1
|
Hoffman JA, Trotter KW, Archer TK. RNA polymerase II coordinates histone deacetylation at active promoters. SCIENCE ADVANCES 2025; 11:eadt3037. [PMID: 39908363 PMCID: PMC11797538 DOI: 10.1126/sciadv.adt3037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Nucleosomes at promoters of active genes are marked by specific histone post-translational modifications and histone variants. These features are thought to promote the formation and maintenance of an "open" chromatin environment that is suitable for transcription. However, recent reports have drawn conflicting conclusions about whether these histone modifications depend on active transcription. To further interrogate this relationship, we inhibited transcription initiation using triptolide, which triggered degradation of RNA polymerase II, and examined the impact on histone modifications. Transcription initiation was not required for either hormone-induced or steady-state active histone modifications at transcription start sites (TSSs) and enhancers. Rather, blocking transcription initiation increased the levels of histone acetylation and H2AZ incorporation at active TSSs. P300 activity was dispensable for this effect, but inhibition of histone deacetylases masked the increased acetylation. Together, our results demonstrate that active histone modifications occur independently of transcription. Furthermore, our findings suggest that the process of transcription coordinates the removal of these modifications to limit gene activity.
Collapse
Affiliation(s)
| | | | - Trevor K. Archer
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, 27709 NC, USA
| |
Collapse
|
2
|
Bannik K, Sak A, Groneberg M, Stuschke M. Defining the role of Tip60 in the DNA damage response of glioma cell lines. Int J Radiat Biol 2024; 100:1622-1632. [PMID: 39361872 DOI: 10.1080/09553002.2024.2409668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE Glioblastomas are resistant to conventional therapies, including radiotherapy. Our previous study proved that epigenetic regulation influences the radiation response of glioma cells. This study evaluated the role of the acetyltransferase Tip60 on the radiation response. MATERIAL AND METHODS Tip60 expression was down-regulated by transfecting specific siRNA's in A7 and MO59K cells with high and low expression of Tip60, respectively, and its effect on survival was assessed. DNA repair was analyzed by foci scoring (γH2AX, Rad51, 53BP1, pATM). The interaction of Tip60 with ATM and DNA-PK was investigated using the specific inhibitors KU55933 and NU7441, respectively. RESULTS Knockdown of Tip60 significantly (p < .001) reduced survival in both cell lines, but the effect was more pronounced in A7 cells. ATMi and DNA-PKi significantly reduced the surviving fraction following irradiation. However, no further effect of siTip60 on the radiosensitivity of ATMi treated A7 cells was observed. In contrast, DNA-PKi effectively enhanced the sensitizing effect of siTip60. Mechanistically, siTip60 reduced the number of initial Rad51 and ATM foci formation after irradiation and prevented their dissolution at 24 h. siTip60 had no impact on the formation of 53BP1 and γH2AX foci and did not further affect these end-points if combined with ATMi or DNA-PKi. CONCLUSIONS Downregulation of Tip60 enhances the radiation sensitivity of both glioma cells and markedly elevates the radiation sensitivity when combined with DNA-PKi. Therefore, treatment with DNA-PK inhibitors represents a promising approach to augment the radiation sensitivity of glioma cell lines with deficient Tip60 activity in a synergistic manner.
Collapse
Affiliation(s)
- K Bannik
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - A Sak
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - M Groneberg
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - M Stuschke
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
3
|
Hoffman JA, Trotter KW, Archer TK. RNA Polymerase II coordinates histone deacetylation at active promoters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613553. [PMID: 39345547 PMCID: PMC11429789 DOI: 10.1101/2024.09.17.613553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nucleosomes at actively transcribed promoters have specific histone post-transcriptional modifications and histone variants. These features are thought to contribute to the formation and maintenance of a permissive chromatin environment. Recent reports have drawn conflicting conclusions about whether these histone modifications depend on transcription. We used triptolide to inhibit transcription initiation and degrade RNA Polymerase II and interrogated the effect on histone modifications. Transcription initiation was dispensable for de novo and steady-state histone acetylation at transcription start sites (TSSs) and enhancers. However, at steady state, blocking transcription initiation increased the levels of histone acetylation and H2AZ incorporation at active TSSs. These results demonstrate that deposition of specific histone modifications at TSSs is not dependent on transcription and that transcription limits the maintenance of these marks.
Collapse
Affiliation(s)
- Jackson A. Hoffman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health; Research Triangle Park, 27709, NC, USA
| | - Kevin W. Trotter
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health; Research Triangle Park, 27709, NC, USA
| | - Trevor K. Archer
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health; Research Triangle Park, 27709, NC, USA
| |
Collapse
|
4
|
Yang Z, Mameri A, Cattoglio C, Lachance C, Florez Ariza AJ, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, Fradet-Turcotte A, Lambert JP, Ranish JA, Côté J, Nogales E. Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science 2024; 385:eadl5816. [PMID: 39088653 DOI: 10.1126/science.adl5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024]
Abstract
The human nucleosome acetyltransferase of histone H4 (NuA4)/Tat-interactive protein, 60 kilodalton (TIP60) coactivator complex, a fusion of the yeast switch/sucrose nonfermentable related 1 (SWR1) and NuA4 complexes, both incorporates the histone variant H2A.Z into nucleosomes and acetylates histones H4, H2A, and H2A.Z to regulate gene expression and maintain genome stability. Our cryo-electron microscopy studies show that, within the NuA4/TIP60 complex, the E1A binding protein P400 (EP400) subunit serves as a scaffold holding the different functional modules in specific positions, creating a distinct arrangement of the actin-related protein (ARP) module. EP400 interacts with the transformation/transcription domain-associated protein (TRRAP) subunit by using a footprint that overlaps with that of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, preventing the formation of a hybrid complex. Loss of the TRRAP subunit leads to mislocalization of NuA4/TIP60, resulting in the redistribution of H2A.Z and its acetylation across the genome, emphasizing the dual functionality of NuA4/TIP60 as a single macromolecular assembly.
Collapse
Affiliation(s)
- Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Alfredo Jose Florez Ariza
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Deepthi Sudarshan
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Arul Banerjea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Amélie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Endocrinology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
5
|
Chen K, Wang L, Yu Z, Yu J, Ren Y, Wang Q, Xu Y. Structure of the human TIP60 complex. Nat Commun 2024; 15:7092. [PMID: 39154037 PMCID: PMC11330486 DOI: 10.1038/s41467-024-51259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Mammalian TIP60 is a multi-functional enzyme with histone acetylation and histone dimer exchange activities. It plays roles in diverse cellular processes including transcription, DNA repair, cell cycle control, and embryonic development. Here we report the cryo-electron microscopy structures of the human TIP60 complex with the core subcomplex and TRRAP module refined to 3.2-Å resolution. The structures show that EP400 acts as a backbone integrating the motor module, the ARP module, and the TRRAP module. The RUVBL1-RUVBL2 hexamer serves as a rigid core for the assembly of EP400 ATPase and YL1 in the motor module. In the ARP module, an ACTL6A-ACTB heterodimer and an extra ACTL6A make hydrophobic contacts with EP400 HSA helix, buttressed by network interactions among DMAP1, EPC1, and EP400. The ARP module stably associates with the motor module but is flexibly tethered to the TRRAP module, exhibiting a unique feature of human TIP60. The architecture of the nucleosome-bound human TIP60 reveals an unengaged nucleosome that is located between the core subcomplex and the TRRAP module. Our work illustrates the molecular architecture of human TIP60 and provides architectural insights into how this complex is bound by the nucleosome.
Collapse
Affiliation(s)
- Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
7
|
Park G, Patel AB, Wu C, Louder RK. Structures of H2A.Z-associated human chromatin remodelers SRCAP and TIP60 reveal divergent mechanisms of chromatin engagement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605802. [PMID: 39131301 PMCID: PMC11312561 DOI: 10.1101/2024.07.30.605802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
H2A.Z is a conserved histone variant that is localized to specific genomic regions where it plays important roles in transcription, DNA repair, and replication. Central to the biochemistry of human H2A.Z are the SRCAP and TIP60 chromatin remodelers, homologs of yeast SWR1 which catalyzes ATP-dependent H2A.Z exchange. Here, we use cryo-electron microscopy to resolve six structural states of the native SRCAP complex, uncovering conformational intermediates interpreted as a stepwise path to full nucleosome engagement. We also resolve the structure of the native TIP60 complex which consists of a structured core from which flexibly tethered chromatin binding domains emerge. Despite the shared subunit composition, the core of TIP60 displays divergent architectures from SRCAP that structurally disfavor nucleosome engagement, suggesting a distinct biochemical function.
Collapse
Affiliation(s)
- Giho Park
- Biochemistry, Cellular and Molecular Graduate Program, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
| | - Avinash B. Patel
- Department of Biophysics, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Carl Wu
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Robert K. Louder
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine; Baltimore, MD 21205, USA
- Department of Biology, Johns Hopkins University; Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Yu X, Xu J. TWIST1 Drives Cytotoxic CD8+ T-Cell Exhaustion through Transcriptional Activation of CD274 (PD-L1) Expression in Breast Cancer Cells. Cancers (Basel) 2024; 16:1973. [PMID: 38893094 PMCID: PMC11171171 DOI: 10.3390/cancers16111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
In breast cancer, epithelial-mesenchymal transition (EMT) is positively associated with programmed death ligand 1 (PD-L1) expression and immune escape, and TWIST1 silences ERα expression and induces EMT and cancer metastasis. However, how TWIST1 regulates PD-L1 and immune evasion is unknown. This study analyzed TWIST1 and PD-L1 expression in breast cancers, investigated the mechanism for TWIST1 to regulate PD-L1 transcription, and assessed the effects of TWIST1 and PD-L1 in cancer cells on cytotoxic CD8+ T cells. Interestingly, TWIST1 expression is correlated with high-level PD-L1 expression in ERα-negative breast cancer cells. The overexpression and knockdown of TWIST1 robustly upregulate and downregulate PD-L1 expression, respectively. TWIST1 binds to the PD-L1 promoter and recruits the TIP60 acetyltransferase complex in a BRD8-dependent manner to transcriptionally activate PD-L1 expression, which significantly accelerates the exhaustion and death of the cytotoxic CD8+ T cells. Accordingly, knockdown of TWIST1 or BRD8 or inhibition of PD-L1 significantly enhances the tumor antigen-specific CD8+ T cells to suppress the growth of breast cancer cells. These results demonstrate that TWIST1 directly induces PD-L1 expression in ERα-negative breast cancer cells to promote immune evasion. Targeting TWIST1, BRD8, and/or PD-L1 in ERα-negative breast cancer cells with TWIST1 expression may sensitize CD8+ T-cell-mediated immunotherapy.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Forouzanfar F, Plassard D, Furst A, Moreno D, Oliveira KA, Reina-San-Martin B, Tora L, Molina N, Mendoza M. Gene-specific RNA homeostasis revealed by perturbation of coactivator complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577960. [PMID: 38352321 PMCID: PMC10862879 DOI: 10.1101/2024.01.30.577960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Transcript buffering entails the reciprocal modulation of mRNA synthesis and degradation rates to maintain stable RNA levels under varying cellular conditions. Current research supports a global, non-sequence-specific connection between mRNA synthesis and degradation, but the underlying mechanisms are still unclear. In this study, we investigated changes in RNA metabolism following acute depletion of TIP60/KAT5, the acetyltransferase subunit of the NuA4 transcriptional coactivator complex, in mouse embryonic stem cells. By combining RNA sequencing of nuclear, cytoplasmic, and newly synthesised transcript fractions with biophysical modelling, we demonstrate that TIP60 predominantly enhances transcription of numerous genes, while a smaller set of genes undergoes TIP60-dependent transcriptional repression. Surprisingly, transcription changes caused by TIP60 depletion were offset by corresponding changes in RNA nuclear export and cytoplasmic stability, indicating gene-specific buffering mechanisms. Similarly, disruption of the unrelated ATAC coactivator complex also resulted in gene-specific transcript buffering. These findings reveal that transcript buffering functions at a gene-specific level and suggest that cells dynamically adjust RNA splicing, export, and degradation in response to individual RNA synthesis alterations, thereby sustaining cellular homeostasis.
Collapse
|
10
|
Kao YR, Chen J, Kumari R, Ng A, Zintiridou A, Tatiparthy M, Ma Y, Aivalioti MM, Moulik D, Sundaravel S, Sun D, Reisz JA, Grimm J, Martinez-Lopez N, Stransky S, Sidoli S, Steidl U, Singh R, D'Alessandro A, Will B. An iron rheostat controls hematopoietic stem cell fate. Cell Stem Cell 2024; 31:378-397.e12. [PMID: 38402617 PMCID: PMC10939794 DOI: 10.1016/j.stem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Yun-Ruei Kao
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA.
| | - Jiahao Chen
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Anita Ng
- Karches Center for Oncology Research, the Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Aliona Zintiridou
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Madhuri Tatiparthy
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria M Aivalioti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Deeposree Moulik
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Sriram Sundaravel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juliane Grimm
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Nuria Martinez-Lopez
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajat Singh
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California Los Angeles, CA, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Britta Will
- Department of Oncology, Albert Einstein College of Medicine, New York, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, New York, NY, USA; Blood Cancer Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Alhosin M. Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Epigenet Insights 2023; 16:25168657231213717. [PMID: 38033464 PMCID: PMC10687967 DOI: 10.1177/25168657231213717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Early diets in honeybees have effects on epigenome with consequences on their phenotype. Depending on the early larval diet, either royal jelly (RJ) or royal worker, 2 different female castes are generated from identical genomes, a long-lived queen with fully developed ovaries and a short-lived functionally sterile worker. To generate these prominent physiological and morphological differences between queen and worker, honeybees utilize epigenetic mechanisms which are controlled by nutritional input. These mechanisms include DNA methylation and histone post-translational modifications, mainly histone acetylation. In honeybee larvae, DNA methylation and histone acetylation may be differentially altered by RJ. This diet has biologically active ingredients with inhibitory effects on the de novo methyltransferase DNMT3A or the histone deacetylase 3 HDAC3 to create and maintain the epigenetic state necessary for developing larvae to generate a queen. DNMT and HDAC enzymes work together to induce the formation of a compacted chromatin structure, repressing transcription. Such dialog could be coordinated by their association with other epigenetic factors including the ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1). Through its multiple functional domains, UHRF1 acts as an epigenetic reader of both DNA methylation patterns and histone marks. The present review discusses the epigenetic regulation of honeybee's chromatin and how the early diets in honeybees can affect the DNA/histone modifying types of machinery that are necessary to stimulate the larvae to turn into either queen or worker. The review also looks at future directions in epigenetics mechanisms of honeybees, mainly the potential role of UHRF1 in these mechanisms.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Martin BJE, Ablondi EF, Goglia C, Mimoso CA, Espinel-Cabrera PR, Adelman K. Global identification of SWI/SNF targets reveals compensation by EP400. Cell 2023; 186:5290-5307.e26. [PMID: 37922899 PMCID: PMC11307202 DOI: 10.1016/j.cell.2023.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.
Collapse
Affiliation(s)
- Benjamin J E Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Eileen F Ablondi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christine Goglia
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia A Mimoso
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piero R Espinel-Cabrera
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Yu X, He T, Tong Z, Liao L, Huang S, Fakhouri WD, Edwards DP, Xu J. Molecular mechanisms of TWIST1-regulated transcription in EMT and cancer metastasis. EMBO Rep 2023; 24:e56902. [PMID: 37680145 PMCID: PMC10626429 DOI: 10.15252/embr.202356902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
TWIST1 induces epithelial-to-mesenchymal transition (EMT) to drive cancer metastasis. It is yet unclear what determines TWIST1 functions to activate or repress transcription. We found that the TWIST1 N-terminus antagonizes TWIST1-regulated gene expression, cancer growth and metastasis. TWIST1 interacts with both the NuRD complex and the NuA4/TIP60 complex (TIP60-Com) via its N-terminus. Non-acetylated TWIST1-K73/76 selectively interacts with and recruits NuRD to repress epithelial target gene transcription. Diacetylated TWIST1-acK73/76 binds BRD8, a component of TIP60-Com that also binds histone H4-acK5/8, to recruit TIP60-Com to activate mesenchymal target genes and MYC. Knockdown of BRD8 abolishes TWIST1 and TIP60-Com interaction and TIP60-Com recruitment to TWIST1-activated genes, resulting in decreasing TWIST1-activated target gene expression and cancer metastasis. Both TWIST1/NuRD and TWIST1/TIP60-Com complexes are required for TWIST1 to promote EMT, proliferation, and metastasis at full capacity. Therefore, the diacetylation status of TWIST1-K73/76 dictates whether TWIST1 interacts either with NuRD to repress epithelial genes, or with TIP60-Com to activate mesenchymal genes and MYC. Since BRD8 is essential for TWIST1-acK73/76 and TIP60-Com interaction, targeting BRD8 could be a means to inhibit TWIST1-activated gene expression.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Tao He
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Present address:
Institute for Cancer MedicineSouthwest Medical UniversitySichuanChina
| | - Zhangwei Tong
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Lan Liao
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Shixia Huang
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Walid D Fakhouri
- Department of Diagnostic and Biomedical Sciences, Center for Craniofacial Research, School of DentistryUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| | - Dean P Edwards
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| | - Jianming Xu
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Dan L. Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
14
|
Sporrij A, Choudhuri A, Prasad M, Muhire B, Fast EM, Manning ME, Weiss JD, Koh M, Yang S, Kingston RE, Tolstorukov MY, Clevers H, Zon LI. PGE 2 alters chromatin through H2A.Z-variant enhancer nucleosome modification to promote hematopoietic stem cell fate. Proc Natl Acad Sci U S A 2023; 120:e2220613120. [PMID: 37126722 PMCID: PMC10175842 DOI: 10.1073/pnas.2220613120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023] Open
Abstract
Prostaglandin E2 (PGE2) and 16,16-dimethyl-PGE2 (dmPGE2) are important regulators of hematopoietic stem and progenitor cell (HSPC) fate and offer potential to enhance stem cell therapies [C. Cutler et al. Blood 122, 3074-3081(2013); W. Goessling et al. Cell Stem Cell 8, 445-458 (2011); W. Goessling et al. Cell 136, 1136-1147 (2009)]. Here, we report that PGE2-induced changes in chromatin at enhancer regions through histone-variant H2A.Z permit acute inflammatory gene induction to promote HSPC fate. We found that dmPGE2-inducible enhancers retain MNase-accessible, H2A.Z-variant nucleosomes permissive of CREB transcription factor (TF) binding. CREB binding to enhancer nucleosomes following dmPGE2 stimulation is concomitant with deposition of histone acetyltransferases p300 and Tip60 on chromatin. Subsequent H2A.Z acetylation improves chromatin accessibility at stimuli-responsive enhancers. Our findings support a model where histone-variant nucleosomes retained within inducible enhancers facilitate TF binding. Histone-variant acetylation by TF-associated nucleosome remodelers creates the accessible nucleosome landscape required for immediate enhancer activation and gene induction. Our work provides a mechanism through which inflammatory mediators, such as dmPGE2, lead to acute transcriptional changes and modify HSPC behavior to improve stem cell transplantation.
Collapse
Affiliation(s)
- Audrey Sporrij
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Avik Choudhuri
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Meera Prasad
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Brejnev Muhire
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Eva M. Fast
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Margot E. Manning
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Jodi D. Weiss
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Michelle Koh
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
| | - Robert E. Kingston
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | | | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht3584 CT, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht3584 CS, The Netherlands
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA02115
- HHMI, Harvard Stem Cell Institute, Boston, MA02115
- Harvard Medical School, Harvard Stem Cell Institute, Boston, MA02115
| |
Collapse
|
15
|
Hsieh E, Janssens DH, Paddison PJ, Browne EP, Henikoff S, OhAinle M, Emerman M. A modular CRISPR screen identifies individual and combination pathways contributing to HIV-1 latency. PLoS Pathog 2023; 19:e1011101. [PMID: 36706161 PMCID: PMC9907829 DOI: 10.1371/journal.ppat.1011101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Transcriptional silencing of latent HIV-1 proviruses entails complex and overlapping mechanisms that pose a major barrier to in vivo elimination of HIV-1. We developed a new latency CRISPR screening strategy, called Latency HIV-CRISPR which uses the packaging of guideRNA-encoding lentiviral vector genomes into the supernatant of budding virions as a direct readout of factors involved in the maintenance of HIV-1 latency. We developed a custom guideRNA library targeting epigenetic regulatory genes and paired the screen with and without a latency reversal agent-AZD5582, an activator of the non-canonical NFκB pathway-to examine a combination of mechanisms controlling HIV-1 latency. A component of the Nucleosome Acetyltransferase of H4 histone acetylation (NuA4 HAT) complex, ING3, acts in concert with AZD5582 to activate proviruses in J-Lat cell lines and in a primary CD4+ T cell model of HIV-1 latency. We found that the knockout of ING3 reduces acetylation of the H4 histone tail and BRD4 occupancy on the HIV-1 LTR. However, the combination of ING3 knockout accompanied with the activation of the non-canonical NFκB pathway via AZD5582 resulted in a dramatic increase in initiation and elongation of RNA Polymerase II on the HIV-1 provirus in a manner that is nearly unique among all cellular promoters.
Collapse
Affiliation(s)
- Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Patrick J. Paddison
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Steve Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Molly OhAinle
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Wang H, Li B, Zuo L, Wang B, Yan Y, Tian K, Zhou R, Wang C, Chen X, Jiang Y, Zheng H, Qin F, Zhang B, Yu Y, Liu CP, Xu Y, Gao J, Qi Z, Deng W, Ji X. The transcriptional coactivator RUVBL2 regulates Pol II clustering with diverse transcription factors. Nat Commun 2022; 13:5703. [PMID: 36171202 PMCID: PMC9519968 DOI: 10.1038/s41467-022-33433-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
RNA polymerase II (Pol II) apparatuses are compartmentalized into transcriptional clusters. Whether protein factors control these clusters remains unknown. In this study, we find that the ATPase-associated with diverse cellular activities (AAA + ) ATPase RUVBL2 co-occupies promoters with Pol II and various transcription factors. RUVBL2 interacts with unphosphorylated Pol II in chromatin to promote RPB1 carboxy-terminal domain (CTD) clustering and transcription initiation. Rapid depletion of RUVBL2 leads to a decrease in the number of Pol II clusters and inhibits nascent RNA synthesis, and tethering RUVBL2 to an active promoter enhances Pol II clustering at the promoter. We also identify target genes that are directly linked to the RUVBL2-Pol II axis. Many of these genes are hallmarks of cancers and encode proteins with diverse cellular functions. Our results demonstrate an emerging activity for RUVBL2 in regulating Pol II cluster formation in the nucleus.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, 610500, China
| | - Boyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Linyu Zuo
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Bo Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan Yan
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Rong Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chenlu Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xizi Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Haonan Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Fangfei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bin Zhang
- Departments of Pathology and Laboratory Medicine, and Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Box 608, Rochester, NY, 14642, USA
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Juntao Gao
- Institute for TCM-X; MOE Key Laboratory of Bioinformatics; Bioinformatics Division, BNRist (Beijing National Research Center for Information Science and Technology); Department of Automation, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Zhi Qi
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences (CLS), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
17
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
18
|
Sudarshan D, Avvakumov N, Lalonde ME, Alerasool N, Joly-Beauparlant C, Jacquet K, Mameri A, Lambert JP, Rousseau J, Lachance C, Paquet E, Herrmann L, Thonta Setty S, Loehr J, Bernardini MQ, Rouzbahman M, Gingras AC, Coulombe B, Droit A, Taipale M, Doyon Y, Côté J. Recurrent chromosomal translocations in sarcomas create a megacomplex that mislocalizes NuA4/TIP60 to Polycomb target loci. Genes Dev 2022; 36:664-683. [PMID: 35710139 DOI: 10.1101/gad.348982.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.
Collapse
Affiliation(s)
- Deepthi Sudarshan
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nikita Avvakumov
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marie-Eve Lalonde
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Joly-Beauparlant
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Karine Jacquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Amel Mameri
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jean-Philippe Lambert
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada.,Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Justine Rousseau
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Catherine Lachance
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Eric Paquet
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Lara Herrmann
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Samarth Thonta Setty
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Jeremy Loehr
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Marcus Q Bernardini
- Department of Gynecologic Oncology, Princess Margaret Cancer Center, University Health Network, Sinai Health System, Toronto, Ontario M5B 2M9, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Marjan Rouzbahman
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Arnaud Droit
- Computational Biology Laboratory, CHU de Québec-Université Laval Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| | - Jacques Côté
- Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
19
|
Devoucoux M, Fort V, Khelifi G, Xu J, Alerasool N, Galloy M, Wong N, Bourriquen G, Fradet-Turcotte A, Taipale M, Hope K, Hussein SMI, Côté J. Oncogenic ZMYND11-MBTD1 fusion protein anchors the NuA4/TIP60 histone acetyltransferase complex to the coding region of active genes. Cell Rep 2022; 39:110947. [PMID: 35705031 DOI: 10.1016/j.celrep.2022.110947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
A recurrent chromosomal translocation found in acute myeloid leukemia leads to an in-frame fusion of the transcription repressor ZMYND11 to MBTD1, a subunit of the NuA4/TIP60 histone acetyltransferase complex. To understand the abnormal molecular events that ZMYND11-MBTD1 expression can create, we perform a biochemical and functional characterization comparison to each individual fusion partner. ZMYND11-MBTD1 is stably incorporated into the endogenous NuA4/TIP60 complex, leading to its mislocalization on the body of genes normally bound by ZMYND11. This can be correlated to increased chromatin acetylation and altered gene transcription, most notably on the MYC oncogene, and alternative splicing. Importantly, ZMYND11-MBTD1 expression favors Myc-driven pluripotency during embryonic stem cell differentiation and self-renewal of hematopoietic stem/progenitor cells. Altogether, these results indicate that the ZMYND11-MBTD1 fusion functions primarily by mistargeting the NuA4/TIP60 complex to the body of genes, altering normal transcription of specific genes, likely driving oncogenesis in part through the Myc regulatory network.
Collapse
Affiliation(s)
- Maëva Devoucoux
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Victoire Fort
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Gabriel Khelifi
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Joshua Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
| | - Maxime Galloy
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Nicholas Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gaëlle Bourriquen
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Amelie Fradet-Turcotte
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
| | - Kristin Hope
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Samer M I Hussein
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada.
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada.
| |
Collapse
|
20
|
Lashgari A, Kougnassoukou Tchara PE, Lambert JP, Côté J. New insights into the DNA repair pathway choice with NuA4/TIP60. DNA Repair (Amst) 2022; 113:103315. [PMID: 35278769 DOI: 10.1016/j.dnarep.2022.103315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
In eukaryotic cells, DNA double-strand breaks (DSBs) can be repaired through two main pathways, non-homologous end-joining (NHEJ) or homologous recombination (HR). The selection of the repair pathway choice is governed by an antagonistic relationship between repair factors specific to each pathway, in a cell cycle-dependent manner. The molecular mechanisms of this decision implicate post-translational modifications of chromatin surrounding the break. Here, we discuss the recent advances regarding the function of the NuA4/TIP60 histone acetyltransferase/chromatin remodeling complex during DSBs repair. In particular, we emphasise the contribution of NuA4/TIP60 in repair pathway choice, in collaboration with the SAGA acetyltransferase complex, and how they regulate chromatin dynamics, modify non-histone substrates to allow DNA end resection and recombination.
Collapse
Affiliation(s)
- Anahita Lashgari
- St-Patrick Research Group in Basic Oncology, Canada; Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada
| | - Jean-Philippe Lambert
- Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada; Department of Molecular Medicine, Big Data Research Center, Université Laval, Quebec, Canada.
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Canada; Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Quebec City, QC, Canada.
| |
Collapse
|
21
|
Mir US, Bhat A, Mushtaq A, Pandita S, Altaf M, Pandita TK. Role of histone acetyltransferases MOF and Tip60 in genome stability. DNA Repair (Amst) 2021; 107:103205. [PMID: 34399315 DOI: 10.1016/j.dnarep.2021.103205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
The accurate repair of DNA damage specifically the chromosomal double-strand breaks (DSBs) arising from exposure to physical or chemical agents, such as ionizing radiation (IR) and radiomimetic drugs is critical in maintaining genomic integrity. The DNA DSB response and repair is facilitated by hierarchical signaling networks that orchestrate chromatin structural changes specifically histone modifications which impact cell-cycle checkpoints through enzymatic activities to repair the broken DNA ends. Various histone posttranslational modifications such as phosphorylation, acetylation, methylation and ubiquitylation have been shown to play a role in DNA damage repair. Recent studies have provided important insights into the role of histone-specific modifications in sensing DNA damage and facilitating the DNA repair. Histone modifications have been shown to determine the pathway choice for repair of DNA DSBs. This review will summarize the role of important histone acetyltransferases MOF and Tip60 mediated acetylation in repair of DNA DSBs in eukaryotic cells.
Collapse
Affiliation(s)
- Ulfat Syed Mir
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, 181143, India
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Shruti Pandita
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India; Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Tej K Pandita
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Farria AT, Plummer JB, Salinger AP, Shen J, Lin K, Lu Y, McBride KM, Koutelou E, Dent SYR. Transcriptional Activation of MYC-Induced Genes by GCN5 Promotes B-cell Lymphomagenesis. Cancer Res 2020; 80:5543-5553. [PMID: 33168647 DOI: 10.1158/0008-5472.can-20-2379] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/29/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Overexpression of the MYC oncoprotein is an initiating step in the formation of several cancers. MYC frequently recruits chromatin-modifying complexes to DNA to amplify the expression of cancer-promoting genes, including those regulating cell cycle, proliferation, and metabolism, yet the roles of specific modifiers in different cancer types are not well defined. Here, we show that GCN5 is an essential coactivator of cell-cycle gene expression driven by MYC overexpression and that deletion of Gcn5 delays or abrogates tumorigenesis in the Eμ-Myc mouse model of B-cell lymphoma. Our results demonstrate that Gcn5 loss impacts both expression and downstream functions of Myc. SIGNIFICANCE: Our results provide important proof of principle for Gcn5 functions in formation and progression of Myc-driven cancers, suggesting that GCN5 may be a viable target for development of new cancer therapies.
Collapse
Affiliation(s)
- Aimee T Farria
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas.,The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Joshua B Plummer
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Andrew P Salinger
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas.,The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas. .,The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, Texas.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
23
|
MYC in Brain Development and Cancer. Int J Mol Sci 2020; 21:ijms21207742. [PMID: 33092025 PMCID: PMC7588885 DOI: 10.3390/ijms21207742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
The MYC family of transcriptional regulators play significant roles in animal development, including the renewal and maintenance of stem cells. Not surprisingly, given MYC's capacity to promote programs of proliferative cell growth, MYC is frequently upregulated in cancer. Although members of the MYC family are upregulated in nervous system tumours, the mechanisms of how elevated MYC promotes stem cell-driven brain cancers is unknown. If we are to determine how increased MYC might contribute to brain cancer progression, we will require a more complete understanding of MYC's roles during normal brain development. Here, we evaluate evidence for MYC family functions in neural stem cell fate and brain development, with a view to better understand mechanisms of MYC-driven neural malignancies.
Collapse
|
24
|
Ravichandran P, Davis SA, Vashishtha H, Gucwa AL, Ginsburg DS. Nuclear Localization Is Not Required for Tip60 Tumor Suppressor Activity in Breast and Lung Cancer Cells. DNA Cell Biol 2020; 39:2077-2084. [PMID: 33155839 DOI: 10.1089/dna.2020.5980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Tip60 lysine acetyltransferase is a tumor suppressor in most cancers but an oncogene in prostate and gastric cancer. Tip60 is commonly found in the nucleus, where it acetylates proteins involved in transcription, DNA repair, and chromatin; however, it has also been shown to acetylate cytoplasmic targets. In this study, we investigated the relationship between Tip60 localization and breast and lung cancer. In cell fractionation experiments, cancer-derived cell lines showed a shift from nuclear to cytoplasmic endogenous Tip60 compared with cell lines derived from normal cells. With immunofluorescence, we observed four different localization patterns of overexpressed Tip60 and found that cancer cells had increased cytoplasmic localization of Tip60 compared with HEK-293 cells. The addition of a nuclear localization signal (NLS) increased the number of cells containing nuclear Tip60, whereas mutation of a putative endogenous NLS increased the number of cells with cytoplasmic Tip60. Overexpression of Tip60 increased cancer cell line sensitivity to paclitaxel regardless of changes in localization. These results suggest that dysregulation of Tip60 in breast and lung cancer is not limited to reduced expression but may also involve subcellular localization.
Collapse
Affiliation(s)
| | - Simon A Davis
- New York Structural Biology Center, New York, New York, USA
| | | | - Azad L Gucwa
- Department of Biology, Farmingdale State College, Farmingdale, New York, USA
| | - Daniel S Ginsburg
- Department of Natural Sciences, Immaculata University, Immaculata, Pennsylvania, USA
| |
Collapse
|
25
|
Eckersley-Maslin MA, Parry A, Blotenburg M, Krueger C, Ito Y, Franklin VNR, Narita M, D'Santos CS, Reik W. Epigenetic priming by Dppa2 and 4 in pluripotency facilitates multi-lineage commitment. Nat Struct Mol Biol 2020; 27:696-705. [PMID: 32572255 PMCID: PMC7614975 DOI: 10.1038/s41594-020-0443-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
How the epigenetic landscape is established in development is still being elucidated. Here, we uncover developmental pluripotency associated 2 and 4 (DPPA2/4) as epigenetic priming factors that establish a permissive epigenetic landscape at a subset of developmentally important bivalent promoters characterized by low expression and poised RNA-polymerase. Differentiation assays reveal that Dppa2/4 double knockout mouse embryonic stem cells fail to exit pluripotency and differentiate efficiently. DPPA2/4 bind both H3K4me3-marked and bivalent gene promoters and associate with COMPASS- and Polycomb-bound chromatin. Comparing knockout and inducible knockdown systems, we find that acute depletion of DPPA2/4 results in rapid loss of H3K4me3 from key bivalent genes, while H3K27me3 is initially more stable but lost following extended culture. Consequently, upon DPPA2/4 depletion, these promoters gain DNA methylation and are unable to be activated upon differentiation. Our findings uncover a novel epigenetic priming mechanism at developmental promoters, poising them for future lineage-specific activation.
Collapse
Affiliation(s)
| | - Aled Parry
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Marloes Blotenburg
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Oncode Institute, Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Yoko Ito
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
26
|
Koutelou E, Farria AT, Dent SYR. Complex functions of Gcn5 and Pcaf in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194609. [PMID: 32730897 DOI: 10.1016/j.bbagrm.2020.194609] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
A wealth of biochemical and cellular data, accumulated over several years by multiple groups, has provided a great degree of insight into the molecular mechanisms of actions of GCN5 and PCAF in gene activation. Studies of these lysine acetyltransferases (KATs) in vitro, in cultured cells, have revealed general mechanisms for their recruitment by sequence-specific binding factors and their molecular functions as transcriptional co-activators. Genetic studies indicate that GCN5 and PCAF are involved in multiple developmental processes in vertebrates, yet our understanding of their molecular functions in these contexts remains somewhat rudimentary. Understanding the functions of GCN5/PCAF in developmental processes provides clues to the roles of these KATs in disease states. Here we will review what is currently known about the developmental roles of GCN5 and PCAF, as well as emerging role of these KATs in oncogenesis.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Aimee T Farria
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, United States of America; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America.
| |
Collapse
|
27
|
Lipinski M, Muñoz-Viana R, Del Blanco B, Marquez-Galera A, Medrano-Relinque J, Caramés JM, Szczepankiewicz AA, Fernandez-Albert J, Navarrón CM, Olivares R, Wilczyński GM, Canals S, Lopez-Atalaya JP, Barco A. KAT3-dependent acetylation of cell type-specific genes maintains neuronal identity in the adult mouse brain. Nat Commun 2020; 11:2588. [PMID: 32444594 PMCID: PMC7244750 DOI: 10.1038/s41467-020-16246-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
The lysine acetyltransferases type 3 (KAT3) family members CBP and p300 are important transcriptional co-activators, but their specific functions in adult post-mitotic neurons remain unclear. Here, we show that the combined elimination of both proteins in forebrain excitatory neurons of adult mice resulted in a rapidly progressing neurological phenotype associated with severe ataxia, dendritic retraction and reduced electrical activity. At the molecular level, we observed the downregulation of neuronal genes, as well as decreased H3K27 acetylation and pro-neural transcription factor binding at the promoters and enhancers of canonical neuronal genes. The combined deletion of CBP and p300 in hippocampal neurons resulted in the rapid loss of neuronal molecular identity without de- or transdifferentiation. Restoring CBP expression or lysine acetylation rescued neuronal-specific transcription in cultured neurons. Together, these experiments show that KAT3 proteins maintain the excitatory neuron identity through the regulation of histone acetylation at cell type-specific promoter and enhancer regions. Neuronal identity maintenance is highly regulated. Here, the authors showed that CBP and p300 safeguard neuronal identity through histone acetylation at promoters and enhancers of neuronal specific genes. The loss of both CBP and p300 impairs gene expression, circuit activity, and behavior in mice.
Collapse
Affiliation(s)
- Michal Lipinski
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Rafael Muñoz-Viana
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Marquez-Galera
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Juan Medrano-Relinque
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - José M Caramés
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Andrzej A Szczepankiewicz
- Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jordi Fernandez-Albert
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Carmen M Navarrón
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Roman Olivares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Grzegorz M Wilczyński
- Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Santiago Canals
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
28
|
ChromID identifies the protein interactome at chromatin marks. Nat Biotechnol 2020; 38:728-736. [PMID: 32123383 PMCID: PMC7289633 DOI: 10.1038/s41587-020-0434-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/23/2020] [Indexed: 01/05/2023]
Abstract
Chromatin modifications regulate genome function by recruiting protein factors to the genome. However, the protein composition at distinct chromatin modifications remains to be fully characterized. Here, we use natural protein domains as modular building blocks to develop engineered chromatin readers (eCRs) selective for DNA methylation and histone tri-methylation at H3K4, H3K9 a H3K27 residues. We first demonstrate their utility as selective chromatin binders in living cells by stably expressing eCRs in mouse embryonic stem cells and measuring their subnuclear localisation, genomic distribution and histone modification–binding preference. By fusing eCRs to the biotin ligase BASU, we establish ChromID, a method for identifying the chromatin-dependent protein interactome based on proximity biotinylation, and apply it to distinct chromatin modifications in mouse stem cells. Using a synthetic dual-modification reader, we also uncover the protein composition at bivalent promoters marked by H3K4me3 and H3K27me3. These results highlight the ability of ChromID to obtain a detailed view of protein interaction networks on chromatin.
Collapse
|
29
|
Kwan SY, Sheel A, Song CQ, Zhang XO, Jiang T, Dang H, Cao Y, Ozata DM, Mou H, Yin H, Weng Z, Wang XW, Xue W. Depletion of TRRAP Induces p53-Independent Senescence in Liver Cancer by Down-Regulating Mitotic Genes. Hepatology 2020; 71:275-290. [PMID: 31188495 PMCID: PMC6906267 DOI: 10.1002/hep.30807] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive subtype of liver cancer with few effective treatments, and the underlying mechanisms that drive HCC pathogenesis remain poorly characterized. Identifying genes and pathways essential for HCC cell growth will aid the development of new targeted therapies for HCC. Using a kinome CRISPR screen in three human HCC cell lines, we identified transformation/transcription domain-associated protein (TRRAP) as an essential gene for HCC cell proliferation. TRRAP has been implicated in oncogenic transformation, but how it functions in cancer cell proliferation is not established. Here, we show that depletion of TRRAP or its co-factor, histone acetyltransferase KAT5, inhibits HCC cell growth through induction of p53-independent and p21-independent senescence. Integrated cancer genomics analyses using patient data and RNA sequencing identified mitotic genes as key TRRAP/KAT5 targets in HCC, and subsequent cell cycle analyses revealed that TRRAP-depleted and KAT5-depleted cells are arrested at the G2/M phase. Depletion of topoisomerase II alpha (TOP2A), a mitotic gene and TRRAP/KAT5 target, was sufficient to recapitulate the senescent phenotype of TRRAP/KAT5 knockdown. Conclusion: Our results uncover a role for TRRAP/KAT5 in promoting HCC cell proliferation by activating mitotic genes. Targeting the TRRAP/KAT5 complex is a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Suet-Yan Kwan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ankur Sheel
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Tingting Jiang
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Yueying Cao
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Deniz M. Ozata
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Hao Yin
- Medical research institute, Wuhan University, Wuhan, PR China
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, P. R. China
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
- Program in Molecular Medicine, Department of Molecular, Cell and Cancer Biology, and Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605
| |
Collapse
|
30
|
Urban I, Kerimoglu C, Sakib MS, Wang H, Benito E, Thaller C, Zhou X, Yan J, Fischer A, Eichele G. TIP60/KAT5 is required for neuronal viability in hippocampal CA1. Sci Rep 2019; 9:16173. [PMID: 31700011 PMCID: PMC6838100 DOI: 10.1038/s41598-019-50927-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrant histone acetylation contributes to age-dependent cognitive decline and neurodegenerative diseases. We analyze the function of lysine acetyltransferase TIP60/KAT5 in neurons of the hippocampus using an inducible mouse model. TIP60-deficiency in the adult forebrain leads within days to extensive transcriptional dysfunction characterized by the presence of a neurodegeneration-related signature in CA1. Cell cycle- and immunity-related genes are upregulated while learning- and neuronal plasticity-related genes are downregulated. The dysregulated genes seen under TIP60-deficiency overlap with those in the well-characterized CK-p25 neurodegeneration model. We found that H4K12 is hypoacetylated at the transcriptional start sites of those genes whose expression is dampened in TIP60-deficient mice. Transcriptional dysregulation is followed over a period of weeks by activation of Caspase 3 and fragmentation of β-actin in CA1 neurites, eventually leading to severe neuronal loss. TIP60-deficient mice also develop mild memory impairment. These phenotypes point to a central role of TIP60 in transcriptional networks that are critical for neuronal viability.
Collapse
Affiliation(s)
- Inga Urban
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Cemil Kerimoglu
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany
| | - M Sadman Sakib
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Eva Benito
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany.,European Molecular Biology Organization (EMBO), 69117, Heidelberg, Germany
| | - Christina Thaller
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Xunlei Zhou
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Institute of Anatomy and Cell Biology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - André Fischer
- Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075, Göttingen, Germany. .,Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
31
|
Giaimo BD, Ferrante F, Vallejo DM, Hein K, Gutierrez-Perez I, Nist A, Stiewe T, Mittler G, Herold S, Zimmermann T, Bartkuhn M, Schwarz P, Oswald F, Dominguez M, Borggrefe T. Histone variant H2A.Z deposition and acetylation directs the canonical Notch signaling response. Nucleic Acids Res 2019; 46:8197-8215. [PMID: 29986055 PMCID: PMC6144792 DOI: 10.1093/nar/gky551] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/28/2018] [Indexed: 02/04/2023] Open
Abstract
A fundamental as yet incompletely understood feature of Notch signal transduction is a transcriptional shift from repression to activation that depends on chromatin regulation mediated by transcription factor RBP-J and associated cofactors. Incorporation of histone variants alter the functional properties of chromatin and are implicated in the regulation of gene expression. Here, we show that depletion of histone variant H2A.Z leads to upregulation of canonical Notch target genes and that the H2A.Z-chaperone TRRAP/p400/Tip60 complex physically associates with RBP-J at Notch-dependent enhancers. When targeted to RBP-J-bound enhancers, the acetyltransferase Tip60 acetylates H2A.Z and upregulates Notch target gene expression. Importantly, the Drosophila homologs of Tip60, p400 and H2A.Z modulate Notch signaling response and growth in vivo. Together, our data reveal that loading and acetylation of H2A.Z are required to assure tight control of canonical Notch activation.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albertstrasse 19A, 79104 Freiburg, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Diana M Vallejo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernández, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Kerstin Hein
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Irene Gutierrez-Perez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernández, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Gerhard Mittler
- Max-Planck-Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Susanne Herold
- Department of Internal Medicine II, Universities Giessen & Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Tobias Zimmermann
- Bioinformatics and Systems Biology, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Marek Bartkuhn
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392 Giessen, Germany
| | - Peggy Schwarz
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Franz Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas and Universidad Miguel Hernández, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
32
|
Sheikh BN, Akhtar A. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat Rev Genet 2019; 20:7-23. [PMID: 30390049 DOI: 10.1038/s41576-018-0072-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research over the past three decades has firmly established lysine acetyltransferases (KATs) as central players in regulating transcription. Recent advances in genomic sequencing, metabolomics, animal models and mass spectrometry technologies have uncovered unexpected new roles for KATs at the nexus between the environment and transcriptional regulation. Thousands of reversible acetylation sites have been mapped in the proteome that respond dynamically to the cellular milieu and maintain major processes such as metabolism, autophagy and stress response. Concurrently, researchers are continuously uncovering how deregulation of KAT activity drives disease, including cancer and developmental syndromes characterized by severe intellectual disability. These novel findings are reshaping our view of KATs away from mere modulators of chromatin to detectors of the cellular environment and integrators of diverse signalling pathways with the ability to modify cellular phenotype.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
33
|
Petkau N, Budak H, Zhou X, Oster H, Eichele G. Acetylation of BMAL1 by TIP60 controls BRD4-P-TEFb recruitment to circadian promoters. eLife 2019; 8:e43235. [PMID: 31294688 PMCID: PMC6650244 DOI: 10.7554/elife.43235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
Many physiological processes exhibit circadian rhythms driven by cellular clocks composed of interlinked activating and repressing elements. To investigate temporal regulation in this molecular oscillator, we combined mouse genetic approaches and analyses of interactions of key circadian proteins with each other and with clock gene promoters. We show that transcriptional activators control BRD4-PTEFb recruitment to E-box-containing circadian promoters. During the activating phase of the circadian cycle, the lysine acetyltransferase TIP60 acetylates the transcriptional activator BMAL1 leading to recruitment of BRD4 and the pause release factor P-TEFb, followed by productive elongation of circadian transcripts. We propose that the control of BRD4-P-TEFb recruitment is a novel temporal checkpoint in the circadian clock cycle.
Collapse
Affiliation(s)
- Nikolai Petkau
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Harun Budak
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Xunlei Zhou
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Henrik Oster
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Gregor Eichele
- Department of Genes and BehaviorMax Planck Institute for Biophysical ChemistryGöttingenGermany
| |
Collapse
|
34
|
McCarthy A, Deiulio A, Martin ET, Upadhyay M, Rangan P. Tip60 complex promotes expression of a differentiation factor to regulate germline differentiation in female Drosophila. Mol Biol Cell 2018; 29:2933-2945. [PMID: 30230973 PMCID: PMC6329907 DOI: 10.1091/mbc.e18-06-0385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/23/2023] Open
Abstract
Germline stem cells (GSCs) self-renew and differentiate to sustain a continuous production of gametes. In the female Drosophila germ line, two differentiation factors, bag of marbles ( bam) and benign gonial cell neoplasm ( bgcn), work in concert in the stem cell daughter to promote the generation of eggs. In GSCs, bam transcription is repressed by signaling from the niche and is activated in stem cell daughters. In contrast, bgcn is transcribed in both the GSCs and stem cell daughters, but little is known about how bgcn is transcriptionally modulated. Here we find that the conserved protein Nipped-A acts through the Tat interactive protein 60-kDa (Tip60) histone acetyl transferase complex in the germ line to promote GSC daughter differentiation. We find that Nipped-A is required for efficient exit from the gap phase 2 (G2) of cell cycle of the GSC daughter and for expression of a differentiation factor, bgcn. Loss of Nipped-A results in accumulation of GSC daughters . Forced expression of bgcn in Nipped-A germline-depleted ovaries rescues this differentiation defect. Together, our results indicate that Tip60 complex coordinates cell cycle progression and expression of bgcn to help drive GSC daughters toward a differentiation program.
Collapse
Affiliation(s)
- Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222
| | - Aron Deiulio
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222
| | - Elliot Todd Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222
| |
Collapse
|
35
|
Wang X, Zhu W, Chang P, Wu H, Liu H, Chen J. Merge and separation of NuA4 and SWR1 complexes control cell fate plasticity in Candida albicans. Cell Discov 2018; 4:45. [PMID: 30109121 PMCID: PMC6089883 DOI: 10.1038/s41421-018-0043-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/11/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022] Open
Abstract
Phenotypic plasticity is common in development. Candida albicans, a polymorphic fungal pathogen of humans, possesses the unique ability to achieve rapid and reversible cell fate between unicellular form (yeast) and multicellular form (hypha) in response to environmental cues. The NuA4 histone acetyltransferase activity and Hda1 histone deacetylase activity have been reported to be required for hyphal initiation and maintenance. However, how Hda1 and NuA4 regulate hyphal elongation is not clear. NuA4 histone acetyltransferase and SWR1 chromatin remodeling complexes are conserved from yeast to human, which may have merged together to form a larger TIP60 complex since the origin of metazoan. In this study, we show a dynamic merge and separation of NuA4 and SWR1 complexes in C. albicans. NuA4 and SWR1 merge together in yeast state and separate into two distinct complexes in hyphal state. We demonstrate that acetylation of Eaf1 K173 controls the interaction between the two complexes. The YEATS domain of Yaf9 in C. albicans can recognize an acetyl-lysine of the Eaf1 and mediate the Yaf9-Eaf1 interaction. The reversible acetylation and deacetylation of Eaf1 by Esa1 and Hda1 control the merge and separation of NuA4 and SWR1, and this regulation is triggered by Brg1 recruitment of Hda1 to chromatin in response nutritional signals that sustain hyphal elongation. We have also observed an orchestrated promoter association of Esa1, Hda1, Swr1, and H2A.Z during the reversible yeast-hyphae transitions. This is the first discovery of a regulated merge of the NuA4 and SWR1 complexes that controls cell fate determination and this regulation may be conserved in polymorphic fungi.
Collapse
Affiliation(s)
- Xiongjun Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China
| | - Wencheng Zhu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China
| | - Peng Chang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China
| | - Hongyu Wu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, CA 92697 USA
| | - Jiangye Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031 China
| |
Collapse
|
36
|
Zhao LJ, Loewenstein PM, Green M. Identification of a panel of MYC and Tip60 co-regulated genes functioning primarily in cell cycle and DNA replication. Genes Cancer 2018; 9:101-113. [PMID: 30108681 PMCID: PMC6086004 DOI: 10.18632/genesandcancer.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We recently reported that adenovirus E1A enhances MYC association with the NuA4/Tip60 histone acetyltransferase (HAT) complex to activate a panel of genes enriched for DNA replication and cell cycle. Genes from this panel are highly expressed in examined cancer cell lines when compared to normal fibroblasts. To further understand gene regulation in cancer by MYC and the NuA4 complex, we performed RNA-seq analysis of MD-MB231 breast cancer cells following knockdown of MYC or Tip60 - the HAT enzyme of the NuA4 complex. We identify here a panel of 424 genes, referred to as MYC-Tip60 co-regulated panel (MTcoR), that are dependent on both MYC and Tip60 for expression and likely co-regulated by MYC and the NuA4 complex. The MTcoR panel is most significantly enriched in genes involved in cell cycle and/or DNA replication. In contrast, genes repressed by shMYC but not by shTip60 (224 genes) have a low significance of enrichment in identifiable biological processes other than cell cycle and DNA replication. Genes repressed by shTip60 but not by shMYC (102 genes) have no significant identifiable gene enrichment. We propose that MYC cooperates with the NuA4 complex to activate the MTcoR panel of genes to promote DNA replication and cell cycle.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Paul M Loewenstein
- Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Maurice Green
- Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| |
Collapse
|
37
|
Rust K, Tiwari MD, Mishra VK, Grawe F, Wodarz A. Myc and the Tip60 chromatin remodeling complex control neuroblast maintenance and polarity in Drosophila. EMBO J 2018; 37:embj.201798659. [PMID: 29997178 DOI: 10.15252/embj.201798659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/04/2023] Open
Abstract
Stem cells establish cortical polarity and divide asymmetrically to simultaneously maintain themselves and generate differentiating offspring cells. Several chromatin modifiers have been identified as stemness factors in mammalian pluripotent stem cells, but whether these factors control stem cell polarity and asymmetric division has not been investigated so far. We addressed this question in Drosophila neural stem cells called neuroblasts. We identified the Tip60 chromatin remodeling complex and its interaction partner Myc as regulators of genes required for neuroblast maintenance. Knockdown of Tip60 complex members results in loss of cortical polarity, symmetric neuroblast division, and premature differentiation through nuclear entry of the transcription factor Prospero. We found that aPKC is the key target gene of Myc and the Tip60 complex subunit Domino in regulating neuroblast polarity. Our transcriptome analysis further showed that Domino regulates the expression of mitotic spindle genes previously identified as direct Myc targets. Our findings reveal an evolutionarily conserved functional link between Myc, the Tip60 complex, and the molecular network controlling cell polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Katja Rust
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany .,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany.,Department of Anatomy and OB-GYN/RS, University of California, San Francisco, San Francisco, CA, USA
| | - Manu D Tiwari
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany
| | - Vivek Kumar Mishra
- Department of Dermatology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ferdi Grawe
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Andreas Wodarz
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany .,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
38
|
Yang Y, Xue K, Li Z, Zheng W, Dong W, Song J, Sun S, Ma T, Li W. c-Myc regulates the CDK1/cyclin B1 dependent‑G2/M cell cycle progression by histone H4 acetylation in Raji cells. Int J Mol Med 2018; 41:3366-3378. [PMID: 29512702 PMCID: PMC5881754 DOI: 10.3892/ijmm.2018.3519] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 02/08/2018] [Indexed: 01/11/2023] Open
Abstract
Overexpression of c-Myc is involved in the tumorigenesis of B-lineage acute lymphoblastic leukemia (B‑ALL), but the mechanism is not well understood. In the present study, a c‑Myc‑knockdown model (Raji‑KD) was established using Raji cells, and it was indicated that c‑Myc regulates the expression of genes associated with cell cycle progression in G2/M‑phase, cyclin D kinase (CDK)1 and cyclin B1, by modulating 60 kDa Tat‑interactive protein (TIP60)/males absent on the first (MOF)‑mediated histone H4 acetylation (AcH4), which was then completely restored by re‑introduction of the c‑Myc gene into the Raji‑KD cells. The expression of CDK1 and cyclin B1 was markedly suppressed in Raji‑KD cells, resulting in G2/M arrest. In comparison to Raji cells, the proliferation of Raji‑KD cells was significantly reduced, and it was recovered via re‑introduction of the c‑Myc gene. In the tumorigenesis assays, the loss of c‑Myc expression significantly suppressed Raji cell‑derived lymphoblastic tumor formation. Although c‑Myc also promotes Raji cell apoptosis via the caspase‑3‑associated pathway, CDK1/cyclin B1‑dependent‑G2/M cell cycle progression remains the major driving force of c‑Myc‑controlled tumorigenesis. The present results suggested that c‑Myc regulates cyclin B1‑ and CDK1‑dependent G2/M cell cycle progression by TIP60/MOF-mediated AcH4 in Raji cells.
Collapse
Affiliation(s)
- Yan Yang
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Kai Xue
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhi Li
- Department of Clinical Laboratory, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Wei Zheng
- Department of Clinical Laboratory, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Weijie Dong
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jiazhe Song
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shijie Sun
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Tonghui Ma
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Wenzhe Li
- Department of Biological Chemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
39
|
Acharya D, Hainer SJ, Yoon Y, Wang F, Bach I, Rivera-Pérez JA, Fazzio TG. KAT-Independent Gene Regulation by Tip60 Promotes ESC Self-Renewal but Not Pluripotency. Cell Rep 2018; 19:671-679. [PMID: 28445719 DOI: 10.1016/j.celrep.2017.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
Although histone-modifying enzymes are generally assumed to function in a manner dependent on their enzymatic activities, this assumption remains untested for many factors. Here, we show that the Tip60 (Kat5) lysine acetyltransferase (KAT), which is essential for embryonic stem cell (ESC) self-renewal and pre-implantation development, performs these functions independently of its KAT activity. Unlike ESCs depleted of Tip60, KAT-deficient ESCs exhibited minimal alterations in gene expression, chromatin accessibility at Tip60 binding sites, and self-renewal, thus demonstrating a critical KAT-independent role of Tip60 in ESC maintenance. In contrast, KAT-deficient ESCs exhibited impaired differentiation into mesoderm and endoderm, demonstrating a KAT-dependent function in differentiation. Consistent with this phenotype, KAT-deficient mouse embryos exhibited post-implantation developmental defects. These findings establish separable KAT-dependent and KAT-independent functions of Tip60 in ESCs and during differentiation, revealing a complex repertoire of regulatory functions for this essential chromatin remodeling complex.
Collapse
Affiliation(s)
- Diwash Acharya
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yeonsoo Yoon
- Division of Genes and Development, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Feng Wang
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ingolf Bach
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jaime A Rivera-Pérez
- Division of Genes and Development, Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
40
|
Park JL, Lee YS, Kunkeaw N, Kim SY, Kim IH, Lee YS. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 2017; 9:171-187. [PMID: 28112569 DOI: 10.2217/epi-2016-0108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA polymerase III (Pol III) synthesizes a range of medium-sized noncoding RNAs (collectively 'Pol III genes') whose early established biological roles were so essential that they were considered 'housekeeping genes'. Besides these fundamental functions, diverse unconventional roles of mammalian Pol III genes have recently been recognized and their expression must be exquisitely controlled. In this review, we summarize the epigenetic regulation of Pol III genes by chromatin structure, histone modification and CpG DNA methylation. We also recapitulate the association between dysregulation of Pol III genes and diseases such as cancer and neurological disorders. Additionally, we will discuss why in-depth molecular studies of Pol III genes have not been attempted and how nc886, a Pol III gene, may resolve this issue.
Collapse
Affiliation(s)
- Jong-Lyul Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea.,Department of Functional Genomics, University of Science & Technology, Daejeon 305-806, Korea
| | - Yeon-Su Lee
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Nawapol Kunkeaw
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1072, USA.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea.,Department of Functional Genomics, University of Science & Technology, Daejeon 305-806, Korea
| | - In-Hoo Kim
- Graduate School of Cancer Science & Policy, National Cancer Center, Goyang 10408, Korea
| | - Yong Sun Lee
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1072, USA.,Graduate School of Cancer Science & Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
41
|
The TIP60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation. Mol Cell 2017; 62:409-421. [PMID: 27153538 DOI: 10.1016/j.molcel.2016.03.031] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 02/20/2016] [Accepted: 03/28/2016] [Indexed: 01/05/2023]
Abstract
The NuA4/TIP60 acetyltransferase complex is a key regulator of genome expression and stability. Here we identified MBTD1 as a stable subunit of the complex, and we reveal that, via a histone reader domain for H4K20me1/2, MBTD1 allows TIP60 to associate with specific gene promoters and to promote the repair of DNA double-strand breaks by homologous recombination. It was previously suggested that TIP60-dependent acetylation of H4 regulates binding of the non-homologous end joining factor 53BP1, which engages chromatin through simultaneous binding of H4K20me2 and H2AK15ub. We find that the TIP60 complex regulates association of 53BP1 partly by competing for H4K20me2 and by regulating H2AK15ub. Ubiquitylation of H2AK15 by RNF168 inhibits chromatin acetylation by TIP60, while this residue can be acetylated by TIP60 in vivo, blocking its ubiquitylation. Altogether, these results uncover an intricate mechanism orchestrated by the TIP60 complex to regulate 53BP1-dependent repair through competitive bivalent binding and modification of chromatin.
Collapse
|
42
|
Yang Y, Sun J, Chen T, Tao Z, Zhang X, Tian F, Zhou X, Lu D. Tat-interactive Protein-60KDA (TIP60) Regulates the Tumorigenesis of Lung Cancer In Vitro. J Cancer 2017; 8:2277-2281. [PMID: 28819431 PMCID: PMC5560146 DOI: 10.7150/jca.19677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
Abstract
Histone acetyltransferases (HATs) play vital functions in the tumorigenesis of many solid organ malignancies. We previously screened a human HATs cDNA library and identified Tat-interactive protein-60KDa (TIP60) as a candidate critical HATs in the origination of lung cancer. In this study, our data suggested that overexpression of TIP60 inhibited the cell viability of A549 and H1299 cells since day 2. Compared to the control group, the viability of these two lung cancer cells was inhibited by 25% and 19% at day 6 with the overexpression of TIP60. It increased by 36% and 26% when TIP60 was knockdown for 6 days. The invasion ability of these two cells was also restrained when TIP60 was overexpressed. While knockdown of TIP60 had the opposite effect. Inhibition of TIP60 significantly promoted the expression of molecules in AKT signaling pathway especially c-Myc. Furthermore, compared to paired tumor-adjacent tissue, lung cancer tumors had low expression of TIP60. Therefore, we concluded that TIP60 might inhibit the viability and invasion ability of lung cancer cells through down-regulation of AKT signaling pathway.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital (Tongji University), Shanghai 200433, China
| | - Jian Sun
- Department of General Surgery, the branch of Shanghai First People's Hospital, Shanghai 200081, China
| | - Ting Chen
- Department of Pharmacy, Xin-hua Hospital Affiliated to Medical School, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zengyue Tao
- Department of General Surgery, the branch of Shanghai First People's Hospital, Shanghai 200081, China
| | - Xianwei Zhang
- Department of General Surgery, the branch of Shanghai First People's Hospital, Shanghai 200081, China
| | - Feng Tian
- Department of Pharmacy, the branch of Shanghai First People's Hospital, Shanghai 200081, China
| | - Xiao Zhou
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital (Tongji University), Shanghai 200433, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
43
|
Lau AC, Zhu KP, Brouhard EA, Davis MB, Csankovszki G. An H4K16 histone acetyltransferase mediates decondensation of the X chromosome in C. elegans males. Epigenetics Chromatin 2016; 9:44. [PMID: 27777629 PMCID: PMC5070013 DOI: 10.1186/s13072-016-0097-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. Results To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. Conclusion These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0097-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA ; Genome Technologies, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin P Zhu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Elizabeth A Brouhard
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
44
|
Hirsch CL, Wrana JL, Dent SYR. KATapulting toward Pluripotency and Cancer. J Mol Biol 2016; 429:1958-1977. [PMID: 27720985 DOI: 10.1016/j.jmb.2016.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/30/2016] [Indexed: 12/20/2022]
Abstract
Development is generally regarded as a unidirectional process that results in the acquisition of specialized cell fates. During this process, cellular identity is precisely defined by signaling cues that tailor the chromatin landscape for cell-specific gene expression programs. Once established, these pathways and cell states are typically resistant to disruption. However, loss of cell identity occurs during tumor initiation and upon injury response. Moreover, terminally differentiated cells can be experimentally provoked to become pluripotent. Chromatin reorganization is key to the establishment of new gene expression signatures and thus new cell identity. Here, we explore an emerging concept that lysine acetyltransferase (KAT) enzymes drive cellular plasticity in the context of somatic cell reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Calley L Hirsch
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Sharon Y R Dent
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA.
| |
Collapse
|
45
|
Zhao LJ, Loewenstein PM, Green M. The adenoviral E1A N-terminal domain represses MYC transcription in human cancer cells by targeting both p300 and TRRAP and inhibiting MYC promoter acetylation of H3K18 and H4K16. Genes Cancer 2016; 7:98-109. [PMID: 27382434 PMCID: PMC4918948 DOI: 10.18632/genesandcancer.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cancers frequently arise from increased expression of proto-oncogenes, such as MYC and HER2. Understanding the cellular pathways regulating the transcription and expression of proto-oncogenes is important for targeted therapies for cancer treatment. Adenoviral (Ad) E1A 243R (243 aa residues) is a viral oncoprotein that interacts with key regulators of gene transcription and cell proliferation. We have shown previously that the 80 amino acid N-terminal transcriptional repression domain of E1A 243R (E1A 1-80) can target the histone acetyltransferase (HAT) p300 and repress HER2 in the HER2-overexpressing human breast cancer cell line SKBR3. Expression of E1A 1-80 induces death of SKBR3 and other cancer cell lines. In this study, we performed total cell RNA sequence analysis and identified MYC as the regulatory gene for cellular proliferation most strongly repressed by E1A 1-80. By RT-quantitative PCR analysis we show that repression of MYC in SKBR3 cells occurs early after expression of E1A 1-80, suggesting that MYC may be an early responder of E1A 1-80-mediated transcriptional repression. Of interest, while E1A 1-80 repression of MYC occurs in all eight human cancer cell lines examined, repression of HER2 is cell-type dependent. We demonstrate by ChIP analysis that MYC transcriptional repression by E1A 1-80 is associated with inhibition of acetylation of H3K18 and H4K16 on the MYC promoter, as well as inhibition of RNA Pol II binding to the MYC promoter. Deletion mutant analysis of E1A 1-80 suggests that both p300/CBP and TRRAP are involved in E1A 1-80 repression of MYC transcription. Further, E1A 1-80 interaction with p300/CBP and TRRAP is correlated with inhibition of H3K18 and H4K16 acetylation on the MYC promoter, respectively. Our results indicate that E1A 1-80 may target two important pathways for histone modification to repress transcription in human cancer cells.
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Paul M Loewenstein
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| | - Maurice Green
- Institute for Molecular Virology, Department of Microbiology and Molecular Immunology, Saint Louis University School of Medicine, Doisy Research Center, St. Louis, Missouri, USA
| |
Collapse
|