1
|
Izquierdo-Rodriguez E, Hrazdilová K, Anettová L, Šipková A, Coufal R, Modrý D, Foronda P. Co-introduction into a delicate island ecosystem: metastrongyloid nematodes (superfamily Metastrongyloidea) of veterinary and medical importance circulating in aquatic and terrestrial environments of Tenerife (Canary Islands). Parasitol Res 2024; 123:344. [PMID: 39382760 DOI: 10.1007/s00436-024-08364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Metastrongyloid nematodes typically reside as adults in the cardiopulmonary systems of their mammalian definitive hosts, potentially causing severe diseases. Of particular concern are Angiostrongylus cantonensis and A. costaricensis, which can cause eosinophilic meningitis and abdominal angiostrongyliasis, respectively, in their accidental human hosts. Several metastrongyloid species of medical and veterinary importance have been documented in the Canary Islands. However, the gastropod species acting as intermediate hosts for some of these nematodes in the archipelago remained unknown. This study aimed to investigate the occurrence of metastrongyloid nematodes in terrestrial and aquatic gastropods, including both endemic and non-native species, on Tenerife. Foot samples from terrestrial and aquatic gastropods were analyzed using a multiplex PCR targeting the Internal Transcribed Spacer 1 (ITS1), allowing the specific detection of A. cantonensis, A. vasorum, Aelurostrongylus abstrusus, Crenosoma striatum, Troglostrongylus brevior, and Crenosoma vulpis. Five metastrongyloid species, namely C. striatum, A. cantonensis, Ae. abstrusus, A. vasorum, and an unidentified metastrongyloid, were identified within both non-native and endemic terrestrial gastropods. In the aquatic snail Physella acuta, only A. cantonensis and C. striatum were detected. This study confirms the introduction of various metastrongyloids associated with non-native mammalian fauna and provides new data on the occurrence of these nematodes in non-native and endemic gastropod species, including their presence in aquatic environments on the Canary Islands.
Collapse
Affiliation(s)
- Elena Izquierdo-Rodriguez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Farmacia, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Kristýna Hrazdilová
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Plzeň, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic
| | - Lucia Anettová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Anna Šipková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radovan Coufal
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Modrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Center of Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pilar Foronda
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Farmacia, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
| |
Collapse
|
2
|
Brown K, Jenkins DJ, Gofton AW, Smith I, Francis N, Shamsi S, Barton DP. The first finding of Dictyocaulus cervi and Dictyocaulus skrjabini (Nematoda) in feral fallow deer ( Dama dama) in Australia. Int J Parasitol Parasites Wildl 2024; 24:100953. [PMID: 38938270 PMCID: PMC11209017 DOI: 10.1016/j.ijppaw.2024.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Feral deer are widespread throughout Australia with the capacity to impact livestock production via transmission of parasites. Samples of Dama dama (fallow deer), Rusa unicolor (sambar deer), Cervus elaphus (red deer) and an unidentified deer were sourced from various locations in south-eastern Australia for examination for parasites. Adult nematodes were collected from the lungs of all deer species across four separate geographical locations. The nematodes were identified as species of Dictyocaulus through both morphological and molecular means. Species identification based on morphological features was difficult, with many measurements from described species overlapping. Molecular analyses targeting three markers, namely 18S rRNA, ITS2, and cox1 revealed the presence of two distinct species: Dictyocaulus cervi and Dictyocaulus skrjabini. These are the first genetically confirmed reports of species of Dictyocaulus in feral deer in Australia, and although cross-transmission of species of Dictyocaulus with livestock has not yet been reported, it cannot be completely discounted without further research.
Collapse
Affiliation(s)
- Keira Brown
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - David J. Jenkins
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Alexander W. Gofton
- CSIRO, Health and Biosecurity, Canberra, Australian Capital Territory, Australia
| | - Ina Smith
- CSIRO, Health and Biosecurity, Canberra, Australian Capital Territory, Australia
| | - Nidhish Francis
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Shokoofeh Shamsi
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Diane P. Barton
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
3
|
Phetla V, Chaisi M, Malatji MP. Epidemiology and diversity of gastrointestinal tract helminths of wild ruminants in sub-Saharan Africa: a review. J Helminthol 2024; 98:e45. [PMID: 38828717 DOI: 10.1017/s0022149x24000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review summarises studies on distribution, diversity, and prevalence of gastrointestinal helminth infections in wild ruminants in sub-Saharan Africa. The results showed that 109 gastrointestinal tract (GIT) helminth species or species complexes were recorded in 10 sub-Saharan African countries. South Africa reported the highest number of species because most studies were carried out in this country. Eighty-eight nematode species or species complexes were recorded from 30 wild ruminant species across eight countries. The genus Trichostrongylus recorded the highest number of species and utilised the highest number of wild ruminant species, and along with Haemonchus spp., was the most widely distributed geographically. Fifteen trematode species or species complexes were reported from seven countries. The genus Paramphistomum recorded the highest number of species, and Calicophoron calicophoron was the most commonly occurring species in sub-Saharan African countries and infected the highest number of hosts. Six cestode species or species complexes from one family were documented from 14 wild hosts in seven countries. Moniezia spp. were the most commonly distributed in terms of host range and geographically. Impala were infected by the highest number of nematodes, whilst Nyala were infected by the highest number of trematode species. Greater kudu and Impala harbored the largest number of cestodes. The prevalence amongst the three GIT helminths taxa ranged between 1.4% and 100% for nematodes, 0.8% and 100% for trematodes, and 1.4% and 50% for cestodes. There is still limited information on the distribution and diversity of GIT helminths in wild ruminants in most sub-Saharan African countries.
Collapse
Affiliation(s)
- V Phetla
- Foundational Biodiversity Science, South African National Biodiversity Institute, P.O. Box 754, Pretoria0001, South Africa
| | - M Chaisi
- Foundational Biodiversity Science, South African National Biodiversity Institute, P.O. Box 754, Pretoria0001, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort0110, South Africa
| | - M P Malatji
- School of Life Science, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban4001, South Africa
| |
Collapse
|
4
|
Antonopoulos A, Gilleard JS, Charlier J. Next-generation sequencing technologies for helminth diagnostics and surveillance in ruminants: shifting diagnostic barriers. Trends Parasitol 2024; 40:511-526. [PMID: 38760257 DOI: 10.1016/j.pt.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Helminth infections in grazing ruminants are a major issue for livestock farming globally, but are unavoidable in outdoor grazing systems and must be effectively managed to avoid deleterious effects to animal health, and productivity. Next-generation sequencing (NGS) technologies are transforming our understanding of the genetic basis of anthelmintic resistance (AR) and epidemiological studies of ruminant gastrointestinal parasites. They also have the potential to not only help develop and validate molecular diagnostic tests but to be directly used in routine diagnostics integrating species-specific identification and AR into a single test. Here, we review how these developments have opened the pathway for the development of multi-AR and multispecies identification in a single test, with widespread implications for sustainable livestock farming for the future.
Collapse
Affiliation(s)
- Alistair Antonopoulos
- Kreavet, Kruibeke, Belgium; School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - John S Gilleard
- Faculty of Veterinary Medicine, Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
5
|
Wangboon C, Martviset P, Jamklang M, Chumkiew S, Penkhrue W, Rangdist S, Jirojwong R, Phadungsil W, Chantree P, Grams R, Krenc D, Piyatadsananon P, Geadkaew-Krenc A. Microscopic and molecular epidemiology of gastrointestinal nematodes in dairy and beef cattle in Pak Chong district, Nakhon Ratchasima province, Thailand. Vet World 2024; 17:1035-1043. [PMID: 38911081 PMCID: PMC11188888 DOI: 10.14202/vetworld.2024.1035-1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/18/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim Gastrointestinal (GI) nematode infection remains an important problem in livestock, particularly cattle. The infection may lead to serious health complications and affect animal products. The objective of this study was to investigate GI nematode infection and its associated risk factors in dairy and beef cattle farmed in Pak Chong District of Nakhon Ratchasima Province, northeast Thailand. Materials and Methods Fecal specimens were collected from 101 dairy cattle and 100 beef cattle. Formalin-ethyl acetate concentration techniques were used to process the samples and the samples were observed under a light microscope. Samples were subjected to molecular identification of specific genera using conventional polymerase chain reaction and DNA sequencing. Results The overall prevalence of GI nematode infection was 33.3%. The strongyle nematode was the most significant GI nematode in this area with a prevalence of 28.4%. The prevalence of strongyle nematodes was 58.0% in beef cattle and only 7.9% in dairy cattle. Trichuris spp. was another nematode found in both types of cattle with an overall prevalence of 5.0% with 9.0% in beef cattle and 1.0% in dairy cattle. The results of the epidemiological study indicate that the age of cattle, food, water sources, farming system, and housing floor are the most important risk factors. Among the strongyle nematodes, Ostertagia spp. was the most prevalent (82.0%), followed by Haemonchus spp. (62.3%) and Trichostrongylus spp. (8.2%), respectively. Conclusion Infection with GI nematodes still exists in this area, particularly in beef cattle. Our reported data may benefit local parasitic control policies in the future.
Collapse
Affiliation(s)
- Chompunoot Wangboon
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mantana Jamklang
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Chumkiew
- School of Biology, Institute of Science, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Watsana Penkhrue
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Sainamthip Rangdist
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Ruttiroj Jirojwong
- Department of Livestock Development, Bureau of Veterinary Biologics, Pak Chong, Nakhon Ratchasima, 30130, Thailand
| | - Wansika Phadungsil
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Dawid Krenc
- Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pantip Piyatadsananon
- School of Geoinformatics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Amornrat Geadkaew-Krenc
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
6
|
Lyons M, Brown TL, Lahuerta-Marin A, Morgan ER, Airs PM. A molecular assessment of Ostertagia leptospicularis and Spiculopteragia asymmetrica among wild fallow deer in Northern Ireland and implications for false detection of livestock-associated species. Parasit Vectors 2024; 17:141. [PMID: 38500187 PMCID: PMC10949651 DOI: 10.1186/s13071-024-06147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Wild deer populations utilizing livestock grazing areas risk cross-species transmission of gastrointestinal nematode parasites (GINs), including GINs with anthelmintic resistance (AR) traits. Wild deer have been shown to carry problematic GIN species such as Haemonchus contortus and Trichostrongylus species in the UK, but the presence of livestock GINs in Northern Ireland deer populations is unknown. Also, is it not known whether AR traits exist among GINs of deer such as Ostertagia leptospicularis and Spiculopteragia asymmetrica in pastureland where anthelmintics are heavily used. METHODS Adult-stage GIN samples were retrieved from Northern Irish wild fallow deer abomasa. Individual specimens were subject to a species-specific PCR analysis for common sheep and cattle GIN species with ITS-2 sequence analysis to validate species identities. In addition, the beta-tubulin gene was subject to sequencing to identify benzimidazole (BZ) resistance markers. RESULTS ITS-2 sequencing revealed O. leptospicularis and S. asymmetrica, but species-specific PCR yielded false-positive hits for H. contortus, Teladorsagia circimcincta, Trichostrongylus axei, T. colubriformis, T. vitrinus and Ostertagia ostertagi. For beta-tubulin, O. leptospicularis and S. asymmetrica yielded species-specific sequences at the E198 codon, but no resistance markers were identified in either species at positions 167, 198 or 200 of the coding region. DISCUSSION From this report, no GIN species of significance in livestock were identified among Northern Ireland fallow deer. However, false-positive PCR hits for sheep and cattle-associated GINs is concerning as the presence of deer species in livestock areas could impact both deer and livestock diagnostics and lead to overestimation of both GIN burden in deer and the role as of deer as drivers of these pathogens. ITS-2 sequences from both O. leptospicularis and S. asymmetrica show minor sequence variations to geographically distinct isolates. AR has been noted among GINs of deer but molecular analyses are lacking for GINs of wildlife. In producing the first beta-tubulin sequences for both O. leptospicularis and S. asymmetrica, we report no BZ resistance in this cohort. CONCLUSIONS This work contributes to genetic resources for wildlife species and considers the implications of such species when performing livestock GIN diagnostics.
Collapse
Affiliation(s)
- Maggie Lyons
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute Northern Ireland, 12 Stoney Road, Belfast, Co Antrim, BT4 3SD, UK
| | - Tony L Brown
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Angela Lahuerta-Marin
- Agri-Food and Biosciences Institute Northern Ireland, 12 Stoney Road, Belfast, Co Antrim, BT4 3SD, UK
| | - Eric R Morgan
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Paul M Airs
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
7
|
Halvarsson P, Grandi G, Hägglund S, Höglund J. Gastrointestinal parasite community structure in horses after the introduction of selective anthelmintic treatment strategies. Vet Parasitol 2024; 326:110111. [PMID: 38218052 DOI: 10.1016/j.vetpar.2023.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
A relatively new method to study the species richness and diversity of nematode parasites in grazing animals is to perform deep sequencing on composite samples containing a mixture of parasites. In this work, we compared species composition of strongyles in two groups of horses as a function of egg count and age, based on a DNA barcoding approach. Faecal egg counts and larval cultures were obtained from nearly 300 horses, i.e., domestic horses (n = 167) and trotters (n = 130) sampled nationwide. The second internal transcribed spacer region (ITS2) of strongyle nematodes in the larval cultures was first amplified using barcoded universal primers and then sequenced on the PacBio platform. Subsequently, bioinformatic sequence analysis was performed using SCATA to assign operational taxonomic units (OTU). Finally, species occurrence and composition were assessed using R. ITS2 sequences were found in the majority (89%) of larval samples. Sequencing yielded an average of 140 (26 to 503) reads per sample. The OTUs were assigned to 28 different taxa, of which all but three could be identified as species. The average relative abundance of the seven most abundant species (all Cyathostominae) accounted for 87% of the combined data set. The three species with the highest prevalence in both horse groups were Cyathostomum catinatum, Cylicocyclus nassatus and Cylicostephanus calicatus, and they were frequently found in different combinations with other species regardless of horse group. Interestingly, this result is largely consistent with a previous Swedish study based on morphological analysis of adult worms. In addition, two migratory strongylids (Strongylus vulgaris and S. edentatus) occurred in few domestic horses and trotters. Except for C. minutus and C. nassatus, which decreased with age, and C. catinatum and S. vulgaris, which increased, no specific trends were observed with respect to horse age. Taken together, these results are broadly consistent with data obtained before the introduction of selective targeted treatment in Sweden in 2007. All in all, our results suggest that this treatment strategy has not led to a significant change in strongyle nematode community structure in Swedish horses. The study also confirms that nemabiome analysis in combination with diversity index analysis is an objective method to study strongyle communities in horses.
Collapse
Affiliation(s)
- Peter Halvarsson
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, P.O. Box 7036, Uppsala, Sweden
| | - Giulio Grandi
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, P.O. Box 7036, Uppsala, Sweden
| | | | - Johan Höglund
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, P.O. Box 7036, Uppsala, Sweden.
| |
Collapse
|
8
|
Pafčo B, Nosková E, Ilík V, Anettová L, Červená B, Kreisinger J, Pšenková I, Václavek P, Vyhlídalová T, Ježková J, Malát K, Mihalca AD, Modrý D. First insight into strongylid nematode diversity and anthelmintic treatment effectiveness in beef cattle in the Czech Republic explored by HTS metagenomics. Vet Parasitol Reg Stud Reports 2024; 47:100961. [PMID: 38199682 DOI: 10.1016/j.vprsr.2023.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Parasitic diseases and mitigation of their effects play an important role in the health management of grazing livestock worldwide, with gastrointestinal strongylid nematodes being of prominent importance. These helminths typically occur in complex communities, often composed of species from numerous strongylid genera. Detecting the full diversity of strongylid species in non-invasively collected faecal samples is nearly impossible using conventional methods. In contrast, high-throughput amplicon sequencing (HTS) can effectively identify co-occurring species. During the four-year project, we collected and analysed faecal samples from beef cattle on >120 farms throughout the Czech Republic. Strongylids were the predominant nematodes, detected in 56% of the samples, but at a low level of infection. The apparent limitations in identifying strongylid taxa prompted this pilot study on a representative group of samples testing positive for strongylids using ITS-2 metabarcoding. The most widespread genera parasitizing Czech cattle were Ostertagia (O. ostertagi) and Oesophagostomum spp., followed by Trichostrongylus and Cooperia, while Bunostomum, Nematodirus and Chabertia were present only in a minority. As comparative material, 21 samples of cattle from the Danube Delta in Romania were used, which, in contrast, were dominated by Haemonchus placei. Finally, the effect of ivermectin treatment was tested at two Czech farms. After treatment with the anthelmintic, there was a shift in the strongylid communities, with a dominance of Cooperia and Ostertagia.
Collapse
Affiliation(s)
- Barbora Pafčo
- CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 00 Brno, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00 Brno, Czech Republic.
| | - Eva Nosková
- CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 00 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Vladislav Ilík
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lucia Anettová
- CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 00 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Barbora Červená
- CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 00 Brno, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 00 Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Ilona Pšenková
- CEITEC VETUNI, University of Veterinary Sciences Brno, Palackého třída 1946/1, 612 00 Brno, Czech Republic
| | - Petr Václavek
- State Veterinary Institute Jihlava, Rantířovská 93/20, 586 01 Jihlava, Czech Republic
| | - Tereza Vyhlídalová
- State Veterinary Institute Jihlava, Rantířovská 93/20, 586 01 Jihlava, Czech Republic
| | - Jana Ježková
- State Veterinary Institute Jihlava, Rantířovská 93/20, 586 01 Jihlava, Czech Republic
| | - Kamil Malát
- Czech Beef Breeders Association, Těšnov 65/17, 110 00 Prague, Czech Republic
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - David Modrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
9
|
Titcomb G, Hulke J, Mantas JN, Gituku B, Young H. Cattle aggregations at shared resources create potential parasite exposure hotspots for wildlife. Proc Biol Sci 2023; 290:20232239. [PMID: 38052242 DOI: 10.1098/rspb.2023.2239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Globally rising livestock populations and declining wildlife numbers are likely to dramatically change disease risk for wildlife and livestock, especially at resources where they congregate. However, limited understanding of interspecific transmission dynamics at these hotspots hinders disease prediction or mitigation. In this study, we combined gastrointestinal nematode density and host foraging activity measurements from our prior work in an East African tropical savannah system with three estimates of parasite sharing capacity to investigate how interspecific exposures alter the relative riskiness of an important resource - water - among cattle and five dominant herbivore species. We found that due to their high parasite output, water dependence and parasite sharing capacity, cattle greatly increased potential parasite exposures at water sources for wild ruminants. When untreated for parasites, cattle accounted for over two-thirds of total potential exposures around water for wild ruminants, driving 2-23-fold increases in relative exposure levels at water sources. Simulated changes in wildlife and cattle ratios showed that water sources become increasingly important hotspots of interspecific transmission for wild ruminants when relative abundance of cattle parasites increases. These results emphasize that livestock have significant potential to alter the level and distribution of parasite exposures across the landscape for wild ruminants.
Collapse
Affiliation(s)
- Georgia Titcomb
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins 80523-1019, CO, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Jenna Hulke
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Benard Gituku
- Ecological Monitoring Unit, Ol Pejeta Conservancy, Nanyuki, Kenya
| | - Hillary Young
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
10
|
González S, del Rio ML, Díez-Baños N, Martínez A, Hidalgo MDR. Contribution to the Knowledge of Gastrointestinal Nematodes in Roe Deer ( Capreolus capreolus) from the Province of León, Spain: An Epidemiological and Molecular Study. Animals (Basel) 2023; 13:3117. [PMID: 37835723 PMCID: PMC10571729 DOI: 10.3390/ani13193117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
A study of gastrointestinal nematodes in roe deer was carried out in the regional hunting reserves of Riaño and Mampodre, Province of León, Spain, to provide information on their prevalence and intensity of infection in relation to the sampling areas, age of the animals, and body weight. Through a regulated necropsy of the animals, all of them harbored gastrointestinal nematodes in their digestive tract, with a mean intensity of parasitism of 638 ± 646.1 nematodes/infected animal. Eleven genera were found and 18 species of gastrointestinal nematodes were identified, three of them polymorphic: Trichostrongylus axei, Trichostrongylus vitrinus, Trichostrongylus capricola, Trichostrongylus colubriformis, Haemonchus contortus, Spiculopteragia spiculoptera/Spiculopteragia mathevossiani, Ostertagia leptospicularis/Ostertagia kolchida, Ostertagia (Grosspiculopteragia) occidentalis, Teladorsagia circumcincta/Teladorsagia trifurcate, Marshallagia marshalli, Nematodirus europaeus, Cooperia oncophora, Capillaria bovis, Oesophagostomum venulosum, and Trichuris ovis. All of them have already been cited in roe deer in Europe, but Marshallagia marshalli, Capillaria bovis, and Ostertagia (Grosspiculopteragia) occidentalis are reported for the first time in Spain in this host. The abomasum was the intestinal section, where the prevalence (98.9%) and mean intensity (x¯ = 370.7 ± 374.4 worms/roe deer; range 3-1762) were significantly higher, but no statistically significant differences were found when comparing the sampling areas and age of animals. The animals with lower body weight had a higher parasite load than those in better physical condition, finding, in this case, statistically significant differences (p = 0.0020). Seven genera and 14 species were identified. In the small intestine, 88% of the animals examined presented gastrointestinal nematodes, with an average intensity of x¯ = 131.7 ± 225.6 parasites/infected animal, ranging between 4-1254 worms. No statistically significant differences were found when the three parameters studied were compared. Four genera and seven species were identified. In the large intestine/cecum, 78.3% of the examined roe deer presented adult worms, with an average intensity of 6.3 ± 5.5 worms/infected animal; range 1-26 worms. Only statistically significant differences were observed when considering the mean intensity of parasitism and the sampling area (p = 0.0093). Two genera and two species were identified. Several of the species found in the study were studied molecularly, and with the sequences obtained compared with those deposited in GenBank, phylogenetic trees were prepared to determine their taxonomic status. Using coprological techniques, the existing correlation in the shedding of gastrointestinal nematode eggs in roe deer was investigated with that of semi-extensive sheep farms in the same study area to verify the existence of cross-transmission of these parasites between wild and domestic animals. The high values found in the studied parameters show that northern Spain is an area of high-intensity infection for roe deer.
Collapse
Affiliation(s)
- Sara González
- Department of Animal Health, Parasitology and Parasitic Diseases, Faculty of Veterinary Science, University of León, 24007 León, Spain; (S.G.); (M.d.R.H.)
| | - María Luisa del Rio
- Department of Animal Health, Section of Immunobiology, Faculty of Veterinary Science, University of León, 24007 León, Spain;
| | - Natividad Díez-Baños
- Department of Animal Health, Parasitology and Parasitic Diseases, Faculty of Veterinary Science, University of León, 24007 León, Spain; (S.G.); (M.d.R.H.)
| | - Angélica Martínez
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain;
| | - María del Rosario Hidalgo
- Department of Animal Health, Parasitology and Parasitic Diseases, Faculty of Veterinary Science, University of León, 24007 León, Spain; (S.G.); (M.d.R.H.)
| |
Collapse
|
11
|
Halvarsson P, Tydén E. The complete ITS2 barcoding region for Strongylus vulgaris and Strongylus edentatus. Vet Res Commun 2023; 47:1767-1771. [PMID: 36598645 PMCID: PMC10485102 DOI: 10.1007/s11259-022-10067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Gastrointestinal nematode parasites are of major concern for horses, where Strongylus vulgaris is considered the most pathogenic among the Strongylus species. Diagnosis of S. vulgaris infections can be determined with next generation sequencing techniques, which are inherently dependent on reference sequences. The best marker for parasitic nematodes is internal transcribed spacer 2 (ITS2) and we provide the first complete ITS2 sequences from five morphologically identified S. vulgaris and additional sequences from two S. edentatus. These sequences have high similarity to already published partial sequences and amplicon sequence variants (ASV) based on next generation sequencing (NGS). The ITS2 sequences from S. vulgaris matched available partial ITS2 sequences and the full ASVs, whereas the S. edentatus sequence matched another complete sequence. We also compare Sanger sequencing and NGS methods and conclude that the ITS2 variation is better represented with NGS methods. Based on this, we recommend that further sequencing of morphologically identified specimens of various species should be performed with NGS cover the intraspecific variation in the ITS2.
Collapse
Affiliation(s)
- Peter Halvarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7036, 750 05, Uppsala, Sweden.
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7036, 750 05, Uppsala, Sweden
| |
Collapse
|