform for future research on this important poultry pathogen. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08059-2.
Collapse
Affiliation(s)
- Nicola Palmieri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Marcelo de Jesus Ramires
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.,Christian Doppler Laboratory for Innovative Poultry Vaccines (IPOV), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ivana Bilic
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
29
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Unveiling the role of EVs in anaerobic parasitic protozoa. Mol Immunol 2021; 133:34-43. [PMID: 33621941 DOI: 10.1016/j.molimm.2021.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022]
Abstract
The anaerobic or microaerophilic protozoan parasites such as the enteric human pathogens Entamoeba histolytica, Giardia intestinalis, Cryptosporidium parvum, Blastocystis hominis and urogenital tract parasites Trichomonas vaginalis are able to survival in an environment with oxygen deprivation. Despite living in hostile environments these pathogens adopted different strategies to survive within the hosts. Among them, the release of extracellular vesicles (EVs) has become an active endeavor in the study of pathogenesis for these parasites. EVs are heterogenous, membrane-limited structures that have played important roles in cellular communication, transferring information through cargo and modulating the immune system of the host. In this review, we described several aspects of the recently characterized EVs of the anaerobic protozoa, including their role in adhesion, modulation of the immune response and omics analysis to understand the potential of these EVs in the pathogenesis of these diseases caused by anaerobic parasites.
Collapse
|
31
|
Molgora BM, Rai AK, Sweredoski MJ, Moradian A, Hess S, Johnson PJ. A Novel Trichomonas vaginalis Surface Protein Modulates Parasite Attachment via Protein:Host Cell Proteoglycan Interaction. mBio 2021; 12:e03374-20. [PMID: 33563826 PMCID: PMC7885099 DOI: 10.1128/mbio.03374-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Trichomonas vaginalis is a highly prevalent, sexually transmitted parasite which adheres to mucosal epithelial cells to colonize the human urogenital tract. Despite adherence being crucial for this extracellular parasite to thrive within the host, relatively little is known about the mechanisms or key molecules involved in this process. Here, we have identified and characterized a T. vaginalis hypothetical protein, TVAG_157210 (TvAD1), as a surface protein that plays an integral role in parasite adherence to the host. Quantitative proteomics revealed TvAD1 to be ∼4-fold more abundant in parasites selected for increased adherence (MA parasites) than the isogenic parental (P) parasite line. De novo modeling suggested that TvAD1 binds N-acetylglucosamine (GlcNAc), a sugar comprising host glycosaminoglycans (GAGs). Adherence assays utilizing GAG-deficient cell lines determined that host GAGs, primarily heparan sulfate (HS), mediate adherence of MA parasites to host cells. TvAD1 knockout (KO) parasites, generated using CRISPR-Cas9, were found to be significantly reduced in host cell adherence, a phenotype that is rescued by overexpression of TvAD1 in KO parasites. In contrast, there was no significant difference in parasite adherence to GAG-deficient lines by KO parasites compared with wild-type, which is contrary to that observed for KO parasites overexpressing TvAD1. Isothermal titration calorimetric (ITC) analysis showed that TvAD1 binds to HS, indicating that TvAD1 mediates host cell adherence via HS interaction. In addition to characterizing the role of TvAD1 in parasite adherence, these studies reveal a role for host GAG molecules in T. vaginalis adherence.IMPORTANCE The ability of the sexually transmitted parasite Trichomonas vaginalis to adhere to its human host is critical for establishing and maintaining an infection. Yet how parasites adhere to host cells is poorly understood. In this study, we employed a novel adherence selection method to identify proteins involved in parasite adherence to the host. This method led to the identification of a protein, with no previously known function, that is more abundant in parasites with increased capacity to bind host cells. Bioinformatic modeling and biochemical analyses revealed that this protein binds a common component on the host cell surface proteoglycans. Subsequent creation of parasites that lack this protein directly demonstrated that the protein mediates parasite adherence via an interaction with host cell proteoglycans. These findings both demonstrate a role for this protein in T. vaginalis adherence to the host and shed light on host cell molecules that participate in parasite colonization.
Collapse
Affiliation(s)
- Brenda M Molgora
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Anand Kumar Rai
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Patricia J Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
32
|
Guillen N. Signals and signal transduction pathways in Entamoeba histolytica during the life cycle and when interacting with bacteria or human cells. Mol Microbiol 2020; 115:901-915. [PMID: 33249684 DOI: 10.1111/mmi.14657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis in humans. This ameba parasite resides as a commensal in the intestine where it shares intestinal resources with the bacterial microbiome. In the intestinal ecosystem, the ameba encysts and eventually develops disease by invading the tissues. E. histolytica possesses cell surface receptors for the proper sensing of signals involved in encystation or sustaining parasite interaction with bacteria and human cells. Among those receptors are the Gal/GalNAc lectin, G protein-coupled receptors, and transmembrane kinases. In addition there are recently discovered, promising proteins, including orthologs of Toll-type receptors and β trefoil lectins. These proteins trigger a wide variety of signal transduction pathways; however, most of the players involved in the signaling pathways evoked in this parasite are unknown. This review provides an overview of amoebic receptors and their role in encystation, adherence to bacteria or human cells, as well as the reported intracellular signal transduction processes that they can trigger. This knowledge is essential for understanding the lifestyle of E. histolytica and its cytopathic effect on bacteria and human cells that are responsible for infection.
Collapse
Affiliation(s)
- Nancy Guillen
- Institut Pasteur, Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| |
Collapse
|
33
|
Shrinking of repeating unit length in leucine-rich repeats from double-stranded DNA viruses. Arch Virol 2020; 166:43-64. [PMID: 33052487 DOI: 10.1007/s00705-020-04820-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Leucine-rich repeats (LRRs) are present in over 563,000 proteins from viruses to eukaryotes. LRRs repeat in tandem and have been classified into fifteen classes in which the repeat unit lengths range from 20 to 29 residues. Most LRR proteins are involved in protein-protein or ligand interactions. The amount of genome sequence data from viruses is increasing rapidly, and although viral LRR proteins have been identified, a comprehensive sequence analysis has not yet been done, and their structures, functions, and evolution are still unknown. In the present study, we characterized viral LRRs by sequence analysis and identified over 600 LRR proteins from 89 virus species. Most of these proteins were from double-stranded DNA (dsDNA) viruses, including nucleocytoplasmic large dsDNA viruses (NCLDVs). We found that the repeating unit lengths of 11 types are one to five residues shorter than those of the seven known corresponding LRR classes. The repeating units of six types are 19 residues long and are thus the shortest among all LRRs. In addition, two of the LRR types are unique and have not been observed in bacteria, archae or eukaryotes. Conserved strongly hydrophobic residues such as Leu, Val or Ile in the consensus sequences are replaced by Cys with high frequency. Phylogenetic analysis indicated that horizontal gene transfer of some viral LRR genes had occurred between the virus and its host. We suggest that the shortening might contribute to the survival strategy of viruses. The present findings provide a new perspective on the origin and evolution of LRRs.
Collapse
|
34
|
Adherence of Trichomonas vaginalis to SiHa Cells is Inhibited by Diphenyleneiodonium. Microorganisms 2020; 8:microorganisms8101570. [PMID: 33066000 PMCID: PMC7600062 DOI: 10.3390/microorganisms8101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 11/16/2022] Open
Abstract
Microbial adhesion is critical for parasitic infection and colonization of host cells. To study the host–parasite interaction in vitro, we established a flow cytometry-based assay to measure the adherence of Trichomonas vaginalis to epithelial cell line SiHa. SiHa cells and T. vaginalis were detected as clearly separated, quantifiable populations by flow cytometry. We found that T. vaginalis attached to SiHa cells as early as 30 min after infection and the binding remained stable up to several hours, allowing for analysis of drug treatment efficacy. Importantly, NADPH oxidase inhibitor DPI treatment induced the detachment of T. vaginalis from SiHa cells in a dose-dependent manner without affecting host cell viability. Thus, this study may provide an understanding for the potential development of therapies against T. vaginalis and other parasite infections.
Collapse
|
35
|
Nievas YR, Lizarraga A, Salas N, Cóceres VM, Miguel N. Extracellular vesicles released by anaerobic protozoan parasites: Current situation. Cell Microbiol 2020; 22:e13257. [DOI: 10.1111/cmi.13257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Yesica Romina Nievas
- Laboratorio de Parásitos Anaerobios Instituto Tecnológico Chascomús (INTECH), CONICET‐UNSAM Chascomús Argentina
| | - Ayelen Lizarraga
- Laboratorio de Parásitos Anaerobios Instituto Tecnológico Chascomús (INTECH), CONICET‐UNSAM Chascomús Argentina
| | - Nehuen Salas
- Laboratorio de Parásitos Anaerobios Instituto Tecnológico Chascomús (INTECH), CONICET‐UNSAM Chascomús Argentina
| | - Verónica Mabel Cóceres
- Laboratorio de Parásitos Anaerobios Instituto Tecnológico Chascomús (INTECH), CONICET‐UNSAM Chascomús Argentina
| | - Natalia Miguel
- Laboratorio de Parásitos Anaerobios Instituto Tecnológico Chascomús (INTECH), CONICET‐UNSAM Chascomús Argentina
| |
Collapse
|