1
|
Lu C, Kang T, Zhang J, Yang K, Liu Y, Song K, Lin Q, Dixit D, Gimple RC, Zhang Q, Shi Z, Fan X, Wu Q, Li D, Shan D, Gao J, Gu D, You H, Li Y, Yang J, Zhao L, Qiu Z, Yang H, Zhao N, Gao W, Tao W, Lu Y, Chen Y, Ji J, Zhu Z, Kang C, Man J, Agnihotri S, Wang Q, Lin F, Qian X, Mack SC, Hu Z, Li C, Taylor MD, Liu N, Zhang N, Lu M, You Y, Rich JN, Zhang W, Wang X. Combined targeting of glioblastoma stem cells of different cellular states disrupts malignant progression. Nat Commun 2025; 16:2974. [PMID: 40140646 PMCID: PMC11947120 DOI: 10.1038/s41467-025-58366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor with intra-tumoral hierarchy of glioblastoma stem cells (GSCs). The heterogeneity of GSCs within GBM inevitably leads to treatment resistance and tumor recurrence. Molecular mechanisms of different cellular state GSCs remain unclear. Here, we find that classical (CL) and mesenchymal (MES) GSCs are enriched in reactive immune region and high CL-MES signature informs poor prognosis in GBM. Through integrated analyses of GSCs RNA sequencing and single-cell RNA sequencing datasets, we identify specific GSCs targets, including MEOX2 for the CL GSCs and SRGN for the MES GSCs. MEOX2-NOTCH and SRGN-NFκB axes play important roles in promoting proliferation and maintaining stemness and subtype signatures of CL and MES GSCs, respectively. In the tumor microenvironment, MEOX2 and SRGN mediate the resistance of CL and MES GSCs to macrophage phagocytosis. Using genetic and pharmacologic approaches, we identify FDA-approved drugs targeting MEOX2 and SRGN. Combined CL and MES GSCs targeting demonstrates enhanced efficacy, both in vitro and in vivo. Our results highlighted a therapeutic strategy for the elimination of heterogeneous GSCs populations through combinatorial targeting of MEOX2 and SRGN in GSCs.
Collapse
Affiliation(s)
- Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Kang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Yang Liu
- Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kefan Song
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiankun Lin
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deobrat Dixit
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan C Gimple
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Qian Zhang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Daqi Li
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danyang Shan
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiancheng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danling Gu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao You
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqing Li
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junlei Yang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjie Zhao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zhixin Qiu
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Gao
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tao
- College of Biomedicine and Health & College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yingmei Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Chen
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Zhu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Sameer Agnihotri
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Stephen C Mack
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhibin Hu
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaojun Li
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Michael D Taylor
- Department of Pediatrics- Hematology/Oncology and Neurosurgery, Texas Children's Cancer Center, Hematology-Oncology Section, Baylor College of Medicine, Houston, Texas, USA
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiuxing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Wang Q, Wang J, Mathur R, Youngblood MW, Jin Q, Hou Y, Stasiak LA, Luan Y, Zhao H, Hilz S, Hong C, Chang SM, Lupo JM, Phillips JJ, Costello JF, Yue F. Spatial 3D genome organization reveals intratumor heterogeneity in primary glioblastoma samples. SCIENCE ADVANCES 2025; 11:eadn2830. [PMID: 40073147 PMCID: PMC11900876 DOI: 10.1126/sciadv.adn2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intratumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experiments in 21 GBM samples from nine patients, along with three normal brain samples. We identified genome subcompartmentalization and chromatin interactions specific to GBM, as well as extensive intertumoral and intratumoral heterogeneity at these levels. We identified copy number variants (CNVs) and structural variations (SVs) and demonstrated how they disrupted 3D genome structures. SVs could not only induce enhancer hijacking but also cause the loss of enhancers to the same gene, both of which contributed to gene dysregulation. Our findings provide insights into the GBM-specific 3D genome organization and the intratumoral heterogeneity of this organization and open avenues for understanding this devastating disease.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Radhika Mathur
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mark W. Youngblood
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lena Ann Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hengqiang Zhao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Susan M. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Janine M. Lupo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Ordóñez-Rubiano EG, Rincón-Arias N, Shelton WJ, Salazar AF, Sierra MA, Bertani R, Gómez-Amarillo DF, Hakim F, Baldoncini M, Payán-Gómez C, Cómbita AL, Ordonez-Rubiano SC, Parra-Medina R. Current Applications of Single-Cell RNA Sequencing in Glioblastoma: A Scoping Review. Brain Sci 2025; 15:309. [PMID: 40149830 PMCID: PMC11940614 DOI: 10.3390/brainsci15030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background and Objective: The discovery of novel molecular biomarkers via next-generation sequencing technologies has revolutionized how glioblastomas (GBMs) are classified nowadays. This has resulted in more precise diagnostic, prognostic, and therapeutic approaches to address this malignancy. The present work examines the applications of single-cell RNA sequencing (scRNA-seq) in GBM, focusing on its potential to address tumor complexity and therapeutic resistance and improve patient outcomes. Methods: A scoping review of original studies published between 2009 and 2024 was conducted using the PUBMED and EMBASE databases. Studies in English or Spanish related to single-cell analysis and GBM were included. Key Findings: The database search yielded 453 publications. Themes related to scRNA-seq applied for the diagnosis, prognosis, treatment, and understanding of the cancer biology of GBM were used as criteria for article selection. Of the 24 studies that were included in the review, 11 focused on the tumor microenvironment and cell subpopulations in GBM samples, 5 investigated the use of sequencing to elucidate the GBM cancer biology, 3 examined disease prognosis using sequencing models, 3 applied translational research through scRNA-seq, and 2 addressed treatment-related problems in GBM elucidated by scRNA-seq. Conclusions: This scoping review explored the various clinical applications of scRNA-seq technologies in approaching GBM. The findings highlight the utility of this technology in unraveling the complex cellular and immune landscapes of GBM, paving the way for improved diagnosis and personalized treatments. This cutting-edge approach might strengthen treatment strategies against tumor progression and recurrence, setting the stage for multi-targeted interventions that could significantly improve outcomes for patients with aggressive, treatment-resistant GBMs.
Collapse
Affiliation(s)
- Edgar G. Ordóñez-Rubiano
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 110111, Colombia;
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Nicolás Rincón-Arias
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 110111, Colombia;
| | - William J. Shelton
- School of Medicine, Universidad de los Andes, Bogotá 110111, Colombia; (W.J.S.); (A.F.S.)
| | - Andres F. Salazar
- School of Medicine, Universidad de los Andes, Bogotá 110111, Colombia; (W.J.S.); (A.F.S.)
| | | | - Raphael Bertani
- Division of Neurosurgery, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Diego F. Gómez-Amarillo
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Fernando Hakim
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Matías Baldoncini
- Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, School of Medicine, University of Buenos Aires, Buenos Aires B1430, Argentina;
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, Cesar 202017, Colombia
| | - Alba Lucia Cómbita
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología, Bogotá 111321, Colombia
| | - Sandra C. Ordonez-Rubiano
- Department of Chemistry, School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA;
| | - Rafael Parra-Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá 111511, Colombia;
- Research Institute, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 111711, Colombia
| |
Collapse
|
4
|
Olsen TR, Talla P, Sagatelian RK, Furnari J, Bruce JN, Canoll P, Zha S, Sims PA. Scalable co-sequencing of RNA and DNA from individual nuclei. Nat Methods 2025; 22:477-487. [PMID: 39939719 DOI: 10.1038/s41592-024-02579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/09/2024] [Indexed: 02/14/2025]
Abstract
The ideal technology for directly investigating the relationship between genotype and phenotype would analyze both RNA and DNA genome-wide and with single-cell resolution; however, existing tools lack the throughput required for comprehensive analysis of complex tumors and tissues. We introduce a highly scalable method for jointly profiling DNA and expression following nucleosome depletion (DEFND-seq). In DEFND-seq, nuclei are nucleosome-depleted, tagmented and separated into individual droplets for messenger RNA and genomic DNA barcoding. Once nuclei have been depleted of nucleosomes, subsequent steps can be performed using the widely available 10x Genomics droplet microfluidic technology and commercial kits. We demonstrate the production of high-complexity mRNA and gDNA sequencing libraries from thousands of individual nuclei from cell lines, fresh and archived surgical specimens for associating gene expression with both copy number and single-nucleotide variants.
Collapse
Affiliation(s)
- Timothy R Olsen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pranay Talla
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Romella K Sagatelian
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shan Zha
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Institute for Cancer Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Zhang G, Xu Y, Zhou A, Yu Y, Ning X, Bao H. Bioengineered NanoAid synergistically targets inflammatory pro-tumor processes to advance glioblastoma chemotherapy. NANOSCALE 2025; 17:2753-2768. [PMID: 39831463 DOI: 10.1039/d4nr04557b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Through transcriptomic analysis of patient-derived glioblastoma tissues, we identify an overactivation of inflammatory pathways that contribute to the development of a tumor-promoting microenvironment and therapeutic resistance. To address this critical mechanism, we present NanoAid, a biomimetic nanoplatform designed to target inflammatory pro-tumor processes to advance glioblastoma chemotherapy. NanoAid employs macrophage-membrane-liposome hybrids to optimize the delivery of COX-2 inhibitor parecoxib and paclitaxel. By inheriting macrophage characteristics, NanoAid not only efficiently traverses the blood-brain barrier and precisely accumulates within tumors but also enhances cancer cell uptake, thereby improving overall anticancer efficacy. Notably, the combination of parecoxib and paclitaxel effectively disrupts inflammatory pro-tumor processes while inducing a synergistic effect that inhibits tumor growth, overcomes therapeutic resistance, and minimizes adverse effects. This results in substantial tumor growth inhibition and extends the median survival of tumor-bearing mice. Thus, our study bridges clinical insights with fundamental research, potentially revolutionizing tumor therapy paradigms.
Collapse
Affiliation(s)
- Gui Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Yongle Yu
- Medical College of Guangxi University, Nanning 530004, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China.
| | - Hongguang Bao
- Department of Anaesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211101, China.
| |
Collapse
|
6
|
Caron DP, Specht WL, Chen D, Wells SB, Szabo PA, Jensen IJ, Farber DL, Sims PA. Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues. CELL REPORTS METHODS 2025; 5:100938. [PMID: 39814026 PMCID: PMC11840950 DOI: 10.1016/j.crmeth.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.
Collapse
Affiliation(s)
- Daniel P Caron
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William L Specht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Chen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Isaac J Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
7
|
Cirigliano SM, Fine HA. Bridging the gap between tumor and disease: Innovating cancer and glioma models. J Exp Med 2025; 222:e20220808. [PMID: 39626263 PMCID: PMC11614461 DOI: 10.1084/jem.20220808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Recent advances in cancer biology and therapeutics have underscored the importance of preclinical models in understanding and treating cancer. Nevertheless, current models often fail to capture the complexity and patient-specific nature of human tumors, particularly gliomas. This review examines the strengths and weaknesses of such models, highlighting the need for a new generation of models. Emphasizing the critical role of the tumor microenvironment, tumor, and patient heterogeneity, we propose integrating our advanced understanding of glioma biology with innovative bioengineering and AI technologies to create more clinically relevant, patient-specific models. These innovations are essential for improving therapeutic development and patient outcomes.
Collapse
Affiliation(s)
| | - Howard A. Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
Wang L, Chao M, Han RR, Li L, Dong L, Chen F, Jin MZ, Gao L, Wang Y, Feng DY, Zhu G, Guo W, Zhao WJ, Jin SJ, Wei DP, Sun W, Dai JX, Jin WL. Single-cell map of diverse immune phenotypes in the metastatic brain tumor microenvironment of nonsmall-cell lung cancer. Int J Surg 2025; 111:1601-1606. [PMID: 39311908 PMCID: PMC11745726 DOI: 10.1097/js9.0000000000002088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/11/2024] [Indexed: 01/24/2025]
Affiliation(s)
- Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- Frontier Medical Innovation Center, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Run-Run Han
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Lei Li
- School of Public Health, Health Science Center of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission and Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, Xi’an, People’s Republic of China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Fan Chen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Ming-Zhu Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Da-Yun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Gang Zhu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Wen-Jian Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Shi-Jia Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Dong-Ping Wei
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Wei Sun
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jin-Xiang Dai
- Human Biology Division, Laboratory for the Study of Metastatic Microenvironments, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| |
Collapse
|
9
|
Zarco N, Dovas A, de Araujo Farias V, Nagaiah NK, Haddock A, Sims PA, Hambardzumyan D, Meyer CT, Canoll P, Rosenfeld SS, Kenchappa RS. Resistance to spindle inhibitors in glioblastoma depends on STAT3 and therapy induced senescence. iScience 2024; 27:111311. [PMID: 39640583 PMCID: PMC11617384 DOI: 10.1016/j.isci.2024.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFβ, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors. Targeting STAT3 restores sensitivity to each of these drugs by depleting the senescent subpopulation and inducing quiescent cells to enter the mitotic cycle. These results support a therapeutic strategy of targeting STAT3-dependent therapy-induced senescence to enhance the efficacy of spindle inhibitors for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Natanael Zarco
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Ashley Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dolores Hambardzumyan
- Departments of Oncological Sciences and Neurosurgery, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven S. Rosenfeld
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Rajappa S. Kenchappa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
10
|
Xie XP, Ganbold M, Li J, Lien M, Chipman ME, Wang T, Jayewickreme CD, Pedraza AM, Bale T, Tabar V, Brennan C, Sun D, Sharma R, Parada LF. Glioblastoma functional heterogeneity and enrichment of cancer stem cells with tumor recurrence. Neuron 2024; 112:4017-4032.e6. [PMID: 39510072 DOI: 10.1016/j.neuron.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/31/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
Glioblastoma (GBM) is an incurable disease with high intratumoral heterogeneity. Bioinformatic studies have examined transcriptional heterogeneity with differing conclusions. Here, we characterize GBM heterogeneity and highlight critical phenotypic and hierarchical roles for quiescent cancer stem cells (qCSCs). Unsupervised single-cell transcriptomic analysis of patient-derived xenografts (PDXs) delineates six GBM transcriptional states with unique tumor exclusive gene signatures, five of which display congruence with central nervous system (CNS) cell lineages. We employ a surrogate tumor evolution assay by serial xenograft transplantation to demonstrate faithful preservation of somatic mutations, transcriptome, and qCSCs. PDX chemotherapy results in CSC resistance and expansion, also seen in recurrent patient GBM. In aggregate, these novel GBM transcriptional signatures exclusively identify tumor cells and define the hierarchical landscape as stable biologically discernible cell types that allow capture of their evolution upon recurrence, emphasizing the importance of CSCs and demonstrating general relevance to all GBM.
Collapse
Affiliation(s)
- Xuanhua P Xie
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mungunsarnai Ganbold
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jing Li
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michelle Lien
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mollie E Chipman
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tao Wang
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chenura D Jayewickreme
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alicia M Pedraza
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tejus Bale
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviane Tabar
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cameron Brennan
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daochun Sun
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luis F Parada
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
11
|
Wang LJ, Xu R, Wu Y. Migrasome regulator TSPAN4 shapes the suppressive tumor immune microenvironment in pan-cancer. Front Immunol 2024; 15:1419420. [PMID: 39723210 PMCID: PMC11668678 DOI: 10.3389/fimmu.2024.1419420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Migrasomes are newly identified organelles on the retracting fibers of migrating cells, involved in releasing signaling molecules, expelling damaged mitochondria, and facilitating intercellular communication through phagocytosis. TSPAN4, a key regulator of migrasome formation, is a valuable marker for visualizing these organelles. However, its role in cancer remains unclear. Methods We analyzed TSPAN4 expression and its prognostic significance across multiple cancers using TCGA Pan-Cancer (PANCAN), and TCGA TARGET GTEx datasets. The relationship between TSPAN4 and tumor heterogeneity, stemness, and the immunosuppressive tumor microenvironment was explored through RNA-seq and scRNA-seq data. In addition, we examined TSPAN4's role in glioma, focusing on migrasome formation, cell proliferation, and macrophage polarization. Results Our analysis reveals that TSPAN4 is aberrantly expressed in various tumors, likely linked to its methylation status. It correlates with tumor heterogeneity, stemness, and a suppressive immune microenvironment. In glioma, TSPAN4 enhances cell proliferation and promotes macrophage polarization toward the immunosuppressive M2 phenotype. Conclusions TSPAN4, as a migrasome regulator, plays a crucial role in shaping the immunosuppressive tumor microenvironment in pan-cancer.
Collapse
Affiliation(s)
- Lin-jian Wang
- Trauma Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ruiyan Xu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yangyang Wu
- Trauma Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Tambi R, Zehra B, Vijayakumar A, Satsangi D, Uddin M, Berdiev BK. Artificial intelligence and omics in malignant gliomas. Physiol Genomics 2024; 56:876-895. [PMID: 39437552 DOI: 10.1152/physiolgenomics.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and aggressive type of malignant glioma with an average survival time of 12-18 mo. Despite the utilization of extensive surgical resections using cutting-edge neuroimaging, and advanced chemotherapy and radiotherapy, the prognosis remains unfavorable. The heterogeneity of GBM and the presence of the blood-brain barrier further complicate the therapeutic process. It is crucial to adopt a multifaceted approach in GBM research to understand its biology and advance toward effective treatments. In particular, omics research, which primarily includes genomics, transcriptomics, proteomics, and epigenomics, helps us understand how GBM develops, finds biomarkers, and discovers new therapeutic targets. The availability of large-scale multiomics data requires the development of computational models to infer valuable biological insights for the implementation of precision medicine. Artificial intelligence (AI) refers to a host of computational algorithms that is becoming a major tool capable of integrating large omics databases. Although the application of AI tools in GBM-omics is currently in its early stages, a thorough exploration of AI utilization to uncover different aspects of GBM (subtype classification, prognosis, and survival) would have a significant impact on both researchers and clinicians. Here, we aim to review and provide database resources of different AI-based techniques that have been used to study GBM pathogenesis using multiomics data over the past decade. We summarize different types of GBM-related omics resources that can be used to develop AI models. Furthermore, we explore various AI tools that have been developed using either individual or integrated multiomics data, highlighting their applications and limitations in the context of advancing GBM research and treatment.
Collapse
Affiliation(s)
- Richa Tambi
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Aswathy Vijayakumar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Dharana Satsangi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohammed Uddin
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Mississauga, Ontario, Canada
| | - Bakhrom K Berdiev
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- GenomeArc Inc., Mississauga, Ontario, Canada
| |
Collapse
|
13
|
Tuddenham JF, Taga M, Haage V, Marshe VS, Roostaei T, White C, Lee AJ, Fujita M, Khairallah A, Zhang Y, Green G, Hyman B, Frosch M, Hopp S, Beach TG, Serrano GE, Corboy J, Habib N, Klein HU, Soni RK, Teich AF, Hickman RA, Alcalay RN, Shneider N, Schneider J, Sims PA, Bennett DA, Olah M, Menon V, De Jager PL. A cross-disease resource of living human microglia identifies disease-enriched subsets and tool compounds recapitulating microglial states. Nat Neurosci 2024; 27:2521-2537. [PMID: 39406950 DOI: 10.1038/s41593-024-01764-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/13/2024] [Indexed: 12/06/2024]
Abstract
Human microglia play a pivotal role in neurological diseases, but we still have an incomplete understanding of microglial heterogeneity, which limits the development of targeted therapies directly modulating their state or function. Here, we use single-cell RNA sequencing to profile 215,680 live human microglia from 74 donors across diverse neurological diseases and CNS regions. We observe a central divide between oxidative and heterocyclic metabolism and identify microglial subsets associated with antigen presentation, motility and proliferation. Specific subsets are enriched in susceptibility genes for neurodegenerative diseases or the disease-associated microglial signature. We validate subtypes in situ with an RNAscope-immunofluorescence pipeline and high-dimensional MERFISH. We also leverage our dataset as a classification resource, finding that induced pluripotent stem cell model systems capture substantial in vivo heterogeneity. Finally, we identify and validate compounds that recapitulate certain subtypes in vitro, including camptothecin, which downregulates the signature of disease-enriched subtypes and upregulates a signature previously associated with Alzheimer's disease.
Collapse
Affiliation(s)
- John F Tuddenham
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Taga
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Victoria S Marshe
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tina Roostaei
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles White
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Annie J Lee
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anthony Khairallah
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Gilad Green
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew Frosch
- Neuropathology Service, C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Sarah Hopp
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | | | | | - John Corboy
- Department of Neurology, University of Colorado, and Rocky Mountain Multiple Sclerosis Center at the University of Colorado, Aurora, CO, USA
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Andrew F Teich
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard A Hickman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Neil Shneider
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Eleanor and Lou Gehrig ALS Center, Columbia University Medical Center, New York, NY, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Marta Olah
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Wang H, Argenziano MG, Yoon H, Boyett D, Save A, Petridis P, Savage W, Jackson P, Hawkins-Daarud A, Tran N, Hu L, Singleton KW, Paulson L, Dalahmah OA, Bruce JN, Grinband J, Swanson KR, Canoll P, Li J. Biologically informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post treatment glioblastoma. NPJ Digit Med 2024; 7:292. [PMID: 39427044 PMCID: PMC11490546 DOI: 10.1038/s41746-024-01277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of recurrent glioblastoma. This study addresses the need for non-invasive approaches to map heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We developed BioNet, a biologically-informed neural network, to predict regional distributions of two primary tissue-specific gene modules: proliferating tumor (Pro) and reactive/inflammatory cells (Inf). BioNet significantly outperforms existing methods (p < 2e-26). In cross-validation, BioNet achieved AUCs of 0.80 (Pro) and 0.81 (Inf), with accuracies of 80% and 75%, respectively. In blind tests, BioNet achieved AUCs of 0.80 (Pro) and 0.76 (Inf), with accuracies of 81% and 74%. Competing methods had AUCs lower or around 0.6 and accuracies lower or around 70%. BioNet's voxel-level prediction maps reveal intratumoral heterogeneity, potentially improving biopsy targeting and treatment evaluation. This non-invasive approach facilitates regular monitoring and timely therapeutic adjustments, highlighting the role of ML in precision medicine.
Collapse
Affiliation(s)
- Hairong Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyunsoo Yoon
- Department of Industrial Engineering, Yonsei University, Seoul, South Korea
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Akshay Save
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Petros Petridis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - William Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Pamela Jackson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Nhan Tran
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ, USA
| | - Leland Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Kyle W Singleton
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Lisa Paulson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Osama Al Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Grinband
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
15
|
Shahriar S, Biswas S, Zhao K, Akcan U, Tuohy MC, Glendinning MD, Kurt A, Wayne CR, Prochilo G, Price MZ, Stuhlmann H, Brekken RA, Menon V, Agalliu D. VEGF-A-mediated venous endothelial cell proliferation results in neoangiogenesis during neuroinflammation. Nat Neurosci 2024; 27:1904-1917. [PMID: 39256571 DOI: 10.1038/s41593-024-01746-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Newly formed leaky vessels and blood-brain barrier (BBB) damage are present in demyelinating acute and chronic lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the endothelial cell subtypes and signaling pathways contributing to these leaky neovessels are unclear. Here, using single-cell transcriptional profiling and in vivo validation studies, we show that venous endothelial cells express neoangiogenesis gene signatures and show increased proliferation resulting in enlarged veins and higher venous coverage in acute and chronic EAE lesions in female adult mice. These changes correlate with the upregulation of vascular endothelial growth factor A (VEGF-A) signaling. We also confirmed increased expression of neoangiogenic markers in acute and chronic human MS lesions. Treatment with a VEGF-A blocking antibody diminishes the neoangiogenic transcriptomic signatures and vascular proliferation in female adult mice with EAE, but it does not restore BBB function or ameliorate EAE pathology. Our data demonstrate that venous endothelial cells contribute to neoangiogenesis in demyelinating neuroinflammatory conditions.
Collapse
Affiliation(s)
- Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kaitao Zhao
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Uğur Akcan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mary Claire Tuohy
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael D Glendinning
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ali Kurt
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charlotte R Wayne
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Grace Prochilo
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Maxwell Z Price
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Heidi Stuhlmann
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dritan Agalliu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
16
|
Banu MA, Dovas A, Argenziano MG, Zhao W, Sperring CP, Cuervo Grajal H, Liu Z, Higgins DM, Amini M, Pereira B, Ye LF, Mahajan A, Humala N, Furnari JL, Upadhyayula PS, Zandkarimi F, Nguyen TT, Teasley D, Wu PB, Hai L, Karan C, Dowdy T, Razavilar A, Siegelin MD, Kitajewski J, Larion M, Bruce JN, Stockwell BR, Sims PA, Canoll P. A cell state-specific metabolic vulnerability to GPX4-dependent ferroptosis in glioblastoma. EMBO J 2024; 43:4492-4521. [PMID: 39192032 PMCID: PMC11480389 DOI: 10.1038/s44318-024-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development. N1IC tumors harbored quiescent astrocyte-like transformed cell populations while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. Further, N1IC transformed cells exhibited increased mitochondrial lipid peroxidation, high ROS production and depletion of reduced glutathione. This altered mitochondrial phenotype rendered the astrocyte-like, quiescent populations more sensitive to pharmacologic or genetic inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Treatment of patient-derived early-passage cell lines and glioma slice cultures generated from surgical samples with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles. Collectively, these findings reveal a specific therapeutic vulnerability to ferroptosis linked to mitochondrial redox imbalance in a subpopulation of quiescent astrocyte-like glioma cells resistant to standard forms of treatment.
Collapse
Affiliation(s)
- Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Zhouzerui Liu
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dominique Mo Higgins
- Department of Neurological Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Misha Amini
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ling F Ye
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia L Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Department of Chemistry and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Trang Tt Nguyen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Damian Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter B Wu
- Department of Neurological Surgery, UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Li Hai
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Charles Karan
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | | | - Aida Razavilar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Kitajewski
- University of Illinois Cancer Center, Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | | | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Peter A Sims
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Peter Canoll
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
17
|
Zhang Q, Xu Z, Han R, Wang Y, Ye Z, Zhu J, Cai Y, Zhang F, Zhao J, Yao B, Qin Z, Qiao N, Huang R, Feng J, Wang Y, Rui W, He F, Zhao Y, Ding C. Proteogenomic characterization of skull-base chordoma. Nat Commun 2024; 15:8338. [PMID: 39333076 PMCID: PMC11436687 DOI: 10.1038/s41467-024-52285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Skull-base chordoma is a rare, aggressive bone cancer with a high recurrence rate. Despite advances in genomic studies, its molecular characteristics and effective therapies remain unknown. Here, we conduct integrative genomics, transcriptomics, proteomics, and phosphoproteomics analyses of 187 skull-base chordoma tumors. In our study, chromosome instability is identified as a prognostic predictor and potential therapeutic target. Multi-omics data reveals downstream effects of chromosome instability, with RPRD1B as a putative target for radiotherapy-resistant patients. Chromosome 1q gain, associated with chromosome instability and upregulated mitochondrial functions, lead to poorer clinical outcomes. Immune subtyping identify an immune cold subtype linked to chromosome 9p/10q loss and immune evasion. Proteomics-based classification reveals subtypes (P-II and P-III) with high chromosome instability and immune cold features, with P-II tumors showing increased invasiveness. These findings, confirmed in 17 paired samples, provide insights into the biology and treatment of skull-base chordoma.
Collapse
Affiliation(s)
- Qilin Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ziyan Xu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Rui Han
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunzhi Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Zhen Ye
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Zhu
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yixin Cai
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Zhang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Jiangyan Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Boyuan Yao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Nidan Qiao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruofan Huang
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jinwen Feng
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Yongfei Wang
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuchu He
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Research Unit of Proteomics Driven Cancer Precision Medicine. Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Yao Zhao
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Chen Ding
- Center for Cell and Gene Therapy, Clinical Research Center for Cell-based Immunotherapy, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China.
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, 830000, China.
| |
Collapse
|
18
|
Oketch DJA, Giulietti M, Piva F. A Comparison of Tools That Identify Tumor Cells by Inferring Copy Number Variations from Single-Cell Experiments in Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:1759. [PMID: 39200223 PMCID: PMC11351975 DOI: 10.3390/biomedicines12081759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technique has enabled detailed analysis of gene expression at the single cell level, enhancing the understanding of subtle mechanisms that underly pathologies and drug resistance. To derive such biological meaning from sequencing data in oncology, some critical processing must be performed, including identification of the tumor cells by markers and algorithms that infer copy number variations (CNVs). We compared the performance of sciCNV, InferCNV, CopyKAT and SCEVAN tools that identify tumor cells by inferring CNVs from scRNA-seq data. Sequencing data from Pancreatic Ductal Adenocarcinoma (PDAC) patients, adjacent and healthy tissues were analyzed, and the predicted tumor cells were compared to those identified by well-assessed PDAC markers. Results from InferCNV, CopyKAT and SCEVAN overlapped by less than 30% with InferCNV showing the highest sensitivity (0.72) and SCEVAN the highest specificity (0.75). We show that the predictions are highly dependent on the sample and the software used, and that they return so many false positives hence are of little use in verifying or filtering predictions made via tumor biomarkers. We highlight how critical this processing can be, warn against the blind use of these software and point out the great need for more reliable algorithms.
Collapse
Affiliation(s)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
19
|
Pytlarz M, Wojnicki K, Pilanc P, Kaminska B, Crimi A. Deep Learning Glioma Grading with the Tumor Microenvironment Analysis Protocol for Comprehensive Learning, Discovering, and Quantifying Microenvironmental Features. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1711-1727. [PMID: 38413460 PMCID: PMC11573951 DOI: 10.1007/s10278-024-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 02/29/2024]
Abstract
Gliomas are primary brain tumors that arise from neural stem cells, or glial precursors. Diagnosis of glioma is based on histological evaluation of pathological cell features and molecular markers. Gliomas are infiltrated by myeloid cells that accumulate preferentially in malignant tumors, and their abundance inversely correlates with survival, which is of interest for cancer immunotherapies. To avoid time-consuming and laborious manual examination of images, a deep learning approach for automatic multiclass classification of tumor grades was proposed. As an alternative way of investigating characteristics of brain tumor grades, we implemented a protocol for learning, discovering, and quantifying tumor microenvironment elements on our glioma dataset. Using only single-stained biopsies we derived characteristic differentiating tumor microenvironment phenotypic neighborhoods. The study was complicated by the small size of the available human leukocyte antigen stained on glioma tissue microarray dataset - 206 images of 5 classes - as well as imbalanced data distribution. This challenge was addressed by image augmentation for underrepresented classes. In practice, we considered two scenarios, a whole slide supervised learning classification, and an unsupervised cell-to-cell analysis looking for patterns of the microenvironment. In the supervised learning investigation, we evaluated 6 distinct model architectures. Experiments revealed that a DenseNet121 architecture surpasses the baseline's accuracy by a significant margin of 9% for the test set, achieving a score of 69%, increasing accuracy in discerning challenging WHO grade 2 and 3 cases. All experiments have been carried out in a cross-validation manner. The tumor microenvironment analysis suggested an important role for myeloid cells and their accumulation in the context of characterizing glioma grades. Those promising approaches can be used as an additional diagnostic tool to improve assessment during intraoperative examination or subtyping tissues for treatment selection, potentially easing the workflow of pathologists and oncologists.
Collapse
Affiliation(s)
- M Pytlarz
- Sano - Centre for Computational Personalised Medicine, Czarnowiejska 36, Kraków, 30-054, Poland.
| | - K Wojnicki
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, Warszawa, 02-093, Poland
| | - P Pilanc
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, Warszawa, 02-093, Poland
| | - B Kaminska
- Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, Warszawa, 02-093, Poland
| | - A Crimi
- Sano - Centre for Computational Personalised Medicine, Czarnowiejska 36, Kraków, 30-054, Poland
| |
Collapse
|
20
|
Fazzari E, Azizad DJ, Yu K, Ge W, Li MX, Nano PR, Kan RL, Tum HA, Tse C, Bayley NA, Haka V, Cadet D, Perryman T, Soto JA, Wick B, Raleigh DR, Crouch EE, Patel KS, Liau LM, Deneen B, Nathanson DA, Bhaduri A. Glioblastoma Neurovascular Progenitor Orchestrates Tumor Cell Type Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604840. [PMID: 39091877 PMCID: PMC11291138 DOI: 10.1101/2024.07.24.604840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Glioblastoma (GBM) is the deadliest form of primary brain tumor with limited treatment options. Recent studies have profiled GBM tumor heterogeneity, revealing numerous axes of variation that explain the molecular and spatial features of the tumor. Here, we seek to bridge descriptive characterization of GBM cell type heterogeneity with the functional role of individual populations within the tumor. Our lens leverages a gene program-centric meta-atlas of published transcriptomic studies to identify commonalities between diverse tumors and cell types in order to decipher the mechanisms that drive them. This approach led to the discovery of a tumor-derived stem cell population with mixed vascular and neural stem cell features, termed a neurovascular progenitor (NVP). Following in situ validation and molecular characterization of NVP cells in GBM patient samples, we characterized their function in vivo. Genetic depletion of NVP cells resulted in altered tumor cell composition, fewer cycling cells, and extended survival, underscoring their critical functional role. Clonal analysis of primary patient tumors in a human organoid tumor transplantation system demonstrated that the NVP has dual potency, generating both neuronal and vascular tumor cells. Although NVP cells comprise a small fraction of the tumor, these clonal analyses demonstrated that they strongly contribute to the total number of cycling cells in the tumor and generate a defined subset of the whole tumor. This study represents a paradigm by which cell type-specific interrogation of tumor populations can be used to study functional heterogeneity and therapeutically targetable vulnerabilities of GBM.
Collapse
Affiliation(s)
- Elisa Fazzari
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Daria J Azizad
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Weihong Ge
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Matthew X Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Patricia R Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Ryan L Kan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Hong A Tum
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher Tse
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vjola Haka
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dimitri Cadet
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Travis Perryman
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Jose A Soto
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Brittney Wick
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Kunal S Patel
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. Neuron 2024; 112:1978-1996.e6. [PMID: 38599212 PMCID: PMC11189759 DOI: 10.1016/j.neuron.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Interactions among neuronal, glial, and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA sequencing (scRNA-seq), and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas where neurons fail to release glutamate. By contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1-/- retinas and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1-/- retinas rescues defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Panos Arvanitis
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Danny Jamoul
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; John Jay College of Criminal Justice, City University of New York, New York, NY 10019, USA
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
22
|
Zarco N, Dovas A, de Araujo Farias V, Nagaiah NK, Haddock A, Sims PA, Hambardzumyan D, Meyer CT, Canoll P, Rosenfeld SS, Kenchappa RS. Resistance to Spindle Inhibitors in Glioblastoma Depends on STAT3 and Therapy Induced Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598115. [PMID: 38895402 PMCID: PMC11185785 DOI: 10.1101/2024.06.09.598115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFβ, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors. Targeting STAT3 restores sensitivity to each of these drugs by depleting the senescent subpopulation and inducing quiescent cells to enter the mitotic cycle. These results support a therapeutic strategy of targeting STAT3-dependent therapy-induced senescence to enhance the efficacy of spindle inhibitors for the treatment of glioblastoma. Highlights • Resistance to non-microtubule spindle inhibitors limits their efficacy in glioblastoma and depends on STAT3.• Resistance goes hand in hand with development of therapy induced senescence (TIS).• Spindle inhibitor resistant glioblastomas consist of three cell subpopulations-proliferative, quiescent, and TIS-with proliferative cells sensitive and quiescent and TIS cells resistant.• TIS cells secrete TGFβ, which induces proliferative cells to become quiescent, thereby expanding the population of resistant cells in a spindle inhibitor resistant glioblastoma• Treatment with a STAT3 inhibitor kills TIS cells and restores sensitivity to spindle inhibitors.
Collapse
|
23
|
Arrieta VA, Gould A, Kim KS, Habashy KJ, Dmello C, Vázquez-Cervantes GI, Palacín-Aliana I, McManus G, Amidei C, Gomez C, Dhiantravan S, Chen L, Zhang DY, Saganty R, Cholak ME, Pandey S, McCord M, McCortney K, Castro B, Ward R, Muzzio M, Bouchoux G, Desseaux C, Canney M, Carpentier A, Zhang B, Miska JM, Lesniak MS, Horbinski CM, Lukas RV, Stupp R, Lee-Chang C, Sonabend AM. Ultrasound-mediated delivery of doxorubicin to the brain results in immune modulation and improved responses to PD-1 blockade in gliomas. Nat Commun 2024; 15:4698. [PMID: 38844770 PMCID: PMC11156895 DOI: 10.1038/s41467-024-48326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.
Collapse
Affiliation(s)
- Víctor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Andrew Gould
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kwang-Soo Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karl J Habashy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gustavo I Vázquez-Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Irina Palacín-Aliana
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Deparment of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christina Amidei
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cristal Gomez
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Silpol Dhiantravan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel Y Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ruth Saganty
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Meghan E Cholak
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Surya Pandey
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Matthew McCord
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Deparment of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rachel Ward
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel Muzzio
- Life Sciences Group, IIT Research Institute, Chicago, IL, USA
| | | | | | | | - Alexandre Carpentier
- Sorbonne Université, Inserm, CNRS, UMR S 1127, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurochirurgie, Paris, France
| | - Bin Zhang
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason M Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rimas V Lukas
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
24
|
Cheng YL, Banu MA, Zhao W, Rosenfeld SS, Canoll P, Sims PA. Multiplexed single-cell lineage tracing of mitotic kinesin inhibitor resistance in glioblastoma. Cell Rep 2024; 43:114139. [PMID: 38652658 PMCID: PMC11199018 DOI: 10.1016/j.celrep.2024.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Glioblastoma (GBM) is a deadly brain tumor, and the kinesin motor KIF11 is an attractive therapeutic target with roles in proliferation and invasion. Resistance to KIF11 inhibitors, which has mainly been studied in animal models, presents significant challenges. We use lineage-tracing barcodes and single-cell RNA sequencing to analyze resistance in patient-derived GBM neurospheres treated with ispinesib, a potent KIF11 inhibitor. Similar to GBM progression in patients, untreated cells lose their neural lineage identity and become mesenchymal, which is associated with poor prognosis. Conversely, cells subjected to long-term ispinesib treatment exhibit a proneural phenotype. We generate patient-derived xenografts and show that ispinesib-resistant cells form less aggressive tumors in vivo, even in the absence of drug. Moreover, treatment of human ex vivo GBM slices with ispinesib demonstrates phenotypic alignment with in vitro responses, underscoring the clinical relevance of our findings. Finally, using retrospective lineage tracing, we identify drugs that are synergistic with ispinesib.
Collapse
Affiliation(s)
- Yim Ling Cheng
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
25
|
Huang D, Mela A, Bhanu NV, Garcia BA, Canoll P, Casaccia P. PDGF-BB overexpression in p53 null oligodendrocyte progenitors increases H3K27me3 and induces transcriptional changes which favor proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594214. [PMID: 38798631 PMCID: PMC11118351 DOI: 10.1101/2024.05.14.594214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Proneural gliomas are brain tumors characterized by enrichment of oligodendrocyte progenitor cell (OPC) transcripts and genetic alterations. In this study we sought to identify transcriptional and epigenetic differences between OPCs with Trp53 deletion and PDGF-BB overexpression (BB-p53n), which form tumors when transplanted in mouse brains, and those carrying only p53 deletion (p53n), which do not. We used unbiased histone proteomics and RNA-seq analysis on these two genetically modified OPC populations and detected higher levels of H3K27me3 in BB-p53n compared to p53n OPCs. The BB-p53n OPC were characterized by higher levels of transcripts related to proliferation and lower levels of those related to differentiation. Pharmacological inhibition of histone H3K27 trimethylation in BB-p53n OPC reduced cell cycle transcripts and increased the expression of differentiation markers. These data suggest that PDGF-BB overexpression in p53 null OPC results in histone post-translational modifications and consequent transcriptional changes favoring proliferation while halting differentiation, thereby promoting the early stages of transformation.
Collapse
|
26
|
Wei C, Gao Y, Li P. THOC6 is a novel biomarker of glioma and a target of anti-glioma drugs: An analysis based on bioinformatics and molecular docking. Medicine (Baltimore) 2024; 103:e37999. [PMID: 38728502 PMCID: PMC11081617 DOI: 10.1097/md.0000000000037999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Glioma is a typical malignant tumor of the nervous system. It is of great significance to identify new biomarkers for accurate diagnosis of glioma. In this context, THOC6 has been studied as a highly diagnostic prognostic biomarker, which contributes to improve the dilemma in diagnosing gliomas. We used online databases and a variety of statistical methods, such as Wilcoxon rank sum test, Dunn test and t test. We analyzed the mutation, location and expression profile of THOC6, revealing the network of THOC6 interaction with disease. Wilcoxon rank sum test showed that THOC6 is highly expressed in gliomas (P < 0.001). Dunn test, Wilcoxon rank sum test and t test showed that THOC6 expression was correlated with multiple clinical features. Logistic regression analysis further confirmed that THOC6 gene expression was a categorical dependent variable related to clinical features of poor prognosis. Kaplan-Meier survival analysis showed that the overall survival (OS) of glioma patients with high expression of THOC6 was poor (P < 0.001). Both univariate (P < 0.001) and multivariate (P = 0.04) Cox analysis confirmed that THOC6 gene expression was an independent risk factor for OS in patients with glioma. ROC curve analysis showed that THOC6 had a high diagnostic value in glioma (AUC = 0.915). Based on this, we constructed a nomogram to predict patient survival. Enrichment analysis showed that THOC6 expression was associated with multiple signal pathways. Immuno-infiltration analysis showed that the expression of THOC6 in glioma was closely related to the infiltration level of multiple immune cells. Molecular docking results showed that THOC6 might be the target of anti-glioma drugs. THOC6 is a novel diagnostic factor and prognostic biomarker of glioma.
Collapse
Affiliation(s)
- Chuang Wei
- Institute for Translational Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yijun Gao
- School of Medicine, Shanghai University, Shanghai, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
27
|
Johnson AL, Lopez-Bertoni H. Cellular diversity through space and time: adding new dimensions to GBM therapeutic development. Front Genet 2024; 15:1356611. [PMID: 38774283 PMCID: PMC11106394 DOI: 10.3389/fgene.2024.1356611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
The current median survival for glioblastoma (GBM) patients is only about 16 months, with many patients succumbing to the disease in just a matter of months, making it the most common and aggressive primary brain cancer in adults. This poor outcome is, in part, due to the lack of new treatment options with only one FDA-approved treatment in the last decade. Advances in sequencing techniques and transcriptomic analyses have revealed a vast degree of heterogeneity in GBM, from inter-patient diversity to intra-tumoral cellular variability. These cutting-edge approaches are providing new molecular insights highlighting a critical role for the tumor microenvironment (TME) as a driver of cellular plasticity and phenotypic heterogeneity. With this expanded molecular toolbox, the influence of TME factors, including endogenous (e.g., oxygen and nutrient availability and interactions with non-malignant cells) and iatrogenically induced (e.g., post-therapeutic intervention) stimuli, on tumor cell states can be explored to a greater depth. There exists a critical need for interrogating the temporal and spatial aspects of patient tumors at a high, cell-level resolution to identify therapeutically targetable states, interactions and mechanisms. In this review, we discuss advancements in our understanding of spatiotemporal diversity in GBM with an emphasis on the influence of hypoxia and immune cell interactions on tumor cell heterogeneity. Additionally, we describe specific high-resolution spatially resolved methodologies and their potential to expand the impact of pre-clinical GBM studies. Finally, we highlight clinical attempts at targeting hypoxia- and immune-related mechanisms of malignancy and the potential therapeutic opportunities afforded by single-cell and spatial exploration of GBM patient specimens.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Baltimore, MD, United States
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Baltimore, MD, United States
- Oncology, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
28
|
Liu Z, Mela A, Argenziano MG, Banu MA, Furnari J, Kotidis C, Sperring CP, Humala N, Mahajan A, Bruce JN, Canoll P, Sims PA. Single-cell analysis of 5-aminolevulinic acid intraoperative labeling specificity for glioblastoma. J Neurosurg 2024; 140:968-978. [PMID: 37773782 PMCID: PMC10535619 DOI: 10.3171/2023.7.jns23122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/11/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVE Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor, and resection is a key part of the standard of care. In fluorescence-guided surgery (FGS), fluorophores differentiate tumor tissue from surrounding normal brain. The heme synthesis pathway converts 5-aminolevulinic acid (5-ALA), a fluorogenic substrate used for FGS, to fluorescent protoporphyrin IX (PpIX). The resulting fluorescence is believed to be specific to neoplastic glioma cells, but this specificity has not been examined at a single-cell level. The objective of this study was to determine the specificity with which 5-ALA labels the diversity of cell types in GBM. METHODS The authors performed single-cell optical phenotyping and expression sequencing-version 2 (SCOPE-seq2), a paired single-cell imaging and RNA sequencing method, of individual cells on human GBM surgical specimens with macroscopically visible PpIX fluorescence from patients who received 5-ALA prior to surgery. SCOPE-seq2 allowed the authors to simultaneously image PpIX fluorescence and unambiguously identify neoplastic cells from single-cell RNA sequencing. Experiments were also conducted in cell culture and co-culture models of glioma and in acute slice cultures from a mouse glioma model to investigate cell- and tissue-specific uptake and secretion of 5-ALA and PpIX. RESULTS SCOPE-seq2 analysis of human GBM surgical specimens revealed that 5-ALA treatment resulted in labeling that was not specific to neoplastic glioma cells. The cell culture further demonstrated that nonneoplastic cells could be labeled by 5-ALA directly or by PpIX secreted from surrounding neoplastic cells. Acute slice cultures from mouse glioma models showed that 5-ALA preferentially labeled GBM tumor tissue over nonneoplastic brain tissue with significant labeling in the tumor margins, and that this contrast was not due to blood-brain barrier disruption. CONCLUSIONS Together, these findings support the use of 5-ALA as an indicator of GBM tissue but question the main advantage of 5-ALA for specific intracellular labeling of neoplastic glioma cells in FGS. Further studies are needed to systematically compare the performance of 5-ALA to that of potential alternatives for FGS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Peter A. Sims
- Departments of Systems Biology
- Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center
- Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
29
|
Guo X, Huang Z, Ju F, Zhao C, Yu L. Highly Accurate Estimation of Cell Type Abundance in Bulk Tissues Based on Single-Cell Reference and Domain Adaptive Matching. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306329. [PMID: 38072669 PMCID: PMC10870031 DOI: 10.1002/advs.202306329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Indexed: 02/17/2024]
Abstract
Accurately identifies the cellular composition of complex tissues, which is critical for understanding disease pathogenesis, early diagnosis, and prevention. However, current methods for deconvoluting bulk RNA sequencing (RNA-seq) typically rely on matched single-cell RNA sequencing (scRNA-seq) as a reference, which can be limiting due to differences in sequencing distribution and the potential for invalid information from single-cell references. Hence, a novel computational method named SCROAM is introduced to address these challenges. SCROAM transforms scRNA-seq and bulk RNA-seq into a shared feature space, effectively eliminating distributional differences in the latent space. Subsequently, cell-type-specific expression matrices are generated from the scRNA-seq data, facilitating the precise identification of cell types within bulk tissues. The performance of SCROAM is assessed through benchmarking against simulated and real datasets, demonstrating its accuracy and robustness. To further validate SCROAM's performance, single-cell and bulk RNA-seq experiments are conducted on mouse spinal cord tissue, with SCROAM applied to identify cell types in bulk tissue. Results indicate that SCROAM is a highly effective tool for identifying similar cell types. An integrated analysis of liver cancer and primary glioblastoma is then performed. Overall, this research offers a novel perspective for delivering precise insights into disease pathogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Xinyang Guo
- School of Computer Science and TechnologyXidian UniversityXi'an710071China
| | - Zhaoyang Huang
- School of Computer Science and TechnologyXidian UniversityXi'an710071China
| | - Fen Ju
- Department of Rehabilitation MedicineXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Chenguang Zhao
- Department of Rehabilitation MedicineXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Liang Yu
- School of Computer Science and TechnologyXidian UniversityXi'an710071China
| |
Collapse
|
30
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548410. [PMID: 37503079 PMCID: PMC10369888 DOI: 10.1101/2023.07.10.548410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Interactions among neuronal, glial and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA-sequencing and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1 -/- retinas where neurons fail to release glutamate. In contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1 -/- retinas where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1 -/- retinas, and upregulated in Gnat1 -/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1 -/- retinas rescued defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
|
31
|
Picca A, Di Stefano AL, Savatovsky J, Ducray F, Chinot O, Moyal ECJ, Augereau P, Le Rhun E, Schmitt Y, Rousseaux N, Yepnang AMM, Estellat C, Charbonneau F, Letourneur Q, Branger DF, Meyronet D, Fardeau C, Mokhtari K, Bielle F, Iavarone A, Sanson M. TARGET: A phase I/II open-label multicenter study to assess safety and efficacy of fexagratinib in patients with relapsed/refractory FGFR fusion-positive glioma. Neurooncol Adv 2024; 6:vdae068. [PMID: 38813112 PMCID: PMC11135358 DOI: 10.1093/noajnl/vdae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Background Oncogenic FGFR-TACC fusions are present in 3-5% of high-grade gliomas (HGGs). Fexagratinib (AZD4547) is an oral FGFR1-3 inhibitor with preclinical activity in FGFR-TACC+ gliomas. We tested its safety and efficacy in patients with recurrent FGFR-TACC + HGGs. Patients and Methods TARGET (NCT02824133) is a phase I/II open-label multicenter study that included adult patients with FGFR-TACC + HGGs relapsing after ≥1 line of standard chemoradiation. Patients received fexagratinib 80 mg bd on a continuous schedule until disease progression or unacceptable toxicity. The primary endpoint was the 6-month progression-free survival rate (PFS6). Results Twelve patients with recurrent IDH wildtype FGFR-TACC + HGGs (all FGFR3-TACC3+) were included in the efficacy cohort (male/female ratio = 1.4, median age = 61.5 years). Most patients (67%) were included at the first relapse. The PFS6 was 25% (95% confidence interval 5-57%), with a median PFS of 1.4 months. All patients without progression at 6 months (n = 3) were treated at first recurrence (versus 56% of those in progression) and remained progression-free for 14-23 months. The best response was RANO partial response in 1 patient (8%), stable disease in 5 (42%), and progressive disease in 6 (50%). Median survival was 17.5 months from inclusion. Grade 3 toxicities included lymphopenia, hyperglycaemia, stomatitis, nail changes, and alanine aminotransferase increase (n = 1 each). No grade 4-5 toxicities were seen. A 32-gene signature was associated with the benefit of FGFR inhibition in FGFR3-TACC3 + HGGs. Conclusions Fexagratinib exhibited acceptable toxicity but limited efficacy in recurrent FGFR3-TACC3 + HGGs. Patients treated at first recurrence appeared more likely to benefit, yet additional evidence is required.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neuro-Oncologie, Institut de Neurologie, DMU Neurosciences, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
| | - Anna Luisa Di Stefano
- Department of Neurology, Foch Hospital, Suresnes, France
- Division of Neurosurgery, Spedali Riuniti di Livorno-USL Toscana Nord-Ovest, Livorno, Italy
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
| | - Julien Savatovsky
- Department of Radiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - François Ducray
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Lyon, France
| | - Olivier Chinot
- Department of Neuro-Oncology, AP-HM, University Hospital Timone, Marseille, France
| | - Elisabeth Cohen-Jonathan Moyal
- Department of Radiotherapy, Claudius Regaud Institute, Cancer University Institute of Toulouse, Oncopole 1, Paul Sabatier University, Toulouse III, Toulouse, France
| | - Paule Augereau
- Department of Medical Oncology, Institut de Cancérologie de L’ouest- Paul Papin, Angers, France
| | - Emilie Le Rhun
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Yohann Schmitt
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
| | - Nabila Rousseaux
- Service de Neuro-Oncologie, Institut de Neurologie, DMU Neurosciences, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Candice Estellat
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique—IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, Unité de Recherche Clinique PSL-CFX, Paris, France
| | | | - Quentin Letourneur
- Sorbonne Université, INSERM, UMR S 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | | | - David Meyronet
- Department of Neuropathology, Hospices Civils de Lyon, Lyon, France
| | - Christine Fardeau
- Department of Ophthalmology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Karima Mokhtari
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
- Department of Neuropathology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Franck Bielle
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
- Department of Neuropathology, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, USA
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Marc Sanson
- Service de Neuro-Oncologie, Institut de Neurologie, DMU Neurosciences, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute (ICM), Paris, France
| |
Collapse
|
32
|
Shah S. Novel Therapies in Glioblastoma Treatment: Review of Glioblastoma; Current Treatment Options; and Novel Oncolytic Viral Therapies. Med Sci (Basel) 2023; 12:1. [PMID: 38249077 PMCID: PMC10801585 DOI: 10.3390/medsci12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most prevalent primary malignant brain tumors is glioblastoma (GB). About 6 incidents per 100,000 people are reported annually. Most frequently, these tumors are linked to a poor prognosis and poor quality of life. There has been little advancement in the treatment of GB. In recent years, some innovative medicines have been tested for the treatment of newly diagnosed cases of GB and recurrent cases of GB. Surgery, radiotherapy, and alkylating chemotherapy are all common treatments for GB. A few of the potential alternatives include immunotherapy, tumor-treating fields (TTFs), and medications that target specific cellular receptors. To provide new multimodal therapies that focus on the molecular pathways implicated in tumor initiation and progression in GB, novel medications, delivery technologies, and immunotherapy approaches are being researched. Of these, oncolytic viruses (OVs) are among the most recent. Coupling OVs with certain modern treatment approaches may have significant benefits for GB patients. Here, we discuss several OVs and how they work in conjunction with other therapies, as well as virotherapy for GB. The study was based on the PRISMA guidelines. Systematic retrieval of information was performed on PubMed. A total of 307 articles were found in a search on oncolytic viral therapies for glioblastoma. Out of these 83 articles were meta-analyses, randomized controlled trials, reviews, and systematic reviews. A total of 42 articles were from the years 2018 to 2023. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. One of the most prevalent malignant brain tumors is still GB. Significant promise and opportunity exist for oncolytic viruses in the treatment of GB and in boosting immune response. Making the most of OVs in the treatment of GB requires careful consideration and evaluation of a number of its application factors.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
33
|
Wang M, Wang W, You S, Hou Z, Ji M, Xue N, Du T, Chen X, Jin J. ACAT1 deficiency in myeloid cells promotes glioblastoma progression by enhancing the accumulation of myeloid-derived suppressor cells. Acta Pharm Sin B 2023; 13:4733-4747. [PMID: 38045043 PMCID: PMC10692383 DOI: 10.1016/j.apsb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with an immunosuppressive tumor microenvironment (TME). In this environment, myeloid cells, such as myeloid-derived suppressor cells (MDSCs), play a pivotal role in suppressing antitumor immunity. Lipometabolism is closely related to the function of myeloid cells. Here, our study reports that acetyl-CoA acetyltransferase 1 (ACAT1), the key enzyme of fatty acid oxidation (FAO) and ketogenesis, is significantly downregulated in the MDSCs infiltrated in GBM patients. To investigate the effects of ACAT1 on myeloid cells, we generated mice with myeloid-specific (LyzM-cre) depletion of ACAT1. The results show that these mice exhibited a remarkable accumulation of MDSCs and increased tumor progression both ectopically and orthotopically. The mechanism behind this effect is elevated secretion of C-X-C motif ligand 1 (CXCL1) of macrophages (Mφ). Overall, our findings demonstrate that ACAT1 could serve as a promising drug target for GBM by regulating the function of MDSCs in the TME.
Collapse
Affiliation(s)
- Mingjin Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weida Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shen You
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhenyan Hou
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
34
|
Nale V, Chiodi A, Di Nanni N, Cifola I, Moscatelli M, Cocola C, Gnocchi M, Piscitelli E, Sula A, Zucchi I, Reinbold R, Milanesi L, Mezzelani A, Pelucchi P, Mosca E. scMuffin: an R package to disentangle solid tumor heterogeneity by single-cell gene expression analysis. BMC Bioinformatics 2023; 24:445. [PMID: 38012590 PMCID: PMC10680269 DOI: 10.1186/s12859-023-05563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
INTRODUCTION Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular heterogeneity of solid tumors, which is one of the main obstacles for the development of effective cancer treatments. Such tumors typically contain a mixture of cells with aberrant genomic and transcriptomic profiles affecting specific sub-populations that might have a pivotal role in cancer progression, whose identification eludes bulk RNA-sequencing approaches. We present scMuffin, an R package that enables the characterization of cell identity in solid tumors on the basis of a various and complementary analyses on SC gene expression data. RESULTS scMuffin provides a series of functions to calculate qualitative and quantitative scores, such as: expression of marker sets for normal and tumor conditions, pathway activity, cell state trajectories, Copy Number Variations, transcriptional complexity and proliferation state. Thus, scMuffin facilitates the combination of various evidences that can be used to distinguish normal and tumoral cells, define cell identities, cluster cells in different ways, link genomic aberrations to phenotypes and identify subtle differences between cell subtypes or cell states. We analysed public SC expression datasets of human high-grade gliomas as a proof-of-concept to show the value of scMuffin and illustrate its user interface. Nevertheless, these analyses lead to interesting findings, which suggest that some chromosomal amplifications might underlie the invasive tumor phenotype and the presence of cells that possess tumor initiating cells characteristics. CONCLUSIONS The analyses offered by scMuffin and the results achieved in the case study show that our tool helps addressing the main challenges in the bioinformatics analysis of SC expression data from solid tumors.
Collapse
Affiliation(s)
- Valentina Nale
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Alice Chiodi
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Noemi Di Nanni
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Ingrid Cifola
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Marco Moscatelli
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Cinzia Cocola
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Matteo Gnocchi
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Eleonora Piscitelli
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Ada Sula
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Ileana Zucchi
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Paride Pelucchi
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy.
| | - Ettore Mosca
- Institute of Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Milan, Italy.
| |
Collapse
|
35
|
Xiao Z, Li J, Liang C, Liu Y, Zhang Y, Zhang Y, Liu Q, Yan X. Identification of M5c regulator-medicated methylation modification patterns for prognosis and immune microenvironment in glioma. Aging (Albany NY) 2023; 15:12275-12295. [PMID: 37934565 PMCID: PMC10683591 DOI: 10.18632/aging.205179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023]
Abstract
Glioma is a common intracranial tumor and is generally associated with poor prognosis. Recently, numerous studies illustrated the importance of 5-methylcytosine (m5C) RNA modification to tumorigenesis. However, the prognostic value and immune correlation of m5C in glioma remain unclear. We obtained RNA expression and clinical information from The Cancer Genome Atlas (TCGA) and The Chinese Glioma Genome Atlas (CGGA) datasets to analyze. Nonnegative matrix factorization (NMF) was used to classify patients into two subgroups and compare these patients in survival and clinicopathological characteristics. CIBERSORT and single-sample gene-set algorithm (ssGSEA) methods were used to investigate the relationship between m5C and the immune environment. The Weighted correlation network analysis (WGCNA) and univariate Cox proportional hazard model (CoxPH) were used to construct a m5C-related signature. Most of m5C RNA methylation regulators presented differential expression and prognostic values. There were obvious relationships between immune infiltration cells and m5C regulators, especially NSUN7. In the m5C-related module from WGCNA, we found SEPT3, CHI3L1, PLBD1, PHYHIPL, SAMD8, RAP1B, B3GNT5, RER1, PTPN7, SLC39A1, and MXI1 were prognostic factors for glioma, and they were used to construct the signature. The great significance of m5C-related signature in predicting the survival of patients with glioma was confirmed in the validation sets and CGGA cohort.
Collapse
Affiliation(s)
- Zhenyong Xiao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Jinwei Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Cong Liang
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Yamei Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Yuxiu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Yuxia Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Quan Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Xianlei Yan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| |
Collapse
|
36
|
Liu Y, Jin H, Liu H. Identification of T-cell exhaustion-related gene signature for predicting prognosis in glioblastoma multiforme. J Cell Mol Med 2023; 27:3503-3513. [PMID: 37635346 PMCID: PMC10660619 DOI: 10.1111/jcmm.17927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 08/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain tumour with a poor prognosis in adults. Identifying biomarkers that can aid in the molecular classification and risk stratification of GBM is critical. Here, we conducted a transcriptional profiling analysis of T-cell immunity in the tumour microenvironment of GBM patients and identified two novel T cell exhaustion (TEX)-related GBM subtypes (termed TEX-C1 and TEX-C2) using the consensus clustering. Our multi-omics analysis revealed distinct immunological, molecular and clinical characteristics for these two subtypes. Specifically, the TEX-C1 subtype had higher infiltration levels of immune cells and expressed higher levels of immune checkpoint molecules than the TEX-C2 subtype. Functional analysis revealed that upregulated genes in the TEX-C1 subtype were significantly enriched in immune response and signal transduction pathways, and upregulated genes in the TEX-C2 subtype were predominantly associated with cell fate and nervous system development pathways. Notably, patients with activated T-cell activity status in the TEX-C1 subgroup demonstrated a significantly worse prognosis than those with severe T cell exhaustion status in the TEX-C2 subgroup. Finally, we proposed a machine-learning-derived novel gene signature comprising 12 TEX-related genes (12TexSig) to indicate tumour subtyping. In the TCGA cohort, the 12TexSig demonstrated the ability to accurately predict the prognosis of GBM patients, and this prognostic value was further confirmed in two independent external cohorts. Taken together, our results suggest that the TEX-derived subtyping and gene signature has the potential to serve as a clinically helpful biomarker for guiding the management of GBM patients, pending further prospective validation.
Collapse
Affiliation(s)
- Yue‐hui Liu
- Department of NeurologyAffiliated Hospital of Inner Mongolia Minzu UniversityTongliaoChina
| | - Hong‐quan Jin
- Department of NeurologyAffiliated Hospital of Inner Mongolia Minzu UniversityTongliaoChina
| | - Hai‐ping Liu
- College of Life Science and Food EngineeringInner Mongolia Minzu UniversityTongliaoChina
| |
Collapse
|
37
|
Shi Q, Chen X, Zhang Z. Decoding Human Biology and Disease Using Single-cell Omics Technologies. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:926-949. [PMID: 37739168 PMCID: PMC10928380 DOI: 10.1016/j.gpb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 09/24/2023]
Abstract
Over the past decade, advances in single-cell omics (SCO) technologies have enabled the investigation of cellular heterogeneity at an unprecedented resolution and scale, opening a new avenue for understanding human biology and disease. In this review, we summarize the developments of sequencing-based SCO technologies and computational methods, and focus on considerable insights acquired from SCO sequencing studies to understand normal and diseased properties, with a particular emphasis on cancer research. We also discuss the technological improvements of SCO and its possible contribution to fundamental research of the human, as well as its great potential in clinical diagnoses and personalized therapies of human disease.
Collapse
Affiliation(s)
- Qiang Shi
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueyan Chen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
38
|
Cheng YL, Banu MA, Zhao W, Rosenfeld SS, Canoll P, Sims PA. Multiplexed single-cell lineage tracing of mitotic kinesin inhibitor resistance in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.09.557001. [PMID: 37745469 PMCID: PMC10515771 DOI: 10.1101/2023.09.09.557001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Glioblastoma (GBM) is a deadly brain tumor, and the kinesin motor KIF11 is an attractive therapeutic target because of its dual roles in proliferation and invasion. The clinical utility of KIF11 inhibitors has been limited by drug resistance, which has mainly been studied in animal models. We used multiplexed lineage tracing barcodes and scRNA-seq to analyze drug resistance time courses for patient-derived GBM neurospheres treated with ispinesib, a potent KIF11 inhibitor. Similar to GBM progression in patients, untreated cells lost their neural lineage identity and transitioned to a mesenchymal phenotype, which is associated with poor prognosis. In contrast, cells subjected to long-term ispinesib treatment exhibited a proneural phenotype. We generated patient-derived xenografts to show that ispinesib-resistant cells form less aggressive tumors in vivo, even in the absence of drug. Finally, we used lineage barcodes to nominate drug combination targets by retrospective analysis of ispinesib-resistant clones in the drug-naïve setting and identified drugs that are synergistic with ispinesib.
Collapse
Affiliation(s)
- Yim Ling Cheng
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
39
|
Sutter PA, Ménoret A, Jellison ER, Nicaise AM, Bradbury AM, Vella AT, Bongarzone ER, Crocker SJ. CD8+ T cell depletion prevents neuropathology in a mouse model of globoid cell leukodystrophy. J Exp Med 2023; 220:e20221862. [PMID: 37310382 PMCID: PMC10266545 DOI: 10.1084/jem.20221862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/10/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Globoid cell leukodystrophy (GLD) or Krabbe's disease is a fatal genetic demyelinating disease of the central nervous system caused by loss-of-function mutations in the galactosylceramidase (galc) gene. While the metabolic basis for disease is known, the understanding of how this results in neuropathology is not well understood. Herein, we report that the rapid and protracted elevation of CD8+ cytotoxic T lymphocytes occurs coincident with clinical disease in a mouse model of GLD. Administration of a function-blocking antibody against CD8α effectively prevented disease onset, reduced morbidity and mortality, and prevented CNS demyelination in mice. These data indicate that subsequent to the genetic cause of disease, neuropathology is driven by pathogenic CD8+ T cells, thus offering novel therapeutic potential for treatment of GLD.
Collapse
Affiliation(s)
- Pearl A. Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Antoine Ménoret
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Evan R. Jellison
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Alexandra M. Nicaise
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Clinical Neuroscience and National Institute for Health Research Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Allison M. Bradbury
- Department of Pediatrics, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
40
|
Zhang L, Bordey A. Advances in glioma models using in vivo electroporation to highjack neurodevelopmental processes. Biochim Biophys Acta Rev Cancer 2023; 1878:188951. [PMID: 37433417 DOI: 10.1016/j.bbcan.2023.188951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Glioma is the most prevalent type of neurological malignancies. Despite decades of efforts in neurosurgery, chemotherapy and radiation therapy, glioma remains one of the most treatment-resistant brain tumors with unfavorable outcomes. Recent progresses in genomic and epigenetic profiling have revealed new concepts of genetic events involved in the etiology of gliomas in humans, meanwhile, revolutionary technologies in gene editing and delivery allows to code these genetic "events" in animals to genetically engineer glioma models. This approach models the initiation and progression of gliomas in a natural microenvironment with an intact immune system and facilitates probing therapeutic strategies. In this review, we focus on recent advances in in vivo electroporation-based glioma modeling and outline the established genetically engineered glioma models (GEGMs).
Collapse
Affiliation(s)
- Longbo Zhang
- Departments of Neurosurgery, Changde hospital, Xiangya School of Medicine, Central South University, 818 Renmin Street, Wuling District, Changde, Hunan 415003, China; Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China; Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA.
| | - Angelique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520-8082, USA
| |
Collapse
|
41
|
Zhou H, Chen B, Zhang L, Li C. Machine learning-based identification of lower grade glioma stemness subtypes discriminates patient prognosis and drug response. Comput Struct Biotechnol J 2023; 21:3827-3840. [PMID: 37560125 PMCID: PMC10407594 DOI: 10.1016/j.csbj.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Glioma stem cells (GSCs) remodel their tumor microenvironment to sustain a supportive niche. Identification and stratification of stemness related characteristics in patients with glioma might aid in the diagnosis and treatment of the disease. In this study, we calculated the mRNA stemness index in bulk and single-cell RNA-sequencing datasets using machine learning methods and investigated the correlation between stemness and clinicopathological characteristics. A glioma stemness-associated score (GSScore) was constructed using multivariate Cox regression analysis. We also generated a GSC cell line derived from a patient diagnosed with glioma and used glioma cell lines to validate the performance of the GSScore in predicting chemotherapeutic responses. Differentially expressed genes (DEGs) between GSCs with high and low GSScores were used to cluster lower-grade glioma (LGG) samples into three stemness subtypes. Differences in clinicopathological characteristics, including survival, copy number variations, mutations, tumor microenvironment, and immune and chemotherapeutic responses, among the three LGG stemness-associated subtypes were identified. Using machine learning methods, we further identified genes as subtype predictors and validated their performance using the CGGA datasets. In the current study, we identified a GSScore that correlated with LGG chemotherapeutic response. Through the score, we also identified a novel classification of the LGG subtype and associated subtype predictors, which might facilitate the development of precision therapy.
Collapse
Affiliation(s)
- Hongshu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Clinical Diagnosis and Therapy Center for Glioma, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Chuntao Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- Clinical Diagnosis and Therapy Center for Glioma, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
42
|
Hobson BD, Stanley AT, De Los Santos MB, Culbertson B, Mosharov EV, Sims PA, Sulzer D. Conserved and cell type-specific transcriptional responses to IFN-γ in the ventral midbrain. Brain Behav Immun 2023; 111:277-291. [PMID: 37100211 PMCID: PMC10460506 DOI: 10.1016/j.bbi.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
Dysregulated inflammation within the central nervous system (CNS) contributes to neuropathology in infectious, autoimmune, and neurodegenerative disease. With the exception of microglia, major histocompatibility complex (MHC) proteins are virtually undetectable in the mature, healthy central nervous system (CNS). Neurons have generally been considered incapable of antigen presentation, and although interferon gamma (IFN-γ) can elicit neuronal MHC class I (MHC-I) expression and antigen presentation in vitro, it has been unclear whether similar responses occur in vivo. Here we directly injected IFN-γ into the ventral midbrain of mature mice and analyzed gene expression profiles of specific CNS cell types. We found that IFN-γ upregulated MHC-I and associated mRNAs in ventral midbrain microglia, astrocytes, oligodendrocytes, and GABAergic, glutamatergic, and dopaminergic neurons. The core set of IFN-γ-induced genes and their response kinetics were similar in neurons and glia, but with a lower amplitude of expression in neurons. A diverse repertoire of genes was upregulated in glia, particularly microglia, which were the only cells to undergo cellular proliferation and express MHC classII (MHC-II) and associated genes. To determine if neurons respond directly via cell-autonomous IFN-γ receptor (IFNGR) signaling, we produced mutant mice with a deletion of the IFN-γ-binding domain of IFNGR1 in dopaminergic neurons, which resulted in a complete loss of dopaminergic neuronal responses to IFN-γ. Our results demonstrate that IFN-γ induces neuronal IFNGR signaling and upregulation of MHC-I and related genes in vivo, although the expression level is low compared to oligodendrocytes, astrocytes, and microglia.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Adrien T Stanley
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Mark B De Los Santos
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Bruce Culbertson
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, United States; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States.
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, United States; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, United States; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States.
| |
Collapse
|
43
|
Eisenbarth D, Wang YA. Glioblastoma heterogeneity at single cell resolution. Oncogene 2023; 42:2155-2165. [PMID: 37277603 PMCID: PMC10913075 DOI: 10.1038/s41388-023-02738-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest types of cancer and highly refractory to chemoradiation and immunotherapy. One of the main reasons for this resistance to therapy lies within the heterogeneity of the tumor and its associated microenvironment. The vast diversity of cell states, composition of cells, and phenotypical characteristics makes it difficult to accurately classify GBM into distinct subtypes and find effective therapies. The advancement of sequencing technologies in recent years has further corroborated the heterogeneity of GBM at the single cell level. Recent studies have only begun to elucidate the different cell states present in GBM and how they correlate with sensitivity to therapy. Furthermore, it has become clear that GBM heterogeneity not only depends on intrinsic factors but also strongly differs between new and recurrent GBM, and treatment naïve and experienced patients. Understanding and connecting the complex cellular network that underlies GBM heterogeneity will be indispensable in finding new ways to tackle this deadly disease. Here, we present an overview of the multiple layers of GBM heterogeneity and discuss novel findings in the age of single cell technologies.
Collapse
Affiliation(s)
- David Eisenbarth
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Y Alan Wang
- The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
44
|
Al-Dalahmah O, Argenziano MG, Kannan A, Mahajan A, Furnari J, Paryani F, Boyett D, Save A, Humala N, Khan F, Li J, Lu H, Sun Y, Tuddenham JF, Goldberg AR, Dovas A, Banu MA, Sudhakar T, Bush E, Lassman AB, McKhann GM, Gill BJA, Youngerman B, Sisti MB, Bruce JN, Sims PA, Menon V, Canoll P. Re-convolving the compositional landscape of primary and recurrent glioblastoma reveals prognostic and targetable tissue states. Nat Commun 2023; 14:2586. [PMID: 37142563 PMCID: PMC10160047 DOI: 10.1038/s41467-023-38186-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Glioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-neoplastic brain cells, including astrocytes, neurons and microglia/myeloid cells. This complex mixture of cell types forms the biological context for therapeutic response and tumor recurrence. We used single-nucleus RNA sequencing and spatial transcriptomics to determine the cellular composition and transcriptional states in primary and recurrent glioma and identified three compositional 'tissue-states' defined by cohabitation patterns between specific subpopulations of neoplastic and non-neoplastic brain cells. These tissue-states correlated with radiographic, histopathologic, and prognostic features and were enriched in distinct metabolic pathways. Fatty acid biosynthesis was enriched in the tissue-state defined by the cohabitation of astrocyte-like/mesenchymal glioma cells, reactive astrocytes, and macrophages, and was associated with recurrent GBM and shorter survival. Treating acute slices of GBM with a fatty acid synthesis inhibitor depleted the transcriptional signature of this pernicious tissue-state. These findings point to therapies that target interdependencies in the GBM microenvironment.
Collapse
Affiliation(s)
- Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Adithya Kannan
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Julia Furnari
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Fahad Paryani
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Akshay Save
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Nelson Humala
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Fatima Khan
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - Juncheng Li
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - Hong Lu
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - Yu Sun
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - John F Tuddenham
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Alexander R Goldberg
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA
| | - Matei A Banu
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Tejaswi Sudhakar
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Erin Bush
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Andrew B Lassman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Guy M McKhann
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Brian J A Gill
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Brett Youngerman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Michael B Sisti
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Jeffrey N Bruce
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Peter A Sims
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, 10032, USA.
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons (VP&S), New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
45
|
Murdaugh RL, Anastas JN. Applying single cell multi-omic analyses to understand treatment resistance in pediatric high grade glioma. Front Pharmacol 2023; 14:1002296. [PMID: 37205910 PMCID: PMC10191214 DOI: 10.3389/fphar.2023.1002296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Despite improvements in cancer patient outcomes seen in the past decade, tumor resistance to therapy remains a major impediment to achieving durable clinical responses. Intratumoral heterogeneity related to genetic, epigenetic, transcriptomic, proteomic, and metabolic differences between individual cancer cells has emerged as a driver of therapeutic resistance. This cell to cell heterogeneity can be assessed using single cell profiling technologies that enable the identification of tumor cell clones that exhibit similar defining features like specific mutations or patterns of DNA methylation. Single cell profiling of tumors before and after treatment can generate new insights into the cancer cell characteristics that confer therapeutic resistance by identifying intrinsically resistant sub-populations that survive treatment and by describing new cellular features that emerge post-treatment due to tumor cell evolution. Integrative, single cell analytical approaches have already proven advantageous in studies characterizing treatment-resistant clones in cancers where pre- and post-treatment patient samples are readily available, such as leukemia. In contrast, little is known about other cancer subtypes like pediatric high grade glioma, a class of heterogeneous, malignant brain tumors in children that rapidly develop resistance to multiple therapeutic modalities, including chemotherapy, immunotherapy, and radiation. Leveraging single cell multi-omic technologies to analyze naïve and therapy-resistant glioma may lead to the discovery of novel strategies to overcome treatment resistance in brain tumors with dismal clinical outcomes. In this review, we explore the potential for single cell multi-omic analyses to reveal mechanisms of glioma resistance to therapy and discuss opportunities to apply these approaches to improve long-term therapeutic response in pediatric high grade glioma and other brain tumors with limited treatment options.
Collapse
Affiliation(s)
- Rebecca L. Murdaugh
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Program in Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Jamie N. Anastas
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Program in Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
46
|
Wei Y, Li G, Feng J, Wu F, Zhao Z, Bao Z, Zhang W, Su X, Li J, Qi X, Duan Z, Zhang Y, Vega SF, Jakola AS, Sun Y, Carén H, Jiang T, Fan X. Stalled oligodendrocyte differentiation in IDH-mutant gliomas. Genome Med 2023; 15:24. [PMID: 37055795 PMCID: PMC10103394 DOI: 10.1186/s13073-023-01175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy. However, the neural lineages and differentiation stages in IDH-mutant gliomas remain inadequately characterized. METHODS Using bulk transcriptomes and single-cell transcriptomes, we identified genes enriched in IDH-mutant gliomas with or without 1p19q co-deletion, we also assessed the expression pattern of stage-specific signatures and key regulators of oligodendrocyte lineage differentiation. We compared the expression of oligodendrocyte lineage stage-specific markers between quiescent and proliferating malignant single cells. The gene expression profiles were validated using RNAscope analysis and myelin staining and were further substantiated using data of DNA methylation and single-cell ATAC-seq. As a control, we assessed the expression pattern of astrocyte lineage markers. RESULTS Genes concordantly enriched in both subtypes of IDH-mutant gliomas are upregulated in oligodendrocyte progenitor cells (OPC). Signatures of early stages of oligodendrocyte lineage and key regulators of OPC specification and maintenance are enriched in all IDH-mutant gliomas. In contrast, signature of myelin-forming oligodendrocytes, myelination regulators, and myelin components are significantly down-regulated or absent in IDH-mutant gliomas. Further, single-cell transcriptomes of IDH-mutant gliomas are similar to OPC and differentiation-committed oligodendrocyte progenitors, but not to myelinating oligodendrocyte. Most IDH-mutant glioma cells are quiescent; quiescent cells and proliferating cells resemble the same differentiation stage of oligodendrocyte lineage. Mirroring the gene expression profiles along the oligodendrocyte lineage, analyses of DNA methylation and single-cell ATAC-seq data demonstrate that genes of myelination regulators and myelin components are hypermethylated and show inaccessible chromatin status, whereas regulators of OPC specification and maintenance are hypomethylated and show open chromatin status. Markers of astrocyte precursors are not enriched in IDH-mutant gliomas. CONCLUSIONS Our studies show that despite differences in clinical manifestation and genomic alterations, all IDH-mutant gliomas resemble early stages of oligodendrocyte lineage and are stalled in oligodendrocyte differentiation due to blocked myelination program. These findings provide a framework to accommodate biological features and therapy development for IDH-mutant gliomas.
Collapse
Affiliation(s)
- Yanfei Wei
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jing Feng
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zhaoshi Bao
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wei Zhang
- Beijing Neurosurgical Institute, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaodong Su
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jiuyi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Xueling Qi
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zejun Duan
- Department of Pathology, San Bo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Yunqiu Zhang
- Center of Growth Metabolism & Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sandra Ferreyra Vega
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41390, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, 41390, Sweden
| | - Yingyu Sun
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, 100070, China.
| | - Xiaolong Fan
- Department of Biology, Beijing Key Laboratory of Gene Resource and Molecular Development, School of Life Sciences, and Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, School of Life Sciences, Beijing Normal University, Beijing, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, 100070, China.
| |
Collapse
|
47
|
Fang C, Zhang Z, Han Y, Xu H, Zhu Z, Du Y, Hou P, Yuan L, Shao A, Zhang A, Lou M. URB2 as an important marker for glioma prognosis and immunotherapy. Front Pharmacol 2023; 14:1113182. [PMID: 37033651 PMCID: PMC10080038 DOI: 10.3389/fphar.2023.1113182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Glioma is the most common primary brain tumor and primary malignant tumor of the brain in clinical practice. Conventional treatment has not significantly altered the prognosis of patients with glioma. As research into immunotherapy continues, glioma immunotherapy has shown great potential. Methods: The clinical data were acquired from the Chinese Glioma Genome Atlas (CGGA) database and validated by the Gene Expression Omnibus (GEO) database, The Cancer Genome Atlas (TCGA) dataset, Clinical Proteomic Tumor Analysis Consortium (CPTAP) database, and Western blot (WB) analysis. By Cox regression analyses, we examined the association between different variables and overall survival (OS) and its potential as an independent prognostic factor. By constructing a nomogram that incorporates both clinicopathological variables and the expression of URB2, we provide a model for the prediction of prognosis. Moreover, we explored the relationship between immunity and URB2 and elucidated its underlying mechanism of action. Results: Our study shows that URB2 likely plays an oncogenic role in glioma and confirms that URB2 is a prognostic independent risk factor for glioma. Furthermore, we revealed a close relationship between immunity and URB2, which suggests a new approach for the immunotherapy of glioma. Conclusion: URB2 can be used for prognosis prediction and immunotherapy of glioma.
Collapse
Affiliation(s)
- Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongquan Han
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pinpin Hou
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Zhang D, Li AM, Hu G, Huang M, Yang F, Zhang L, Wellen KE, Xu X, Conn CS, Zou W, Kahn M, Rhoades SD, Weljie AM, Fuchs SY, Amankulor N, Yoshor D, Ye J, Koumenis C, Gong Y, Fan Y. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab 2023; 35:517-534.e8. [PMID: 36804058 PMCID: PMC10088869 DOI: 10.1016/j.cmet.2023.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/24/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
The efficacy of immunotherapy is limited by the paucity of T cells delivered and infiltrated into the tumors through aberrant tumor vasculature. Here, we report that phosphoglycerate dehydrogenase (PHGDH)-mediated endothelial cell (EC) metabolism fuels the formation of a hypoxic and immune-hostile vascular microenvironment, driving glioblastoma (GBM) resistance to chimeric antigen receptor (CAR)-T cell immunotherapy. Our metabolome and transcriptome analyses of human and mouse GBM tumors identify that PHGDH expression and serine metabolism are preferentially altered in tumor ECs. Tumor microenvironmental cues induce ATF4-mediated PHGDH expression in ECs, triggering a redox-dependent mechanism that regulates endothelial glycolysis and leads to EC overgrowth. Genetic PHGDH ablation in ECs prunes over-sprouting vasculature, abrogates intratumoral hypoxia, and improves T cell infiltration into the tumors. PHGDH inhibition activates anti-tumor T cell immunity and sensitizes GBM to CAR T therapy. Thus, reprogramming endothelial metabolism by targeting PHGDH may offer a unique opportunity to improve T cell-based immunotherapy.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Guanghui Hu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Crystal S Conn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Kahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth D Rhoades
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Yoshor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Hoogstrate Y, Draaisma K, Ghisai SA, van Hijfte L, Barin N, de Heer I, Coppieters W, van den Bosch TPP, Bolleboom A, Gao Z, Vincent AJPE, Karim L, Deckers M, Taphoorn MJB, Kerkhof M, Weyerbrock A, Sanson M, Hoeben A, Lukacova S, Lombardi G, Leenstra S, Hanse M, Fleischeuer REM, Watts C, Angelopoulos N, Gorlia T, Golfinopoulos V, Bours V, van den Bent MJ, Robe PA, French PJ. Transcriptome analysis reveals tumor microenvironment changes in glioblastoma. Cancer Cell 2023; 41:678-692.e7. [PMID: 36898379 DOI: 10.1016/j.ccell.2023.02.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/20/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023]
Abstract
A better understanding of transcriptional evolution of IDH-wild-type glioblastoma may be crucial for treatment optimization. Here, we perform RNA sequencing (RNA-seq) (n = 322 test, n = 245 validation) on paired primary-recurrent glioblastoma resections of patients treated with the current standard of care. Transcriptional subtypes form an interconnected continuum in a two-dimensional space. Recurrent tumors show preferential mesenchymal progression. Over time, hallmark glioblastoma genes are not significantly altered. Instead, tumor purity decreases over time and is accompanied by co-increases in neuron and oligodendrocyte marker genes and, independently, tumor-associated macrophages. A decrease is observed in endothelial marker genes. These composition changes are confirmed by single-cell RNA-seq and immunohistochemistry. An extracellular matrix-associated gene set increases at recurrence and bulk, single-cell RNA, and immunohistochemistry indicate it is expressed mainly by pericytes. This signature is associated with significantly worse survival at recurrence. Our data demonstrate that glioblastomas evolve mainly by microenvironment (re-)organization rather than molecular evolution of tumor cells.
Collapse
Affiliation(s)
- Youri Hoogstrate
- Department of Neurology, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands.
| | - Kaspar Draaisma
- Department of Neurosurgery, UMC Utrecht, 3584CX Utrecht, the Netherlands
| | - Santoesha A Ghisai
- Department of Neurology, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands
| | - Levi van Hijfte
- Department of Neurology, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands; Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands
| | - Nastaran Barin
- Department of Neurology, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands; Department of Precision and Microsystems Engineering, Delft University of Technology, 2628CD Delft, the Netherlands
| | - Iris de Heer
- Department of Neurology, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands
| | - Wouter Coppieters
- Genomics Platform, GIGA Institute, Université de Liège, 4000 Liège, Belgium
| | | | - Anne Bolleboom
- Deparment of Neuroscience, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands; Department of Neurosurgery, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands
| | - Zhenyu Gao
- Deparment of Neuroscience, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands
| | - Arnaud J P E Vincent
- Department of Neurosurgery, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands
| | - Latifa Karim
- Genomics Platform, GIGA Institute, Université de Liège, 4000 Liège, Belgium
| | - Manon Deckers
- Genomics Platform, GIGA Institute, Université de Liège, 4000 Liège, Belgium
| | - Martin J B Taphoorn
- Department of Neurology, Haaglanden Medical Center, 2512VA The Hague, the Netherlands; Department of Neurology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Melissa Kerkhof
- Department of Neurology, Haaglanden Medical Center, 2512VA The Hague, the Netherlands
| | - Astrid Weyerbrock
- Department of Neurosurgery, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Ann Hoeben
- Department of Internal Medicine, Division of Medical Oncology, GROW, Maastricht University Medical Center, 6229ER Maastricht, the Netherlands
| | - Slávka Lukacova
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Sieger Leenstra
- Department of Neurosurgery, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands
| | - Monique Hanse
- Department of Neurology, Catharina Hospital, 5623EJ Eindhoven, the Netherlands
| | - Ruth E M Fleischeuer
- Department of Pathology, Elisabeth-TweeSteden Hospital, 5042AD Tilburg, the Netherlands
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2SY Birmingham, UK
| | - Nicos Angelopoulos
- Systems Immunity Research Institute, Medical School, Cardiff University, CF14 4XN Cardiff, UK
| | | | | | - Vincent Bours
- Université de Liège, Department of Human Genetics, 4000 Liège, Belgium
| | | | - Pierre A Robe
- Department of Neurosurgery, UMC Utrecht, 3584CX Utrecht, the Netherlands; Université de Liège, Department of Human Genetics, 4000 Liège, Belgium
| | - Pim J French
- Department of Neurology, Erasmus Medical Center, 3015GD Rotterdam, the Netherlands.
| |
Collapse
|
50
|
De Falco A, Caruso F, Su XD, Iavarone A, Ceccarelli M. A variational algorithm to detect the clonal copy number substructure of tumors from scRNA-seq data. Nat Commun 2023; 14:1074. [PMID: 36841879 PMCID: PMC9968345 DOI: 10.1038/s41467-023-36790-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Single-cell RNA sequencing is the reference technology to characterize the composition of the tumor microenvironment and to study tumor heterogeneity at high resolution. Here we report Single CEll Variational ANeuploidy analysis (SCEVAN), a fast variational algorithm for the deconvolution of the clonal substructure of tumors from single-cell RNA-seq data. It uses a multichannel segmentation algorithm exploiting the assumption that all the cells in a given copy number clone share the same breakpoints. Thus, the smoothed expression profile of every individual cell constitutes part of the evidence of the copy number profile in each subclone. SCEVAN can automatically and accurately discriminate between malignant and non-malignant cells, resulting in a practical framework to analyze tumors and their microenvironment. We apply SCEVAN to datasets encompassing 106 samples and 93,322 cells from different tumor types and technologies. We demonstrate its application to characterize the intratumor heterogeneity and geographic evolution of malignant brain tumors.
Collapse
Affiliation(s)
- Antonio De Falco
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples 'Federico II', 80128, Naples, Italy.,BIOGEM Institute of Molecular Biology and Genetics, 83031, Ariano Irpino, Italy
| | - Francesca Caruso
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples 'Federico II', 80128, Naples, Italy.,BIOGEM Institute of Molecular Biology and Genetics, 83031, Ariano Irpino, Italy
| | - Xiao-Dong Su
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, 5 Yiheyuan Road, Haidian District, 100871, Beijing, China
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA.,Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples 'Federico II', 80128, Naples, Italy. .,BIOGEM Institute of Molecular Biology and Genetics, 83031, Ariano Irpino, Italy.
| |
Collapse
|