2
|
Sakai M, Masuda Y, Tarumoto Y, Aihara N, Tsunoda Y, Iwata M, Kamiya Y, Komorizono R, Noda T, Yusa K, Tomonaga K, Makino A. Genome-scale CRISPR-Cas9 screen identifies host factors as potential therapeutic targets for SARS-CoV-2 infection. iScience 2024; 27:110475. [PMID: 39100693 PMCID: PMC11295705 DOI: 10.1016/j.isci.2024.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/01/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Although many host factors important for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported, the mechanisms by which the virus interacts with host cells remain elusive. Here, we identified tripartite motif containing (TRIM) 28, TRIM33, euchromatic histone lysine methyltransferase (EHMT) 1, and EHMT2 as proviral factors involved in SARS-CoV-2 infection by CRISPR-Cas9 screening. Our result suggested that TRIM28 may play a role in viral particle formation and that TRIM33, EHMT1, and EHMT2 may be involved in viral transcription and replication. UNC0642, a compound that specifically inhibits the methyltransferase activity of EHMT1/2, strikingly suppressed SARS-CoV-2 growth in cultured cells and reduced disease severity in a hamster infection model. This study suggests that EHMT1/2 may be a therapeutic target for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Madoka Sakai
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yoshie Masuda
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yusuke Tarumoto
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Naoyuki Aihara
- Laboratory of Veterinary Pathology, Azabu University, Kanagawa 2520206, Japan
| | - Yugo Tsunoda
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- CREST, Japan Science and Technology Agency, Saitama 1020076, Japan
| | - Michiko Iwata
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yumiko Kamiya
- Laboratory of Veterinary Pathology, Azabu University, Kanagawa 2520206, Japan
| | - Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- CREST, Japan Science and Technology Agency, Saitama 1020076, Japan
| | - Kosuke Yusa
- Laboratory of Stem Cell Genetics, Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 6068507, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 6068507, Japan
| |
Collapse
|
3
|
Rots D, Bouman A, Yamada A, Levy M, Dingemans AJM, de Vries BBA, Ruiterkamp-Versteeg M, de Leeuw N, Ockeloen CW, Pfundt R, de Boer E, Kummeling J, van Bon B, van Bokhoven H, Kasri NN, Venselaar H, Alders M, Kerkhof J, McConkey H, Kuechler A, Elffers B, van Beeck Calkoen R, Hofman S, Smith A, Valenzuela MI, Srivastava S, Frazier Z, Maystadt I, Piscopo C, Merla G, Balasubramanian M, Santen GWE, Metcalfe K, Park SM, Pasquier L, Banka S, Donnai D, Weisberg D, Strobl-Wildemann G, Wagemans A, Vreeburg M, Baralle D, Foulds N, Scurr I, Brunetti-Pierri N, van Hagen JM, Bijlsma EK, Hakonen AH, Courage C, Genevieve D, Pinson L, Forzano F, Deshpande C, Kluskens ML, Welling L, Plomp AS, Vanhoutte EK, Kalsner L, Hol JA, Putoux A, Lazier J, Vasudevan P, Ames E, O'Shea J, Lederer D, Fleischer J, O'Connor M, Pauly M, Vasileiou G, Reis A, Kiraly-Borri C, Bouman A, Barnett C, Nezarati M, Borch L, Beunders G, Özcan K, Miot S, Volker-Touw CML, van Gassen KLI, Cappuccio G, Janssens K, Mor N, Shomer I, Dominissini D, Tedder ML, Muir AM, Sadikovic B, Brunner HG, Vissers LELM, Shinkai Y, Kleefstra T. Comprehensive EHMT1 variants analysis broadens genotype-phenotype associations and molecular mechanisms in Kleefstra syndrome. Am J Hum Genet 2024; 111:1605-1625. [PMID: 39013458 PMCID: PMC11339614 DOI: 10.1016/j.ajhg.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.
Collapse
Affiliation(s)
- Dmitrijs Rots
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Genetics Laboratory, Children's Clinical University Hospital, Riga, Latvia
| | - Arianne Bouman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ayumi Yamada
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| | - Michael Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | | | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost Kummeling
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanka Venselaar
- Department of Medical BioSciences, Radboudumc, Nijmegen, the Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction and Development research institute, Amsterdam, the Netherlands
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Bart Elffers
- Cordaan, Amsterdam, the Netherlands; Department of Medical Care for Patients with Intellectual Disability, AMSTA, Amsterdam, the Netherlands
| | | | | | - Audrey Smith
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Maria Irene Valenzuela
- Department of Clinical and Molecular Genetics and Rare Disease Unit Hospital Vall d'Hebron, Barcelona, Spain; Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | | | - Zoe Frazier
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabelle Maystadt
- Institut de Pathologie et de Génétique Centre de Génétique Humaineavenue G. Lemaître, 256041 Gosselies, Belgium
| | - Carmelo Piscopo
- Medical and Laboratory Unit, Antonio cardarelli Hospital, via A.Cardarelli 9, 80131 Naples, Italy
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, Naples, Italy; Laboratory of Regulatory and Functional Genomics, fondazione IRCCS casa sollievo della sofferenza, san giovanni rotondo, Foggia, Italy
| | - Meena Balasubramanian
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK; Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Laurent Pasquier
- Reference Center for Rare Diseases, Hôpital Sud - CHU Rennes, Rennes, France
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Daniel Weisberg
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | | | - Annemieke Wagemans
- Maasveld, Koraal, Maastricht, the Netherlands; Department of Family Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, the Netherlands
| | - Maaike Vreeburg
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University Hospital Southampton, Southampton, Hampshire, UK
| | - Nicola Foulds
- Wessex Regional Genetics Services, UHS NHS Foundation Trust, Southampton, United Kingdom
| | - Ingrid Scurr
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Johanna M van Hagen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam, the Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetica, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna H Hakonen
- Department of Clinical Genetics, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Carolina Courage
- Department of Clinical Genetics, HUSLAB, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David Genevieve
- Université Montpellier, Unité INSERM U1183, Montpellier, France; Centre de reference Anomalies du développement, ERN ITHACA, Service de génétique Clinique, CHU Montpellier, Montpellier, France
| | - Lucile Pinson
- Centre de reference Anomalies du développement, ERN ITHACA, Service de génétique Clinique, CHU Montpellier, Montpellier, France
| | - Francesca Forzano
- Clinical Genetics Department 7th Floor Borough WingGuy's Hospital, Guy's & St Thomas' NHS Foundation TrustGreat Maze Pond, London, UK
| | - Charu Deshpande
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | | | | | - Astrid S Plomp
- Department of Human Genetics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction and Development research institute, Amsterdam, the Netherlands
| | - Els K Vanhoutte
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Louisa Kalsner
- Department of Pediatrics, Division of Neurology, Connecticut Children's, University of Connecticut, Farmington, CT, USA
| | - Janna A Hol
- Clinical Genetics Department, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Audrey Putoux
- Hospices Civils de Lyon, Service de Génétique - Centre de Référence Anomalies du Développement, Bron, France; Centre de Recherche en Neurosciences de Lyon, Équipe GENDEV, INSERM U1028 CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - Johanna Lazier
- Regional Genetics Program, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Elizabeth Ames
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, C.S. Mott Children's Hospital, Michigan Medicine, Ann Arbor, MI, USA
| | - Jessica O'Shea
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, C.S. Mott Children's Hospital, Michigan Medicine, Ann Arbor, MI, USA
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Julie Fleischer
- Southern Illinois University School of Medicine, Department of Pediatrics, Springfield, IL, USA
| | - Mary O'Connor
- Southern Illinois University School of Medicine, Department of Pediatrics, Springfield, IL, USA
| | - Melissa Pauly
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Centre for Rare Diseases Erlangen (ZSEER), Erlangen, Germany
| | - Catherine Kiraly-Borri
- Genetic Health Western Australia, Department of Health King Edward Memorial Hospital, Subiaco, WA 6008, Australia
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Chris Barnett
- Paediatric and Reproductive Genetics Unit 8th Floor, Clarence Rieger Building Women's and Children's Hospital, 72 King William Road North, Adelaide, SA 5006, Australia
| | - Marjan Nezarati
- Genetics, North York General Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Lauren Borch
- Department of Medical Genetics, North York General Hospital, University of Toronto, Toronto, ON, Canada
| | - Gea Beunders
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Kübra Özcan
- Neurodevelopmental Treatment Association Çocuk Fizyoterapistleri Derneği Bobath Terapistleri Derneği, Ankara, Turkey
| | - Stéphanie Miot
- Geriatrics department, Montpellier University Hospital, MUSE University, Montpellier, France; INSERM U1298, INM, Montpellier, France
| | | | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Via Pansini 5, Naples, Italy; TIGEM (Telethon Institute of Genetics and Medicine), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Katrien Janssens
- Department of Medical Genetics, Antwerp University Hospital/University of Antwerp, Edegem, Wilrijk, Belgium
| | - Nofar Mor
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Inna Shomer
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Dan Dominissini
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan.
| | - Tjitske Kleefstra
- Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands.
| |
Collapse
|
5
|
Souza BK, Freire NH, Monteiro TS, Herlinger AL, Jaeger M, Dalmolin MGS, de Farias CB, Gregianin L, Brunetto AT, Brunetto AL, Thiele CJ, Roesler R. Histone Methyltransferases G9a/ Ehmt2 and GLP/ Ehmt1 Are Associated with Cell Viability and Poorer Prognosis in Neuroblastoma and Ewing Sarcoma. Int J Mol Sci 2023; 24:15242. [PMID: 37894922 PMCID: PMC10607632 DOI: 10.3390/ijms242015242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Changes in epigenetic programming have been proposed as being key events in the initiation and progression of childhood cancers. HMT euchromatic histone lysine methyltransferase 2 (G9a, EHMT2), which is encoded by the G9a (Ehmt2) gene, as well as its related protein GLP, which is encoded by the GLP/Ehmt1 gene, participate in epigenetic regulation by contributing to a transcriptionally repressed chromatin state. G9a/GLP activation has been reported in several cancer types. Herein, we evaluated the role of G9a in two solid pediatric tumors: neuroblastoma (NB) and Ewing sarcoma (ES). Our results show that G9a/Ehmt2 and GLP/Ehmt1 expression is higher in tumors with poorer prognosis, including St4 International Neuroblastoma Staging System (INSS) stage, MYCN amplified NB, and metastatic ES. Importantly, higher G9a and GLP levels were associated with shorter patient overall survival (OS) in both NB and ES. Moreover, pharmacological inhibition of G9a/GLP reduced cell viability in NB and ES cells. These findings suggest that G9a and GLP are associated with more aggressive NB and ES tumors and should be further investigated as being epigenetic targets in pediatric solid cancers.
Collapse
Affiliation(s)
- Barbara Kunzler Souza
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil (A.T.B.)
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Epigenica Biosciences, Canoas 92035-000, Brazil;
| | - Natalia Hogetop Freire
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil (A.T.B.)
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
| | | | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil (A.T.B.)
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil (A.T.B.)
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
| | - Matheus G. S. Dalmolin
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil (A.T.B.)
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil (A.T.B.)
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil (A.T.B.)
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil (A.T.B.)
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
| | - Carol J. Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil (A.T.B.)
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|