1
|
Bursali F, Ulug D, Touray M. Clash of mosquito wings: Larval interspecific competition among the mosquitoes, Culex pipiens, Aedes albopictus and Aedes aegypti reveals complex population dynamics in shared habitats. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:462-471. [PMID: 38980066 DOI: 10.1111/mve.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Globalisation, climate change and international trade are the factors contributing to the spread of Aedes albopictus (Diptera: Culicidae) and Ae. aegypti into new areas. In newly invaded habitats, these non-native species can serve as arbovirus disease vectors or increase the risk of disease spill over. These mosquitoes continue to emerge in new areas where they have or will have overlapping ranges with other resident mosquito species. The study investigates how invasive Aedes mosquitoes compete with the native Culex pipiens in Türkiye, which might affect the overall mosquito population dynamics and disease transmission risks. Both Aedes species exhibited contrasting responses to interspecific competition with Cx. pipiens. While Ae. albopictus suffers reduced emergence primarily in larger containers with abundant food, Ae. aegypti surprisingly thrives in mixed cultures under all food conditions. Adult Cx. pipiens emergence drops by half against Ae. albopictus and under specific conditions with Ae. aegypti. Competition influences mosquito size differently across species and life stages. Culex pipiens females grow larger when competing with Ae. aegypti, potentially indicating resource advantage or compensatory strategies. However, Ae. albopictus size shows more nuanced responses, suggesting complex interactions at play. Understanding how invasive and native mosquitoes interact with each other can provide insights into how they adapt and coexist in shared habitats. This knowledge can inform effective control strategies. The study highlights the differential responses of invasive Aedes species and the potential for managing populations based on their competitive interactions with the native Cx. pipiens. It can contribute to improved monitoring and prediction systems for the spread of invasive mosquitoes and the associated disease risks.
Collapse
Affiliation(s)
- Fatma Bursali
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Derya Ulug
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| | - Mustapha Touray
- Biology Department, Faculty of Science, Aydin Adnan Menderes University, Aydin, Türkiye
| |
Collapse
|
2
|
Chiu MC, Huang IB, Yu JJ, Liao YC, Chareonviriyaphap T, Neoh KB. Boric acid toxic sugar bait suppresses male Aedes aegypti (Diptera: Culicidae): wing beat frequency and amplitude, flight activity, fecundity, insemination, and mate-finding Allee effect. PEST MANAGEMENT SCIENCE 2024; 80:5876-5886. [PMID: 39017029 DOI: 10.1002/ps.8318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Controlling the spread of arboviral diseases remains a considerable challenge due to the rapid development of insecticide resistance in Aedes mosquitoes. This study evaluated the effects of boric acid-containing toxic sugar bait (TSB) on field populations of resistant Aedes aegypti mosquitoes. In addition, this study examined the flight activity and wing beat frequency and amplitude of males and the flight activity, fecundity, and insemination of females after pairing with males exposed to TSB. The population dynamics of Aedes mosquitoes under imbalanced sex ratios were examined to simulate realistic field conditions for male suppression under the effect of TSB. RESULTS The mortality of male mosquitoes was consistently high within 24 h after exposure. By contrast, the mortality of female mosquitoes was inconsistent, with over 70% mortality observed at 168 h. The flight activity and wing beat amplitude of treated males were significantly lower than those of controls, but no significant difference in wing beat frequency was detected. The fecundity and insemination of treated female mosquitoes were lower than those of controls. A simulation study indicated that considerably low male population densities led to mating failures, triggering a mate-finding Allee effect and resulting in persistently low population levels. CONCLUSION Boric acid-containing TSB could effectively complement current chemical intervention approaches to control resistant mosquito populations. TSB is effective in reducing field male populations and impairing male flight activity and female-seeking behavior, resulting in decreased fecundity and insemination. Male suppression due to TSB potentially results in a small mosquito population. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meng-Chieh Chiu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - In-Bo Huang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Jin-Jia Yu
- Department of Entomology, Rutgers - The State University of New Jersey, New Brunswick, NJ, USA
| | - Yi-Chang Liao
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | | | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Vinauger C, Chandrasegaran K. Context-specific variation in life history traits and behavior of Aedes aegypti mosquitoes. FRONTIERS IN INSECT SCIENCE 2024; 4:1426715. [PMID: 39386346 PMCID: PMC11461241 DOI: 10.3389/finsc.2024.1426715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
Aedes aegypti, the vector for dengue, chikungunya, yellow fever, and Zika, poses a growing global epidemiological risk. Despite extensive research on Ae. aegypti's life history traits and behavior, critical knowledge gaps persist, particularly in integrating these findings across varied experimental contexts. The plasticity of Ae. aegypti's traits throughout its life cycle allows dynamic responses to environmental changes, yet understanding these variations within heterogeneous study designs remains challenging. A critical aspect often overlooked is the impact of using lab-adapted lines of Ae. aegypti, which may have evolved under laboratory conditions, potentially altering their life history traits and behavioral responses compared to wild populations. Therefore, incorporating field-derived populations in experimental designs is essential to capture the natural variability and adaptability of Ae. aegypti. The relationship between larval growing conditions and adult traits and behavior is significantly influenced by the specific context in which mosquitoes are studied. Laboratory conditions may not replicate the ecological complexities faced by wild populations, leading to discrepancies in observed traits and behavior. These discrepancies highlight the need for ecologically relevant experimental conditions, allowing mosquito traits and behavior to reflect field distributions. One effective approach is semi-field studies involving field-collected mosquitoes housed for fewer generations in the lab under ecologically relevant conditions. This growing trend provides researchers with the desired control over experimental conditions while maintaining the genetic diversity of field populations. By focusing on variations in life history traits and behavioral plasticity within these varied contexts, this review highlights the intricate relationship between larval growing conditions and adult traits and behavior. It underscores the significance of transstadial effects and the necessity of adopting study designs and reporting practices that acknowledge plasticity in adult traits and behavior, considering variations due to larval rearing conditions. Embracing such approaches paves the way for a comprehensive understanding of contextual variations in mosquito life history traits and behavior. This integrated perspective enables the synthesis of research findings across laboratory, semi-field, and field-based investigations, which is crucial for devising targeted intervention strategies tailored to specific ecological contexts to combat the health threat posed by this formidable disease vector effectively.
Collapse
Affiliation(s)
- Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | |
Collapse
|
4
|
Couper LI, Dodge TO, Hemker JA, Kim BY, Exposito-Alonso M, Brem RB, Mordecai EA, Bitter MC. Evolutionary adaptation under climate change: Aedes sp. demonstrates potential to adapt to warming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609454. [PMID: 39229052 PMCID: PMC11370604 DOI: 10.1101/2024.08.23.609454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, facilitating expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in Aedes sierrensis, a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population. We found pervasive evidence of heritable genetic variation in acute heat tolerance, which phenotypically trades off with tolerance to prolonged heat exposure. A simple evolutionary model based on our data shows that the estimated maximum rate of evolutionary adaptation in mosquito heat tolerance typically exceeds that of projected climate warming under idealized conditions. Our findings indicate that natural mosquito populations may have the potential to track projected warming via genetic adaptation. Prior climate-based projections may thus underestimate the range of mosquito and mosquito-borne disease distributions under future climate conditions.
Collapse
Affiliation(s)
- Lisa I Couper
- Stanford University, Department of Biology
- University of California, Berkeley, Division of Environmental Health Sciences
| | | | | | | | - Moi Exposito-Alonso
- University of California, Berkeley, Department of Integrative Biology
- Howard Hughes Medical Institute
| | - Rachel B Brem
- University of California, Berkeley, Department of Plant & Microbial Biology
| | | | | |
Collapse
|
5
|
Ur Rahman A, Khan I, Usman A, Khan H. Evaluation of Insect Growth Regulators (IGRs) as biological pesticides for control of Aedes aegypti mosquitoes. J Vector Borne Dis 2024; 61:129-135. [PMID: 38648415 DOI: 10.4103/0972-9062.392257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/22/2023] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND OBJECTIVES Insect growth regulators (IGRs) are biological hormone analogue or mimics used as pesticides to inhibit the growth of larva during their molting and skin shedding. This study aimed to test the effect of IGRs on the eggs hatching and post-hatching inhibition of Aedes mosquitoes and understanding its effect in the mosquito breeding habitats for reduction in adult emergence. METHODS Experiments on the evaluation of three insect growth regulators (IGRs) for the control of different stages of Aedes aegypti was carried out during 2020-21. Each experiment consisted of four treatments viz., Pyriproxyfen, Novaluron, and Larvicol at 1.0 ppm and distilled water as a control. All experiments were carried out in completely randomized design (CRD) except eggs which were carried out in factorial design each with three replications. RESULTS All tested IGRs performed better in affecting eggs, larval and pupal stages of Ae. aegypti. Highest eggs hatching inhibition (80%) of fresh eggs occurred in Pyriproxyfen followed by Novaluron (66%) and lowest in Larvicol (62%). Eggs hatch inhibition of embryonated eggs was lower than fresh eggs. Pyriproxyfen caused 69%, Novaluron 59% and Larvicol 39% eggs hatch inhibition of embryonated eggs. Both Pyriproxyfen and Novaluron performed better in causing 98-100% larval mortality followed by Larvicol (39%). Larval development to pupal stage was completely prevented by both Pyriproxyfen and Novaluron. Although Larvicol resulted in lowest eggs hatch and larval inhibition but prevented pupae to emerge as adults. Results further showed 70-89% mortality of 3rd instar larvae of Ae. aegypti when exposed to Pyriproxyfen and Novaluron solutions after 30 days storage at lab. temperature (27±2°C), RH 70±5. INTERPRETATION CONCLUSION None of the IGRs was more effective at the pupal stage but showed carry-on activity of growth inhibition and mortality of the successive stages of development when used against eggs stages. Therefore, we recommend early application of IGRs at mosquito habitats during the beginning and onset of the season when very early stages of mosquitoes are available in the field.
Collapse
Affiliation(s)
- Adnan Ur Rahman
- Department of Entomology, Faculty of Crop Protection Science, the University of Agriculture, Peshawar, Pakistan
| | - Inamullah Khan
- Pakistan Atomic Energy Commission, Nuclear Institute for Food and Agriculture (NIFA), Peshawar, Pakistan
| | - Amjad Usman
- Department of Entomology, Faculty of Crop Protection Science, the University of Agriculture, Peshawar, Pakistan
| | - Hasnain Khan
- Department of Entomology, Faculty of Crop Protection Science, the University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
6
|
Fernandes KAP, de Almeida Filho AR, Moura Alves TV, Bernardo CSS, Montibeller MJ, Mondini A, Bronzoni RVDM. A tale of 141 municipalities: the spatial distribution of dengue in Mato Grosso, Brazil. Trans R Soc Trop Med Hyg 2023; 117:751-759. [PMID: 37665762 DOI: 10.1093/trstmh/trad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND In recent years, the state of Mato Grosso has presented one of the highest dengue incidence rates in Brazil. The meeting of the Amazon, Cerrado and Pantanal biomes results in a large variation of rainfall and temperature across different regions of the state. In addition, Mato Grosso has been undergoing intense urban growth since the 1970s, mainly due to the colonization of the Mid-North and North regions. We analyzed factors involved in dengue incidence in Mato Grosso from 2008 to 2019. METHODS The Moran Global Index was used to assess spatial autocorrelation of dengue incidence using explanatory variables such as temperature, precipitation, deforestation, population density and municipal development index. Areas at risk of dengue were grouped by the Local Moran Indicator. RESULTS We noticed that areas at risk of dengue expanded from the Mid-North region to the North; the same pattern occurred from the Southeast to the Northeast; the South region remained at low-risk levels. The increase in incidence was influenced by precipitation, deforestation and the municipal development index. CONCLUSIONS The identification of risk areas for dengue in space and time enables public health authorities to focus their control and prevention efforts, reducing infestation and the potential impact of dengue in the human population.
Collapse
Affiliation(s)
| | | | - Taynná Vacaro Moura Alves
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, Sinop 78550-267, Mato Grosso, Brazil
| | - Christine Steiner São Bernardo
- Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, Sinop 78550-267, Mato Grosso, Brazil
| | - Maria Jara Montibeller
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, São Paulo, Brazil
| | - Adriano Mondini
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara 14800-903, São Paulo, Brazil
| | | |
Collapse
|
7
|
Parker AL, Kingsolver JG. Population divergence in nutrient-temperature interactions in Pieris rapae. FRONTIERS IN INSECT SCIENCE 2023; 3:1237624. [PMID: 38469516 PMCID: PMC10926554 DOI: 10.3389/finsc.2023.1237624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 03/13/2024]
Abstract
The interaction between larval host plant quality and temperature can influence the short-term physiological rates and life-history traits of insect herbivores. These factors can vary locally, resulting in local adaptation in responses to diet and temperature, but the comparison of these interactions between populations is infrequently carried out. In this study, we examine how the macronutrient ratio of an artificial diet determines the larval growth, development, and survival of larval Pieris rapae (Lepidoptera: Pieridae) at different temperatures between two invasive North American populations from different climatic regions. We conducted a fully factorial experiment with three temperature treatments (18°C, 25°C, and 32°C) and three artificial diet treatments varying in terms of the ratio of protein to carbohydrate (low protein, balanced, and high protein). The effects of diet on life-history traits were greater at lower temperatures, but these differed between populations. Larvae from the subtropical population had reduced survival to pupation on the low-protein diet in the cold temperature treatment, whereas larval survival for the temperate population was equally high for all temperature and diet treatments. Overall, both populations performed more poorly (i.e., they showed slower rates of consumption, growth, and development, and had a smaller pupal mass) in the diet with the low protein ratio, but larvae from the temperate population were less sensitive to diet ratio changes at all temperatures. Our results confirm that the physiological and life-history consequences of imbalanced nutrition for insect herbivores may depend on developmental temperatures, and that different geographic populations of P. rapae within North America vary in their sensitivity to nutritional balance and temperature.
Collapse
Affiliation(s)
| | - Joel G. Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Malfacini M, Puggioli A, Balestrino F, Carrieri M, Dindo ML, Bellini R. Effect of 2 sex-sorting time schedules on SIT facility management. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:9. [PMID: 37721493 PMCID: PMC10506445 DOI: 10.1093/jisesa/iead060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 09/19/2023]
Abstract
Improvements are needed in mosquito mass-rearing to effectively implement the sterile insect technique (SIT). However, managing this technique is challenging and resource intensive. SIT relies on mass rearing, sterilization, and release of adult males to reduce field populations. Maintaining an acceptable level of female presence, who can transmit viruses through biting, is crucial. Females are also essential for facility sustainability. Sex sorting plays a vital role in the production process, and our current mechanical sorting approach aims to obtain a high number of adult males with minimal female contamination within 24 h of pupation. Utilizing protandry helps control female contamination. While the 24-h sorting period achieves desired contamination levels, it may not yield enough females to sustain breeding lines, leading to increased labor costs that impact project sustainability. By delaying the sorting procedure to 48 h, we obtained sufficient females to sustain breeding lines, achieving a balance between male production and female contamination using the automatic version of the Fay-Morlan device as the sorting tool.
Collapse
Affiliation(s)
- Marco Malfacini
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127 Bologna, Italy
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Arianna Puggioli
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Fabrizio Balestrino
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Marco Carrieri
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Maria Luisa Dindo
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127 Bologna, Italy
| | - Romeo Bellini
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| |
Collapse
|
9
|
Chathuranga WGD, Weeraratne TC, Abeysundara SP, Karunaratne SHPP, de Silva WAPP. Breeding site selection and co-existing patterns of tropical mosquitoes. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:550-561. [PMID: 37060294 DOI: 10.1111/mve.12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
We investigated the physicochemical properties and the biotic interactions of breeding sites of tropical mosquito species. Field sampling was done in 12 study areas in Sri Lanka covering areas with secondary natural forests and human settlements. A total of 226 breeding sites were investigated to determine the biotic interactions and physiochemical properties of breeding water (pH, Conductivity, Dissolved Oxygen, Total Dissolved Solids and Temperature). A total of 80.5% of breeding sites from both habitats were positive for mosquito larvae of seven genera and 24 species. Orthopodomyia flavithorax (297) and Aedes albopictus (295) were dominated in tree holes of Alstonia macrophylla, Vateria copallifera and Artocarpus nobilis. Diversity indices showed that the diversity of mosquitoes is high in wet zone habitats of Sri Lanka compared to dry and intermediate zone habitats. Aedes albopictus coexisted with 11 different mosquito species while it avoided larvae of Culex fuscanus, Cx. uniformis and Tripteroides affinis. Strong positive associations were reported between Ae. albopictus and Ar. subalbatus while larvae of Or. flavithorax mosquitoes were not co-occurred with the larvae of Ae. vittatus, Ae. aegypti, Cx. sitiens, Ar. subalbatus, Anopheles spp and Tr. affinis. The findings identified the breeding adaptability and tolerance to a wide range of physiochemical properties of tropical mosquito communities.
Collapse
Affiliation(s)
- W G D Chathuranga
- Department of Zoology, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - T C Weeraratne
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S P Abeysundara
- Department of Statistics and Computer Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S H P P Karunaratne
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | |
Collapse
|
10
|
Lu HC, Lin FY, Huang YH, Kao YT, Loh EW. Role of air pollutants in dengue fever incidence: evidence from two southern cities in Taiwan. Pathog Glob Health 2023; 117:596-604. [PMID: 36262027 PMCID: PMC10617642 DOI: 10.1080/20477724.2022.2135711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Air pollution may be involved in spreading dengue fever (DF) besides rainfalls and warmer temperatures. While particulate matter (PM), especially those with diameter of 10 μm (PM10) or 2.5 μm or less (PM25), and NO2 increase the risk of coronavirus 2 infection, their roles in triggering DF remain unclear. We explored if air pollution factors predict DF incidence in addition to the classic climate factors. Public databases and DF records of two southern cities in Taiwan were used in regression analyses. Month order, PM10 minimum, PM2.5 minimum, and precipitation days were retained in the enter mode model, and SO2 minimum, O3 maximum, and CO minimum were retained in the stepwise forward mode model in addition to month order, PM10 minimum, PM2.5 minimum, and precipitation days. While PM2.5 minimum showed a negative contribution to the monthly DF incidence, other variables showed the opposite effects. The sustain of month order, PM10 minimum, PM2.5 minimum, and precipitation days in both regression models confirms the role of classic climate factors and illustrates a potential biological role of the air pollutants in the life cycle of mosquito vectors and dengue virus and possibly human immune status. Future DF prevention should concern the contribution of air pollution besides the classic climate factors.
Collapse
Affiliation(s)
- Hao-Chun Lu
- Department of Management Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Fang-Yu Lin
- Graduate Institute of Business Administration, Fu Jen Catholic University, New Taipei, Taiwan
| | - Yao-Huei Huang
- Department of Information Management, Fu Jen Catholic University, New Taipei, Taiwan
| | - Yu-Tung Kao
- Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - El-Wui Loh
- Center for Evidence-Based Health Care, Department of Medical Research, Taipei Medical University Shuang Ho Hospital, New Taipei, Taiwan
- Cochrane Taiwan, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Imaging, Taipei Medical University Shuang Ho Hospital, New Taipei, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Tapei, Taiwan
| |
Collapse
|
11
|
Menezes HSG, Costa-Latgé SG, Genta FA, Napoleão TH, Paiva PMG, Romão TP, Silva-Filha MHNL. A Culex quinquefasciatus strain resistant to the binary toxin from Lysinibacillus sphaericus displays altered enzyme activities and energy reserves. Parasit Vectors 2023; 16:273. [PMID: 37559134 PMCID: PMC10413512 DOI: 10.1186/s13071-023-05893-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND The resistance of a Culex quinquefasciatus strain to the binary (Bin) larvicidal toxin from Lysinibacillus sphaericus is due to the lack of expression of the toxin's receptors, the membrane-bound Cqm1 α-glucosidases. A previous transcriptomic profile of the resistant larvae showed differentially expressed genes coding Cqm1, lipases, proteases and other genes involved in lipid and carbohydrate metabolism. This study aimed to investigate the metabolic features of Bin-resistant individuals by comparing the activity of some enzymes, energy reserves, fertility and fecundity to a susceptible strain. METHODS The activity of specific enzymes was recorded in midgut samples from resistant and susceptible larvae. The amount of lipids and reducing sugars was determined for larvae and adults from both strains. Additionally, the fecundity and fertility parameters of these strains under control and stress conditions were examined. RESULTS Enzyme assays showed that the esterase activities in the midgut of resistant larvae were significantly lower than susceptible ones using acetyl-, butyryl- and heptanoyl-methylumbelliferyl esthers as substrates. The α-glucosidase activity was also reduced in resistant larvae using sucrose and a synthetic substrate. No difference in protease activities as trypsins, chymotrypsins and aminopeptidases was detected between resistant and susceptible larvae. In larval and adult stages, the resistant strain showed an altered profile of energy reserves characterized by significantly reduced levels of lipids and a greater amount of reducing sugars. The fertility and fecundity of females were similar for both strains, indicating that those changes in energy reserves did not affect these reproductive parameters. CONCLUSIONS Our dataset showed that Bin-resistant insects display differential metabolic features co-selected with the phenotype of resistance that can potentially have effects on mosquito fitness, in particular, due to the reduced lipid accumulation.
Collapse
Affiliation(s)
- Heverly Suzany G Menezes
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n, Recife, PE, 50740-465, Brazil
| | - Samara G Costa-Latgé
- Laboratory of Insect Biochemistry and Physiology, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Fernando A Genta
- Laboratory of Insect Biochemistry and Physiology, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
- National Institute for Molecular Entomology, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Thiago H Napoleão
- Department of Biochemistry, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Patrícia M G Paiva
- Department of Biochemistry, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Tatiany P Romão
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n, Recife, PE, 50740-465, Brazil
| | - Maria Helena N L Silva-Filha
- Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ, Av. Moraes Rego s/n, Recife, PE, 50740-465, Brazil.
- National Institute for Molecular Entomology, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
12
|
Zhao XD, Geng YS, Hu TY, Li WX, Liang YY, Hao DJ. Comparing the Performance of Hyphantria cunea (Lepidoptera: Arctiidae) on Artificial and Natural Diets: Feasibility of Mass-Rearing on Artificial Diets. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:181-191. [PMID: 36412250 DOI: 10.1093/jee/toac176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 06/16/2023]
Abstract
In China, Hyphantria cunea (Drury) is an invasive phytophagous pest; it attacks nearly all species of defoliated trees. To develop integrated pest management programs (IPM) for H. cunea, we need to ensure the availability of insects by mass-rearing them on artificial diets under laboratory conditions. This study compared the growth characteristics, nutritional indices, growth indices, and digestive enzyme activity of insects reared on Pterocarya stenoptera C.DC (Fagales: Juglandaceae), the Chinese wingnut, and an artificial diet. We also investigated the correlation between diet components and growth indices using principal components analysis and Pearson correlation analysis. We found that mass-rearing of H. cunea on an artificial diet was feasible. It led to a shorter developmental period, with heavier larvae and pupae than natural diets. The principal components analysis indicated that the growth indices and α-Amylase were significantly positively associated with PC1, which explained 82.45% of the total data variability. Pearson correlation analysis showed a significant correlation between digestion, absorption parameters, and growth. Developing a mass-rearing program to produce H. cunea on an artificial diet will be valuable for improving IPM strategies. Understanding the mechanism of the responses of phytophagous insect populations to anthropogenic diet regulation can provide new ideas and methods for pest control.
Collapse
Affiliation(s)
- Xu-Dong Zhao
- CoInnovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, China
- College of Forestry, Nanjing Forestry University, 210037, Nanjing, China
| | - Yi-Shu Geng
- CoInnovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, China
- College of Forestry, Nanjing Forestry University, 210037, Nanjing, China
| | - Tian-Yi Hu
- CoInnovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, China
- College of Forestry, Nanjing Forestry University, 210037, Nanjing, China
| | - Wen-Xuan Li
- CoInnovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, China
- College of Forestry, Nanjing Forestry University, 210037, Nanjing, China
| | - Ying-Ying Liang
- CoInnovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, China
- College of Forestry, Nanjing Forestry University, 210037, Nanjing, China
| | - De-Jun Hao
- CoInnovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, China
- College of Forestry, Nanjing Forestry University, 210037, Nanjing, China
| |
Collapse
|
13
|
Nik Abdull Halim NMH, Che Dom N, Dapari R, Salim H, Precha N. A systematic review and meta-analysis of the effects of temperature on the development and survival of the Aedes mosquito. Front Public Health 2022; 10:1074028. [PMID: 36600940 PMCID: PMC9806355 DOI: 10.3389/fpubh.2022.1074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The Aedes mosquito species, which are the vectors for the transmission of the dengue virus (DENV) to humans, are becoming increasingly susceptible to the formidable effects of influential factors, especially temperature. However, there are still very few studies that have systematically reviewed the existing literature. Hence, in the present study, a systematic literature review and meta-analysis was conducted into the effects of temperature on dengue vectors. Method Several research methodologies were incorporated into the current study, and a review was carried out using PRISMA as a guide. The publications for this study were chosen from two prominent databases, Scopus and Web of Science. All of the studies were assessed, reviewed, and evaluated independently by two reviewers. The meta-analysis tool, Review Manager (RevMan Copenhagen Version 5.4.1), was used to record the extracted data for the meta-analysis. Moran's I 2 and a funnel plot were utilized to measure heterogeneity, and publication bias was investigated. A 95% confidence interval (CI) and overall risk difference (RD) were estimated using a random-effects model. Result and discussion As a consequence of the search efforts, a total of 46 articles were selected for inclusion in the systematic review and meta-analysis. This review was divided into five major themes, based on a thematic analysis: (i) hatching rate, (ii) development time, (iii) longevity, (iv) survival rate, and (v) wing morphology. In addition, the development time, survival rate, and wing morphology revealed significantly higher risk differences between the maximum and minimum temperatures (RD: 0.26, 95% CI: 0.16, 0.36; p = < 0.00001; RD: 0.10, 95% CI: 0.05, 0.14; p < 0.0001; and RD: 0.07, 95% CI: 0.02, 0.12; p = 0.006, respectively). This study makes several substantial contributions to the body of knowledge and to practical applications. Finally, a number of recommendations are made at the conclusion of this research for the future reference of researchers.
Collapse
Affiliation(s)
- Nik Muhammad Hanif Nik Abdull Halim
- Centre of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, Puncak Alam, Malaysia,Setiu District Health Office, Setiu, Malaysia
| | - Nazri Che Dom
- Centre of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, Puncak Alam, Malaysia,Integrated Mosquito Research Group (I-MeRGe), Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, Puncak Alam, Malaysia,Institute for Biodiversity and Sustainable Development (IBSD), Universiti Teknologi MARA, Shah Alam, Malaysia,*Correspondence: Nazri Che Dom
| | - Rahmat Dapari
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hasber Salim
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
14
|
Malfacini M, Puggioli A, Balestrino F, Carrieri M, Dindo ML, Bellini R. Aedes albopictus Sterile Male Production: Influence of Strains, Larval Diet and Mechanical Sexing Tools. INSECTS 2022; 13:899. [PMID: 36292847 PMCID: PMC9604197 DOI: 10.3390/insects13100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The sterile insect technique (SIT) is a biologically based method of pest control, which relies on the mass production, sterilization, and release of sterile males of the target species. Since females can transmit viruses, it is important to develop a mass rearing system to produce a large number of males with a low presence of females. We evaluated the effects of different strains, larval diets and sexing tools on male productivity and residual female presence for the application of SIT against Aedes albopictus. Strains coming from Italy, Germany, Greece, and Montenegro, with different levels of colonization, were reared with three larval diets: IAEA-BY, BLP-B and SLP-BY. Developed pupae were sexed using two different mechanical methods: sieve or Fay-Morlan separator. The results proved that adoption of the Fay-Morlan separator increased the productivity and limited the female presence. The IAEA-BY diet showed the lowest female contamination. Strains with a high number of breeding generations showed a decreased productivity and an increased female presence. Increased female presence was found only in extensively reared strains and only when the sorting operation was conducted with sieves. We hypothesize that extensive colonization may determine a size reduction which limits the sexing tool efficiency itself.
Collapse
Affiliation(s)
- Marco Malfacini
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127 Bologna, Italy
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Arianna Puggioli
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Fabrizio Balestrino
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Marco Carrieri
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| | - Maria Luisa Dindo
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 42, 40127 Bologna, Italy
| | - Romeo Bellini
- Department of Medical and Veterinary Entomology, Centro Agricoltura Ambiente “G. Nicoli”, Via Sant’Agata 835, 40014 Crevalcore, Italy
| |
Collapse
|
15
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Ernawan B, Anggraeni T, Yusmalinar S, Sasmita HI, Fitrianto N, Ahmad I. Assessment of Compaction, Temperature, and Duration Factors for Packaging and Transporting of Sterile Male Aedes aegypti (Diptera: Culicidae) under Laboratory Conditions. INSECTS 2022; 13:847. [PMID: 36135548 PMCID: PMC9501006 DOI: 10.3390/insects13090847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Optimized conditions for the packaging and transportation of sterile males are crucial factors in successful SIT programs against mosquito vector-borne diseases. The factors influencing the quality of sterile males in packages during transportation need to be assessed to develop standard protocols. This study was aimed to investigate the impact of compaction, temperature, and duration factors during packaging and transportation on the quality of gamma-sterilized male Ae. aegypti. Aedes aegypti males were sterilized at a dose of 70 Gy, compacted into Falcon tubes with densities of 40, 80, and 120 males/2 mL; and then exposed to temperatures of 7, 14, 21, and 28 °C. Each temperature setup was held for a duration of 3, 6, 12, 24, and 48 h at a 60 rpm constant vibration to simulate transportation. The parameters of mortality, flight ability, induced sterility, and longevity were investigated. Results showed that increases in density, temperature, and duration significantly increased mortality and reduced flight ability and longevity, but none of the factors significantly affected induced sterility. With a mortality rate of less than 20%, an escaping rate of more than 70%, considerable longevity, and the most negligible effect on induced sterility (approximately 98%), a temperature of 7 °C and a compaction density of 80 males/2 mL were shown to be optimized conditions for short-term transportation (no more than 24 h) with the minimum adverse effects compared with other condition setups.
Collapse
Affiliation(s)
- Beni Ernawan
- Institut Teknologi Bandung (ITB), School of Life Sciences and Technology, Jalan Ganesha No. 10, Bandung 40132, Indonesia
- Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency of Indonesia (BRIN), Jalan Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Tjandra Anggraeni
- Institut Teknologi Bandung (ITB), School of Life Sciences and Technology, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Sri Yusmalinar
- Institut Teknologi Bandung (ITB), School of Life Sciences and Technology, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Hadian Iman Sasmita
- Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency of Indonesia (BRIN), Jalan Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Nur Fitrianto
- Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency of Indonesia (BRIN), Jalan Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Intan Ahmad
- Institut Teknologi Bandung (ITB), School of Life Sciences and Technology, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| |
Collapse
|
17
|
Thermal fitness costs and benefits of developmental acclimation in fall armyworm. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Al-Nefaie H, Alsultan A, Abusaris R. Temporal and spatial patterns of dengue geographical distribution in Jeddah, Saudi Arabia. J Infect Public Health 2022; 15:1025-1035. [PMID: 36007387 DOI: 10.1016/j.jiph.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/29/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION Dengue fever disease is affected by many scoioeconomic and enviromental factors throughout endemic areas globally. These factors contribute to increase the incidence of endemic dengue endemic in Jeddah, Saudi Arabia. OBJECTIVES This study aimed to investigate the distribution and spatial patterns of dengue fever cases in Jeddah, and to determine if there is an association between dengue fever and the following environmental factors: temperature, humidity, land cover, climate, rainfall, epicenter of reproduction, and socioeconomic factors. METHODS A descriptive and analytical cross-sectional study was conducted in Jeddah in 2020. The study included all reported suspected and confirmed dengue cases. The sample size was 1458 cases. Data were obtained from the Dengue Active Surveillance System and the confirmed cases were geo-distributed in areas by QGIS. All significant variables were included in the logistic regression table. RESULTS The majority (61.9 %) were suspected cases and 38.1 % confirmed cases. The majority of the cases were male. The highest spatial distribution was in the middle of Jeddah and the lowest in the south. The highest temporal distribution for confirmed cases was in June, and for suspected cases in December. Age, gender, occupation, and area were all significantly associated with the dengue reported cases. Most all the enviromental factors were not statistically significant. CONCLUSION The study showed three clusters of dengue fever and infection concentrated in the middle and east of Jeddah. The lack of investigation in the environmental factors regarding the dengue distribution and its impact on the population area has to be taken seriously and dengue intervention programs should be implemented to reduce the endemic dengue in Jeddah.
Collapse
Affiliation(s)
- Hissah Al-Nefaie
- Epidemiologist, Department of Communicable Diseases Control, Public Health Authority, Riyadh, Saudi Arabia; Department of Epidemiology and Biostatistics, College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Amirah Alsultan
- Public Health, Public Health Authority, Riyadh, Saudi Arabia
| | - Raghib Abusaris
- Department of Epidemiology and Biostatistics, College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Kavran M, Puggioli A, Šiljegović S, Čanadžić D, Laćarac N, Rakita M, Ignjatović Ćupina A, Balestrino F, Petrić D, Bellini R. Optimization of Aedes albopictus (Diptera: Culicidae) Mass Rearing through Cost-Effective Larval Feeding. INSECTS 2022; 13:insects13060504. [PMID: 35735841 PMCID: PMC9224466 DOI: 10.3390/insects13060504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary The Asian tiger mosquito (Aedes albopictus) is an important invasive species of medical concern, which could be successfully suppressed by including the sterile insect technique (SIT) in integrated mosquito management. This technique is based on the mass rearing of males, and their sterilization and release into the habitats to compete with wild males in the mating process. Our research compared the effectiveness of three larval diet recipes (IAEA-BY, BCWPRL, and MIX-14) in the rearing of Ae. albopictus males in order to evaluate the available economical feeding alternatives. The separation of male pupae was done by the sieving method, and reared adult males were tested for flight capacity and longevity. The application of BCWPRL resulted in a higher portion of sieved male pupae than females, but the obtained number of both pupae and adult males was lower and the development was slower than the other two diets. The adult mean survival time was the highest in males fed with MIX-14 and the lowest in males fed with IAEA-BY. Males fed by IAEA-BY also demonstrated higher initial mortality in the adult stage. The diets BCWPRL and MIX-14 are cheaper than IAEA-BY (2.28 and 5.30 times, respectively). The diet MIX-14 represents a candidate for replacing the effective but still expensive IAEA-BY diet. Abstract Aedes (Stegomyia) albopictus (Skuse, 1895) is an invasive important medical and veterinary pest species. The sterile insect technique (SIT) involves the mass rearing of males, and their sterilization and release into the habitat to compete with wild males. Our research objective was to compare the effectiveness of three larval diet recipes (IAEA-BY, BCWPRL, and MIX-14) in the laboratory rearing of Ae. albopictus males to evaluate the available economical feeding alternatives. The separation of sexes was done in the pupal stage by sieving. Reared males were tested for flight capacity and longevity. The application of the BCWPRL diet resulted in a higher portion of sieved male pupae than females, but the development of males was the slowest, and the number of obtained males (pupae and adults) was lower compared to the other two diets. The adult mean survival time was the highest in males fed with MIX-14 and the lowest in males fed with IAEA-BY. Males fed by IAEA-BY also demonstrated higher initial mortality in the adult stage. The diets BCWPRL and MIX-14 are economically more convenient than IAEA-BY (2.28 and 5.30 times cheaper, respectively). The cheapest diet, MIX-14, might represent a candidate for replacing the effective but still expensive IAEA-BY larval diet, providing lower costs of sterile male production.
Collapse
Affiliation(s)
- Mihaela Kavran
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (M.K.); (S.Š.); (D.Č.); (N.L.); (M.R.); (D.P.)
| | - Arianna Puggioli
- Sanitary Entomology & Zoology Department, Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Center, Via Sant’Agata 835, 40014 Crevalcore, Italy; (A.P.); (F.B.); (R.B.)
| | - Sara Šiljegović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (M.K.); (S.Š.); (D.Č.); (N.L.); (M.R.); (D.P.)
| | - Dušan Čanadžić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (M.K.); (S.Š.); (D.Č.); (N.L.); (M.R.); (D.P.)
| | - Nikola Laćarac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (M.K.); (S.Š.); (D.Č.); (N.L.); (M.R.); (D.P.)
| | - Mina Rakita
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (M.K.); (S.Š.); (D.Č.); (N.L.); (M.R.); (D.P.)
| | - Aleksandra Ignjatović Ćupina
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (M.K.); (S.Š.); (D.Č.); (N.L.); (M.R.); (D.P.)
- Correspondence: ; Tel.: +381-642182501
| | - Fabrizio Balestrino
- Sanitary Entomology & Zoology Department, Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Center, Via Sant’Agata 835, 40014 Crevalcore, Italy; (A.P.); (F.B.); (R.B.)
| | - Dušan Petrić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (M.K.); (S.Š.); (D.Č.); (N.L.); (M.R.); (D.P.)
| | - Romeo Bellini
- Sanitary Entomology & Zoology Department, Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Center, Via Sant’Agata 835, 40014 Crevalcore, Italy; (A.P.); (F.B.); (R.B.)
| |
Collapse
|
20
|
Agyekum TP, Arko-Mensah J, Botwe PK, Hogarh JN, Issah I, Dwomoh D, Billah MK, Dadzie SK, Robins TG, Fobil JN. Effects of elevated temperatures on the development of immature stages of Anopheles gambiae (s.l.) mosquitoes. Trop Med Int Health 2022; 27:338-346. [PMID: 35146843 DOI: 10.1111/tmi.13732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study investigated the effects of temperature on the development of the immature stages of An. gambiae (s.l.) mosquitoes. METHODS Mosquito eggs were obtained from laboratory established colonies and reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38 and 40 °C), and 80 ± 10% relative humidity. Larvae were checked daily for development to the next stage and for mortality. Pupation success, number of adults produced, and sex ratio of the newly emerged adults were recorded. Larval survival was monitored every 24 hours, and data were analyzed using Kaplan Meier survival analysis. Analysis of variance was used where data followed normal distribution, and a Kruskal-Wallis test where data were not normally distributed. Larval and pupal measurements were log-transformed and analyzed using ordinary least square regression with robust standard errors. RESULTS Increasing the temperature from 25 to 36 °C decreased the development time by 10.57 days. Larval survival (X2 (6) = 5353.12, P < 0.001) and the number of adults produced (X2 (5) = 28.16, P < 0.001) decreased with increasing temperature. Increasing temperatures also resulted in significantly smaller larvae and pupae (P < 0.001). At higher temperatures disproportionately more male than female mosquitoes were produced. CONCLUSIONS Increased temperature affected different developmental stages in the life cycle of An. gambiae (s.l.) mosquitoes, from larval to adult emergence. This study contributes to the knowledge on the relationship between temperature and Anopheles mosquitoes and provides useful information for modelling vector population dynamics in the light of climate change.
Collapse
Affiliation(s)
- Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Paul K Botwe
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Jonathan N Hogarh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Maxwell K Billah
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, University of Ghana, School of Public Health, Accra, Ghana
| |
Collapse
|
21
|
Carvajal-Lago L, Ruiz-López MJ, Figuerola J, Martínez-de la Puente J. Implications of diet on mosquito life history traits and pathogen transmission. ENVIRONMENTAL RESEARCH 2021; 195:110893. [PMID: 33607093 DOI: 10.1016/j.envres.2021.110893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The environment, directly and indirectly, affects many mosquito traits in both the larval and adult stages. The availability of food resources is one of the key factors influencing these traits, although its role in mosquito fitness and pathogen transmission remains unclear. Larvae nutritional status determines their survivorship and growth, having also an impact on adult characteristics like longevity, body size, flight capacity or vector competence. During the adult stage, mosquito diet affects their survival rate, fecundity and host-seeking behaviour. It also affects mosquito susceptibility to infection, which may determine the vectorial capacity of mosquito populations. The aim of this review is to critically revise the current knowledge on the effects that both larval and adult quantity and quality of the diet have on mosquito life history traits, identifying the critical knowledge gaps and proposing future research lines. The quantity and quality of food available through their lifetime greatly determine adult body size, longevity or biting frequency, therefore affecting their competence for pathogen transmission. In addition, natural sugar sources for adult mosquitoes, i.e., specific plants providing high metabolic energy, might affect their host-seeking and vertebrate biting behaviour. However, most of the studies are carried out under laboratory conditions, highlighting the need for studies of feeding behaviour of mosquitoes under field conditions. This kind of studies will increase our knowledge of the impact of diets on pathogen transmission, helping to develop successful control plans for vector-borne diseases.
Collapse
Affiliation(s)
- Laura Carvajal-Lago
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain
| | - María José Ruiz-López
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain
| | - Jordi Figuerola
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Josué Martínez-de la Puente
- Departamento de Ecología de Humedales, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, CSIC, Spain; Departamento de Parasitología, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
22
|
David MR, Dantas ES, Maciel-de-Freitas R, Codeço CT, Prast AE, Lourenço-de-Oliveira R. Influence of Larval Habitat Environmental Characteristics on Culicidae Immature Abundance and Body Size of Adult Aedes aegypti. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aedes aegypti is adapted to live in close association with human dwellings, where it lays eggs in several man-made container types with a broad range of size, shape, and material. Biotic and abiotic conditions of larval habitats determine the abundance and body size of emerging adult mosquitoes. Here, we estimated the predictive potential of physicochemical water variables for Culicidae immature abundance and Ae. aegypti adult body size in four neighborhoods with distinct urban landscapes in Rio de Janeiro, Brazil. Domestic water holding containers (N = 240) were inspected for the presence of Culicidae immatures and had several physiochemical parameters measured. Larvae and pupae were counted, and pupae were reared to the adult stage for taxonomic identification. Dry weight and wing size were measured for Ae. aegypti adult mosquitoes (N = 981). The association between larval habitat parameters with Culicidae abundance and Ae. aegypti body size data was estimated through linear mixed models and generalized linear mixed models, respectively, with the neighborhood as random effect. The abundance of immature Culicidae in larval habitats (from which >90% of adults emerging from field collected pupae were Ae. aegypti) was positively associated with container volume and the dissolved organic carbon concentration (DOC). Female average dry weight and male and female wing lengths were positively associated with larval habitat temperature whereas male average dry weight was positively related to water conductivity. Aedes aegypti originating from larval habitats with Ae. albopictus exhibited no differences in median wing length and dry body weight when compared with specimens collected in containers exclusively colonized by Ae. aegypti. These results demonstrate that container water volume (characteristic easily observed in the field) and DOC (often higher in unmanaged water holding recipients) is related to higher Ae. aegypti immature density. Estimating the effects of physicochemical water variables on immature abundance and adult body size can provide valuable information for predicting arbovirus transmission risk in endemic settings.
Collapse
|
23
|
Romoli O, Schönbeck JC, Hapfelmeier S, Gendrin M. Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host-microbiota interactions. Nat Commun 2021; 12:942. [PMID: 33574256 PMCID: PMC7878806 DOI: 10.1038/s41467-021-21195-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The mosquito microbiota impacts the physiology of its host and is essential for normal larval development, thereby influencing transmission of vector-borne pathogens. Germ-free mosquitoes generated with current methods show larval stunting and developmental deficits. Therefore, functional studies of the mosquito microbiota have so far mostly been limited to antibiotic treatments of emerging adults. In this study, we introduce a method to produce germ-free Aedes aegypti mosquitoes. It is based on reversible colonisation with bacteria genetically modified to allow complete decolonisation at any developmental stage. We show that, unlike germ-free mosquitoes previously produced using sterile diets, reversibly colonised mosquitoes show no developmental retardation and reach the same size as control adults. This allows us to uncouple the study of the microbiota in larvae and adults. In adults, we detect no impact of bacterial colonisation on mosquito fecundity or longevity. In larvae, data from our transcriptome analysis and diet supplementation experiments following decolonisation suggest that bacteria support larval development by contributing to folate biosynthesis and by enhancing energy storage. Our study establishes a tool to study the microbiota in insects and deepens our knowledge on the metabolic contribution of bacteria to mosquito development.
Collapse
Affiliation(s)
- Ottavia Romoli
- grid.418525.f0000 0001 2206 8813Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, Cayenne, French Guiana France
| | - Johan Claes Schönbeck
- grid.418525.f0000 0001 2206 8813Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, Cayenne, French Guiana France
| | - Siegfried Hapfelmeier
- grid.5734.50000 0001 0726 5157Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mathilde Gendrin
- grid.418525.f0000 0001 2206 8813Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, Cayenne, French Guiana France ,grid.428999.70000 0001 2353 6535Parasites and Insect Vectors Department, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Zubair Q, Matthews H, Sougoufara S, Mujeeb F, Ashall S, Aboagye-Antwi F, Tripet F. Bulk-up synchronization of successive larval cohorts of Anopheles gambiae and Anopheles coluzzii through temperature reduction at early larval stages: effect on emergence rate, body size and mating success. Malar J 2021; 20:67. [PMID: 33531024 PMCID: PMC7856783 DOI: 10.1186/s12936-021-03602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background Malaria persists as a huge medical and economic burden. Although the number of cases and death rates have reduced in recent years, novel interventions are a necessity if such gains are to be maintained. Alternative methods to target mosquito vector populations that involve the release of large numbers genetically modified mosquitoes are in development. However, their successful introduction will require innovative strategies to bulk-up mosquito numbers and improve mass rearing protocols for Anopheles mosquitoes. Methods The relationship between mosquito aquatic stage development and temperature was exploited so that multiple cohorts of mosquitoes, from separate egg batches, could be synchronized to ‘bulk-up’ the number of mosquitoes released. First instar larvae were separated into two cohorts: the first, maintained under standard insectary conditions at 27oC, the second subjected to an initial 5-day cooling period at 19oC. Results Cooling of 1st instars slowed the mean emergence times of Anopheles coluzzii and Anopheles gambiae by 2.4 and 3.5 days, respectively, compared to their 27oC counterparts. Pupation and emergence rates were good (> 85 %) in all conditions. Temperature adjustment had no effect on mosquito sex ratio and adult fitness parameters such as body size and mating success. Conclusions Bulk-up larval synchronization is a simple method allowing more operational flexibility in mosquito production towards mark-release-recapture studies and mass release interventions.
Collapse
Affiliation(s)
- Qaswa Zubair
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Holly Matthews
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Seynabou Sougoufara
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Fatima Mujeeb
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Simon Ashall
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Fred Aboagye-Antwi
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Frédéric Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK.
| |
Collapse
|
25
|
Wu J, Wang L, Zhang Y, Zhang S, Ahmad S, Luo Y. Synthesis and Photoactivated Toxicity of 2-Thiophenylfuranocoumarin Induce Midgut Damage and Apoptosis in Aedes aegypti Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1091-1106. [PMID: 33432806 DOI: 10.1021/acs.jafc.0c07237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Furanocoumarins are photoactive compounds derived from secondary plant metabolites. They possess many bioactivities, including antioxidative, anticancer, insecticidal, and bactericidal activities. Here, we designed a new scheme for synthesizing 2-arylfuranocoumarin derivatives by condensation, esterification, bromination, and Wittig reaction. We found that 2-thiophenylfuranocoumarin (Iy) had excellent photosensitive activity. Three Iy concentrations (LC25, LC50, and LC75) were used to treat the fourth instar larvae of Aedes aegypti (A. aegypti). The photoactivated toxicity, sublethal dose, mitochondrial dysfunction, oxidative stress level, intestinal barrier dysfunction, and apoptosis were studied. The results showed that Iy induced reactive oxygen species (ROS) production in midgut cells under ultraviolet light. Ultrastructural analysis demonstrated that mitochondria were damaged, and the activities of related enzymes were inhibited. Ultimately, Iy exposure led to excessive ROS production followed by the inhibition of antioxidant enzymes, including SOD, CAT, GPx, and GR, which diminished ROS elimination and escalated oxidative stress in midgut cells, aggravating the degree of oxidative damage in these cells. Histopathological changes were observed in the midgut, which led to intestinal barrier dysfunction. When the elimination of ROS was blocked and it accumulated in cells, apoptosis-related genes, including AeDronc, AeCaspase7, and AeCaspase8, were induced and activated. In addition, Iy affected the growth and development of A. aegypti at sublethal concentrations, and there was an obvious post-lethal effect. Thus, we found that Iy caused midgut damage and apoptosis in A. aegypti larvae under ultraviolet light, which preliminarily revealed the mode of action of Iy in A. aegypti.
Collapse
Affiliation(s)
- Jiecheng Wu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Lanying Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Yunfei Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Shujing Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Shakil Ahmad
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Yanping Luo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
26
|
Interpopulation variations in life history traits and reproductive tactics in Aedes aegypti: A test on populations 50 km apart. Acta Trop 2021; 213:105750. [PMID: 33166516 DOI: 10.1016/j.actatropica.2020.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 10/18/2020] [Indexed: 11/21/2022]
Abstract
The interpopulation variation in life history traits of a species reflects evolutionary adaptation in response to a local environment regime. We examined the life history traits of Aedes aegypti populations from 2 cities in southern Taiwan separated by 50 km. Results revealed a high level of trait differentiation in immature developmental time and survival of Ae. aegypti between the 2 cities. The Kaohsiung populations exhibited total pupation of 40%-60% on day 8; this was significantly lower than that of the Tainan populations and laboratory-reared KHsm mosquitos, which exhibited a pupation rate of 70%-90%. The slow immature development of the Kaohsiung populations was reflected in the low percentage of adult emergence (22%-26%) on day 10. The prolonged immature development did not select larger adults with longer life spans because the Kaohsiung populations had a shorter life span (≈37 d) than that of the Tainan populations (≈42 d). By contrast, immature development and longevity did not differ between populations within each region, indicating weak local differentiation. Three field populations exhibited male-bias sex ratio because of differential mortality of female immatures. The effect of female size on adult life history was nonsignificant. Two reproduction tactics were detected, representing the balanced-mortality hypothesis and the bet-hedging hypothesis. Despite their differential life history strategies and reproductive tactics, these mosquito populations apparently counterbalanced any shortcomings in traits to produce similar population growth. Maintaining optimal population density is essential for Aedes mosquitos to increase the probability of encountering mates and reduce the Allee effect.
Collapse
|
27
|
Häcker I, Koller R, Eichner G, Martin J, Liapi E, Rühl J, Rehling T, Schetelig MF. Evaluation of Hydrogen Peroxide Fumigation and Heat Treatment for Standard Emergency Arthropod Inactivation in BSL-3 Insectaries. Front Bioeng Biotechnol 2020; 8:602937. [PMID: 33304894 PMCID: PMC7701145 DOI: 10.3389/fbioe.2020.602937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Climate change and global movements of people and goods have accelerated the spread of invasive species, including insects that vector infectious diseases, which threaten the health of more than half of the world’s population. Increasing research efforts to control these diseases include the study of vector – pathogen interactions, involving the handling of pathogen-infected vector insects under biosafety level (BSL) 2 and 3 conditions. Like microbiology BSL-3 laboratories, BSL-3 insectaries are usually subjected to fixed-term or emergency room decontamination using recognized methods such as hydrogen peroxide (H2O2) or formaldehyde fumigation. While these procedures have been standardized and approved for the inactivation of diverse pathogens on surfaces, to date, there are no current standards for effective room-wide inactivation of insects in BSL-3 facilities in case of an emergency such as the accidental release of a large number of infected vectors. As H2O2 is often used for standard room decontamination in BSL-3 facilities, we evaluated H2O2 fumigation as a potential standard method for the safe, room-wide deactivation of insects in BSL-3 insectaries in comparison to heat treatment. To account for physiological diversity in vector insect species, six species from three different orders were tested. For the H2O2 fumigation we observed a strong but also varying resilience across all species. Lethal exposure time for the tested dipterans ranged from nine to more than 24 h. Furthermore, the coleopteran, Tribolium castaneum, did not respond to continuous H2O2 exposure for 48 h under standard room decontamination conditions. In contrast, temperatures of 50°C effectively killed all the tested species within 2 to 10 min. The response to lower temperatures (40–48°C) again showed a strong variation between species. In summary, results suggest that H2O2 fumigation, especially in cases where a gas generator is part of the laboratory equipment, may be used for the inactivation of selected species but is not suitable as a general emergency insect inactivation method under normal room decontamination conditions. In contrast, heat treatment at 48 to 50°C has the potential to be developed as an approved standard procedure for the effective inactivation of insects in BSL-3 facilities.
Collapse
Affiliation(s)
- Irina Häcker
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Gießen, Germany.,Department of Insect Pest and Vector Control, Division of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Gießen, Germany
| | - Roland Koller
- Ortner Reinraumtechnik GmbH (Ortner Cleanrooms Unlimited), Villach, Austria
| | - Gerrit Eichner
- Mathematical Institute, Justus-Liebig-University Gießen, Gießen, Germany
| | - Jakob Martin
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Eleni Liapi
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Johanna Rühl
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Tanja Rehling
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Marc F Schetelig
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Gießen, Germany.,Department of Insect Pest and Vector Control, Division of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Gießen, Germany
| |
Collapse
|