1
|
Olova NN, Andrews S. Whole Genome Methylation Sequencing via Enzymatic Conversion (EM-seq): Protocol, Data Processing, and Analysis. Methods Mol Biol 2025; 2866:73-98. [PMID: 39546198 DOI: 10.1007/978-1-0716-4192-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Whole genome bisulfite sequencing (WGBS) has been the gold standard technique for base resolution analysis of DNA methylation for the last 15 years. It has been, however, associated with technical biases, which lead to overall overestimation of global and regional methylation values, and significant artifacts in extreme cytosine-rich DNA sequence contexts. Enzymatic conversion of cytosine is the newest approach, set to replace entirely the use of the damaging bisulfite conversion of DNA. The EM-seq technique utilizes TET2, T4-BGT, and APOBEC in a two-step conversion process, where the modified cytosines are first protected by oxidation and glucosylation, followed by deamination of all unmodified cytosines to uracil. As a result, EM-seq is degradation-free and bias-free, requires low DNA input, and produces high library yields with longer reads, little batch variation, less duplication, uniform genomic coverage, accurate methylation over a larger number of captured CpGs, and no sequence-specific artifacts.
Collapse
Affiliation(s)
- Nelly N Olova
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, UK.
| |
Collapse
|
2
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Trasser M, Bohl-Viallefond G, Barragán-Borrero V, Diezma-Navas L, Loncsek L, Nordborg M, Marí-Ordóñez A. PTGS is dispensable for the initiation of epigenetic silencing of an active transposon in Arabidopsis. EMBO Rep 2024; 25:5780-5809. [PMID: 39511423 PMCID: PMC11624286 DOI: 10.1038/s44319-024-00304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Transposable elements (TEs) are repressed in plants through transcriptional gene silencing (TGS), maintained epigenetic silencing marks such as DNA methylation. However, the mechanisms by which silencing is first installed remain poorly understood in plants. Small interfering (si)RNAs and post-transcriptional gene silencing (PTGS) are believed to mediate the initiation of TGS by guiding the first deposition of DNA methylation. To determine how this silencing installation works, we took advantage of ÉVADÉ (EVD), an endogenous retroelement in Arabidopsis, able to recapitulate true de novo silencing with a sequence of PTGS followed by a TGS. To test whether PTGS is required for TGS, we introduce active EVD into RNA-DEPENDENT-RNA-POLYMERASE-6 (RDR6) mutants, an essential PTGS component. EVD activity and silencing are monitored across several generations. In the absence of PTGS, silencing of EVD is still achieved through installation of RNA-directed DNA methylation (RdDM). Our study shows that PTGS is dispensable for de novo EVD silencing. Although we cannot rule out that PTGS might facilitate TGS, or control TE activity, initiation of epigenetic silencing can take place in its absence.
Collapse
Affiliation(s)
- Marieke Trasser
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Grégoire Bohl-Viallefond
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Verónica Barragán-Borrero
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Laura Diezma-Navas
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Lukas Loncsek
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Arturo Marí-Ordóñez
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, 1030, Austria.
| |
Collapse
|
4
|
Pierozan P, Höglund A, Theodoropoulou E, Karlsson O. Perfluorooctanesulfonic acid (PFOS) induced cancer related DNA methylation alterations in human breast cells: A whole genome methylome study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174864. [PMID: 39032741 DOI: 10.1016/j.scitotenv.2024.174864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
DNA methylation plays a pivotal role in cancer. The ubiquitous contaminant perfluorooctanesulfonic acid (PFOS) has been epidemiologically associated with breast cancer, and can induce proliferation and malignant transformation of normal human breast epithelial cells (MCF-10A), but the information about its effect on DNA methylation is sparse. The aim of this study was to characterize the whole-genome methylome effects of PFOS in our breast cell model and compare the findings with previously demonstrated DNA methylation alterations in breast tumor tissues. The DNA methylation profile was assessed at single CpG resolution in MCF-10A cells treated with 1 μM PFOS for 72 h by using Enzymatic Methyl sequencing (EM-seq). We found 12,591 differentially methylated CpG-sites and 13,360 differentially methylated 100 bp tiles in the PFOS exposed breast cells. These differentially methylated regions (DMRs) overlapped with 2406 genes of which 494 were long non-coding RNA and 1841 protein coding genes. We identified 339 affected genes that have been shown to display altered DNA methylation in breast cancer tissue and several other genes related to cancer development. This includes hypermethylation of GACAT3, DELEC1, CASC2, LCIIAR, MUC16, SYNE1 and hypomethylation of TTN and KMT2C. DMRs were also found in estrogen receptor genes (ESR1, ESR2, ESRRG, ESRRB, GREB1) and estrogen responsive genes (GPER1, EEIG1, RERG). The gene ontology analysis revealed pathways related to cancer phenotypes such as cell adhesion and growth. These findings improve the understanding of PFOS's potential role in breast cancer and illustrate the value of whole-genome methylome analysis in uncovering mechanisms of chemical effects, identifying biomarker candidates, and strengthening epidemiological associations, potentially impacting risk assessment.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Sawyer S, Gelabert P, Yakir B, Llanos-Lizcano A, Sperduti A, Bondioli L, Cheronet O, Neugebauer-Maresch C, Teschler-Nicola M, Novak M, Pap I, Szikossy I, Hajdu T, Moiseyev V, Gromov A, Zariņa G, Meshorer E, Carmel L, Pinhasi R. Improved detection of methylation in ancient DNA. Genome Biol 2024; 25:261. [PMID: 39390557 PMCID: PMC11465500 DOI: 10.1186/s13059-024-03405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Reconstructing premortem DNA methylation levels in ancient DNA has led to breakthrough studies such as the prediction of anatomical features of the Denisovan. These studies rely on computationally inferring methylation levels from damage signals in naturally deaminated cytosines, which requires expensive high-coverage genomes. Here, we test two methods for direct methylation measurement developed for modern DNA based on either bisulfite or enzymatic methylation treatments. Bisulfite treatment shows the least reduction in DNA yields as well as the least biases during methylation conversion, demonstrating that this method can be successfully applied to ancient DNA.
Collapse
Affiliation(s)
- Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria.
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Benjamin Yakir
- Department of Statistics, The Faculty of Social Science, The Hebrew University Mount Scopus, Jerusalem, Israel
| | - Alejandro Llanos-Lizcano
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Alessandra Sperduti
- Museo Delle Civiltà, Servizio Di Bioarcheologia, Rome, Italy
- Dipartimento di Asia, Africa e Mediterraneo, Università degli Studi di Napoli "L'Orientale", Naples, Italy
| | - Luca Bondioli
- Università Di Padova, Dipartimento Dei Beni Culturali, Padua, Italy
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Christine Neugebauer-Maresch
- Austrian Archaeological Institute, Austrian Academy of Sciences, Vienna, Austria
- Institute of Prehistory and Early History, University of Vienna, Vienna, Austria
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
- Department of Archaeology and Heritage, Faculty of Humanities, University of Primorska, Koper, Slovenia
| | - Ildikó Pap
- Department of Biological Anthropology, Institute of Biology, University of Szeged, Szeged, Hungary
- Department of Anthropology, Hungarian Natural History Museum, Budapest, Hungary
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | | | - Tamás Hajdu
- Department of Biological Anthropology, Eötvös Loránd University, Budapest, Hungary
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), RAS, Saint Petersburg, Russia
| | - Andrey Gromov
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), RAS, Saint Petersburg, Russia
| | - Gunita Zariņa
- Institute of Latvian History, University of Latvia, Riga, Latvia
| | - Eran Meshorer
- The Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Longtin A, Watowich MM, Sadoughi B, Petersen RM, Brosnan SF, Buetow K, Cai Q, Gurven MD, Highland HM, Huang YT, Kaplan H, Kraft TS, Lim YAL, Long J, Melin AD, Roberson J, Ng KS, Stieglitz J, Trumble BC, Venkataraman VV, Wallace IJ, Wu J, Snyder-Mackler N, Jones A, Bick AG, Lea AJ. Cost-effective solutions for high-throughput enzymatic DNA methylation sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612068. [PMID: 39314398 PMCID: PMC11419010 DOI: 10.1101/2024.09.09.612068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies has not yet been performed. To do so, we optimized Targeted Methylation Sequencing protocol (TMS)-which profiles ∼4 million CpG sites-for miniaturization, flexibility, and multispecies use at a cost of ∼$80. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n=55 paired samples) and whole genome bisulfite sequencing (n=6 paired samples). In both cases, we found strong agreement between technologies (R² = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean=77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R² = 0.98). Finally, we applied our protocol to profile age-associated DNA methylation variation in two subsistence-level populations-the Tsimane of lowland Bolivia and the Orang Asli of Peninsular Malaysia-and found age-methylation patterns that were strikingly similar to those reported in high income cohorts, despite known differences in age-health relationships between lifestyle contexts. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.
Collapse
|
7
|
Guanzon D, Ross JP, Ma C, Berry O, Liew YJ. Comparing methylation levels assayed in GC-rich regions with current and emerging methods. BMC Genomics 2024; 25:741. [PMID: 39080541 PMCID: PMC11289974 DOI: 10.1186/s12864-024-10605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression, and for mammals typically occurs on cytosines within CpG dinucleotides. A significant challenge for methylation detection methods is accurately measuring methylation levels within GC-rich regions such as gene promoters, as inaccuracies compromise downstream biological interpretation of the data. To address this challenge, we compared methylation levels assayed using four different Methods Enzymatic Methyl-seq (EM-seq), whole genome bisulphite sequencing (WGBS), Infinium arrays (Illumina MethylationEPIC, "EPIC"), and Oxford Nanopore Technologies nanopore sequencing (ONT) applied to human DNA. Overall, all methods produced comparable and consistent methylation readouts across the human genome. The flexibility offered by current gold standard WGBS in interrogating genome-wide cytosines is surpassed technically by both EM-seq and ONT, as their coverages and methylation readouts are less prone to GC bias. These advantages are tempered by increased laboratory time (EM-seq) and higher complexity (ONT). We further assess the strengths and weaknesses of each method, and provide recommendations in choosing the most appropriate methylation method for specific scientific questions or translational needs.
Collapse
Affiliation(s)
- Dominic Guanzon
- CSIRO Health & Biosecurity, Westmead, NSW, Australia
- University of Queensland Centre for Clinical Research, Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Faculty of Medicine, The University of Queensland, QLD, Australia
| | - Jason P Ross
- CSIRO Health & Biosecurity, Westmead, NSW, Australia
| | - Chenkai Ma
- CSIRO Health & Biosecurity, Westmead, NSW, Australia
| | - Oliver Berry
- Environomics Future Science Platform, CSIRO, Crawley, WA, Australia
| | - Yi Jin Liew
- CSIRO Health & Biosecurity, Westmead, NSW, Australia.
- Environomics Future Science Platform, CSIRO, Crawley, WA, Australia.
| |
Collapse
|
8
|
Geiger C, Needhamsen M, Emanuelsson EB, Norrbom J, Steindorf K, Sundberg CJ, Reitzner SM, Lindholm ME. DNA methylation of exercise-responsive genes differs between trained and untrained men. BMC Biol 2024; 22:147. [PMID: 38965555 PMCID: PMC11225400 DOI: 10.1186/s12915-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Physical activity is well known for its multiple health benefits and although the knowledge of the underlying molecular mechanisms is increasing, our understanding of the role of epigenetics in long-term training adaptation remains incomplete. In this intervention study, we included individuals with a history of > 15 years of regular endurance or resistance training compared to age-matched untrained controls performing endurance or resistance exercise. We examined skeletal muscle DNA methylation of genes involved in key adaptation processes, including myogenesis, gene regulation, angiogenesis and metabolism. RESULTS A greater number of differentially methylated regions and differentially expressed genes were identified when comparing the endurance group with the control group than in the comparison between the strength group and the control group at baseline. Although the cellular composition of skeletal muscle samples was generally consistent across groups, variations were observed in the distribution of muscle fiber types. Slow-twitch fiber type genes MYH7 and MYL3 exhibited lower promoter methylation and elevated expression in endurance-trained athletes, while the same group showed higher methylation in transcription factors such as FOXO3, CREB5, and PGC-1α. The baseline DNA methylation state of those genes was associated with the transcriptional response to an acute bout of exercise. Acute exercise altered very few of the investigated CpG sites. CONCLUSIONS Endurance- compared to resistance-trained athletes and untrained individuals demonstrated a different DNA methylation signature of selected skeletal muscle genes, which may influence transcriptional dynamics following a bout of acute exercise. Skeletal muscle fiber type distribution is associated with methylation of fiber type specific genes. Our results suggest that the baseline DNA methylation landscape in skeletal muscle influences the transcription of regulatory genes in response to an acute exercise bout.
Collapse
Affiliation(s)
- Carla Geiger
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Medical School, Heidelberg University, Heidelberg, Germany
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Norrbom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Steindorf
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Malene E Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Center for Inherited Cardiovascular Disease, School of Medicine, Stanford University, 870 Quarry Rd, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Siebert-Kuss LM, Dietrich V, Di Persio S, Bhaskaran J, Stehling M, Cremers JF, Sandmann S, Varghese J, Kliesch S, Schlatt S, Vaquerizas JM, Neuhaus N, Laurentino S. Genome-wide DNA methylation changes in human spermatogenesis. Am J Hum Genet 2024; 111:1125-1139. [PMID: 38759652 PMCID: PMC11179423 DOI: 10.1016/j.ajhg.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Sperm production and function require the correct establishment of DNA methylation patterns in the germline. Here, we examined the genome-wide DNA methylation changes during human spermatogenesis and its alterations in disturbed spermatogenesis. We found that spermatogenesis is associated with remodeling of the methylome, comprising a global decline in DNA methylation in primary spermatocytes followed by selective remethylation, resulting in a spermatids/sperm-specific methylome. Hypomethylated regions in spermatids/sperm were enriched in specific transcription factor binding sites for DMRT and SOX family members and spermatid-specific genes. Intriguingly, while SINEs displayed differential methylation throughout spermatogenesis, LINEs appeared to be protected from changes in DNA methylation. In disturbed spermatogenesis, germ cells exhibited considerable DNA methylation changes, which were significantly enriched at transposable elements and genes involved in spermatogenesis. We detected hypomethylation in SVA and L1HS in disturbed spermatogenesis, suggesting an association between the abnormal programming of these regions and failure of germ cells progressing beyond meiosis.
Collapse
Affiliation(s)
- Lara M Siebert-Kuss
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Verena Dietrich
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Jahnavi Bhaskaran
- MRC Laboratory of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK; Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jann-Frederik Cremers
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital of Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Juan M Vaquerizas
- MRC Laboratory of Medical Sciences, London, UK; Institute of Clinical Sciences, Imperial College London, London, UK; Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University of Münster, Münster, Germany.
| |
Collapse
|
10
|
Mayne B, Chandler D, Noune C, Espinoza T, Roberts D, Anderson C, Berry O. Increased scalability and sequencing quality of an epigenetic age prediction assay. PLoS One 2024; 19:e0297006. [PMID: 38743704 PMCID: PMC11093300 DOI: 10.1371/journal.pone.0297006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/22/2023] [Indexed: 05/16/2024] Open
Abstract
Epigenetic ageing in a human context, has been used to better understand the relationship between age and factors such as lifestyle and genetics. In an ecological setting, it has been used to predict the age of individual animals for wildlife management. Despite the importance of epigenetic ageing in a range of research fields, the assays to measure epigenetic ageing are either expensive on a large scale or complex. In this study, we aimed to improve the efficiency and sequencing quality of an existing epigenetic ageing assay for the Australian Lungfish (Neoceratodus forsteri). We used an enzyme-based alternative to bisulfite conversion to reduce DNA fragmentation and evaluated its performance relative to bisulfite conversion. We found the sequencing quality to be 12% higher with the enzymatic alternative compared to bisulfite treatment (p-value < 0.01). This new enzymatic based approach, although currently double the cost of bisulfite treatment can increases the throughput and sequencing quality. We envisage this assay setup being adopted increasingly as the scope and scale of epigenetic ageing research continues to grow.
Collapse
Affiliation(s)
- Benjamin Mayne
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Indian Ocean Marine Research Centre, Crawley, Western Australia, Australia
| | - David Chandler
- Australian Genome Research Facility, Perth, WA, Australia
| | | | | | | | - Chloe Anderson
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Indian Ocean Marine Research Centre, Crawley, Western Australia, Australia
| | - Oliver Berry
- Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Indian Ocean Marine Research Centre, Crawley, Western Australia, Australia
| |
Collapse
|
11
|
Zhou M, Riva A, Gauthier MPL, Kladde MP, Ferl RJ, Paul AL. Single-molecule long-read methylation profiling reveals regional DNA methylation regulated by Elongator Complex Subunit 2 in Arabidopsis roots experiencing spaceflight. Biol Direct 2024; 19:33. [PMID: 38689301 PMCID: PMC11059628 DOI: 10.1186/s13062-024-00476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The Advanced Plant Experiment-04 - Epigenetic Expression (APEX-04-EpEx) experiment onboard the International Space Station examined the spaceflight-altered cytosine methylation in two genetic lines of Arabidopsis thaliana, wild-type Col-0 and the mutant elp2-5, which is deficient in an epigenetic regulator Elongator Complex Subunit 2 (ELP2). Whole-genome bisulfite sequencing (WGBS) revealed distinct spaceflight associated methylation differences, presenting the need to explore specific space-altered methylation at single-molecule resolution to associate specific changes over large regions of spaceflight related genes. To date, tools of multiplexed targeted DNA methylation sequencing remain limited for plant genomes. RESULTS To provide methylation data at single-molecule resolution, Flap-enabled next-generation capture (FENGC), a novel targeted multiplexed DNA capture and enrichment technique allowing cleavage at any specified sites, was applied to survey spaceflight-altered DNA methylation in genic regions of interest. The FENGC capture panel contained 108 targets ranging from 509 to 704 nt within the promoter or gene body regions of gene targets derived from spaceflight whole-genome data sets. In addition to genes with significant changes in expression and average methylation levels between spaceflight and ground control, targets with space-altered distributions of the proportion of methylated cytosines per molecule were identified. Moreover, trends of co-methylation of different cytosine contexts were exhibited in the same DNA molecules. We further identified significant DNA methylation changes in three previously biological process-unknown genes, and loss-of-function mutants of two of these genes (named as EMO1 and EMO2 for ELP2-regulated Methylation in Orbit 1 and 2) showed enhanced root growth rate. CONCLUSIONS FENGC simplifies and reduces the cost of multiplexed, targeted, single-molecule profiling of methylation in plants, providing additional resolution along each DNA molecule that is not seen in population-based short-read data such as WGBS. This case study has revealed spaceflight-altered regional modification of cytosine methylation occurring within single DNA molecules of cell subpopulations, which were not identified by WGBS. The single-molecule survey by FENGC can lead to identification of novel functional genes. The newly identified EMO1 and EMO2 are root growth regulators which may be epigenetically involved in plant adaptation to spaceflight.
Collapse
Affiliation(s)
- Mingqi Zhou
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, 32611, Gainesville, FL, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, 32610, Gainesville, FL, USA
| | - Marie-Pierre L Gauthier
- Department of Biochemistry and Molecular Biology, University of Florida, 2033 Mowry Rd, 32610, Gainesville, FL, USA
| | - Michael P Kladde
- Department of Biochemistry and Molecular Biology, University of Florida, 2033 Mowry Rd, 32610, Gainesville, FL, USA
| | - Robert J Ferl
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, 32611, Gainesville, FL, USA.
- UF Research, University of Florida, 1523 Union Rd, Grinter Hall, 32611, Gainesville, FL, USA.
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Fifield Hall, 32611, Gainesville, FL, USA.
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, 32610, Gainesville, FL, USA.
| |
Collapse
|
12
|
Wang X, Dong Y, Zhang H, Zhao Y, Miao T, Mohseni G, Du L, Wang C. DNA methylation drives a new path in gastric cancer early detection: Current impact and prospects. Genes Dis 2024; 11:847-860. [PMID: 37692483 PMCID: PMC10491876 DOI: 10.1016/j.gendis.2023.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly cancers worldwide. Early detection offers the best chance for curative treatment and reducing its mortality. However, the optimal population-based early screening for GC remains unmet. Aberrant DNA methylation occurs in the early stage of GC, exhibiting cancer-specific genetic and epigenetic changes, and can be detected in the media such as blood, gastric juice, and feces, constituting a valuable biomarker for cancer early detection. Furthermore, DNA methylation is a stable epigenetic alteration, and many innovative methods have been developed to quantify it rapidly and accurately. Nonetheless, large-scale clinical validation of DNA methylation serving as tumor biomarkers is still lacking, precluding their implementation in clinical practice. In conclusion, after a critical analysis of the recent existing literature, we summarized the evolving roles of DNA methylation during GC occurrence, expounded the newly discovered noninvasive DNA methylation biomarkers for early detection of GC, and discussed its challenges and prospects in clinical applications.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Yaqi Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 402774, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China
| | - Tianshu Miao
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong 250033, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong 250033, China
| |
Collapse
|
13
|
Nadeem S, Riaz Ahmed S, Luqman T, Tan DKY, Maryum Z, Akhtar KP, Muhy Ud Din Khan S, Tariq MS, Muhammad N, Khan MKR, Liu Y. A comprehensive review on Gossypium hirsutum resistance against cotton leaf curl virus. Front Genet 2024; 15:1306469. [PMID: 38440193 PMCID: PMC10909863 DOI: 10.3389/fgene.2024.1306469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Cotton (Gossypium hirsutum L.) is a significant fiber crop. Being a major contributor to the textile industry requires continuous care and attention. Cotton is subjected to various biotic and abiotic constraints. Among these, biotic factors including cotton leaf curl virus (CLCuV) are dominant. CLCuV is a notorious disease of cotton and is acquired, carried, and transmitted by the whitefly (Bemisia tabaci). A cotton plant affected with CLCuV may show a wide range of symptoms such as yellowing of leaves, thickening of veins, upward or downward curling, formation of enations, and stunted growth. Though there are many efforts to protect the crop from CLCuV, long-term results are not yet obtained as CLCuV strains are capable of mutating and overcoming plant resistance. However, systemic-induced resistance using a gene-based approach remained effective until new virulent strains of CLCuV (like Cotton Leaf Curl Burewala Virus and others) came into existence. Disease control by biological means and the development of CLCuV-resistant cotton varieties are in progress. In this review, we first discussed in detail the evolution of cotton and CLCuV strains, the transmission mechanism of CLCuV, the genetic architecture of CLCuV vectors, and the use of pathogen and nonpathogen-based approaches to control CLCuD. Next, we delineate the uses of cutting-edge technologies like genome editing (with a special focus on CRISPR-Cas), next-generation technologies, and their application in cotton genomics and speed breeding to develop CLCuD resistant cotton germplasm in a short time. Finally, we delve into the current obstacles related to cotton genome editing and explore forthcoming pathways for enhancing precision in genome editing through the utilization of advanced genome editing technologies. These endeavors aim to enhance cotton's resilience against CLCuD.
Collapse
Affiliation(s)
- Sahar Nadeem
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Pakistan Agriculture Research Council (PARC), Horticulture Research Institute Khuzdar Baghbana, Khuzdar, Pakistan
| | - Tahira Luqman
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Daniel K. Y. Tan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Zahra Maryum
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Khalid Pervaiz Akhtar
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Nazar Muhammad
- Agriculture and Cooperative Department, Quetta, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
14
|
Weng J, Wang H, Cheng D, Liu T, Zeng D, Dai C, Luo C. The Effects of DNA Methylation on Cytoplasmic Male Sterility in Sugar Beet. Int J Mol Sci 2024; 25:1118. [PMID: 38256191 PMCID: PMC10817047 DOI: 10.3390/ijms25021118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
DNA methylation is widely found in higher plants and can control gene expression by regulation without changing the DNA sequence. In this study, the whole-genome methylation map of sugar beet was constructed by WGBS (whole-genome bisulfite sequencing) technology, and the results of WGBS were verified by bisulfite transformation, indicating that the results of WGBS technology were reliable. In addition, 12 differential methylation genes (DMGs) were identified, which were related to carbohydrate and energy metabolism, pollen wall development, and endogenous hormone regulation. Quantitative real-time PCR (qRT-PCR) showed that 75% of DMG expression levels showed negative feedback with methylation level, indicating that DNA methylation can affect gene expression to a certain extent. In addition, we found hypermethylation inhibited gene expression, which laid a foundation for further study on the molecular mechanism of DNA methylation at the epigenetic level in sugar beet male sterility.
Collapse
Affiliation(s)
- Jiamin Weng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (J.W.); (H.W.); (T.L.); (C.L.)
| | - Hui Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (J.W.); (H.W.); (T.L.); (C.L.)
| | - Dayou Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (J.W.); (H.W.); (T.L.); (C.L.)
| | - Tianjiao Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (J.W.); (H.W.); (T.L.); (C.L.)
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; (D.Z.); (C.D.)
| | - Cuihong Dai
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; (D.Z.); (C.D.)
| | - Chengfei Luo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (J.W.); (H.W.); (T.L.); (C.L.)
| |
Collapse
|
15
|
D'Amico-Willman KM, Niederhuth CE, Sovic MG, Anderson ES, Gradziel TM, Fresnedo-Ramírez J. Hypermethylation and small RNA expression are associated with increased age in almond (Prunus dulcis [Mill.] D.A. Webb) accessions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111918. [PMID: 37956826 DOI: 10.1016/j.plantsci.2023.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
The focus of this study is to profile changes in DNA methylation and small RNA expression occurring with increased age in almond breeding germplasm to identify possible biomarkers of age that can be used to assess the potential of individuals to develop aging-related disorders. To profile DNA methylation in almond germplasm, 70 methylomes were generated from almond individuals representing three age cohorts (11, 7, and 2 years old) using an enzymatic methyl-seq approach followed by analysis to call differentially methylated regions (DMRs) within these cohorts. Small RNA (sRNA) expression was profiled in three breeding selections, each from two age cohorts (1 and 6 years old), using sRNA-Seq followed by differential expression analysis. Weighted chromosome-level methylation analysis reveals hypermethylation in 11-year-old almond breeding selections when compared to 2-year-old selections in the CG and CHH contexts. Seventeen consensus DMRs were identified in all age contrasts. sRNA expression differed significantly between the two age cohorts tested, with significantly decreased expression in sRNAs in the 6-year-old selections compared to the 1-year-old. Almond shows a pattern of hypermethylation and decreased sRNA expression with increased age. Identified DMRs and differentially expressed sRNAs could function as putative biomarkers of age following validation in additional age groups.
Collapse
Affiliation(s)
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Michael G Sovic
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Elizabeth S Anderson
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Thomas M Gradziel
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jonathan Fresnedo-Ramírez
- Translational Plant Sciences, The Ohio State University, Columbus, OH 43210, USA; Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
16
|
Cheng Y, Li B, Zhang X, Aouizerat BE, Zhao H, Xu K. Reply to: Genetic differentiation at probe SNPs leads to spurious results in meQTL discovery. Commun Biol 2023; 6:1296. [PMID: 38129596 PMCID: PMC10739901 DOI: 10.1038/s42003-023-05646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Youshu Cheng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, USA
| | - Xinyu Zhang
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA
| | - Hongyu Zhao
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA.
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, USA.
| | - Ke Xu
- VA Connecticut Healthcare System, US Department of Veterans Affairs, West Haven, CT, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Zeng J, Zhao X, Liang Z, Hidalgo I, Gebert M, Fan P, Wenzl C, Gornik SG, Lohmann JU. Nitric oxide controls shoot meristem activity via regulation of DNA methylation. Nat Commun 2023; 14:8001. [PMID: 38049411 PMCID: PMC10696095 DOI: 10.1038/s41467-023-43705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
Despite the importance of Nitric Oxide (NO) as signaling molecule in both plant and animal development, the regulatory mechanisms downstream of NO remain largely unclear. Here, we show that NO is involved in Arabidopsis shoot stem cell control via modifying expression and activity of ARGONAUTE 4 (AGO4), a core component of the RNA-directed DNA Methylation (RdDM) pathway. Mutations in components of the RdDM pathway cause meristematic defects, and reduce responses of the stem cell system to NO signaling. Importantly, we find that the stem cell inducing WUSCHEL transcription factor directly interacts with AGO4 in a NO dependent manner, explaining how these two signaling systems may converge to modify DNA methylation patterns. Taken together, our results reveal that NO signaling plays an important role in controlling plant stem cell homeostasis via the regulation of de novo DNA methylation.
Collapse
Affiliation(s)
- Jian Zeng
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Xin'Ai Zhao
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Zhe Liang
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Inés Hidalgo
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Michael Gebert
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
- CureVac, 72076, Tübingen, Germany
| | - Pengfei Fan
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Christian Wenzl
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Sebastian G Gornik
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Zhang Y, Plessis C, Prunier J, Martin H, Labrecque R, Sirard MA. DNA methylation profiles in bovine sperm are associated with daughter fertility. Epigenetics 2023; 18:2280889. [PMID: 38016027 PMCID: PMC10732624 DOI: 10.1080/15592294.2023.2280889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
The current decline in dairy cattle fertility has resulted in significant financial losses for dairy farmers. In the past, most efforts to improve dairy cattle fertility have been focused on either management or genetics, while epigenetics have received less attention. In this study, 12 bulls were selected from a provided 100 bull list and studied (High daughter fertility = 6, Low daughter fertility = 6) for Enzymatic methylation sequencing in the Illumina HiSeq platform according to the Canadian daughter fertility index (DFI), sires with high and low daughter fertility have average DFI of 92 and 112.6, respectively. And the bull list provided shows a mean DFI of 103.4. 252 CpGs with methylation differences greater than 20% (q < 0.01) were identified, as well as the top 10 promising DMRs with a 15% methylation difference (q < 1.1e-26). Interestingly, the DMCs and DMRs were found to be distributed more on the X chromosome than on the autosome, and they were covered by gene clusters linked to germ cell formation and development. In conclusion, these findings could enhance our ability to make informed decisions when deciding on superior bulls and advance our understanding of paternal epigenetic inheritance.
Collapse
Affiliation(s)
- Ying Zhang
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Canada
| | - Clément Plessis
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Canada
| | - Julien Prunier
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Canada
| | - Hélène Martin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Canada
| | | | - Marc André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l’Agriculture et de l’Alimentation, Département des Sciences Animales, Pavillon INAF, Université Laval, Québec, Canada
| |
Collapse
|
19
|
Boone BA, Ichino L, Wang S, Gardiner J, Yun J, Jami-Alahmadi Y, Sha J, Mendoza CP, Steelman BJ, van Aardenne A, Kira-Lucas S, Trentchev I, Wohlschlegel JA, Jacobsen SE. ACD15, ACD21, and SLN regulate the accumulation and mobility of MBD6 to silence genes and transposable elements. SCIENCE ADVANCES 2023; 9:eadi9036. [PMID: 37967186 PMCID: PMC10651127 DOI: 10.1126/sciadv.adi9036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here, we characterize two additional complex members: α-crystalline domain (ACD) containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher-order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of MBD5/6 complexes regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive a massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of the gene-silencing MBD5/6 complex and act to drive the formation of higher-order, dynamic assemblies at CG methylation (meCG) sites.
Collapse
Affiliation(s)
- Brandon A. Boone
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lucia Ichino
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shuya Wang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jaewon Yun
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Cristy P. Mendoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bailey J. Steelman
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aliya van Aardenne
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sophia Kira-Lucas
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Isabelle Trentchev
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steven E. Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Boone BA, Ichino L, Wang S, Gardiner J, Yun J, Jami-Alahmadi Y, Sha J, Mendoza CP, Steelman BJ, van Aardenne A, Kira-Lucas S, Trentchev I, Wohlschlegel JA, Jacobsen SE. ACD15, ACD21 and SLN regulate accumulation and mobility of MBD6 to silence genes and transposable elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554494. [PMID: 37662299 PMCID: PMC10473691 DOI: 10.1101/2023.08.23.554494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG-binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here we characterize two additional complex members: α-crystalline domain containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of complex components regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of gene silencing complexes that act to drive the formation of higher order, dynamic assemblies.
Collapse
Affiliation(s)
- Brandon A. Boone
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Lucia Ichino
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Shuya Wang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Translational Plant Biology, Department of Biology, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Jaewon Yun
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Cristy P. Mendoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bailey J. Steelman
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aliya van Aardenne
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sophia Kira-Lucas
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Isabelle Trentchev
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steven E. Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), UCLA; Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Kang Z, Jiang L, Chen D, Yan G, Zhang G, Lai Y, Zeng Q, Wang X. Whole genome methylation sequencing reveals epigenetic landscape and abnormal expression of FABP5 in extramammary Paget's disease. Skin Res Technol 2023; 29:e13497. [PMID: 37881057 PMCID: PMC10579628 DOI: 10.1111/srt.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Extramammary Paget's disease (EMPD) is a rare cutaneous malignant tumor with a high recurrence rate after surgery. However, the genetic and epigenetic alterations underlying its pathogenesis remain unknown. DNA methylation is an important epigenetic modification involved in many biological processes. METHODS In this study, enzymatic methyl-sequencing (EM-seq) technique was used to investigate the landscape of genome-wide DNA methylation from three pairs of tumor tissues and adjacent tissues of patients with EMPD. Additionally, we conducted histopathological examinations to assess the expression of fatty acid-binding protein 5 (FABP5) in another three paired samples from EMPD patients. RESULTS The cluster analysis showed the good quality of the samples. A differential methylation region (DMR) heat map was used to quantitatively characterize genome-wide methylation differences between tumors and controls. Global DNA methylation level is lower in EMPD tissue compared to matched controls, indicating that DNA methylation discriminates between tumor and normal skin. And the top hypomethylation gene on the promoter region in tumor tissues was FABP5 on chromosome 8 with 38.44% decreased median methylation. We next identified the expression of FABP5 in paired tumors and adjacent tissues in three additional patients with EMPD. Immunofluorescence results showed FABP5 highly expressed in tumor tissues and co-located with CK7, CK20 and EMA. GO and KEGG enrichment analysis showed DMR genes on promoter are mainly enriched in the calcium ion transport, GTPase mediated signal transduction, Rap1 signaling pathway and GnRH signaling pathway. CONCLUSION Taken together, our findings provide the first description of the whole genome methylation map of EMPD and identify FABP5 as a pathogenic target of EMPD.
Collapse
Affiliation(s)
- Ziwei Kang
- Institute of PhotomedicineShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Skin Cancer CenterShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Long Jiang
- Skin Cancer CenterShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Diyan Chen
- Institute of PhotomedicineShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Skin Cancer CenterShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Guorong Yan
- Institute of PhotomedicineShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Skin Cancer CenterShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Guolong Zhang
- Institute of PhotomedicineShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Skin Cancer CenterShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Yongxian Lai
- Skin Cancer CenterShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Qingyu Zeng
- Institute of PhotomedicineShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Skin Cancer CenterShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Xiuli Wang
- Institute of PhotomedicineShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
- Skin Cancer CenterShanghai Skin Disease HospitalSchool of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
22
|
Affiliation(s)
- Bruna Gomes
- From the Departments of Medicine, Genetics, and Biomedical Data Science, Stanford University, Stanford, CA (B.G., E.A.A.); and the Department of Cardiology, Pneumology, and Angiology, Heidelberg University Hospital, Heidelberg, Germany (B.G.)
| | - Euan A Ashley
- From the Departments of Medicine, Genetics, and Biomedical Data Science, Stanford University, Stanford, CA (B.G., E.A.A.); and the Department of Cardiology, Pneumology, and Angiology, Heidelberg University Hospital, Heidelberg, Germany (B.G.)
| |
Collapse
|
23
|
Kong Y, Mead EA, Fang G. Navigating the pitfalls of mapping DNA and RNA modifications. Nat Rev Genet 2023; 24:363-381. [PMID: 36653550 PMCID: PMC10722219 DOI: 10.1038/s41576-022-00559-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 01/19/2023]
Abstract
Chemical modifications to nucleic acids occur across the kingdoms of life and carry important regulatory information. Reliable high-resolution mapping of these modifications is the foundation of functional and mechanistic studies, and recent methodological advances based on next-generation sequencing and long-read sequencing platforms are critical to achieving this aim. However, mapping technologies may have limitations that sometimes lead to inconsistent results. Some of these limitations are technical in nature and specific to certain types of technology. Here, however, we focus on common (yet not always widely recognized) pitfalls that are shared among frequently used mapping technologies and discuss strategies to help technology developers and users mitigate their effects. Although the emphasis is primarily on DNA modifications, RNA modifications are also discussed.
Collapse
Affiliation(s)
- Yimeng Kong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Panda K, Mohanasundaram B, Gutierrez J, McLain L, Castillo SE, Sheng H, Casto A, Gratacós G, Chakrabarti A, Fahlgren N, Pandey S, Gehan MA, Slotkin RK. The plant response to high CO 2 levels is heritable and orchestrated by DNA methylation. THE NEW PHYTOLOGIST 2023; 238:2427-2439. [PMID: 36918471 DOI: 10.1111/nph.18876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/07/2023] [Indexed: 05/19/2023]
Abstract
Plant responses to abiotic environmental challenges are known to have lasting effects on the plant beyond the initial stress exposure. Some of these lasting effects are transgenerational, affecting the next generation. The plant response to elevated carbon dioxide (CO2 ) levels has been well studied. However, these investigations are typically limited to plants grown for a single generation in a high CO2 environment while transgenerational studies are rare. We aimed to determine transgenerational growth responses in plants after exposure to high CO2 by investigating the direct progeny when returned to baseline CO2 levels. We found that both the flowering plant Arabidopsis thaliana and seedless nonvascular plant Physcomitrium patens continue to display accelerated growth rates in the progeny of plants exposed to high CO2 . We used the model species Arabidopsis to dissect the molecular mechanism and found that DNA methylation pathways are necessary for heritability of this growth response. More specifically, the pathway of RNA-directed DNA methylation is required to initiate methylation and the proteins CMT2 and CMT3 are needed for the transgenerational propagation of this DNA methylation to the progeny plants. Together, these two DNA methylation pathways establish and then maintain a cellular memory to high CO2 exposure.
Collapse
Affiliation(s)
- Kaushik Panda
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | | - Jorge Gutierrez
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Lauren McLain
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | | - Hudanyun Sheng
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Anna Casto
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Gustavo Gratacós
- Department of Computer Science & Engineering, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Ayan Chakrabarti
- Department of Computer Science & Engineering, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Malia A Gehan
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Biological Sciences, University of Missouri, MO, 65211, Columbia, USA
| |
Collapse
|
25
|
Agius DR, Kapazoglou A, Avramidou E, Baranek M, Carneros E, Caro E, Castiglione S, Cicatelli A, Radanovic A, Ebejer JP, Gackowski D, Guarino F, Gulyás A, Hidvégi N, Hoenicka H, Inácio V, Johannes F, Karalija E, Lieberman-Lazarovich M, Martinelli F, Maury S, Mladenov V, Morais-Cecílio L, Pecinka A, Tani E, Testillano PS, Todorov D, Valledor L, Vassileva V. Exploring the crop epigenome: a comparison of DNA methylation profiling techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1181039. [PMID: 37389288 PMCID: PMC10306282 DOI: 10.3389/fpls.2023.1181039] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 07/01/2023]
Abstract
Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.
Collapse
Affiliation(s)
- Dolores Rita Agius
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Biology Department, Ġ.F.Abela Junior College, Msida, Malta
| | - Aliki Kapazoglou
- Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Evangelia Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Athens, Greece
| | - Miroslav Baranek
- Mendeleum-Insitute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Elena Carneros
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Aleksandra Radanovic
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Jean-Paul Ebejer
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Francesco Guarino
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Andrea Gulyás
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Norbert Hidvégi
- Centre for Agricultural Genomics and Biotechnology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Hans Hoenicka
- Genomic Research Department, Thünen Institute of Forest Genetics, Grosshansdorf, Germany
| | - Vera Inácio
- BioISI – BioSystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Johannes
- Plant Epigenomics, Technical University of Munich (TUM), Freising, Germany
| | - Erna Karalija
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Michal Lieberman-Lazarovich
- Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Institute of Plant Sciences, Rishon LeZion, Israel
| | | | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures EA1207 USC1328, INRAE, Université d’Orléans, Orléans, France
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, University of Lisbon, Lisbon, Portugal
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Pilar S. Testillano
- Center for Biological Research (CIB) of the Spanish National Research Council (CSIC), Madrid, Spain
| | - Dimitar Todorov
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
26
|
Snajder R, Leger A, Stegle O, Bonder MJ. pycoMeth: a toolbox for differential methylation testing from Nanopore methylation calls. Genome Biol 2023; 24:83. [PMID: 37081487 PMCID: PMC10120131 DOI: 10.1186/s13059-023-02917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
We present pycoMeth, a toolbox to store, manage and analyze DNA methylation calls from long-read sequencing data obtained using the Oxford Nanopore Technologies sequencing platform. Building on a novel, rapid-access, read-level and reference-anchored methylation storage format MetH5, we propose efficient algorithms for haplotype aware, multi-sample consensus segmentation and differential methylation testing. We show that MetH5 is more efficient than existing solutions for storing Oxford Nanopore Technologies methylation calls, and carry out benchmarking for pycoMeth segmentation and differential methylation testing, demonstrating increased performance and sensitivity compared to existing solutions designed for short-read methylation data.
Collapse
Affiliation(s)
- Rene Snajder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Faculty for Biosciences, Heidelberg University, Heidelberg, Germany.
- HIDSS4Health, Helmholtz Information and Data Science School for Health, Heidelberg, Germany.
| | - Adrien Leger
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL), Hinxton, Cambridge, UK
- Current affiliation: Oxford Nanopore Technologies, Gosling Building, Oxford Science Park, Oxford, UK
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Marc Jan Bonder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
27
|
Zhong Z, Feng S, Mansfeld BN, Ke Y, Qi W, Lim Y, Gruissem W, Bart RS, Jacobsen SE. Haplotype-resolved DNA methylome of African cassava genome. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:247-249. [PMID: 36318278 PMCID: PMC9884013 DOI: 10.1111/pbi.13955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Zhenhui Zhong
- Department of Molecular, Cell and Developmental BiologyUniversity of CaliforniaLos AngelesCAUSA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental BiologyUniversity of CaliforniaLos AngelesCAUSA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
| | | | - Yunqing Ke
- Department of Molecular, Cell and Developmental BiologyUniversity of CaliforniaLos AngelesCAUSA
| | - Weihong Qi
- Functional Genomics Center ZurichETH Zurich and University of ZurichZurichSwitzerland
| | - Yi‐Wen Lim
- Department of Biology, Institute of Molecular Plant Biology, ETH ZürichZürichSwitzerland
| | - Wilhelm Gruissem
- Department of Biology, Institute of Molecular Plant Biology, ETH ZürichZürichSwitzerland
- Biotechnology CenterNational Chung Hsing UniversityTaichung CityTaiwan
| | | | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental BiologyUniversity of CaliforniaLos AngelesCAUSA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell ResearchUniversity of CaliforniaLos AngelesCAUSA
- Howard Hughes Medical Institute, University of CaliforniaLos AngelesCAUSA
| |
Collapse
|
28
|
Chatterton Z, Lamichhane P, Ahmadi Rastegar D, Fitzpatrick L, Lebhar H, Marquis C, Halliday G, Kwok JB. Single-cell DNA methylation sequencing by combinatorial indexing and enzymatic DNA methylation conversion. Cell Biosci 2023; 13:2. [PMID: 36600255 PMCID: PMC9811750 DOI: 10.1186/s13578-022-00938-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA methylation is a critical molecular mark involved in cellular differentiation and cell-specific processes. Single-cell whole genome DNA methylation profiling methods hold great potential to resolve the DNA methylation profiles of individual cell-types. Here we present a method that couples single-cell combinatorial indexing (sci) with enzymatic conversion (sciEM) of unmethylated cytosines. RESULTS The sciEM method facilitates DNA methylation profiling of single-cells that is highly correlated with single-cell bisulfite-based workflows (r2 > 0.99) whilst improving sequencing alignment rates, reducing adapter contamination and over-estimation of DNA methylation levels (CpG and non-CpG). As proof-of-concept we perform sciEM analysis of the temporal lobe, motor cortex, hippocampus and cerebellum of the human brain to resolve single-cell DNA methylation of all major cell-types. CONCLUSION To our knowledge sciEM represents the first non-bisulfite single-cell DNA methylation sequencing approach with single-base resolution.
Collapse
Affiliation(s)
- Zac Chatterton
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Praves Lamichhane
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Diba Ahmadi Rastegar
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Lauren Fitzpatrick
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - Hélène Lebhar
- grid.1005.40000 0004 4902 0432Recombinant Products Facility, University of New South Wales, Kensington, Australia
| | - Christopher Marquis
- grid.1005.40000 0004 4902 0432School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, Australia
| | - Glenda Halliday
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| | - John B. Kwok
- grid.1013.30000 0004 1936 834XBrain and Mind Centre, The University of Sydney, Camperdown, Australia ,grid.1013.30000 0004 1936 834XSchool of Medical Science, The University of Sydney, Camperdown, Australia
| |
Collapse
|
29
|
Rubenstein DR, Solomon J. Target-enriched enzymatic methyl sequencing: Flexible, scalable and inexpensive hybridization capture for quantifying DNA methylation. PLoS One 2023; 18:e0282672. [PMID: 36893162 PMCID: PMC9997987 DOI: 10.1371/journal.pone.0282672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
The increasing interest in studying DNA methylation to understand how traits or diseases develop requires new and flexible approaches for quantifying DNA methylation in a diversity of organisms. In particular, we need efficient yet cost-effective ways to measure CpG methylation states over large and complete regions of the genome. Here, we develop TEEM-Seq (target-enriched enzymatic methyl sequencing), a method that combines enzymatic methyl sequencing with a custom-designed hybridization capture bait set that can be scaled to reactions including large numbers of samples in any species for which a reference genome is available. Using DNA from a passerine bird, the superb starling (Lamprotornis superbus), we show that TEEM-Seq is able to quantify DNA methylation states similarly well to the more traditional approaches of whole-genome and reduced-representation sequencing. Moreover, we demonstrate its reliability and repeatability, as duplicate libraries from the same samples were highly correlated. Importantly, the downstream bioinformatic analysis for TEEM-Seq is the same as for any sequence-based approach to studying DNA methylation, making it simple to incorporate into a variety of workflows. We believe that TEEM-Seq could replace traditional approaches for studying DNA methylation in candidate genes and pathways, and be effectively paired with other whole-genome or reduced-representation sequencing approaches to increase project sample sizes. In addition, TEEM-Seq can be combined with mRNA sequencing to examine how DNA methylation in promoters or other regulatory regions is related to the expression of individual genes or gene networks. By maximizing the number of samples in the hybridization reaction, TEEM-Seq is an inexpensive and flexible sequence-based approach for quantifying DNA methylation in species where other capture-based methods are unavailable or too expensive, particularly for non-model organisms.
Collapse
Affiliation(s)
- Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, United States of America
- Center for Integrative Animal Behavior, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Joseph Solomon
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, United States of America
| |
Collapse
|
30
|
Sun Z, Behati S, Wang P, Bhagwate A, McDonough S, Wang V, Taylor W, Cunningham J, Kisiel J. Performance comparisons of methylation and structural variants from low-input whole-genome methylation sequencing. Epigenomics 2023; 15:11-19. [PMID: 36919677 PMCID: PMC10072131 DOI: 10.2217/epi-2022-0453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Aim: Whole-genome methylation sequencing carries both DNA methylation and structural variant information (single nucleotide variant [SNV]; copy number variant [CNV]); however, limited data is available on the reliability of obtaining this information simultaneously from low-input DNA using various library preparation and sequencing protocols. Methods: A HapMap NA12878 sample was sequenced with three protocols (EM-sequencing, QIA-sequencing and Swift-sequencing) and their performance was compared on CpG methylation measurement and SNV and CNV detection. Results: At low DNA input (10-25 ng), EM-sequencing was superior in almost all metrics except CNV detection where all protocols were similar. EM-sequencing captured the highest number of CpGs and true SNVs. Conclusion: EM-sequencing is suitable to detect methylation, SNVs and CNVs from single sequencing with low-input DNA.
Collapse
Affiliation(s)
- Zhifu Sun
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Saurabh Behati
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Panwen Wang
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bhagwate
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Vivian Wang
- Medical Genome Facility, Mayo Clinic, Rochester, MN 55905, USA
| | - William Taylor
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - John Kisiel
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Identification of unique DNA methylation sites in Kabuki syndrome using whole genome bisulfite sequencing and targeted hybridization capture followed by enzymatic methylation sequencing. J Hum Genet 2022; 67:711-720. [PMID: 36167771 DOI: 10.1038/s10038-022-01083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Kabuki syndrome (KS) is a congenital malformation syndrome caused by mutations in the KMT2D and KDM6A genes that encode histone modification enzymes. Although KS is considered a single gene disorder, its symptoms vary widely. Recently, disease-specific DNA methylation patterns, or episignatures, have been recognized and used as a diagnostic tool for KS. Because of various crosstalk mechanisms between histone modifications and DNA methylation, DNA methylation analysis may have high potential for investigations into the pathogenesis of KS. RESULTS In this study, we investigated altered CpG-methylation sites that were specific to KS to find important genes associated with the various phenotypes or pathogenesis of KS. Whole genome bisulfite sequencing (WGBS) was performed to select target CpG islands, and enzymatic conversion technology was applied after hybridization capture to confirm KS-specific episignatures of 130 selected differently methylated target regions (DMTRs) in DNA samples from the 65 participants, 31 patients with KS and 34 unaffected individuals, in this study. We identified 26 candidate genes in 22 DMTRs that may be associated with KS. Our results indicate that disease-specific methylation sites can be identified from a small number of WGBS samples, and hybridization capture followed by enzymatic methylation sequencing can simultaneously test the sites. CONCLUSIONS Although DNA methylation can be tissue-specific, our results suggest that methylation profiling of DNA extracted from peripheral blood may be a powerful approach to study the pathogenesis of diseases.
Collapse
|
32
|
Sasaki E, Gunis J, Reichardt-Gomez I, Nizhynska V, Nordborg M. Conditional GWAS of non-CG transposon methylation in Arabidopsis thaliana reveals major polymorphisms in five genes. PLoS Genet 2022; 18:e1010345. [PMID: 36084135 PMCID: PMC9491579 DOI: 10.1371/journal.pgen.1010345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/21/2022] [Accepted: 07/16/2022] [Indexed: 11/19/2022] Open
Abstract
Genome-wide association studies (GWAS) have revealed that the striking natural variation for DNA CHH-methylation (mCHH; H is A, T, or C) of transposons has oligogenic architecture involving major alleles at a handful of known methylation regulators. Here we use a conditional GWAS approach to show that CHG-methylation (mCHG) has a similar genetic architecture-once mCHH is statistically controlled for. We identify five key trans-regulators that appear to modulate mCHG levels, and show that they interact with a previously identified modifier of mCHH in regulating natural transposon mobilization.
Collapse
Affiliation(s)
- Eriko Sasaki
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Joanna Gunis
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Ilka Reichardt-Gomez
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Viktoria Nizhynska
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
33
|
Epigenetic regulation of fetal brain development in pig. Gene 2022; 844:146823. [PMID: 35988784 DOI: 10.1016/j.gene.2022.146823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023]
Abstract
How fetal brain development is regulated at the molecular level is not well understood. Due to ethical challenges associated with research on the human fetus, large animals particularly pigs are increasingly used to study development and disorders of fetal brain. The pig fetal brain grows rapidly during the last ∼ 50 days before birth which is around day 60 (d60) of pig gestation. But what regulates the onset of accelerated growth of the brain is unknown. The current study tests the hypothesis that epigenetic alteration around d60 is involved in the onset of rapid growth of fetal brain of pig. To test this hypothesis, DNA methylation changes of fetal brain was assessed in a genome-wide manner by Enzymatic Methyl-seq (EM-seq) during two gestational periods (GP): d45 vs. d60 (GP1) and d60 vs. d90 (GP2). The cytosine-guanine (CpG) methylation data was analyzed in an integrative manner with the RNA-seq data generated from the same brain samples from our earlier study. A neural network based modeling approach was implemented to learn changes in methylation patterns of the differentially expressed genes, and then predict methylations of the brain in a genome-wide manner during rapid growth. This approach identified specific methylations that changed in a mutually informative manner during rapid growth of the fetal brain. These methylations were significantly overrepresented in specific genic as well as intergenic features including CpG islands, introns, and untranslated regions. In addition, sex-bias methylations of known single nucleotide polymorphic sites were also identified in the fetal brain ide during rapid growth.
Collapse
|
34
|
Hofstatter PG, Thangavel G, Lux T, Neumann P, Vondrak T, Novak P, Zhang M, Costa L, Castellani M, Scott A, Toegelová H, Fuchs J, Mata-Sucre Y, Dias Y, Vanzela AL, Huettel B, Almeida CC, Šimková H, Souza G, Pedrosa-Harand A, Macas J, Mayer KF, Houben A, Marques A. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 2022; 185:3153-3168.e18. [DOI: 10.1016/j.cell.2022.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 01/30/2023]
|
35
|
Lim YW, Mansfeld BN, Schläpfer P, Gilbert KB, Narayanan NN, Qi W, Wang Q, Zhong Z, Boyher A, Gehan J, Beyene G, Lin ZJD, Esuma W, Feng S, Chanez C, Eggenberger N, Adiga G, Alicai T, Jacobsen SE, Taylor NJ, Gruissem W, Bart RS. Mutations in DNA polymerase δ subunit 1 co-segregate with CMD2-type resistance to Cassava Mosaic Geminiviruses. Nat Commun 2022; 13:3933. [PMID: 35798722 PMCID: PMC9262879 DOI: 10.1038/s41467-022-31414-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022] Open
Abstract
Cassava mosaic disease (CMD) suppresses cassava yields across the tropics. The dominant CMD2 locus confers resistance to cassava mosaic geminiviruses. It has been reported that CMD2-type landraces lose resistance after regeneration through de novo morphogenesis. As full genome bisulfite sequencing failed to uncover an epigenetic mechanism for this loss of resistance, whole genome sequencing and genetic variant analysis was performed and the CMD2 locus was fine-mapped to a 190 kilobase interval. Collectively, these data indicate that CMD2-type resistance is caused by a nonsynonymous, single nucleotide polymorphism in DNA polymerase δ subunit 1 (MePOLD1) located within this region. Virus-induced gene silencing of MePOLD1 in a CMD-susceptible cassava variety produced a recovery phenotype typical of CMD2-type resistance. Analysis of other CMD2-type cassava varieties identified additional candidate resistance alleles within MePOLD1. Genetic variation of MePOLD1, therefore, could represent an important genetic resource for resistance breeding and/or genome editing, and elucidating mechanisms of resistance to geminiviruses.
Collapse
Affiliation(s)
- Yi-Wen Lim
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Ben N Mansfeld
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Pascal Schläpfer
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Kerrigan B Gilbert
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Narayanan N Narayanan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Qi Wang
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Adam Boyher
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Jackson Gehan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Getu Beyene
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Zuh-Jyh Daniel Lin
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Williams Esuma
- Root Crops Program, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Christelle Chanez
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Nadine Eggenberger
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Gerald Adiga
- Root Crops Program, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Titus Alicai
- Root Crops Program, National Crops Resources Research Institute, P. O. Box 7084, Kampala, Uganda
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute University of California Los Angeles, Los Angeles, CA, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092, Zürich, Switzerland.
- Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung City, 40227, Taiwan.
| | - Rebecca S Bart
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
| |
Collapse
|
36
|
D’Amico-Willman KM, Ouma WZ, Meulia T, Sideli GM, Gradziel TM, Fresnedo-Ramírez J. Whole-genome sequence and methylome profiling of the almond [Prunus dulcis (Mill.) D.A. Webb] cultivar 'Nonpareil'. G3 (BETHESDA, MD.) 2022; 12:jkac065. [PMID: 35325123 PMCID: PMC9073694 DOI: 10.1093/g3journal/jkac065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/19/2022] [Indexed: 01/27/2023]
Abstract
Almond [Prunus dulcis (Mill.) D.A. Webb] is an economically important, specialty nut crop grown almost exclusively in the United States. Breeding and improvement efforts worldwide have led to the development of key, productive cultivars, including 'Nonpareil,' which is the most widely grown almond cultivar. Thus far, genomic resources for this species have been limited, and a whole-genome assembly for 'Nonpareil' is not currently available despite its economic importance and use in almond breeding worldwide. We generated a 571X coverage genome sequence using Illumina, PacBio, and optical mapping technologies. Gene prediction revealed 49,321 putative genes using MinION Oxford nanopore and Illumina RNA sequencing, and genome annotation found that 68% of predicted models are associated with at least one biological function. Furthermore, epigenetic signatures of almond, namely DNA cytosine methylation, have been implicated in a variety of phenotypes including self-compatibility, bud dormancy, and development of noninfectious bud failure. In addition to the genome sequence and annotation, this report also provides the complete methylome of several almond tissues, including leaf, flower, endocarp, mesocarp, exocarp, and seed coat. Comparisons between methylation profiles in these tissues revealed differences in genome-wide weighted % methylation and chromosome-level methylation enrichment.
Collapse
Affiliation(s)
| | | | - Tea Meulia
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH 44691, USA
| | - Gina M Sideli
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Thomas M Gradziel
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
37
|
Cui C, Wang Z, Su Y, Wang T. Antioxidant Regulation and DNA Methylation Dynamics During Mikania micrantha Seed Germination Under Cold Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:856527. [PMID: 35463422 PMCID: PMC9024368 DOI: 10.3389/fpls.2022.856527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
As a primary goal, adaptation to cold climate could expand an invasion range of exotic plants. Here, we aimed to explore the regulation strategy of M. micrantha seed development under cold stress through molecular physiology and multi-omics analysis. Significant increase of hydrogen peroxide, malondialdehyde, and electrolyte leakage observed under cold stress revealed that oxidative damage within M. micrantha seed cells was induced in the initial germination phase. Proteomic data underscored an activation of antioxidant activity to maintain redox homeostasis, with a cluster of antioxidant proteins identified. Genomic-wide transcriptome, in combination with time-series whole-genome bisulfite sequencing mining, elucidated that seven candidate genes, which were the target of DNA demethylation-dependent ROS scavenging, were possibly associated with an M. micrantha germ break. Progressive gain of CHH context DNA methylation identified in an early germination phrase suggested a role of a DNA methylation pathway, while an active DNA demethylation pathway was also initiated during late seed development, which was in line with the expression trend of methylation and demethylation-related genes verified through qRT-PCR. These data pointed out that cold-dependent DNA demethylation and an antioxidant regulatory were involved together in restoring seed germination. The expression level of total 441 genes presented an opposite trend to the methylation divergence, while the expression of total 395 genes was proved to be negatively associated with their methylation levels. These data provided new insights into molecular reprograming events during M. micrantha seed development.
Collapse
Affiliation(s)
- Can Cui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
| | - Ting Wang
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Williams BP, Bechen LL, Pohlmann DA, Gehring M. Somatic DNA demethylation generates tissue-specific methylation states and impacts flowering time. THE PLANT CELL 2022; 34:1189-1206. [PMID: 34954804 PMCID: PMC8972289 DOI: 10.1093/plcell/koab319] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 05/29/2023]
Abstract
Cytosine methylation is a reversible epigenetic modification of DNA. In plants, removal of cytosine methylation is accomplished by the four members of the DEMETER (DME) family of 5-methylcytosine DNA glycosylases, named DME, DEMETER-LIKE2 (DML2), DML3, and REPRESSOR OF SILENCING1 (ROS1) in Arabidopsis thaliana. Demethylation by DME is critical for seed development, preventing experiments to determine the function of the entire gene family in somatic tissues by mutant analysis. Here, we bypassed the reproductive defects of dme mutants to create somatic quadruple homozygous mutants of the entire DME family. dme; ros1; dml2; and dml3 (drdd) leaves exhibit hypermethylated regions compared with wild-type leaves and rdd triple mutants, indicating functional redundancy among all four demethylases. Targets of demethylation include regions co-targeted by RNA-directed DNA methylation and, surprisingly, CG gene body methylation, indicating dynamic methylation at these less-understood sites. Additionally, many tissue-specific methylation differences are absent in drdd, suggesting a role for active demethylation in generating divergent epigenetic states across wild-type tissues. Furthermore, drdd plants display an early flowering phenotype, which involves 5'-hypermethylation and transcriptional down-regulation of FLOWERING LOCUS C. Active DNA demethylation is therefore required for proper methylation across somatic tissues and defines the epigenetic landscape of intergenic and coding regions.
Collapse
Affiliation(s)
- Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Lindsey L Bechen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Deborah A Pohlmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
39
|
Gong T, Borgard H, Zhang Z, Chen S, Gao Z, Deng Y. Analysis and Performance Assessment of the Whole Genome Bisulfite Sequencing Data Workflow: Currently Available Tools and a Practical Guide to Advance DNA Methylation Studies. SMALL METHODS 2022; 6:e2101251. [PMID: 35064762 PMCID: PMC8963483 DOI: 10.1002/smtd.202101251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Indexed: 05/09/2023]
Abstract
DNA methylation is associated with transcriptional repression, genomic imprinting, stem cell differentiation, embryonic development, and inflammation. Aberrant DNA methylation can indicate disease states, including cancer and neurological disorders. Therefore, the prevalence and location of 5-methylcytosine in the human genome is a topic of interest. Whole-genome bisulfite sequencing (WGBS) is a high-throughput method for analyzing DNA methylation. This technique involves library preparation, alignment, and quality control. Advancements in epigenetic technology have led to an increase in DNA methylation studies. This review compares the detailed experimental methodology of WGBS using accessible and up-to-date analysis tools. Practical codes for WGBS data processing are included as a general guide to assist progress in DNA methylation studies through a comprehensive case study.
Collapse
Affiliation(s)
- Ting Gong
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Heather Borgard
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Zao Zhang
- Department of Medicine, The Queen’s Medical Center, Honolulu HI 96813, USA
| | - Shaoqiu Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Zitong Gao
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu HI 96813, USA
| |
Collapse
|
40
|
Whole Genome DNA Methylation Profiling of D2 Medium Spiny Neurons in Mouse Nucleus Accumbens Using Two Independent Library Preparation Methods. Genes (Basel) 2022; 13:genes13020306. [PMID: 35205351 PMCID: PMC8872013 DOI: 10.3390/genes13020306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
DNA methylation plays essential roles in various cellular processes. Next-generation sequencing has enabled us to study the functional implication of DNA methylation across the whole genome. However, this approach usually requires a substantial amount of genomic DNA, which limits its application to defined cell types within a discrete brain region. Here, we applied two separate protocols, Accel-NGS Methyl-Seq (AM-seq) and Enzymatic Methyl-seq (EM-seq), to profile the methylome of D2 dopamine receptor-expressing medium spiny neurons (D2-MSNs) in mouse nucleus accumbens (NAc). Using 40 ng DNA extracted from FACS-isolated D2-MSNs, we found that both methods yielded comparably high-quality methylome data. Additionally, we identified numerous unmethylated regions (UMRs) as cell type-specific regulatory regions. By comparing the NAc D2-MSN methylome with the published methylomes of mouse prefrontal cortex excitatory neurons and neural progenitor cells (NPCs), we identified numerous differentially methylated CpG and non-CpG regions. Our study not only presents a comparison of these two low-input DNA whole genome methylation profiling protocols, but also provides a resource of DNA methylome of mouse accumbal D2-MSNs, a neuron type that has critical roles in addiction and other neuropsychiatric disorders.
Collapse
|
41
|
Schmitz RJ, Grotewold E, Stam M. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. THE PLANT CELL 2022; 34:718-741. [PMID: 34918159 PMCID: PMC8824567 DOI: 10.1093/plcell/koab281] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 05/19/2023]
Abstract
The identification and characterization of cis-regulatory DNA sequences and how they function to coordinate responses to developmental and environmental cues is of paramount importance to plant biology. Key to these regulatory processes are cis-regulatory modules (CRMs), which include enhancers and silencers. Despite the extraordinary advances in high-quality sequence assemblies and genome annotations, the identification and understanding of CRMs, and how they regulate gene expression, lag significantly behind. This is especially true for their distinguishing characteristics and activity states. Here, we review the current knowledge on CRMs and breakthrough technologies enabling identification, characterization, and validation of CRMs; we compare the genomic distributions of CRMs with respect to their target genes between different plant species, and discuss the role of transposable elements harboring CRMs in the evolution of gene expression. This is an exciting time to study cis-regulomes in plants; however, significant existing challenges need to be overcome to fully understand and appreciate the role of CRMs in plant biology and in crop improvement.
Collapse
Affiliation(s)
- Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
42
|
Epigenome guided crop improvement: current progress and future opportunities. Emerg Top Life Sci 2022; 6:141-151. [PMID: 35072210 PMCID: PMC9023013 DOI: 10.1042/etls20210258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Epigenomics encompasses a broad field of study, including the investigation of chromatin states, chromatin modifications and their impact on gene regulation; as well as the phenomena of epigenetic inheritance. The epigenome is a multi-modal layer of information superimposed on DNA sequences, instructing their usage in gene expression. As such, it is an emerging focus of efforts to improve crop performance. Broadly, this might be divided into avenues that leverage chromatin information to better annotate and decode plant genomes, and into complementary strategies that aim to identify and select for heritable epialleles that control crop traits independent of underlying genotype. In this review, we focus on the first approach, which we term ‘epigenome guided’ improvement. This encompasses the use of chromatin profiles to enhance our understanding of the composition and structure of complex crop genomes. We discuss the current progress and future prospects towards integrating this epigenomic information into crop improvement strategies; in particular for CRISPR/Cas9 gene editing and precision genome engineering. We also highlight some specific opportunities and challenges for grain and horticultural crops.
Collapse
|
43
|
Schmitz RJ, Marand AP, Zhang X, Mosher RA, Turck F, Chen X, Axtell MJ, Zhong X, Brady SM, Megraw M, Meyers BC. Quality control and evaluation of plant epigenomics data. THE PLANT CELL 2022; 34:503-513. [PMID: 34648025 PMCID: PMC8773985 DOI: 10.1093/plcell/koab255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/08/2021] [Indexed: 05/22/2023]
Abstract
Epigenomics is the study of molecular signatures associated with discrete regions within genomes, many of which are important for a wide range of nuclear processes. The ability to profile the epigenomic landscape associated with genes, repetitive regions, transposons, transcription, differential expression, cis-regulatory elements, and 3D chromatin interactions has vastly improved our understanding of plant genomes. However, many epigenomic and single-cell genomic assays are challenging to perform in plants, leading to a wide range of data quality issues; thus, the data require rigorous evaluation prior to downstream analyses and interpretation. In this commentary, we provide considerations for the evaluation of plant epigenomics and single-cell genomics data quality with the aim of improving the quality and utility of studies using those data across diverse plant species.
Collapse
Affiliation(s)
- Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Alexandre P Marand
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Xuan Zhang
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Rebecca A Mosher
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Franziska Turck
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Michael J Axtell
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16801, USA
| | - Xuehua Zhong
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, California 95616, USA
| | - Molly Megraw
- Department of Botany and Plant Pathology, Center for Quantitative Life Sciences, Oregon State University, Corvallis, Oregon 97331 USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
44
|
Chen Z, Mo B, Lei A, Wang J. Microbial Single-Cell Analysis: What Can We Learn From Mammalian? Front Cell Dev Biol 2022; 9:829990. [PMID: 35111764 PMCID: PMC8801874 DOI: 10.3389/fcell.2021.829990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Jiangxin Wang,
| |
Collapse
|
45
|
Redhu N, Thakur Z. Network biology and applications. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
46
|
Han Y, Zheleznyakova GY, Marincevic-Zuniga Y, Kakhki MP, Raine A, Needhamsen M, Jagodic M. Comparison of EM-seq and PBAT methylome library methods for low-input DNA. Epigenetics 2021; 17:1195-1204. [PMID: 34709110 PMCID: PMC9542412 DOI: 10.1080/15592294.2021.1997406] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA methylation is the most studied epigenetic mark involved in regulation of gene expression. For low input samples, a limited number of methods for quantifying DNA methylation genome-wide has been evaluated. Here, we compared a series of input DNA amounts (1–10ng) from two methylome library preparation protocols, enzymatic methyl-seq (EM-seq) and post-bisulfite adaptor tagging (PBAT) adapted from single-cell PBAT. EM-seq takes advantage of enzymatic activity while PBAT relies on conventional bisulfite conversion for detection of DNA methylation. We found that both methods accurately quantified DNA methylation genome-wide. They produced expected distribution patterns around genomic features, high C-T transition efficiency at non-CpG sites and high correlation between input amounts. However, EM-seq performed better in regard to library and sequencing quality, i.e. EM-seq produced larger insert sizes, higher alignment rates and higher library complexity with lower duplication rate compared to PBAT. Moreover, EM-seq demonstrated higher CpG coverage, better CpG site overlap and higher consistency between input series. In summary, our data suggests that EM-seq overall performed better than PBAT in whole-genome methylation quantification of low input samples.
Collapse
Affiliation(s)
- Yanan Han
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Galina Yurevna Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Majid Pahlevan Kakhki
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
47
|
Crisp PA, Bhatnagar-Mathur P, Hundleby P, Godwin ID, Waterhouse PM, Hickey LT. Beyond the gene: epigenetic and cis-regulatory targets offer new breeding potential for the future. Curr Opin Biotechnol 2021; 73:88-94. [PMID: 34348216 DOI: 10.1016/j.copbio.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
For millennia, natural and artificial selection has combined favourable alleles for desirable traits in crop species. While modern plant breeding has achieved steady increases in crop yields over the last century, on the current trajectory we will simply not meet demand by 2045. Novel breeding strategies and sources of genetic variation will be required to sustainably fill predicted yield gaps and meet new consumer preferences. Here, we highlight that stepping up to meet this grand challenge will increasingly require thinking 'beyond the gene'. Significant progress has been made in understanding the contributions of both epigenetic variation and cis-regulatory variation to plant traits. This non-genic variation has great potential in future breeding, synthetic biology and biotechnology applications.
Collapse
Affiliation(s)
- Peter A Crisp
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Penny Hundleby
- Crop Transformation Group, Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ian D Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter M Waterhouse
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
48
|
Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, Dai N, Campbell MA, Sexton BS, Marks K, Samaranayake M, Samuelson JC, Church HE, Tamanaha E, Corrêa IR, Pradhan S, Dimalanta ET, Evans TC, Williams L, Davis TB. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res 2021; 31:1280-1289. [PMID: 34140313 PMCID: PMC8256858 DOI: 10.1101/gr.266551.120] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 05/06/2021] [Indexed: 01/15/2023]
Abstract
Bisulfite sequencing detects 5mC and 5hmC at single-base resolution. However, bisulfite treatment damages DNA, which results in fragmentation, DNA loss, and biased sequencing data. To overcome these problems, enzymatic methyl-seq (EM-seq) was developed. This method detects 5mC and 5hmC using two sets of enzymatic reactions. In the first reaction, TET2 and T4-BGT convert 5mC and 5hmC into products that cannot be deaminated by APOBEC3A. In the second reaction, APOBEC3A deaminates unmodified cytosines by converting them to uracils. Therefore, these three enzymes enable the identification of 5mC and 5hmC. EM-seq libraries were compared with bisulfite-converted DNA, and each library type was ligated to Illumina adaptors before conversion. Libraries were made using NA12878 genomic DNA, cell-free DNA, and FFPE DNA over a range of DNA inputs. The 5mC and 5hmC detected in EM-seq libraries were similar to those of bisulfite libraries. However, libraries made using EM-seq outperformed bisulfite-converted libraries in all specific measures examined (coverage, duplication, sensitivity, etc.). EM-seq libraries displayed even GC distribution, better correlations across DNA inputs, increased numbers of CpGs within genomic features, and accuracy of cytosine methylation calls. EM-seq was effective using as little as 100 pg of DNA, and these libraries maintained the described advantages over bisulfite sequencing. EM-seq library construction, using challenging samples and lower DNA inputs, opens new avenues for research and clinical applications.
Collapse
Affiliation(s)
| | | | - Zhiyi Sun
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | | | - Lana Saleh
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Shengxi Guan
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Nan Dai
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | | | - Brittany S Sexton
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Katherine Marks
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Mala Samaranayake
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - James C Samuelson
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Heidi E Church
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Esta Tamanaha
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Sriharsa Pradhan
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | | | - Thomas C Evans
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Louise Williams
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Theodore B Davis
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| |
Collapse
|
49
|
Kapsner LA, Zavgorodnij MG, Majorova SP, Hotz-Wagenblatt A, Kolychev OV, Lebedev IN, Hoheisel JD, Hartmann A, Bauer A, Mate S, Prokosch HU, Haller F, Moskalev EA. BiasCorrector: Fast and accurate correction of all types of experimental biases in quantitative DNA methylation data derived by different technologies. Int J Cancer 2021; 149:1150-1165. [PMID: 33997972 DOI: 10.1002/ijc.33681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/06/2022]
Abstract
Quantification of DNA methylation in neoplastic cells is crucial both from mechanistic and diagnostic perspectives. However, such measurements are prone to different experimental biases. Polymerase chain reaction (PCR) bias results in an unequal recovery of methylated and unmethylated alleles at the sample preparation step. Post-PCR biases get introduced additionally by the readout processes. Correcting the biases is more practicable than optimising experimental conditions, as demonstrated previously. However, utilisation of our earlier developed algorithm strongly necessitates automation. Here, we present two R packages: rBiasCorrection, the core algorithms to correct biases; and BiasCorrector, its web-based graphical user interface frontend. The software detects and analyses experimental biases in calibration DNA samples at a single base resolution by using cubic polynomial and hyperbolic regression. The correction coefficients from the best regression type are employed to compensate for the bias. Three common technologies-bisulphite pyrosequencing, next-generation sequencing and oligonucleotide microarrays-were used to comprehensively test BiasCorrector. We demonstrate the accuracy of BiasCorrector's performance and reveal technology-specific PCR- and post-PCR biases. BiasCorrector effectively eliminates biases regardless of their nature, locus, the number of interrogated methylation sites and the detection method, thus representing a user-friendly tool for producing accurate epigenetic results.
Collapse
Affiliation(s)
- Lorenz A Kapsner
- Medical Center for Information and Communication Technology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mikhail G Zavgorodnij
- Functional Analysis and Operational Equations, Voronezh State University, Voronezh, Russia
| | - Svetlana P Majorova
- Higher Mathematics and Physical Mathematical Modelling, Voronezh State Technical University, Voronezh, Russia
| | - Agnes Hotz-Wagenblatt
- Omics IT and Data Management Core Facility, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Oleg V Kolychev
- Research Center, Zhukovsky-Gagarin Academy, Voronezh, Russia
| | - Igor N Lebedev
- Laboratory of Cytogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russia
| | - Jörg D Hoheisel
- Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea Bauer
- Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Sebastian Mate
- Medical Center for Information and Communication Technology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hans-Ulrich Prokosch
- Medical Center for Information and Communication Technology, Universitätsklinikum Erlangen, Erlangen, Germany.,Chair of Medical Informatics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Florian Haller
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Evgeny A Moskalev
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
50
|
Ross SE, Angeloni A, Geng FS, de Mendoza A, Bogdanovic O. Developmental remodelling of non-CG methylation at satellite DNA repeats. Nucleic Acids Res 2020; 48:12675-12688. [PMID: 33271598 PMCID: PMC7736785 DOI: 10.1093/nar/gkaa1135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
In vertebrates, DNA methylation predominantly occurs at CG dinucleotides however, widespread non-CG methylation (mCH) has been reported in mammalian embryonic stem cells and in the brain. In mammals, mCH is found at CAC trinucleotides in the nervous system, where it is associated with transcriptional repression, and at CAG trinucleotides in embryonic stem cells, where it positively correlates with transcription. Moreover, CAC methylation appears to be a conserved feature of adult vertebrate brains. Unlike any of those methylation signatures, here we describe a novel form of mCH that occurs in the TGCT context within zebrafish mosaic satellite repeats. TGCT methylation is inherited from both male and female gametes, remodelled during mid-blastula transition, and re-established during gastrulation in all embryonic layers. Moreover, we identify DNA methyltransferase 3ba (Dnmt3ba) as the primary enzyme responsible for the deposition of this mCH mark. Finally, we observe that TGCT-methylated repeats are specifically associated with H3K9me3-marked heterochromatin suggestive of a functional interplay between these two gene-regulatory marks. Altogether, this work provides insight into a novel form of vertebrate mCH and highlights the substrate diversity of vertebrate DNA methyltransferases.
Collapse
Affiliation(s)
- Samuel E Ross
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Allegra Angeloni
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Fan-Suo Geng
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Alex de Mendoza
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|