1
|
Shital S, Madan E, Selvapandiyan A, Kumar Ganguly N. An update on recombinant vaccines against leishmaniasis. Indian J Med Res 2024; 160:323-337. [PMID: 39632642 PMCID: PMC11619067 DOI: 10.25259/ijmr_1040_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Leishmaniasis is a parasitic disease caused by various species of the Leishmania parasite, manifesting in visceral (VL), cutaneous (CL), and mucocutaneous (MCL) forms. To combat this debilitating disease, various vaccines candidates including proteins, DNA, vectors, adjuvants, and recombinant whole parasites have been developed and tested experimentally and preclinically against several Leishmania species. Some vaccines have already entered human clinical trials. These vaccines aim to induce protective immunity using specific antigens. This review examines all efforts to develop recombinant vaccines against the parasite, analyzing successes including commercially available canine vaccines and the overall challenges faced in the quest to eradicate the disease. Additionally, recent advances in vaccine delivery systems, such as viral vectors and non-pathogenic bacteria, offer promising avenues to enhance immunogenicity and improve the targeted delivery of antigens, potentially leading to more effective and long-lasting immune responses. By understanding past and current efforts, future strategies can be refined to create more effective vaccines and ultimately control or eradicate this parasitic disease.
Collapse
Affiliation(s)
- Shital Shital
- Department of Molecular Medicine, Jamia Hamdard, India
| | - Evanka Madan
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | | | |
Collapse
|
2
|
Louzada-Flores VN, Latrofa MS, Mendoza-Roldan JA, Lucente MS, Epis S, Varotto-Boccazzi I, Bandi C, Otranto D. Expression of key cytokines in dog macrophages infected by Leishmania tarentolae opening new avenues for the protection against Leishmania infantum. Sci Rep 2024; 14:27565. [PMID: 39528528 PMCID: PMC11554803 DOI: 10.1038/s41598-024-78451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The detection of Leishmania tarentolae in sympatric areas where Leishmania infantum is endemic raised questions regarding the protective effect exerted in dogs by L. tarentolae when in coinfection. This study aimed monitoring the in vitro gene expression of pro- (IFN- γ; TNF-α; IL-12) and anti-inflammatory (IL-4; IL-6; IL-10) cytokines in primary canine macrophages infected by L. tarentolae and L. infantum in single and in co-infections. Macrophages differentiated from dog blood mononuclear cells were infected with the L. tarentolae field-isolated (RI-325) and laboratory (LEM-124) strains, with L. infantum laboratory strain (IPT1), or both. Infection and the number of amastigotes per infected cell were evaluated microscopically by counting a total of 200 cells between 4 and 96 h. Cytokine gene expression was analyzed by real-time PCR from infected macrophages mRNA. Single infections presented higher expression of the cytokines IL-4 and IL-6, and lower of IL-12. Co-infections induced a lower gene expression of IL-4 and IL-6, and a higher gene expression of IL-12, correlating with the low amastigote burden despite the slight increase of infected cells. Data highlight the potential protective effect of L. tarentolae against L. infantum in co-infection by the reduced anti-inflammatory and increased pro-inflammatory cytokines gene expression, opening new perspectives for a canine vaccine development exploiting the non-pathogenic L. tarentolae.
Collapse
Affiliation(s)
| | | | | | | | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy.
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Mendoza-Roldan JA, Varotto-Boccazzi I, Louzada-Flores VN, Evans A, Cheikhi IB, Carbonara M, Zatelli A, Epis S, Bandi C, Beugnet F, Otranto D. Saurian-associated Leishmania tarentolae in dogs: Infectivity and immunogenicity evaluation in the canine model. PLoS Pathog 2024; 20:e1012598. [PMID: 39383180 PMCID: PMC11463833 DOI: 10.1371/journal.ppat.1012598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
In canine leishmaniosis endemic areas, Leishmania infantum may occur in sympatry with the non-pathogenic Leishmania tarentolae, which is associated to reptiles. The potential infectivity of L. tarentolae for mammals raises questions about the interactions between the two Leishmania species, and the potential cross-immune protection in dogs. This study aimed to assess the outcome of experimental L. tarentolae infection in dogs, determining: i) the anti-L. tarentolae antibody production, ii) the duration of the immunity and cytokine expression, and iii) the possible pathogenic effect in the canine host. Twelve purpose-bred beagle dogs were randomly allocated to three groups (intravenous inoculation, G1; intradermal inoculation, G2; negative control, G3). G1 and G2 dogs were inoculated twice (day 0, day 28) with 108 promastigotes of L. tarentolae strain (RTAR/IT/21/RI-325) isolated from a Tarentola mauritanica gecko. The animals were followed until day 206. Blood, serum, conjunctival swabs and lymph node aspirate samples were collected monthly and bone marrow, liver and spleen biopsies on day 91. Hematological and biochemical parameters were assessed monthly, as well as serology (IFAT and ELISA) and molecular identification of L. tarentolae. Mononuclear cells (PBMC) were obtained to assess the cytokine expression through in vitro stimulation or (re-) infection. Data from this study demonstrated that DNA from L. tarentolae is detectable up to 3 months post-infection, with seroconversion after day 28. Moreover, the non-pathogenic nature of L. tarentolae was confirmed, with a neutral Th1/Th2 polarization, and a possible shift to Th1 phenotype after derived macrophages (re-) infection, as demonstrated by the expression of IFN-gamma. Therefore, L. tarentolae demonstrated a great potential as a surrogate pathogen and/or immune-prophylaxis/immune-therapy against Leishmania infections in dogs and humans.
Collapse
Affiliation(s)
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric CRC ’Fondazione Romeo ed Enrica Invernizzi’, University of Milan, Milan, Italy
| | | | | | | | | | - Andrea Zatelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Sara Epis
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric CRC ’Fondazione Romeo ed Enrica Invernizzi’, University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric CRC ’Fondazione Romeo ed Enrica Invernizzi’, University of Milan, Milan, Italy
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
4
|
Saini I, Joshi J, Kaur S. Leishmania vaccine development: A comprehensive review. Cell Immunol 2024; 399-400:104826. [PMID: 38669897 DOI: 10.1016/j.cellimm.2024.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Infectious diseases like leishmaniasis, malaria, HIV, tuberculosis, leprosy and filariasis are responsible for an immense burden on public health systems. Among these, leishmaniasis is under the category I diseases as it is selected by WHO (World Health Organization) on the ground of diversity and complexity. High cost, resistance and toxic effects of Leishmania traditional drugs entail identification and development of therapeutic alternative. Since the natural infection elicits robust immunity, consistence efforts are going on to develop a successful vaccine. Clinical trials have been conducted on vaccines like Leish-F1, F2, and F3 formulated using specific Leishmania antigen epitopes. Current strategies utilize individual or combined antigens from the parasite or its insect vector's salivary gland extract, with or without adjuvant formulation for enhanced efficacy. Promising animal data supports multiple vaccine candidates (Lmcen-/-, LmexCen-/-), with some already in or heading for clinical trials. The crucial challenge in Leishmania vaccine development is to translate the research knowledge into affordable and accessible control tools that refines the outcome for those who are susceptible to infection. This review focuses on recent findings in Leishmania vaccines and highlights difficulties facing vaccine development and implementation.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
5
|
Cattaneo GM, Varotto-Boccazzi I, Molteni R, Ronchetti F, Gabrieli P, Mendoza-Roldan JA, Otranto D, Montomoli E, Bandi C, Epis S. A novel chemically defined medium for the biotechnological and biomedical exploitation of the cell factory Leishmania tarentolae. Sci Rep 2024; 14:9562. [PMID: 38671070 PMCID: PMC11053126 DOI: 10.1038/s41598-024-60383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
The development of media for cell culture is a major issue in the biopharmaceutical industry, for the production of therapeutics, immune-modulating molecules and protein antigens. Chemically defined media offer several advantages, as they are free of animal-derived components and guarantee high purity and a consistency in their composition. Microorganisms of the genus Leishmania represent a promising cellular platform for production of recombinant proteins, but their maintenance requires supplements of animal origin, such as hemin and fetal bovine serum. In the present study, three chemically defined media were assayed for culturing Leishmania tarentolae, using both a wild-type strain and a strain engineered to produce a viral antigen. Among the three media, Schneider's Drosophila Medium supplemented with Horseradish Peroxidase proved to be effective for the maintenance of L. tarentolae promastigotes, also allowing the heterologous protein production by the engineered strain. Finally, the engineered strain was maintained in culture up to the 12th week without antibiotic, revealing its capability to produce the recombinant protein in the absence of selective pressure.
Collapse
Affiliation(s)
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences, University of Milan, 20133, Milan, Italy
- Pediatric CRC 'Fondazione Romeo ed Enrica Invernizzi', University of Milan, 20157, Milan, Italy
| | - Riccardo Molteni
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | | - Paolo Gabrieli
- Department of Biosciences, University of Milan, 20133, Milan, Italy
- Pediatric CRC 'Fondazione Romeo ed Enrica Invernizzi', University of Milan, 20157, Milan, Italy
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, 70010, Valenzano, Italy
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, Republic of China
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
- VisMederi, 53100, Siena, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, 20133, Milan, Italy
- Pediatric CRC 'Fondazione Romeo ed Enrica Invernizzi', University of Milan, 20157, Milan, Italy
| | - Sara Epis
- Department of Biosciences, University of Milan, 20133, Milan, Italy.
- Pediatric CRC 'Fondazione Romeo ed Enrica Invernizzi', University of Milan, 20157, Milan, Italy.
| |
Collapse
|
6
|
La Rosa F, Varotto-Boccazzi I, Saresella M, Marventano I, Cattaneo GM, Hernis A, Piancone F, Otranto D, Epis S, Bandi C, Clerici M. The non-pathogenic protozoon Leishmania tarentolae interferes with the activation of NLRP3 inflammasome in human cells: new perspectives in the control of inflammation. Front Immunol 2024; 15:1298275. [PMID: 38707903 PMCID: PMC11066211 DOI: 10.3389/fimmu.2024.1298275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Background Innate immune responses against infectious agents can act as triggers of inflammatory diseases. On the other hand, various pathogens have developed mechanisms for the evasion of the immune response, based on an inhibition of innate immunity and inflammatory responses. Inflammatory diseases could thus be controlled through the administration of pathogens or pathogen-derived molecules, capable of interfering with the mechanisms at the basis of inflammation. In this framework, the NLRP3 inflammasome is an important component in innate antimicrobial responses and a major player in the inflammatory disease. Parasites of the genus Leishmania are master manipulators of innate immune mechanisms, and different species have been shown to inhibit inflammasome formation. However, the exploitation of pathogenic Leishmania species as blockers of NLRP3-based inflammatory diseases poses safety concerns. Methods To circumvent safety issues associated with pathogenic parasites, we focused on Leishmania tarentolae, a species of Leishmania that is not infectious to humans. Because NLRP3 typically develops in macrophages, in response to the detection and engulfment microorganisms, we performed our experiments on a monocyte-macrophage cell line (THP-1), either wild type or knockout for ASC, a key component of NLRP3 formation, with determination of cytokines and other markers of inflammation. Results L. tarentolae was shown to possess the capability of dampening the formation of NLRP3 inflammasome and the consequent expression of pro-inflammatory molecules, with minor differences compared to effects of pathogenic Leishmania species. Conclusion The non-pathogenic L. tarentolae appears a promising pro-biotic microbe with anti-inflammatory properties or a source of immune modulating cellular fractions or molecules, capable of interfering with the formation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center 'Romeo ed Enrica Invernizzi', University of Milan, Milan, Italy
| | | | | | | | - Ambra Hernis
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Sara Epis
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center 'Romeo ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center 'Romeo ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Seyed N, Taheri T, Rafati S. Live attenuated-nonpathogenic Leishmania and DNA structures as promising vaccine platforms against leishmaniasis: innovations can make waves. Front Microbiol 2024; 15:1326369. [PMID: 38633699 PMCID: PMC11021776 DOI: 10.3389/fmicb.2024.1326369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania genus and is a complex disease affecting mostly tropical regions of the world. Unfortunately, despite the extensive effort made, there is no vaccine available for human use. Undoubtedly, a comprehensive understanding of the host-vector-parasite interaction is substantial for developing an effective prophylactic vaccine. Recently the role of sandfly saliva on disease progression has been uncovered which can make a substantial contribution in vaccine design. In this review we try to focus on the strategies that most probably meet the prerequisites of vaccine development (based on the current understandings) including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free selection are now available to promisingly compensate for intrinsic drawbacks associated with these platforms. Our main goal is to call more attention toward the prerequisites of effective vaccine development while controlling the disease outspread is a substantial need.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
8
|
Khandibharad S, Singh S. Synthetic biology for combating leishmaniasis. Front Microbiol 2024; 15:1338749. [PMID: 38362504 PMCID: PMC10867266 DOI: 10.3389/fmicb.2024.1338749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the Leishmania genus. Despite the efforts to control and treat the disease, it still remains a major public health problem in many countries. Synthetic biology is a rapidly evolving interdisciplinary field that combines biology, engineering, and computer science to design and construct novel biological systems. In recent years, synthetic biology approaches have shown great promise for developing new and effective strategies to combat leishmaniasis. In this perspective, we summarize the recent advances in the use of synthetic biology for the development of vaccines, diagnostic tools, and novel therapeutics for leishmaniasis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, Pune, India
| |
Collapse
|
9
|
Iatta R, Carbonara M, Morea A, Trerotoli P, Benelli G, Nachum-Biala Y, Mendoza-Roldan JA, Cavalera MA, Baneth G, Bandi C, Zatelli A, Otranto D. Assessment of the diagnostic performance of serological tests in areas where Leishmania infantum and Leishmania tarentolae occur in sympatry. Parasit Vectors 2023; 16:352. [PMID: 37807047 PMCID: PMC10561492 DOI: 10.1186/s13071-023-05981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Visceral leishmaniosis caused by infection with the zoonotic protozoan Leishmania infantum is a life-threatening disease affecting dogs and humans. The sympatric occurrence of L. infantum and Leishmania tarentolae in an area of southern Italy endemic for canine leishmaniosis, where dogs are also exposed to the latter species, suggests the persistence of herpetophilic L. tarentolae in a non-permissive host, therefore raising questions about the performance of serological diagnostic tests routinely employed. METHODS The diagnostic performance of serological tests such as the immunofluorescence antibody test (IFAT), two commercial immunoenzymatic assays (i.e. NovaTec VetLine Leishmania ELISA® and rK39 ICT®) and an in-house enzyme-linked immunosorbent assay (ELISA) was evaluated in healthy dogs seropositive to L. infantum, whereas the only IFAT available was used to detect antibodies to L. tarentolae. RESULTS With the IFAT, out of a total of 104 dogs tested, 15 were seronegative for L. infantum of which three were L. tarentolae seropositive' and 89 were L. infantum seropositive. Of the latter 89 dogs, representing the highest proportion of seropositive animals (85.6%) detected by IFAT' 66 were also seropositive for L. tarentolae. Cohen's kappa (κ) agreement coefficient between the IFAT results and those of all the other tests was very low, and the IFAT results were significantly different from those of all the other serological tests as calculated by Cochran's Q-test. Analysis using the Bayesian latent class (Bayes-LCA) showed that the in-house ELISA and IFAT contributed the most towards identifying infected and non-infected dogs, respectively. The IFAT test showed low positive predictive value (59.5%), but high negative predictive value (100%). CONCLUSIONS These results demonstrate that the IFAT for L. infantum, although highly sensitive, may not be considered a useful diagnostic test due to its low specificity. Therefore, an accurate serological tool with high specificity is mandatory for avoiding cross-reaction in epidemiological contexts where the two species of Leishmania occur in sympatry.
Collapse
Affiliation(s)
- Roberta Iatta
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Mariaelisa Carbonara
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Anna Morea
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Paolo Trerotoli
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Yaarit Nachum-Biala
- School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Gad Baneth
- School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Claudio Bandi
- Department of Biosciences, Pediatric CRC "Romeo Ed Enrica Invernizzi"-University of Milan, Milan, Italy
| | - Andrea Zatelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy.
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
10
|
Varotto-Boccazzi I, Epis S, Cattaneo GM, Guerrini N, Manenti A, Rubolini D, Gabrieli P, Otranto D, Zuccotti G, Montomoli E, Bandi C. Rectal Administration of Leishmania Cells Elicits a Specific, Th1-Associated IgG2a Response in Mice: New Perspectives for Mucosal Vaccination against Leishmaniasis, after the Repurposing of a Study on an Anti-Viral Vaccine Candidate. Trop Med Infect Dis 2023; 8:406. [PMID: 37624344 PMCID: PMC10458511 DOI: 10.3390/tropicalmed8080406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
The mucosal immune system plays a pivotal role in the control of infections, as it represents the first line of defense against most pathogens, from respiratory viruses to intestinal parasites. Mucosal vaccination is thus regarded as a promising strategy to protect animals, including humans, from infections that are acquired by ingestion, inhalation or through the urogenital system. In addition, antigens delivered at the mucosal level can also elicit systemic immune responses. Therefore, mucosal vaccination is potentially effective also against systemic infections acquired through non-mucosal routes, for example, through the bite of hematophagous insects, as in the case of leishmaniasis, a widespread disease that affects humans and dogs. Here, we explored the potential of antigen rectal administration for the generation of anti-Leishmania immunity. Mice were immunized through rectal administration of whole cells of the model parasite Leishmania tarentolae (using a clone engineered to express the spike protein of the SARS-CoV-2 virus generated in a previous study). A specific anti-Leishmania IgG antibody response was detected. In addition, the recorded IgG2a/IgG1 ratio was higher than that of animals injected subcutaneously; therefore, suggesting a shift to a Th1-biased immune response. Considering the importance of a Th1 polarization as a protective response against Leishmania infections, we suggest that further investigation should be focused on the development of novel types of vaccines against these parasites based on rectal immunization.
Collapse
Affiliation(s)
- Ilaria Varotto-Boccazzi
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (I.V.-B.); (G.M.C.); (P.G.)
- Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, 20157 Milan, Italy;
| | - Sara Epis
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (I.V.-B.); (G.M.C.); (P.G.)
- Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, 20157 Milan, Italy;
| | - Giulia Maria Cattaneo
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (I.V.-B.); (G.M.C.); (P.G.)
| | - Noemi Guerrini
- VisMederi, 53100 Siena, Italy; (N.G.); (A.M.); (E.M.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy;
- Water Research Institute-National Research Council of Italy, IRSA-CNR, 20861 Brugherio, Italy
| | - Paolo Gabrieli
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (I.V.-B.); (G.M.C.); (P.G.)
- Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, 20157 Milan, Italy;
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, 70010 Valenzano, Italy;
- Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan 65175/4161, Iran
| | - Gianvincenzo Zuccotti
- Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, 20157 Milan, Italy;
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Emanuele Montomoli
- VisMederi, 53100 Siena, Italy; (N.G.); (A.M.); (E.M.)
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, 20133 Milan, Italy; (I.V.-B.); (G.M.C.); (P.G.)
- Pediatric CRC ‘Fondazione Romeo ed Enrica Invernizzi’, University of Milan, 20157 Milan, Italy;
| |
Collapse
|
11
|
Louzada-Flores VN, Latrofa MS, Lucente MS, Dambrós BP, Mendoza-Roldan JA, Varotto-Boccazzi I, Cattaneo GM, Späth GF, Buonavoglia A, Otranto D. Intracellular persistence of Leishmania tarentolae in primary canine macrophage cells. Acta Trop 2023; 243:106935. [PMID: 37127215 DOI: 10.1016/j.actatropica.2023.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Leishmania tarentolae is a non-pathogenic species first isolated from geckoes in the Mediterranean basin. The finding that dogs test positive against both Leishmania infantum and L. tarentolae raises questions regarding the ability of the latter species to persist and adapt to new hosts. This study aimed to evaluate in vitro the capability of L. tarentolae to colonize, survive and persist in canine primary monocyte-derived mononuclear cells. Monocytes were isolated from dog whole blood samples and placed in 24-well plates for differentiation into macrophages and for incubation with L. tarentolae field-isolated strains (RI-325 and SF-178) and laboratory (LEM-124) strain; the parasite burden was assessed at different time points post-infection. The L. infantum laboratory strain (MON-1) was used as control. Infection parameters were evaluated by microscopy, counting the number of amastigotes/200 infected cells, and by duplex real-time PCR from supernatants and detached cells. Similar to L. infantum, L. tarentolae strains developed into round-shaped amastigote-like forms, with higher infection rates detected at 4 h followed by an overall decrease until 48 h. RI-325 presented also a higher infection rate at 72 h. Data showed that L. tarentolae strains infect and persist inside in vitro primary canine mononuclear cells, opening new perspectives for further laboratory studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gerald F Späth
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Alessio Buonavoglia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Italy; Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|