1
|
Luqman T, Hussain M, Ahmed SR, Ijaz I, Maryum Z, Nadeem S, Khan Z, Khan SMUD, Aslam M, Liu Y, Khan MKR. Cotton under heat stress: a comprehensive review of molecular breeding, genomics, and multi-omics strategies. Front Genet 2025; 16:1553406. [PMID: 40171219 PMCID: PMC11959566 DOI: 10.3389/fgene.2025.1553406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Cotton is a vital fiber crop for the global textile industry, but rising temperatures due to climate change threaten its growth, fiber quality and yields. Heat stress disrupts key physiological and biochemical processes, affecting carbohydrate metabolism, hormone signaling, calcium and gene regulation and expression. This review article explores cotton's defense mechanism against heat stress, including epigenetic regulations and transgenic approaches, with a focus on genome editing tools. Given the limitations of traditional breeding, advanced omics technologies such as GWAS, transcriptomics, proteomics, ionomics, metabolomics, phenomics and CRISPR-Cas9 offer promising solutions for developing heat-resistant cotton varieties. This review highlights the need for innovative strategies to ensure sustainable cotton production under climate change.
Collapse
Affiliation(s)
- Tahira Luqman
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Manzoor Hussain
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Horticulture Research Institute, Pakistan Agriculture Research Council (PARC), Khuzdar, Pakistan
| | - Iram Ijaz
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zahra Maryum
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Sahar Nadeem
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Zafran Khan
- Department Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
| | - Mohammad Aslam
- Horticulture Research Institute, Pakistan Agriculture Research Council (PARC), Khuzdar, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of Engineering and Applied Science Nilore, Islamabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| |
Collapse
|
2
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Zaitseva ZG, Malkerov JA, Orlova NN. Sequence-Only Prediction of Super-Enhancers in Human Cell Lines Using Transformer Models. BIOLOGY 2025; 14:172. [PMID: 40001940 PMCID: PMC11852244 DOI: 10.3390/biology14020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
The study discloses the application of transformer-based deep learning models for the task of super-enhancers prediction in human tumor cell lines with a specific focus on sequence-only features within studied entities of super-enhancer and enhancer elements in the human genome. The proposed SE-prediction method included the GENA-LM application at handling long DNA sequences with the classification task, distinguishing super-enhancers from enhancers using H3K36me, H3K4me1, H3K4me3 and H3K27ac landscape datasets from HeLa, HEK293, H2171, Jurkat, K562, MM1S and U87 cell lines. The model was fine-tuned on relevant sequence data, allowing for the analysis of extended genomic sequences without the need for epigenetic markers as proposed in early approaches. The study achieved balanced accuracy metrics, surpassing previous models like SENet, particularly in HEK293 and K562 cell lines. Also, it was shown that super-enhancers frequently co-localize with epigenetic marks such as H3K4me3 and H3K27ac. Therefore, the attention mechanism of the model provided insights into the sequence features contributing to SE classification, indicating a correlation between sequence-only features and mentioned epigenetic landscapes. These findings support the potential transformer models use in further genomic sequence analysis for bioinformatics applications in enhancer/super-enhancer characterization and gene regulation studies.
Collapse
Affiliation(s)
- Ekaterina V. Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (E.V.K.); (G.A.A.); (M.G.G.); (Z.G.Z.); (J.A.M.)
| | - German A. Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (E.V.K.); (G.A.A.); (M.G.G.); (Z.G.Z.); (J.A.M.)
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Institute for Information Transmission Problems RAS, 127051 Moscow, Russia
| | - Marina G. Gladkova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (E.V.K.); (G.A.A.); (M.G.G.); (Z.G.Z.); (J.A.M.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V. Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (E.V.K.); (G.A.A.); (M.G.G.); (Z.G.Z.); (J.A.M.)
| | - Zoia G. Zaitseva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (E.V.K.); (G.A.A.); (M.G.G.); (Z.G.Z.); (J.A.M.)
| | - Juri A. Malkerov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (E.V.K.); (G.A.A.); (M.G.G.); (Z.G.Z.); (J.A.M.)
| | - Natalia N. Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia; (E.V.K.); (G.A.A.); (M.G.G.); (Z.G.Z.); (J.A.M.)
| |
Collapse
|
3
|
Zou K, Yang J, Gao Y, Feng F, Wu M. Facile preparation of sulfonium peptide and protein probes for selective crosslinking of methyllysine readers. Chem Sci 2025; 16:1849-1856. [PMID: 39720136 PMCID: PMC11665613 DOI: 10.1039/d4sc05886k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
Sulfonium is an electrophilic and biocompatible group that is widely applied in synthetic chemistry on small molecules. However, there have been few developments of peptide or protein-based sulfonium tools. We recently reported sulfonium-mediated tryptophan crosslinking and developed NleS+me2 (norleucine-dimethylsulfonium) peptides as dimethyllysine mimics that crosslink site-specific methyllysine readers. Therefore, sulfonium probes show great potential for investigating methyllysine readers and other aromatic cage-containing proteins. However, the current synthesis is not very efficient and is limited to peptide probes that, in many cases, cannot mimic protein-protein interactions. In addition to peptidyl conjugates that are valuable for reader identification, there are unavoidable methyl conjugates as side products. As a result, a robust method to prepare peptide and protein sulfonium tools with great crosslinking reactivity and selectivity is highly desirable. Here, we report a cysteine alkylation method to introduce site-specific sulfonium at protein level with excellent yield. In addition to dimethylsulfonium, we also developed cyclic sulfonium warheads that enhanced peptidyl conjugate selectivity. The method thus made it possible to prepare nucleosome probes in which LEDGF and NSD2, as H3K36 methylation readers were readily crosslinked. We thus believe this method will accelerate the development of sulfonium peptide and protein tool sets for broad applications in chemical biology studies.
Collapse
Affiliation(s)
- Kun Zou
- Department of Chemistry, Zhejiang University 310027 Hangzhou Zhejiang Province China
- Department of Chemistry, School of Science, Westlake University 310030 Hangzhou Zhejiang Province China
| | - Jinyu Yang
- Department of Chemistry, Zhejiang University 310027 Hangzhou Zhejiang Province China
- Department of Chemistry, School of Science, Westlake University 310030 Hangzhou Zhejiang Province China
| | - Yingxiao Gao
- Department of Chemistry, School of Science, Westlake University 310030 Hangzhou Zhejiang Province China
| | - Feng Feng
- Westlake Laboratory of Life Sciences and Biomedicine 310024 Hangzhou Zhejiang Province China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University 310030 Hangzhou Zhejiang Province China
- Westlake Laboratory of Life Sciences and Biomedicine 310024 Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study 310024 Hangzhou Zhejiang Province China
| |
Collapse
|
4
|
Huang G, Stevens R, Hucek DG, Purohit T, Li S, Miao H, Trost E, Hewett G, Clegg B, Park SR, Rajanayake K, Wen B, Sun D, Cierpicki T, Grembecka J. Structure-Based Development of Novel Spiro-Piperidine ASH1L Inhibitors. J Med Chem 2025; 68:174-195. [PMID: 39680643 DOI: 10.1021/acs.jmedchem.4c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The absent, small, or homeotic-like 1 (ASH1L) protein is a histone lysine methyltransferase that plays a crucial role in various cancers, including leukemia. Despite representing an attractive therapeutic target, only one class of ASH1L inhibitors was identified to date. Herein, we report development of advanced ASH1L inhibitors targeting the catalytic SET domain, which were designed to access previously unexplored binding pocket on ASH1L. Extensive medicinal chemistry combined with structure-based design led to identification of 66s (AS-254s), a highly potent and selective ASH1L inhibitor (IC50 = 94 nM), representing substantially improved inhibitory activity over previously reported compounds targeting ASH1L. Furthermore, 66s effectively blocked cell proliferation and induced apoptosis and differentiation in leukemia cells harboring MLL1 translocations. Overall, this work provides a high-quality chemical probe targeting the catalytic SET domain of ASH1L with increased inhibitory activity and cellular efficacy to study biological functions of ASH1L and potentially to develop novel anticancer therapeutics.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rhiannon Stevens
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Devon G Hucek
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shuangjiang Li
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elise Trost
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Geoff Hewett
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bradley Clegg
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Se Ra Park
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Krishani Rajanayake
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Yu XH, Xie Y, Yu J, Zhang KN, Guo ZB, Wang D, Li ZX, Zhang WQ, Tan YY, Zhang L, Jiang WT. Loss-of-function mutations of microRNA-142-3p promote ASH1L expression to induce immune evasion and hepatocellular carcinoma progression. World J Gastroenterol 2025; 31:101198. [PMID: 39777247 PMCID: PMC11684187 DOI: 10.3748/wjg.v31.i1.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/28/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has been a pervasive malignancy throughout the world with elevated mortality. Efficient therapeutic targets are beneficial to treat and predict the disease. Currently, the exact molecular mechanisms leading to the progression of HCC are still unclear. Research has shown that the microRNA-142-3p level decreases in HCC, whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues. In this paper, we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity, and the association between them. AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients. METHODS In this study, we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues, and retrospectively analyzed the prognosis of HCC patients. Furthermore, explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments, which involved the following experimental methods: Immunohistochemical staining, western blot, quantitative real-time-polymerase chain reaction, flow cytometric analysis, tumor xenografts in nude mice, etc. The statistical methods involved in this study contained t-test, one-way analysis of variance, the χ 2 test, the Kaplan-Meier approach and the log-rank test. RESULTS In this study, we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate. ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3'untranslated region. Furthermore, microRNA-142-3p promotes apoptosis and inhibits proliferation, invasion, and migration of HCC cell lines in vitro via ASH1L. For the exploration mechanism, we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1, which is potentially relevant to the immune system. CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC. Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.
Collapse
Affiliation(s)
- Xing-Hui Yu
- School of Medicine, Nankai University, Tianjin 300192, China
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China
| | - Yan Xie
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China
- Department of Liver Transplantation, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jian Yu
- First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Kun-Ning Zhang
- School of Medicine, Nankai University, Tianjin 300192, China
| | - Zhou-Bo Guo
- First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Di Wang
- First Central Clinical School, Tianjin Medical University, Tianjin 300192, China
| | - Zhao-Xian Li
- School of Medicine, Nankai University, Tianjin 300192, China
| | - Wei-Qi Zhang
- School of Medicine, Nankai University, Tianjin 300192, China
| | - Yu-Ying Tan
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China
| | - Li Zhang
- Department of Liver Transplantation, Tianjin First Center Hospital, Tianjin 300192, China
| | - Wen-Tao Jiang
- School of Medicine, Nankai University, Tianjin 300192, China
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin 300192, China
- Department of Liver Transplantation, Tianjin First Center Hospital, Tianjin 300192, China
| |
Collapse
|
6
|
Lee MK, Park NH, Lee SY, Kim T. Context-Dependent and Locus-Specific Role of H3K36 Methylation in Transcriptional Regulation. J Mol Biol 2025; 437:168796. [PMID: 39299382 DOI: 10.1016/j.jmb.2024.168796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
H3K36 methylation is a critical histone modification involved in transcription regulation. It involves the mono (H3K36me1), di (H3K36me2), and/or tri-methylation (H3K36me3) of lysine 36 on histone H3 by methyltransferases. In yeast, Set2 catalyzes all three methylation states. By contrast, in higher eukaryotes, at least eight methyltransferases catalyze different methylation states, including SETD2 for H3K36me3 and the NSD family for H3K36me2 in vivo. Both Set2 and SETD2 interact with the phosphorylated CTD of RNA Pol II, which links H3K36 methylation to transcription. In yeast, H3K36me3 and H3K36me2 peak at the 3' ends of genes. In higher eukaryotes, this is also true for H3K36me3 but not for H3K36me2, which is enriched at the 5' ends of genes and intergenic regions, suggesting that H3K36me2 and H3K36me3 may play different regulatory roles. Whether H3K36me1 demonstrates preferential distribution remains unclear. H3K36me3 is essential for inhibiting transcription elongation. It also suppresses cryptic transcription by promoting histone deacetylation by the histone deacetylases Rpd3S (yeast) and variant NuRD (higher eukaryotes). H3K36me3 also facilitates DNA methylation by DNMT3B, thereby preventing spurious transcription initiation. H3K36me3 not only represses transcription since it promotes the activation of mRNA and cryptic promoters in response to environmental changes by targeting the histone acetyltransferase NuA3 in yeast. Further research is needed to elucidate the methylation state- and locus-specific functions of H3K36me1 and the mechanisms that regulate it.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Na Hyun Park
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Young Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - TaeSoo Kim
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
7
|
Reed L, Abraham J, Patel S, Dhar SS. Epigenetic Modifiers: Exploring the Roles of Histone Methyltransferases and Demethylases in Cancer and Neurodegeneration. BIOLOGY 2024; 13:1008. [PMID: 39765675 PMCID: PMC11673268 DOI: 10.3390/biology13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Histone methyltransferases (HMTs) and histone demethylases (HDMs) are critical enzymes that regulate chromatin dynamics and gene expression through the addition and removal of methyl groups on histone proteins. HMTs, such as PRC2 and SETD2, are involved in the trimethylation of histone H3 at lysine 27 and lysine 36, influencing gene silencing and activation. Dysregulation of these enzymes often leads to abnormal gene expression and contributes to tumorigenesis. In contrast, HDMs including KDM7A and KDM2A reverse these methylation marks, and their dysfunction can drive disease progression. In cancer, the aberrant activity of specific HMTs and HDMs can lead to the silencing of tumor suppressor genes or the activation of oncogenes, facilitating tumor progression and resistance to therapy. Conversely, in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), disruptions in histone methylation dynamics are associated with neuronal loss, altered gene expression, and disease progression. We aimed to comprehend the odd activity of HMTs and HDMs and how they contribute to disease pathogenesis, highlighting their potential as therapeutic targets. By advancing our understanding of these epigenetic regulators, this review provides new insights into their roles in cancer and neurodegenerative diseases, offering a foundation for future research.
Collapse
Affiliation(s)
| | | | | | - Shilpa S. Dhar
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (L.R.); (J.A.)
| |
Collapse
|
8
|
Jhanji M, Ward JA, Leung CS, Krall CL, Ritchie FD, Guevara A, Vestergaard K, Yoon B, Amin K, Berto S, Liu J, Lizarraga SB. Dynamic Regulation OF The Chromatin Environment By Ash1L Modulates Human Neuronal Structure And Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.625500. [PMID: 39677608 PMCID: PMC11642754 DOI: 10.1101/2024.12.02.625500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Precise regulation of the chromatin environment through post-translational histone modification modulates transcription and controls brain development. Not surprisingly, mutations in a large number of histone-modifying enzymes underlie complex brain disorders. In particular, the histone methyltransferase ASH1L modifies histone marks linked to transcriptional activation and has been implicated in multiple neuropsychiatric disorders. However, the mechanisms underlying the pathobiology of ASH1L-asociated disease remain underexplored. We generated human isogenic stem cells with a mutation in ASH1L's catalytic domain. We find that ASH1L dysfunction results in reduced neurite outgrowth, which correlates with alterations in the chromatin profile of activating and repressive histone marks, as well as the dysregulation of gene programs important for neuronal structure and function implicated in neuropsychiatric disease. We also identified a novel regulatory node implicating both the SP and Krüppel -like families of transcription factors and ASH1L relevant to human neuronal development. Finally, we rescue cellular defects linked to ASH1L dysfunction by leveraging two independent epigenetic mechanisms that promote transcriptional activation. In summary, we identified an ASH1L-driven epigenetic and transcriptional axis essential for human brain development and complex brain disorders that provide insights into future therapeutic strategies for ASH1L-related disorders.
Collapse
|
9
|
Zhang X, Hu D, Sun X, Gu Y, Zhou Y, Su C, Liu S, Zhang C, Lu G, Wu Q, Chen A. PHGDH/SYK: a hub integrating anti-fungal immunity and serine metabolism. Cell Death Differ 2024; 31:1664-1678. [PMID: 39256519 PMCID: PMC11618577 DOI: 10.1038/s41418-024-01374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
Immune cells modify their metabolic pathways in response to fungal infections. Nevertheless, the biochemical underpinnings need to be better understood. This study reports that fungal infection drives a switch from glycolysis to the serine synthesis pathway (SSP) and one-carbon metabolism by inducing the interaction of spleen tyrosine kinase (SYK) and phosphoglycerate dehydrogenase (PHGDH). As a result, PHGDH promotes SYK phosphorylation, leading to the recruitment of SYK to C-type lectin receptors (CLRs). The CLR/SYK complex initiates signaling cascades that lead to transcription factor activation and pro-inflammatory cytokine production. SYK activates SSP and one-carbon metabolism by inducing PHGDH activity. Then, one-carbon metabolism supports S-adenosylmethionine and histone H3 lysine 36 trimethylation to drive the production of pro-inflammatory cytokines and chemokines. These findings reveal the crosstalk between amino acid metabolism, epigenetic modification, and CLR signaling during fungal infection.
Collapse
Affiliation(s)
- Xinyong Zhang
- Department of Neurology, The Second People's Hospital of Huai 'an, Huai 'an, 223001, China
| | - Dongdong Hu
- Department of Emergency, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China
| | - Xiaoyan Sun
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yichun Gu
- The Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yong Zhou
- Department of Neurology, The Second People's Hospital of Huai 'an, Huai 'an, 223001, China
| | - Chuanxin Su
- The Key Laboratory of Targeted Intervention of Clinical Disease, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Caiyan Zhang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Guoping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Qiwen Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Aidong Chen
- The Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
10
|
Kang B, Song B, Shin H, Lee IS. Downregulation of nuclear receptor-binding SET domain protein 1 induces proinflammatory cytokine expression via mitogen-activated protein kinase pathways in U87MG cells. Biochem Biophys Res Commun 2024; 734:150638. [PMID: 39236589 DOI: 10.1016/j.bbrc.2024.150638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Haploinsufficiency of the nuclear receptor binding SET domain-containing protein 1 gene (NSD1) leads to a neurodevelopmental disorder known as Sotos syndrome (SOTOS). This study investigated the effects of NSD1 knockdown in glial cells. U87MG glioma cells were transfected with siRNA targeting NSD1, which resulted in morphological changes characteristic of activated astrocytes. These activated phenotypes were accompanied by specific activation of mitogen-activated protein kinase (MAPK) signaling pathways, particularly those mediated by p38 MAPK and c-Jun N-terminal kinase (JNK). Transcriptome analysis showed increased expression of proinflammatory cytokine genes, particularly interleukin (IL)-1α, IL-1β, and IL-6, following NSD1 knockdown. Treatment with MAPK inhibitors significantly reduced the cytokine induction caused by NSD1 knockdown, with the p38 MAPK inhibitor being more effective than the JNK inhibitor. These findings provide new insights into the role of NSD1 loss in neurological dysfunctions associated with SOTOS.
Collapse
Affiliation(s)
- Byungjun Kang
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Bokyeong Song
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyewon Shin
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
11
|
Iwasaki K, Tojo A, Kobayashi H, Shimizu K, Kamimura Y, Horikoshi Y, Fukuto A, Sun J, Yasui M, Honma M, Okabe A, Fujiki R, Nakajima NI, Kaneda A, Tashiro S, Sassa A, Ura K. Dose-dependent effects of histone methyltransferase NSD2 on site-specific double-strand break repair. Genes Cells 2024; 29:951-965. [PMID: 39245559 DOI: 10.1111/gtc.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/10/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Histone modifications are catalyzed and recognized by specific proteins to regulate dynamic DNA metabolism processes. NSD2 is a histone H3 lysine 36 (H3K36)-specific methyltransferase that is associated with both various transcription regulators and DNA repair factors. Specifically, it has been implicated in the repair of DNA double-strand breaks (DSBs); however, the role of NSD2 during DSB repair remains enigmatic. Here, we show that NSD2 does not accumulate at DSB sites and that it is not further mobilized by DSB formation. Using three different DSB repair reporter systems, which contained the endonuclease site in the active thymidine kinase gene (TK) locus, we demonstrated separate dose-dependent effects of NSD2 on homologous recombination (HR), canonical-non-homologous end joining (c-NHEJ), and non-canonical-NHEJ (non-c-NHEJ). Endogenous NSD2 has a role in repressing non-c-NHEJ, without affecting DSB repair efficiency by HR or total NHEJ. Furthermore, overexpression of NSD2 promotes c-NHEJ repair and suppresses HR repair. Therefore, we propose that NSD2 has functions in chromatin integrity at the active regions during DSB repair.
Collapse
Affiliation(s)
- Koh Iwasaki
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Akari Tojo
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Haruka Kobayashi
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Kai Shimizu
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Yoshitaka Kamimura
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Atsuhiko Fukuto
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu City, Chiba, Japan
| | - Nakako Izumi Nakajima
- Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Sciences and Technology (iQMS, QST), Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akira Sassa
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| | - Kiyoe Ura
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate school of Science, Chiba University, Chiba, Japan
| |
Collapse
|
12
|
Park S, Cho JH, Kim JH, Kim JA. Histone lysine methylation modifiers controlled by protein stability. Exp Mol Med 2024; 56:2127-2144. [PMID: 39394462 PMCID: PMC11541785 DOI: 10.1038/s12276-024-01329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/13/2024] Open
Abstract
Histone lysine methylation is pivotal in shaping the epigenetic landscape and is linked to cell physiology. Coordination of the activities of multiple histone lysine methylation modifiers, namely, methyltransferases and demethylases, modulates chromatin structure and dynamically alters the epigenetic landscape, orchestrating almost all DNA-templated processes, such as transcription, DNA replication, and DNA repair. The stability of modifier proteins, which is regulated by protein degradation, is crucial for their activity. Here, we review the current knowledge of modifier-protein degradation via specific pathways and its subsequent impact on cell physiology through epigenetic changes. By summarizing the functional links between the aberrant stability of modifier proteins and human diseases and highlighting efforts to target protein stability for therapeutic purposes, we aim to promote interest in defining novel pathways that regulate the degradation of modifiers and ultimately increase the potential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sungryul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, South Korea.
| | - Jung-Ae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, South Korea.
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
| |
Collapse
|
13
|
Hou X, Yang Y, Wang C, Huang Z, Zhang M, Yang J, Li N, Yang H, Yang L, Wu K. H3K36 methyltransferase SMYD2 affects cell proliferation and migration in Hirschsprung's disease by regulating METTL3. J Cell Physiol 2024; 239:e31402. [PMID: 39109795 DOI: 10.1002/jcp.31402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 10/26/2024]
Abstract
The pathogenesis of Hirschsprung's disease (HSCR) is complex. Recently, it has been found that histone modifications can alter genetic susceptibility and play important roles in the proliferation, differentiation and migration of neural crest cells. H3K36 methylation plays a significant role in gene transcriptional activation and expression, but its pathogenic mechanism in HSCR has not yet been studied. This study aimed to elucidate its role and molecular mechanism in HSCR. Western blot analysis, immunohistochemistry (IHC) and reverse transcription-quantitative PCR (RT‒qPCR) were used to investigate H3K36 methylation and methyltransferase levels in dilated and stenotic colon tissue sections from children with. We confirm that SMYD2 is the primary cause of differential H3K36 methylation and influences cell proliferation and migration in HSCR. Subsequently, quantitative detection of m6A RNA methylation revealed that SMYD2 can alter m6A methylation levels. Western blot analysis, RT-qPCR, co-immunoprecipitation (co-IP), and immunofluorescence colocalization were utilized to confirm that SMYD2 can regulate METTL3 expression and affect m6A methylation, affecting cell proliferation and migration. These results confirm that the H3K36 methyltransferase SMYD2 can affect cell proliferation and migration in Hirschsprung's disease by regulating METTL3. Our study suggested that H3K36 methylation plays an important role in HSCR, confirming that the methyltransferase SMYD2 can affect m6A methylation levels and intestinal nervous system development by regulating METTL3 expression.
Collapse
Affiliation(s)
- Xinwei Hou
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Thyroid Hernia Vascular Pediatric Surgery, The Second People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yang Yang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Wang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaorong Huang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Mengzhen Zhang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaming Yang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huirong Yang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liucheng Yang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Xu M, Zhang Q, Shi H, Wu Z, Zhou W, Lin F, Kou Y, Tao Z. A repressive H3K36me2 reader mediates Polycomb silencing. Nat Commun 2024; 15:7287. [PMID: 39179589 PMCID: PMC11343894 DOI: 10.1038/s41467-024-51789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
In animals, evolutionarily conserved Polycomb repressive complex 2 (PRC2) catalyzes histone H3 lysine 27 trimethylation (H3K27me3) and PRC1 functions in recruitment and transcriptional repression. However, the mechanisms underlying H3K27me3-mediated stable transcriptional silencing are largely unknown, as PRC1 subunits are poorly characterized in fungi. Here, we report that in the filamentous fungus Magnaporthe oryzae, the N-terminal chromodomain and C-terminal MRG domain of Eaf3 play key roles in facultative heterochromatin formation and transcriptional silencing. Eaf3 physically interacts with Ash1, Eed, and Sin3, encoding an H3K36 methyltransferase, the core subunit of PRC2, and a histone deacetylation co-suppressor, respectively. Eaf3 co-localizes with a set of repressive Ash1-H3K36me2 and H3K27me3 loci and mediates their transcriptional silencing. Furthermore, Eaf3 acts as a histone reader for the repressive H3K36me2 and H3K27me3 marks. Eaf3-occupied regions are associated with increased nucleosome occupancy, contributing to transcriptional silencing in M. oryzae. Together, these findings reveal that Eaf3 is a repressive H3K36me2 reader and plays a vital role in Polycomb gene silencing and the formation of facultative heterochromatin in fungi.
Collapse
Affiliation(s)
- Mengting Xu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi Zhang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Zhongling Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wei Zhou
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China.
| | - Zeng Tao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Templeton CW, Laimins LA. HPV induced R-loop formation represses innate immune gene expression while activating DNA damage repair pathways. PLoS Pathog 2024; 20:e1012454. [PMID: 39178326 PMCID: PMC11376575 DOI: 10.1371/journal.ppat.1012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 07/28/2024] [Indexed: 08/25/2024] Open
Abstract
R-loops are trimeric nucleic acid structures that form when an RNA molecule hybridizes with its complementary DNA strand, displacing the opposite strand. These structures regulate transcription as well as replication, but aberrant R-loops can form, leading to DNA breaks and genomic instability if unresolved. R-loop levels are elevated in many cancers as well as cells that maintain high-risk human papillomaviruses. We investigated how the distribution as well as function of R-loops changed between normal keratinocytes and HPV positive cells derived from a precancerous lesion of the cervix (CIN I). The levels of R-loops associated with cellular genes were found to be up to 10-fold higher in HPV positive cells than in normal keratinocytes while increases at ALU1 elements increased by up to 500-fold. The presence of enhanced R-loops resulted in altered levels of gene transcription, with equal numbers increased as decreased. While no uniform global effects on transcription due to the enhanced levels of R-loops were detected, genes in several pathways were coordinately increased or decreased in expression only in the HPV positive cells. This included the downregulation of genes in the innate immune pathway, such as DDX58, IL-6, STAT1, IFN-β, and NLRP3. All differentially expressed innate immune genes dependent on R-loops were also associated with H3K36me3 modified histones. Genes that were upregulated by the presence of R-loops in HPV positive cells included those in the DNA damage repair such as ATM, ATRX, and members of the Fanconi Anemia pathway. These genes exhibited a linkage between R-loops and H3K36me3 as well as γH2AX histone marks only in HPV positive cells. These studies identify a potential link in HPV positive cells between DNA damage repair as well as innate immune regulatory pathways with R-loops and γH2AX/H3K36me3 histone marks that may contribute to regulating important functions for HPV pathogenesis.
Collapse
Affiliation(s)
- Conor W Templeton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
16
|
Weirich S, Kusevic D, Schnee P, Reiter J, Pleiss J, Jeltsch A. Discovery of NSD2 non-histone substrates and design of a super-substrate. Commun Biol 2024; 7:707. [PMID: 38851815 PMCID: PMC11162472 DOI: 10.1038/s42003-024-06395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
The human protein lysine methyltransferase NSD2 catalyzes dimethylation at H3K36. It has very important roles in development and disease but many mechanistic features and its full spectrum of substrate proteins are unclear. Using peptide SPOT array methylation assays, we investigate the substrate sequence specificity of NSD2 and discover strong readout of residues between G33 (-3) and P38 (+2) on H3K36. Unexpectedly, we observe that amino acid residues different from natural ones in H3K36 are preferred at some positions. Combining four preferred residues led to the development of a super-substrate which is methylated much faster by NSD2 at peptide and protein level. Molecular dynamics simulations demonstrate that this activity increase is caused by distinct hyperactive conformations of the enzyme-peptide complex. To investigate the substrate spectrum of NSD2, we conducted a proteome wide search for nuclear proteins matching the specificity profile and discovered 22 peptide substrates of NSD2. In protein methylation studies, we identify K1033 of ATRX and K819 of FANCM as NSD2 methylation sites and also demonstrate their methylation in human cells. Both these proteins have important roles in DNA repair strengthening the connection of NSD2 and H3K36 methylation to DNA repair.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Denis Kusevic
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jessica Reiter
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
17
|
Subramani PG, Fraszczak J, Helness A, Estall JL, Möröy T, Di Noia JM. Conserved role of hnRNPL in alternative splicing of epigenetic modifiers enables B cell activation. EMBO Rep 2024; 25:2662-2697. [PMID: 38744970 PMCID: PMC11169469 DOI: 10.1038/s44319-024-00152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
The multifunctional RNA-binding protein hnRNPL is implicated in antibody class switching but its broader function in B cells is unknown. Here, we show that hnRNPL is essential for B cell activation, germinal center formation, and antibody responses. Upon activation, hnRNPL-deficient B cells show proliferation defects and increased apoptosis. Comparative analysis of RNA-seq data from activated B cells and another eight hnRNPL-depleted cell types reveals common effects on MYC and E2F transcriptional programs required for proliferation. Notably, while individual gene expression changes are cell type specific, several alternative splicing events affecting histone modifiers like KDM6A and SIRT1, are conserved across cell types. Moreover, hnRNPL-deficient B cells show global changes in H3K27me3 and H3K9ac. Epigenetic dysregulation after hnRNPL loss could underlie differential gene expression and upregulation of lncRNAs, and explain common and cell type-specific phenotypes, such as dysfunctional mitochondria and ROS overproduction in mouse B cells. Thus, hnRNPL is essential for the resting-to-activated B cell transition by regulating transcriptional programs and metabolism, at least in part through the alternative splicing of several histone modifiers.
Collapse
Affiliation(s)
- Poorani Ganesh Subramani
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
| | - Jennifer Fraszczak
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Anne Helness
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Department of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900 Boul Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada.
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Department of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900 Boul Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
18
|
Wang XY, Li HM, Xia R, Li X, Zhang X, Jin TZ, Zhang HS. KDM4B down-regulation facilitated breast cancer cell stemness via PHGDH upregulation in H3K36me3-dependent manner. Mol Cell Biochem 2024; 479:915-928. [PMID: 37249813 DOI: 10.1007/s11010-023-04777-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
Despite recent advances have been made in clinical treatments of breast cancer, the general prognosis of patients remains poor. Therefore, it is imperative to develop a more effective therapeutic strategy. Lysine demethylase 4B (KDM4B) has been reported to participate in breast cancer development recently, but its exact biological role in breast cancer remains unclear. Here, we observed that KDM4B was down-regulated in human primary BRCA tissues and the low levels of KDM4B expression were correlated with poor survival. Gain- and loss-of-function experiments showed that KDM4B inhibited the proliferation and metastasis of breast cancer cells. Besides, knockdown of KDM4B promoted the epithelial-mesenchymal transition (EMT) and cell stemness in breast cancer cells. Mechanistically, KDM4B down-regulates PHGDH by decreasing the enrichment of H3K36me3 on the promoter region of PHGDH. Knockdown of PHGDH could significantly reversed proliferation, migration, EMT, and cell stemness induced by KDM4B silencing in breast cancer cells. Collectively, we propose a model for a KDM4B/PHGDH axis that provides novel insight into breast cancer development, which may serve as a potential factor for predicting prognosis and a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Hong-Ming Li
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Ran Xia
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Xing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Tong-Zhao Jin
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing, 100124, China.
| |
Collapse
|
19
|
Qin CM, Wei XW, Wu JY, Liu XQ, Lin Y. Decreased NSD2 impairs stromal cell proliferation in human endometrium via reprogramming H3K36me2. Reproduction 2024; 167:e230254. [PMID: 38236723 PMCID: PMC10895284 DOI: 10.1530/rep-23-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
In brief The proliferation of the endometrium is regulated by histone methylation. This study shows that decreased NSD2 impairs proliferative-phase endometrial stromal cell proliferation in patients with recurrent implantation failure via epigenetic reprogramming of H3K36me2 methylation on the promoter region of MCM7. Abstract Recurrent implantation failure (RIF) is a formidable challenge in assisted reproductive technology because of its unclear molecular mechanism. Impaired human endometrial stromal cell (HESC) proliferation disrupts the rhythm of the menstrual cycle, resulting in devastating disorders between the embryo and the endometrium. The molecular function of histone methylation enzymes in modulating HESC proliferation remains largely uncharacterized. Herein, we found that the levels of histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2) and the dimethylation of lysine 36 on histone H3 are decreased significantly in the proliferative-phase endometrium of patients with RIF. Knockdown of NSD2 in an HESC cell line markedly impaired cell proliferation and globally reduced H3K36me2 binding to chromatin, leading to altered expression of many genes. Transcriptomic analyses revealed that cell cycle-related gene sets were downregulated in the endometrium of patients with RIF and in NSD2‑knockdown HESCs. Furthermore, RNA-sequencing and CUT&Tag sequencing analysis suggested that NSD2 knockdown reduced the binding of H3K36me2 to the promoter region of cell cycle marker gene MCM7 (encoding minichromosome maintenance complex component 7) and downregulated its expression. The interaction of H3K36me2 with the MCM7 promoter was verified using chromatin immunoprecipitation-quantitative real-time PCR. Our results demonstrated a unifying epigenome-scale mechanism by which decreased NSD2 impairs endometrial stromal cell proliferation in the proliferative-phase endometrium of patients with RIF.
Collapse
Affiliation(s)
- Chuan-Mei Qin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Wei Wei
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Yi Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Qing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Xu M, Sun Z, Shi H, Yue J, Xiong X, Wu Z, Kou Y, Tao Z. Two H3K36 methyltransferases differentially associate with transcriptional activity and enrichment of facultative heterochromatin in rice blast fungus. ABIOTECH 2024; 5:1-16. [PMID: 38576437 PMCID: PMC10987451 DOI: 10.1007/s42994-023-00127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/17/2023] [Indexed: 04/06/2024]
Abstract
Di- and tri-methylation of lysine 36 on histone H3 (H3K36me2/3) is catalysed by histone methyltransferase Set2, which plays an essential role in transcriptional regulation. Although there is a single H3K36 methyltransferase in yeast and higher eukaryotes, two H3K36 methyltransferases, Ash1 and Set2, were present in many filamentous fungi. However, their roles in H3K36 methylation and transcriptional regulation remained unclear. Combined with methods of RNA-seq and ChIP-seq, we revealed that both Ash1 and Set2 are redundantly required for the full H3K36me2/3 activity in Magnaporthe oryzae, which causes the devastating worldwide rice blast disease. Ash1 and Set2 distinguish genomic H3K36me2/3-marked regions and are differentially associated with repressed and activated transcription, respectively. Furthermore, Ash1-catalysed H3K36me2 was co-localized with H3K27me3 at the chromatin, and Ash1 was required for the enrichment and transcriptional silencing of H3K27me3-occupied genes. With the different roles of Ash1 and Set2, in H3K36me2/3 enrichment and transcriptional regulation on the stress-responsive genes, they differentially respond to various stresses in M. oryzae. Overall, we reveal a novel mechanism by which two H3K36 methyltransferases catalyze H3K36me2/3 that differentially associate with transcriptional activities and contribute to enrichment of facultative heterochromatin in eukaryotes. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00127-3.
Collapse
Affiliation(s)
- Mengting Xu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Ziyue Sun
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Huanbin Shi
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310021 China
| | - Jiangnan Yue
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Zhongling Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yanjun Kou
- State Key Lab of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310021 China
| | - Zeng Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
21
|
Ko EK, Anderson A, D'souza C, Zou J, Huang S, Cho S, Alawi F, Prouty S, Lee V, Yoon S, Krick K, Horiuchi Y, Ge K, Seykora JT, Capell BC. Disruption of H3K36 methylation provokes cellular plasticity to drive aberrant glandular formation and squamous carcinogenesis. Dev Cell 2024; 59:187-198.e7. [PMID: 38198888 PMCID: PMC10872381 DOI: 10.1016/j.devcel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Chromatin organization is essential for maintaining cell-fate trajectories and developmental programs. Here, we find that disruption of H3K36 methylation dramatically impairs normal epithelial differentiation and development, which promotes increased cellular plasticity and enrichment of alternative cell fates. Specifically, we observe a striking increase in the aberrant generation of excessive epithelial glandular tissues, including hypertrophic salivary, sebaceous, and meibomian glands, as well as enhanced squamous tumorigenesis. These phenotypic and gene expression manifestations are associated with loss of H3K36me2 and rewiring of repressive H3K27me3, changes we also observe in human patients with glandular hyperplasia. Collectively, these results have identified a critical role for H3K36 methylation in both in vivo epithelial cell-fate decisions and the prevention of squamous carcinogenesis and suggest that H3K36 methylation modulation may offer new avenues for the treatment of numerous common disorders driven by altered glandular function, which collectively affect large segments of the human population.
Collapse
Affiliation(s)
- Eun Kyung Ko
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Anderson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carina D'souza
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Zou
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sijia Huang
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Institute of Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sohyun Cho
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Faizan Alawi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn School of Dental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen Prouty
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vivian Lee
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sora Yoon
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Keegan Krick
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yoko Horiuchi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - John T Seykora
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brian C Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Zhang XY, Li Y. PHD-BAH Domain in ASH1L Could Recognize H3K4 Methylation and Regulate the Malignant Behavior of Cholangiocarcinoma. Anticancer Agents Med Chem 2024; 24:1264-1274. [PMID: 39034728 DOI: 10.2174/0118715206312004240712072532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Histone methyltransferase absent, small, or homeotic discs1-like (ASH1L) is composed of su(var)3-9, enhancer of zeste, trithorax (SET) domain, pleckstrin homology domain (PHD) domain, middle (MID) domain, and bromo adjacent homology (BAH) domain. The SET domain of ASH1L is known to mediate mediate H3K36 dimethylation (H3K36me2) modification. However, the specific functions of the PHD-BAH domain remain largely unexplored. This study aimed to explore the biological function of the PHD-BAH domain in ASH1L. METHODS We employed a range of techniques, including a prokaryotic fusion protein expression purification system, pull-down assay, Isothermal Titration Calorimetry (ITC), polymerase chain reaction (PCR), and sitedirected mutagenesis, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9) gene editing, cell culture experiment, western blot, cell proliferation assay, and cell apoptosis test. RESULTS The PHD-BAH domain in ASH1L preferentially binds to the H3K4me2 peptide over H3K4 monomethylation (H3K4me1) and H3K4 trimethylation (H3K4me3) peptide. Notably, the W2603A mutation within the PHD-BAH domain could disrupt the interaction with H3K4me2 in vitro. Compared with wild-type Cholangiocarcinoma (CHOL) cells, deletion of the PHD-BAH domain in ASH1L led to increased CHOL cell apoptosis and reduced cell proliferation (P < 0.001). Additionally, the W2603A mutation affected the regulation of the proteasome 20S subunit beta (PSMB) family gene set. CONCLUSION W2603A mutation was crucial for the interaction between the PHD-BAH domain and the H3K4me2 peptide. ASH1L regulated CHOL cell survival and proliferation through its PHD-BAH domain by modulating the expression of the PSMB family gene set.
Collapse
Affiliation(s)
- Xiang-Yu Zhang
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yue Li
- External Cooperation Liaison Office, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| |
Collapse
|
23
|
Yu M, Yang D, Chen C, Xia H. Effects of SETD2 on telomere length and malignant transformation property of Met-5A after one-month crocidolite exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 41:121-134. [PMID: 37899647 DOI: 10.1080/26896583.2023.2271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Crocidolite is a carcinogen contributing to the pathogenesis of malignant mesothelioma. This study aimed to characterize the possible telomere-related events mediating the malignant transformation of mesothelial cells with and without SETD2 under crocidolite exposure. The crocidolite concentration resulting in 90% viable SETD2 knockout Met-5A (Met-5ASETD2-KO) and Met-5A were estimated to be 0.71 μg/cm2 and 1.8 μg/cm2, respectively, during 72 h of exposure, which was further employed in chronical crocidolite exposure during a 72 h exposure interval per time up to 1 month. Chronical crocidolite-exposed Met-5ASETD2-KO (chronical Cro-Met-5ASETD2-KO) had higher colony formation and increased telomerase reverse transcriptase (TERT) protein levels than chronical crocidolite-exposed Met-5A (chronical Cro-Met-5A) and Met-5ASETD2-KO. Chronical Cro-Met-5ASETD2-KO had longer telomere length (TL) than chronical Cro-Met-5A, although there were no changes in TL for either chronical Cro-Met-5A or chronical Cro-Met-5ASETD2-KO compared with their corresponding cells without crocidolite exposure. BIBR 1532, an inhibitor targeting TERT, partially reduced colony formation and TL for chronical Cro-Met-5ASETD2-KO, while BIBR 1532 reduced TL but had no effect on colony formation for chronical Cro-Met-5A. Therefore, SETD2 deficient mesothelial cells are susceptible to malignant transformation during chronical crocidolite exposure, and TERT-dependent TL modification likely partially drives SETD2 loss-mediated early onset of mesothelial malignant transformation.
Collapse
Affiliation(s)
- Min Yu
- Department of Occupational Health & Radiation Hygiene, Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, Zhejiang, China
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dan Yang
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chiyun Chen
- Department of Pulmonary and Critical Care Medicine, Cixi People Hospital Medical Health Group (Cixi People Hospital), Cixi, Zhejiang, China
| | - Hailing Xia
- School of Public Heath, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Zhang X, Fawwal DV, Spangle JM, Corbett AH, Jones CY. Exploring the Molecular Underpinnings of Cancer-Causing Oncohistone Mutants Using Yeast as a Model. J Fungi (Basel) 2023; 9:1187. [PMID: 38132788 PMCID: PMC10744705 DOI: 10.3390/jof9121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Understanding the molecular basis of cancer initiation and progression is critical in developing effective treatment strategies. Recently, mutations in genes encoding histone proteins that drive oncogenesis have been identified, converting these essential proteins into "oncohistones". Understanding how oncohistone mutants, which are commonly single missense mutations, subvert the normal function of histones to drive oncogenesis requires defining the functional consequences of such changes. Histones genes are present in multiple copies in the human genome with 15 genes encoding histone H3 isoforms, the histone for which the majority of oncohistone variants have been analyzed thus far. With so many wildtype histone proteins being expressed simultaneously within the oncohistone, it can be difficult to decipher the precise mechanistic consequences of the mutant protein. In contrast to humans, budding and fission yeast contain only two or three histone H3 genes, respectively. Furthermore, yeast histones share ~90% sequence identity with human H3 protein. Its genetic simplicity and evolutionary conservation make yeast an excellent model for characterizing oncohistones. The power of genetic approaches can also be exploited in yeast models to define cellular signaling pathways that could serve as actionable therapeutic targets. In this review, we focus on the value of yeast models to serve as a discovery tool that can provide mechanistic insights and inform subsequent translational studies in humans.
Collapse
Affiliation(s)
- Xinran Zhang
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
| | - Dorelle V. Fawwal
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Jennifer M. Spangle
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Anita H. Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Celina Y. Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA; (X.Z.); (D.V.F.); (A.H.C.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
26
|
Yao Y, Gu J, Li M, Li G, Ai J, Zhao L. WHSC1L1-mediated epigenetic downregulation of VMP1 participates in herpes simplex virus 1 infection-induced mitophagy impairment and neuroinflammation. Mol Immunol 2023; 163:63-74. [PMID: 37748280 DOI: 10.1016/j.molimm.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Microglia are the first-line defenders against invading pathogens in the brain whose activation mediates virus clearance and leads to neurotoxicity as well. This work studies the role of Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1)/vacuole membrane protein 1 (VMP1) interaction in the activation of microglia and neuroinflammation following herpes simplex virus 1 (HSV-1) infection. Aberrantly expressed genes after HSV-1 infection were screened by analyzing the GSE35943 dataset. C57BL/6J mice and mouse microglia BV2 were infected with HSV-1 for in vivo and in vitro assays. VMP1 was downregulated but WHSC1L1 was upregulated in HSV-1-infected mouse brain tissues as well as in BV2 cells. The VMP1 overexpression enhanced mitophagy activity and suppressed oxidative stress and inflammatory activation of BV2 cells, but these effects were blocked by the autophagy antagonist 3-methyladenine. WHSC1H1 suppressed VMP1 transcription through H3K36me2-recruited DNMT3A. Downregulation of WHSC1H1 similarly enhanced mitophagy in BV2 cells, and it alleviated microglia activation, nerve cell inflammation, and brain tissue damage in HSV-1-infected mice. However, the alleviating roles of WHSC1H1 silencing were negated by further VMP1 silencing. Taken together. this study demonstrates that WHSC1L1 upregulation following HSV-1 infection leads to mitophagy impairment and neuroinflammation through epigenetic suppression of VMP1.
Collapse
Affiliation(s)
- Yan Yao
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China.
| | - Juxian Gu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China
| | - Meng Li
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China
| | - Guoce Li
- Department of MRI, Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China
| | - Jingyi Ai
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China
| | - Li Zhao
- Department of Neurology, Cangzhou Central Hospital, Cangzhou 061001, Hebei, PR China
| |
Collapse
|
27
|
Hayashi T, Daitoku H, Uetake T, Kako K, Fukamizu A. Histidine Nτ-methylation identified as a new posttranslational modification in histone H2A at His-82 and H3 at His-39. J Biol Chem 2023; 299:105131. [PMID: 37543365 PMCID: PMC10485160 DOI: 10.1016/j.jbc.2023.105131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
Histone posttranslational modifications play critical roles in a variety of eukaryotic cellular processes. In particular, methylation at lysine and arginine residues is an epigenetic mark that determines the chromatin state. In addition, histone "histidine" methylation was initially reported over 50 years ago; however, further studies in this area were not conducted, leaving a gap in our understanding. Here, we aimed to investigate the occurrence of histidine methylation in histone proteins using highly sensitive mass spectrometry. We found that acid hydrolysates of whole histone fraction from calf thymus contained Nτ-methylhistidine, but not Nπ-methylhistidine. Both core and linker histones carried a Nτ-methylhistidine modification, and methylation levels were relatively high in histone H3. Furthermore, through MALDI-TOF MS, we identified two histidine methylation sites at His-82 in the structured globular domain of histone H2A and His-39 in the N-terminal tail of histones H3. Importantly, these histidine methylation signals were also detected in histones purified from a human cell line HEK293T. Moreover, we revealed the overall methylation status of histone H3, suggesting that methylation is enriched primarily at lysine residues and to a lesser extent at arginine and histidine residues. Thus, our findings established histidine Nτ-methylation as a new histone modification, which may serve as a chemical flag that mediates the epigenetic mark of adjacent residues of the N-terminal tail and the conformational properties of the globular domain.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Doctoral Program in Life and Agricultural Sciences, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Daitoku
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Toru Uetake
- Doctoral Program in Life and Agricultural Sciences, Degree Programs in Life and Earth Sciences, Graduate School of Sciences and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Koichiro Kako
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
28
|
Maksimova V, Makus J, Popova V, Prus A, Usalka O, Trapeznikova E, Zhidkova E, Belitsky G, Yakubovskaya M, Kirsanov K. Histone Methyltransferases as a New Target for Epigenetic Action of Vorinostat. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:968-978. [PMID: 37751867 DOI: 10.1134/s000629792307009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 09/28/2023]
Abstract
Epigenetic genome regulation during malignant cell transformation is characterized by the aberrant methylation and acetylation of histones. Vorinostat (SAHA) is an epigenetic modulator actively used in clinical oncology. The antitumor activity of vorinostat is commonly believed to be associated with the inhibition of histone deacetylases, while the impact of this drug on histone methylation has been poorly studied. Using HeLa TI cells as a test system allowing evaluation of the effect of epigenetically active compounds from the expression of the GFP reporter gene and gene knockdown by small interfering RNAs, we showed that vorinostat not only suppressed HDAC1, but also reduced the activity of EZH2, SUV39H1, SUV39H2, and SUV420H1. The ability of vorinostat to suppress expression of EZH2, SUV39H1/2, SUV420H1 was confirmed by Western blotting. Vorinostat also downregulated expression of SUV420H2 and DOT1L enzymes. The data obtained expand our understanding of the epigenetic effects of vorinostat and demonstrate the need for a large-scale analysis of its activity toward other enzymes involved in the epigenetic genome regulation. Elucidation of the mechanism underlying the epigenetic action of vorinostat will contribute to its more proper use in the treatment of tumors with an aberrant epigenetic profile.
Collapse
Affiliation(s)
- Varvara Maksimova
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Julia Makus
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
- Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - Valeriia Popova
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Anzhelika Prus
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
- MIREA, Russian Technological University, Moscow, 119571, Russia
| | - Olga Usalka
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Ekaterina Trapeznikova
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Ekaterina Zhidkova
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Gennady Belitsky
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | | | - Kirill Kirsanov
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.
- Peoples' Friendship University of Russia, Moscow, 117198, Russia
| |
Collapse
|
29
|
Xiu S, Chi X, Jia Z, Shi C, Zhang X, Li Q, Gao T, Zhang L, Liu Z. NSD3: Advances in cancer therapeutic potential and inhibitors research. Eur J Med Chem 2023; 256:115440. [PMID: 37182335 DOI: 10.1016/j.ejmech.2023.115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Nuclear receptor-binding SET domain 3, otherwise known as NSD3, is a member of the group of lysine methyltransferases and is involved in a variety of cellular processes, including transcriptional regulation, DNA damage repair, non-histone related functions and several others. NSD3 gene is mutated or loss of function in a variety of cancers, including breast, lung, pancreatic, and osteosarcoma. These mutations produce dysfunction of the corresponding tumor tissue proteins, leading to tumorigenesis, progression, chemoresistance, and unfavorable prognosis, which suggests that the development of NSD3 probe molecules is important for understanding the specific role of NSD3 in disease and drug discovery. In recent years, NSD3 has been increasingly reported, demonstrating that this target is a very hot epigenetic target. However, the number of NSD3 inhibitors available for cancer therapy is limited and none of the drugs that target NSD3 are currently available on the market. In addition, there are very few reviews describing NSD3. Within this review, we highlight the role of NSD3 in tumorigenesis and the development of NSD3 targeted small-molecule inhibitors over the last decade. We hope that this publication can serve as a guide for the development of potential drug candidates for various diseases in the field of epigenetics, especially for the NSD3 target.
Collapse
Affiliation(s)
- Siyu Xiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiaowei Chi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zhenyu Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Cheng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xiangyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Tongfei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
30
|
Khella MS, Schnee P, Weirich S, Bui T, Bröhm A, Bashtrykov P, Pleiss J, Jeltsch A. The T1150A cancer mutant of the protein lysine dimethyltransferase NSD2 can introduce H3K36 trimethylation. J Biol Chem 2023:104796. [PMID: 37150325 DOI: 10.1016/j.jbc.2023.104796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play essential roles in gene expression regulation and cancer development. Somatic mutations in PKMTs are frequently observed in cancer cells. In biochemical experiments, we show here that the NSD1 mutations Y1971C, R2017Q and R2017L observed mostly in solid cancers are catalytically inactive suggesting that NSD1 acts as tumor suppressor gene in these tumors. In contrast, the frequently observed T1150A in NSD2 and its T2029A counterpart in NSD1, both observed in leukemia, are hyperactive and introduce up to thee methyl groups in H3K36 in biochemical and cellular assays, while wildtype NSD2 and NSD1 only introduce up to two methyl groups. In molecular dynamics simulations, we determine key mechanistic and structural features controlling the product specificity of this class of enzymes. Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.
Collapse
Affiliation(s)
- Mina S Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, 11566, Egypt
| | - Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Tan Bui
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexander Bröhm
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
31
|
Wang K, Sun X, Sun Y, Jiao B, Yao J, Hu Y, Deng Q, Dong J, Wang W, Wang Y, Li C. Transcriptional regulation of macrophages in heart failure. Front Cardiovasc Med 2023; 10:1148041. [PMID: 37063966 PMCID: PMC10097991 DOI: 10.3389/fcvm.2023.1148041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Adverse cardiac remodeling after acute myocardial infarction is the most important pathological mechanism of heart failure and remains a major problem in clinical practice. Cardiac macrophages, derived from tissue resident macrophages and circulating monocyte, undergo significant phenotypic and functional changes following cardiac injury and play crucial roles in inflammatory response and tissue repair response. Currently, numerous studies indicate that epigenetic regulatory factors and transcription factors can regulate the transcription of inflammatory and reparative genes and timely conversion of inflammatory macrophages into reparative macrophages and then alleviate cardiac remodeling. Accordingly, targeting transcriptional regulation of macrophages may be a promising option for heart failure treatment. In this review, we not only summarize the origin and function of cardiac macrophages, but more importantly, describe the transcriptional regulation of macrophages in heart failure, aiming to provide a potential therapeutic target for heart failure.
Collapse
Affiliation(s)
- Keyan Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Jiao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Junkai Yao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyao Hu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Deng
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianteng Dong
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Chun Li
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine (TCM), Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| |
Collapse
|
32
|
Yu M, Qian K, Wang G, Xiao Y, Zhu Y, Ju L. Histone methyltransferase SETD2: An epigenetic driver in clear cell renal cell carcinoma. Front Oncol 2023; 13:1114461. [PMID: 37025591 PMCID: PMC10070805 DOI: 10.3389/fonc.2023.1114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
SET domain-containing 2 (SETD2) is a lysine methyltransferase that catalyzes histone H3 lysine36 trimethylation (H3K36me3) and has been revealed to play important roles in the regulation of transcriptional elongation, RNA splicing, and DNA damage repair. SETD2 mutations have been documented in several cancers, including clear cell renal cell carcinoma (ccRCC). SETD2 deficiency is associated with cancer occurrence and progression by regulating autophagy flux, general metabolic activity, and replication fork speed. Therefore, SETD2 is considered a potential epigenetic therapeutic target and is the subject of ongoing research on cancer-related diagnosis and treatment. This review presents an overview of the molecular functions of SETD2 in H3K36me3 regulation and its relationship with ccRCC, providing a theoretical basis for subsequent antitumor therapy based on SETD2 or H3K36me3 targets.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yu Xiao
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuan Zhu
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, China
- *Correspondence: Yuan Zhu, ; Lingao Ju,
| |
Collapse
|
33
|
Sharda A, Humphrey TC. The role of histone H3K36me3 writers, readers and erasers in maintaining genome stability. DNA Repair (Amst) 2022; 119:103407. [PMID: 36155242 DOI: 10.1016/j.dnarep.2022.103407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Histone Post-Translational Modifications (PTMs) play fundamental roles in mediating DNA-related processes such as transcription, replication and repair. The histone mark H3K36me3 and its associated methyltransferase SETD2 (Set2 in yeast) are archetypical in this regard, performing critical roles in each of these DNA transactions. Here, we present an overview of H3K36me3 regulation and the roles of its writers, readers and erasers in maintaining genome stability through facilitating DNA double-strand break (DSB) repair, checkpoint signalling and replication stress responses. Further, we consider how loss of SETD2 and H3K36me3, frequently observed in a number of different cancer types, can be specifically targeted in the clinic through exploiting loss of particular genome stability functions.
Collapse
Affiliation(s)
- Asmita Sharda
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Timothy C Humphrey
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|