1
|
Yue J, Xu J, Li T, Li Y, Chen Z, Liang S, Liu Z, Wang Y. Discovery of potential antidiabetic peptides using deep learning. Comput Biol Med 2024; 180:109013. [PMID: 39137670 DOI: 10.1016/j.compbiomed.2024.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Antidiabetic peptides (ADPs), peptides with potential antidiabetic activity, hold significant importance in the treatment and control of diabetes. Despite their therapeutic potential, the discovery and prediction of ADPs remain challenging due to limited data, the complex nature of peptide functions, and the expensive and time-consuming nature of traditional wet lab experiments. This study aims to address these challenges by exploring methods for the discovery and prediction of ADPs using advanced deep learning techniques. Specifically, we developed two models: a single-channel CNN and a three-channel neural network (CNN + RNN + Bi-LSTM). ADPs were primarily gathered from the BioDADPep database, alongside thousands of non-ADPs sourced from anticancer, antibacterial, and antiviral peptide datasets. Subsequently, data preprocessing was performed with the evolutionary scale model (ESM-2), followed by model training and evaluation through 10-fold cross-validation. Furthermore, this work collected a series of newly published ADPs as an independent test set through literature review, and found that the CNN model achieved the highest accuracy (90.48 %) in predicting the independent test set, surpassing existing ADP prediction tools. Finally, the application of the model was considered. SeqGAN was used to generate new candidate ADPs, followed by screening with the constructed CNN model. Selected peptides were then evaluated using physicochemical property prediction and structural forecasts for pharmaceutical potential. In summary, this study not only established robust ADP prediction models but also employed these models to screen a batch of potential ADPs, addressing a critical need in the field of peptide-based antidiabetic research.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zihui Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
2
|
Yang KY, Liao J, Ma Z, Tse HF, Lu L, Graca L, Lui KO. Single-cell transcriptomics of Treg reveals hallmarks and trajectories of immunological aging. J Leukoc Biol 2024; 115:19-35. [PMID: 37675661 DOI: 10.1093/jleuko/qiad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/25/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Age-related immunosenescence is characterized by progressive dysfunction of adaptive immune response and increased autoimmunity. Nevertheless, the impact of aging on CD4+ regulatory T cells that are master regulators of the immune system remains largely unclear. Here, we report cellular and molecular hallmarks of regulatory T cells derived from murine lymphoid and adipose tissues at 3, 18, and 24 mo of age, respectively, by analyzing their heterogeneity that displays dynamic changes in transcriptomic effector signatures at a single-cell resolution. Although the proportion of regulatory T cells among total Cd4+ T cells, as well as their expression levels of Foxp3, did not show any global change with time, we have identified 6 transcriptomically distinct clusters of regulatory T cells with cross-tissue conserved hallmarks of aging, including increased numbers of proinflammatory regulatory T cells, reduced precursor cells, increased immature and mature T follicular regulatory cells potentially supported by a metabolic switch from oxidative phosphorylation to glycolysis, a gradual loss of CD150hi regulatory T cells that support hematopoiesis, and increased adipose tissue-specific regulatory T cells that are associated with metabolic disease. To dissect the impact of immunosenescence on humoral immunity, we propose some potential mechanisms underlying T follicular regulatory cell-mediated dysfunction by interactome analysis on T follicular regulatory cells, T follicular helper cells, and B cells during aging. Lastly, spatiotemporal analysis further revealed trajectories of regulatory T-cell aging that demonstrate the most significant changes in marrow and adipose tissues that might contribute to the development of age-related immunosenescence and type 2 diabetes. Taken together, our findings could provide a better understanding of age-associated regulatory T-cell heterogeneity in lymphoid and adipose tissues, as well as regulatory T-cell hallmarks during progressive adaptation to aging that could be therapeutically targeted for rejuvenating the aging immune system in the future.
Collapse
Affiliation(s)
- Kevin Y Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Jinyue Liao
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Zhangjing Ma
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
| | - Hung Fat Tse
- Division of Cardiology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Liwei Lu
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, 102 Pok Fu Lam Road, Hong Kong, China
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Edifício Egas Moniz, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, N.T., Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10 2nd Yuexin Road, Nanshan District, Shenzhen, China
| |
Collapse
|
3
|
Bei KF, Moshkelgosha S, Liu BJ, Juvet S. Intragraft regulatory T cells in the modern era: what can high-dimensional methods tell us about pathways to allograft acceptance? Front Immunol 2023; 14:1291649. [PMID: 38077395 PMCID: PMC10701590 DOI: 10.3389/fimmu.2023.1291649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Replacement of diseased organs with transplanted healthy donor ones remains the best and often only treatment option for end-stage organ disease. Immunosuppressants have decreased the incidence of acute rejection, but long-term survival remains limited. The broad action of current immunosuppressive drugs results in global immune impairment, increasing the risk of cancer and infections. Hence, achievement of allograft tolerance, in which graft function is maintained in the absence of global immunosuppression, has long been the aim of transplant clinicians and scientists. Regulatory T cells (Treg) are a specialized subset of immune cells that control a diverse array of immune responses, can prevent allograft rejection in animals, and have recently been explored in early phase clinical trials as an adoptive cellular therapy in transplant recipients. It has been established that allograft residency by Tregs can promote graft acceptance, but whether intragraft Treg functional diversification and spatial organization contribute to this process is largely unknown. In this review, we will explore what is known regarding the properties of intragraft Tregs during allograft acceptance and rejection. We will summarize recent advances in understanding Treg tissue residency through spatial, transcriptomic and high-dimensional cytometric methods in both animal and human studies. Our discussion will explore properties of intragraft Tregs in mediating operational tolerance to commonly transplanted solid organs. Finally, given recent developments in Treg cellular therapy, we will review emerging knowledge of whether and how these adoptively transferred cells enter allografts in humans. An understanding of the properties of intragraft Tregs will help lay the foundation for future therapies that will promote immune tolerance.
Collapse
Affiliation(s)
- Ke Fan Bei
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Bo Jie Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Smith R, Yendamuri S, Vedire Y, Rosario S, Zollo R, Washington D, Sass S, Ivanick NM, Reid M, Barbi J. Immunoprofiling bronchoalveolar lavage cells reveals multifaceted smoking-associated immune dysfunction. ERJ Open Res 2023; 9:00688-2022. [PMID: 37342091 PMCID: PMC10277872 DOI: 10.1183/23120541.00688-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 06/22/2023] Open
Abstract
Background Bronchoalveolar lavage (BAL) is an underutilised tool in the search for pulmonary disease biomarkers. While leukocytes with effector and suppressor function play important roles in airway immunity and tumours, it remains unclear if frequencies and phenotypes of BAL leukocytes can be useful parameters in lung cancer studies and clinical trials. We therefore explored the utility of BAL leukocytes as a source of biomarkers interrogating the impact of smoking, a major lung cancer risk determinant, on pulmonary immunity. Methods In this "test case" observational study, BAL samples from 119 donors undergoing lung cancer screening and biopsy procedures were evaluated by conventional and spectral flow cytometry to exemplify the comprehensive immune analyses possible with this biospecimen. Proportions of major leukocyte populations and phenotypic markers levels were found. Multivariate linear rank sum analysis considering age, sex, cancer diagnosis and smoking status was performed. Results Significantly increased frequencies of myeloid-derived suppressor cells and PD-L1-expressing macrophages were found in current and former smokers compared to never-smokers. While cytotoxic CD8 T-cells and conventional CD4 helper T-cell frequencies were significantly reduced in current and former smokers, expression of immune checkpoints PD-1 and LAG-3 as well as Tregs proportions were increased. Lastly, the cellularity, viability and stability of several immune readouts under cryostorage suggested BAL samples are useful for correlative end-points in clinical trials. Conclusions Smoking is associated with heightened markers of immune dysfunction, readily assayable in BAL, that may reflect a permissive environment for cancer development and progression in the airway.
Collapse
Affiliation(s)
- Randall Smith
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally
- These authors contributed equally to this article as lead authors and supervised the work
| | - Yeshwanth Vedire
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Robert Zollo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Deschana Washington
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Stephanie Sass
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nathaniel M. Ivanick
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Reid
- Department of Medicine – Survivorship and Supportive Care, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- These authors contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
5
|
Wang W, Zhou X, Zhang Y, Chen Z, Huang J, Zhang X, Kwak-Kim J. The characteristics of antigenic specificity of memory regulatory t cells in women with unexplained recurrent pregnancy loss. J Reprod Immunol 2022; 154:103694. [PMID: 36063659 DOI: 10.1016/j.jri.2022.103694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
Regulatory T cells (Tregs) proliferate after encountering the fetal antigen, which plays an important role in maintaining maternal-fetal tolerance. Activated Tregs increase number and function after antigen encounter and develop memory. Upon subsequent antigen exposure, Treg cells re-expand more rapidly. However, the characteristics of memory regulatory T cells (mTregs) during normal pregnancy and unexplained recurrent pregnancy loss (URPL) have not been elucidated well. In this study, we analyzed the proportion of Tregs and mTregs in the peripheral blood and their surface expression of PD-1, CCR6, and HLA-G in normal non-pregnant (n = 20) and pregnant (n = 20) women, and non-pregnant (n = 20) and pregnant URPL (n = 20) women. We found that the proportions of mTregs in lymphocytes, CD3+ T cells, CD4+ T cells, and Tregs were lower in pregnant URPL patients than in normal pregnant women. The proportions of CD4+CD45RO+ Th cells in lymphocytes, CD3+ T, and CD4+ T cells in the pregnant URPL group were the highest among the four groups (P < 0.05). There were no significant differences among the other three groups (P > 0.05). The proportions of CD4+/CCR6+/mTregs, CD4+/PD-1+/mTregs, CD4+/HLA-G+/mTregs were significantly lower in the non-pregnant normal group and non-pregnant URPL group than in normal pregnant group and pregnant URPL group (P < 0.05, respectively). The proportions of CD4+/CCR6+ mTregs, CD4+/PD-1+/mTregs, CD4+/HLA-G+/mTregs were lower in pregnant URPL group than in normal pregnant group (P < 0.05, respectively). These findings indicate that fetal antigen-specific mTregs play an important role in pregnancy maintenance, and the dysregulation of mTreg may contribute to URPL.
Collapse
Affiliation(s)
- Wenjuan Wang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China; Reproduction Medical Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai 264000, PR China.
| | - Xiaojiao Zhou
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai 264000, PR China; School of Medicine, Qingdao Universityō, 38 Dengzhou Road, Qingdao 266000, PR China
| | - Yi Zhang
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Zeyang Chen
- Reproduction Medical Center, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China; Department of Gynecology, Weihai Central Hospital, 3 Mishan East Road, Weihai 264400, PR China
| | - Jinxia Huang
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai 264000, PR China
| | - Xiaolu Zhang
- Department of Clinical Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai 264000, PR China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL 60061, USA; Center for Cancer Cell Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
6
|
Cao W, Lu J, Li S, Song F, Xu J. Transcriptomic analysis of graft liver provides insight into the immune response of rat liver transplantation. Front Immunol 2022; 13:947437. [DOI: 10.3389/fimmu.2022.947437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
BackgroundAs an “immune-privileged organ”, the liver has higher rates of both spontaneous tolerance and operational tolerance after being transplanted compared with other solid organs. Also, a large number of patients still need to take long-term immunosuppression regimens. Liver transplantation (LT) rejection involves varieties of pathophysiological processes and cell types, and a deeper understanding of LT immune response is urgently needed.MethodsHomogenic and allogeneic rat LT models were established, and recipient tissue was collected on postoperative day 7. The degree of LT rejection was evaluated by liver pathological changes and liver function. Differentially expressed genes (DEGs) were detected by transcriptome sequencing and confirmed by reverse transcription-polymerase chain reaction. The functional properties of DEGs were characterized by the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses. The cells infiltrating the graft and recipient spleen and peripheral blood were evaluated by immunofluorescence and flow cytometry.ResultA total of 1,465 DEGs were screened, including 1,177 up-regulated genes and 288 down-regulated genes. GO enrichment and KEGG pathway analysis indicated that DEGs were involved in several immunobiological processes, including T cell activation, Th1, Th2 and Th17 cell differentiation, cytokine-cytokine receptor interaction and other immune processes. Reactome results showed that PD-1 signaling was enriched. Further research confirmed that mRNA expression of multiple immune cell markers increased and markers of T cell exhaustion significantly changed. Flow cytometry showed that the proportion of Treg decreased, and that of PD-1+CD4+ T cells and PD-1+CD8+ T cells increased in the allogeneic group.ConclusionUsing an omic approach, we revealed that the development of LT rejection involved multiple immune cells, activation of various immune pathways, and specific alterations of immune checkpoints, which would benefit risk assessment in the clinic and understanding of pathogenesis regarding LT tolerance. Further clinical validations are warranted for our findings.
Collapse
|
7
|
Zhang C, Wang F, Sun N, Zhang Z, Zhang G, Zhang Z, Luo Y, Che Y, Cheng H, Li J, He J. The combination of novel immune checkpoints HHLA2 and ICOSLG: A new system to predict survival and immune features in esophageal squamous cell carcinoma. Genes Dis 2022; 9:415-428. [PMID: 35224157 PMCID: PMC8843897 DOI: 10.1016/j.gendis.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 08/14/2020] [Indexed: 12/09/2022] Open
Abstract
Studies on immune checkpoint inhibitors targeting B7-CD28 family pathways in esophageal squamous cell carcinoma (ESCC) have shown promising results. However, a comprehensive understanding of B7-CD28 family members in ESCC is still limited. This study aimed to construct a novel B7-CD28 family-based prognosis system to predict survival in patients with ESCC. We collected 179 cases from our previously published microarray data and 86 cases with qPCR data. Specifically, 119 microarray data (GSE53624) were used as a training set, whereas the remaining 60 microarray data (GSE53622), all 179 microarray data (GSE53625) and an independent cohort with 86 qPCR data were used for validation. The underlying mechanism and immune landscape of the system were also explored using bioinformatics and immunofluorescence. We examined 13 well-defined B7-CD28 family members and identified 2 genes (ICSOLG and HHLA2) with the greatest prognostic value. A system based on the combination HHLA2 and ICOSLG (B7-CD28 signature) was constructed to distinguish patients as high- or low-risk of an unfavorable outcome, which was further confirmed as an independent prognostic factor. As expected, the signature was well validated in the entire cohort and in the independent cohort, as well as in different clinical subgroups. The signature was found to be closely related to immune-specific biological processes and pathways. Additionally, high-risk group samples demonstrated high infiltration of Tregs and fibroblasts and distinctive immune checkpoint panels. Collectively, we built the first, practical B7-CD28 signature for ESCC that could independently identify high-risk patients. Such information may help inform immunotherapy-based treatment decisions for patients with ESCC.
Collapse
|
8
|
Ma Z, Li X, Fan RLY, Yang KY, Ng CSH, Lau RWH, Wong RHL, Ng KK, Wang CC, Ye P, Fu Z, Chin AWH, Lai MYA, Huang Y, Tian XY, Poon LLM, Lui KO. A human pluripotent stem cell-based model of SARS-CoV-2 infection reveals an ACE2-independent inflammatory activation of vascular endothelial cells through TLR4. Stem Cell Reports 2022; 17:538-555. [PMID: 35180397 PMCID: PMC8851885 DOI: 10.1016/j.stemcr.2022.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the direct causative mechanism of SARS-CoV-2-induced endotheliitis remains unclear. Here, we report that human ECs barely express surface ACE2, and ECs express less intracellular ACE2 than non-ECs of the lungs. We ectopically expressed ACE2 in hESC-ECs to model SARS-CoV-2 infection. ACE2-deficient ECs are resistant to the infection but are more activated than ACE2-expressing ones. The virus directly induces endothelial activation by increasing monocyte adhesion, NO production, and enhanced phosphorylation of p38 mitogen-associated protein kinase (MAPK), NF-κB, and eNOS in ACE2-expressing and -deficient ECs. ACE2-deficient ECs respond to SARS-CoV-2 through TLR4 as treatment with its antagonist inhibits p38 MAPK/NF-κB/ interleukin-1β (IL-1β) activation after viral exposure. Genome-wide, single-cell RNA-seq analyses further confirm activation of the TLR4/MAPK14/RELA/IL-1β axis in circulating ECs of mild and severe COVID-19 patients. Circulating ECs could serve as biomarkers for indicating patients with endotheliitis. Together, our findings support a direct role for SARS-CoV-2 in mediating endothelial inflammation in an ACE2-dependent or -independent manner. The majority of adult and fetal ECs rarely express surface ACE2 ACE2 is dispensable for SARS-CoV-2-mediated endothelial activation SARS-CoV-2 directly induces endothelial inflammation through TLR4 activation ScRNA-seq reveals TLR4 pathway activation in circulating ECs of COVID-19 patients
Collapse
Affiliation(s)
- Zhangjing Ma
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rebecca L Y Fan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Calvin S H Ng
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rainbow W H Lau
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Randolph H L Wong
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin K Ng
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Peng Ye
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zelong Fu
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Alex W H Chin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - M Y Alison Lai
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
9
|
Li Q, Shi Z, Zhang F, Zeng W, Zhu D, Mei L. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle. Acta Pharm Sin B 2022; 12:107-134. [PMID: 35127375 PMCID: PMC8799879 DOI: 10.1016/j.apsb.2021.05.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/21/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The immune system is involved in the initiation and progression of cancer. Research on cancer and immunity has contributed to the development of several clinically successful immunotherapies. These immunotherapies often act on a single step of the cancer–immunity cycle. In recent years, the discovery of new nanomaterials has dramatically expanded the functions and potential applications of nanomaterials. In addition to acting as drug-delivery platforms, some nanomaterials can induce the immunogenic cell death (ICD) of cancer cells or regulate the profile and strength of the immune response as immunomodulators. Based on their versatility, nanomaterials may serve as an integrated platform for multiple drugs or therapeutic strategies, simultaneously targeting several steps of the cancer–immunity cycle to enhance the outcome of anticancer immune response. To illustrate the critical roles of nanomaterials in cancer immunotherapies based on cancer–immunity cycle, this review will comprehensively describe the crosstalk between the immune system and cancer, and the current applications of nanomaterials, including drug carriers, ICD inducers, and immunomodulators. Moreover, this review will provide a detailed discussion of the knowledge regarding developing combinational cancer immunotherapies based on the cancer–immunity cycle, hoping to maximize the efficacy of these treatments assisted by nanomaterials.
Collapse
Affiliation(s)
- Qianqian Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Weiwei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors. Tel./fax: +86 20 84723750
| |
Collapse
|
10
|
Lee JB, Kim HR, Ha SJ. Immune Checkpoint Inhibitors in 10 Years: Contribution of Basic Research and Clinical Application in Cancer Immunotherapy. Immune Netw 2022; 22:e2. [PMID: 35291660 PMCID: PMC8901707 DOI: 10.4110/in.2022.22.e2] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
Targeting immune evasion via immune checkpoint pathways has changed the treatment paradigm in cancer. Since CTLA-4 antibody was first approved in 2011 for treatment of metastatic melanoma, eight immune checkpoint inhibitors (ICIs) centered on PD-1 pathway blockade are approved and currently administered to treat 18 different types of cancers. The first part of the review focuses on the history of CTLA-4 and PD-1 discovery and the preclinical experiments that demonstrated the possibility of anti-CTLA-4 and anti-PD-1 as anti-cancer therapeutics. The approval process of clinical trials and clinical utility of ICIs are described, specifically focusing on non-small cell lung cancer (NSCLC), in which immunotherapies are most actively applied. Additionally, this review covers the combination therapy and novel ICIs currently under investigation in NSCLC. Although ICIs are now key pivotal cancer therapy option in clinical settings, they show inconsistent therapeutic efficacy and limited responsiveness. Thus, newly proposed action mechanism to overcome the limitations of ICIs in a near future are also discussed.
Collapse
Affiliation(s)
- Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
11
|
Ding JT, Yang KP, Lin KL, Cao YK, Zou F. Mechanisms and therapeutic strategies of immune checkpoint molecules and regulators in type 1 diabetes. Front Endocrinol (Lausanne) 2022; 13:1090842. [PMID: 36704045 PMCID: PMC9871554 DOI: 10.3389/fendo.2022.1090842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Considered a significant risk to health and survival, type 1 diabetes (T1D) is a heterogeneous autoimmune disease characterized by hyperglycemia caused by an absolute deficiency of insulin, which is mainly due to the immune-mediated destruction of pancreatic beta cells. SCOPE OF REVIEW In recent years, the role of immune checkpoints in the treatment of cancer has been increasingly recognized, but unfortunately, little attention has been paid to the significant role they play both in the development of secondary diabetes with immune checkpoint inhibitors and the treatment of T1D, such as cytotoxic T-lymphocyte antigen 4(CTLA-4), programmed cell death protein-1(PD-1), lymphocyte activation gene-3(LAG-3), programmed death ligand-1(PD-L1), and T-cell immunoglobulin mucin protein-3(TIM-3). Here, this review summarizes recent research on the role and mechanisms of diverse immune checkpoint molecules in mediating the development of T1D and their potential and theoretical basis for the prevention and treatment of diabetes. MAJOR CONCLUSIONS Immune checkpoint inhibitors related diabetes, similar to T1D, are severe endocrine toxicity induced with immune checkpoint inhibitors. Interestingly, numerous treatment measures show excellent efficacy for T1D via regulating diverse immune checkpoint molecules, including co-inhibitory and co-stimulatory molecules. Thus, targeting immune checkpoint molecules may exhibit potential for T1D treatment and improve clinical outcomes.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kong-Lan Lin
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yu-Ke Cao
- School of Ophthalmology & Optometry, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Fang Zou,
| |
Collapse
|
12
|
Valizadeh A, Asghari S, Mansouri P, Alemi F, Majidinia M, Mahmoodpoor A, Yousefi B. The roles of signaling pathways in cardiac regeneration. Curr Med Chem 2021; 29:2142-2166. [PMID: 34521319 DOI: 10.2174/0929867328666210914115411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
In recent years, knowledge of cardiac regeneration mechanisms has dramatically expanded. Regeneration can replace lost parts of organs, common among animal species. The heart is commonly considered an organ with terminal development, which has no reparability potential during post-natal life; however, some intrinsic regeneration capacity has been reported for cardiac muscle, which opens novel avenues in cardiovascular disease treatment. Different endogenous mechanisms were studied for cardiac repairing and regeneration in recent decades. Survival, proliferation, inflammation, angiogenesis, cell-cell communication, cardiomyogenesis, and anti-aging pathways are the most important mechanisms that have been studied in this regard. Several in vitro and animal model studies focused on proliferation induction for cardiac regeneration reported promising results. These studies have mainly focused on promoting proliferation signaling pathways and demonstrated various signaling pathways such as Wnt, PI3K/Akt, IGF-1, TGF-β, Hippo, and VEGF signaling cardiac regeneration. Therefore, in this review, we intended to discuss the connection between different critical signaling pathways in cardiac repair and regeneration.
Collapse
Affiliation(s)
- Amir Valizadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Samira Asghari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Parinaz Mansouri
- Students Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia. Iran
| | - Ata Mahmoodpoor
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
13
|
Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, Shepherdson E, Singh GSN, Pai R, Shanti A, Wong RMM, Lee A, Khyriem C, Dutertre CA, Chakarov S, Srinivasan KG, Shadan NB, Zhang XM, Khalilnezhad S, Cottier F, Tan ASM, Low G, Chen P, Fan Y, Hor PX, Lee AKM, Choolani M, Vermijlen D, Sharma A, Fuks G, Straussman R, Pavelka N, Malleret B, McGovern N, Albani S, Chan JKY, Ginhoux F. Microbial exposure during early human development primes fetal immune cells. Cell 2021; 184:3394-3409.e20. [PMID: 34077752 PMCID: PMC8240556 DOI: 10.1016/j.cell.2021.04.039] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.
Collapse
Affiliation(s)
- Archita Mishra
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Ghee Chuan Lai
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Leong Jing Yao
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
| | - Thet Tun Aung
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Noam Shental
- Department of Mathematics and Computer Science, Open University of Israel, Ra'anana 4353701, Israel
| | - Aviva Rotter-Maskowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edwin Shepherdson
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Gurmit Singh Naranjan Singh
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Rhea Pai
- Genome Institute of Singapore (GIS), A(∗)STAR, 60 Biopolis Street, Singapore 138672, Singapore
| | - Adhika Shanti
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Regina Men Men Wong
- Genome Institute of Singapore (GIS), A(∗)STAR, 60 Biopolis Street, Singapore 138672, Singapore
| | - Andrea Lee
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
| | - Costerwell Khyriem
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Charles Antoine Dutertre
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore; Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore; Program in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - K G Srinivasan
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Nurhidaya Binte Shadan
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Xiao-Meng Zhang
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Fabien Cottier
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Alrina Shin Min Tan
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Gillian Low
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Phyllis Chen
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore
| | - Yiping Fan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Pei Xiang Hor
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Avery Khoo May Lee
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Mahesh Choolani
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road, Singapore 119228, Singpore
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Institute for Medical Immunology, ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Ankur Sharma
- Genome Institute of Singapore (GIS), A(∗)STAR, 60 Biopolis Street, Singapore 138672, Singapore; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, PO Box 7214, 6 Verdun Street, Nedlands, Perth, WA 6009, Australia; Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Garold Fuks
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Norman Pavelka
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Naomi McGovern
- Department of Pathology and Centre for Trophoblast Research, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore.
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; OBGYN-Academic Clinical Program, Duke-NUS, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore 119077, Singapore.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore; Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the Academia, 20 College Road, Discovery Tower Level 8, Singapore 169856, Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
14
|
Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity 2021; 54:1543-1560.e6. [PMID: 34004141 DOI: 10.1016/j.immuni.2021.04.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/30/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.
Collapse
|
15
|
Single cell transcriptomic analysis identifies novel vascular smooth muscle subsets under high hydrostatic pressure. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1677-1690. [PMID: 33486587 DOI: 10.1007/s11427-020-1852-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Although some co-risk factors and hemodynamic alterations are involved in hypertension progression, their direct biomechanical effects are unclear. Here, we constructed a high-hydrostatic-pressure cell-culture system to imitate constant hypertension and identified novel molecular classifications of human aortic smooth muscle cells (HASMCs) by single-cell transcriptome analysis. Under 100-mmHg (analogous to healthy human blood pressure) or 200-mmHg (analogous to hypertension) hydrostatic pressure for 48 h, HASMCs showed six distinct vascular SMC (VSMC) clusters according to differential gene expression and gene ontology enrichment analysis. Especially, two novel HASMC subsets were identified, named the inflammatory subset, with CXCL2, CXCL3 and CCL2 as markers, and the endothelial-function inhibitory subset, with AKR1C2, AKR1C3, SERPINF1 as markers. The inflammatory subset promoted CXCL2&3 and CCL2 chemokine expression and secretion, triggering monocyte migration; the endothelial-function inhibitory subset secreted SERPINF1 and accelerated prostaglandin F2α generation to inhibit angiogenesis. The expression of the two VSMC subsets was greatly increased in arterial media from patients with hypertension and experimental animal models of hypertension. Collectively, we identified high hydrostatic pressure directly driving VSMCs into two new subsets, promoting or exacerbating endothelial dysfunction, thereby contributing to the pathogenesis of cardiovascular diseases.
Collapse
|
16
|
Cancer and Immune Checkpoint Inhibitor Treatment in the Era of SARS-CoV-2 Infection. Cancers (Basel) 2020; 12:cancers12113383. [PMID: 33207589 PMCID: PMC7698088 DOI: 10.3390/cancers12113383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The introduction of immune checkpoint inhibitors (ICI) in 2011 revolutionized the management of many solid cancers and hematological malignancies. However, there are concerns regarding the use of ICI in the era of COVID-19. We present currently available information on the pros and cons of using ICI in cancer patients with respect to the risk of acquiring an infection by SARS-CoV2 and mortality from COVID-19. By means of the present paper, clinicians and researchers may update their knowledge on a highly topical clinical question—is the use of ICI in cancer patients with SARS-CoV2 infection harmful with respect to COVID-19 outcome? Abstract Whether cancer patients receiving immune checkpoint inhibitors (ICI) are at an increased risk of severe infection and mortality during the corona pandemic is a hotly debated topic that will continue to evolve. Here, we summarize and discuss current studies regarding COVID-19 and anti-cancer treatment with an emphasis on ICI. Importantly, several lines of evidence suggest that patients currently treated with ICI do not display an increased vulnerability to infection with SARS-CoV-2. Data regarding morbidity and mortality associated with COVID-19 in cancer patients receiving ICI are less clear and often conflicting. Although mostly based on experimental data, it is possible that ICI can promote the exacerbated immune response associated with adverse outcome in COVID-19 patients. On the other hand, mounting evidence suggests that ICI might even be useful in the treatment of viral infections by preventing or ameliorating T cell exhaustion. In this context, the right timing of treatment might be essential. Nevertheless, some cancer patients treated with ICI experience autoimmune-related side effects that require the use of immunosuppressive therapies, which in turn may promote a severe course of infection with SARS-CoV-2. Although there is clear evidence that withholding ICI will have more serious consequences, further studies are urgently needed in to better evaluate the effects of ICI in patients with COVID-19 and the use of ICI during the corona pandemic in general.
Collapse
|
17
|
Li X, Yang KY, Chan VW, Leung KT, Zhang XB, Wong AS, Chong CCN, Wang CC, Ku M, Lui KO. Single-Cell RNA-Seq Reveals that CD9 Is a Negative Marker of Glucose-Responsive Pancreatic β-like Cells Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2020; 15:1111-1126. [PMID: 33096048 PMCID: PMC7663789 DOI: 10.1016/j.stemcr.2020.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
To date, it remains unclear if there are specific cell-surface markers for purifying glucose-responsive pancreatic β-like cells derived from human pluripotent stem cells (hPSCs). In searching for this, we generated an efficient protocol for differentiating β-like cells from human embryonic stem cells. We performed single-cell RNA sequencing and found that CD9 is a negative cell-surface marker of β-like cells, as most INS+ cells are CD9−. We purified β-like cells for spontaneous formation of islet-like organoids against CD9, and found significantly more NKX6.1+MAFA+C-PEPTIDE+ β-like cells in the CD9− than in the CD9+ population. CD9− cells also demonstrate better glucose responsiveness than CD9+ cells. In humans, we observe more CD9+C-PEPTIDE+ β cells in the fetal than in the adult cadaveric islets and more Ki67+ proliferating cells among CD9+ fetal β cells. Taken together, our experiments show that CD9 is a cell-surface marker for negative enrichment of glucose-responsive β-like cells differentiated from hPSCs. scRNA-seq reveals the heterogeneity of hPSC-derived β-like cells CD9 is preferentially expressed by immature and proliferating human β cells CD9 may not have a functional role in human β-like cell differentiation CD9 is a negative cell-surface marker for enrichment of GSIS+ human β-like cells
Collapse
Affiliation(s)
- Xisheng Li
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yang
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W Chan
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kam Tong Leung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, U.S.A
| | - Alan S Wong
- School of Biomedical Sciences and Department of Electrical Engineering, University of Hong Kong, Hong Kong, China
| | - Charing C N Chong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Manching Ku
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathy O Lui
- Department of Chemical Pathology; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Waliany S, Lee D, Witteles RM, Neal JW, Nguyen P, Davis MM, Salem JE, Wu SM, Moslehi JJ, Zhu H. Immune Checkpoint Inhibitor Cardiotoxicity: Understanding Basic Mechanisms and Clinical Characteristics and Finding a Cure. Annu Rev Pharmacol Toxicol 2020; 61:113-134. [PMID: 32776859 DOI: 10.1146/annurev-pharmtox-010919-023451] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune checkpoint inhibitors (ICIs) attenuate mechanisms of self-tolerance in the immune system, enabling T cell responses to cancerous tissues and revolutionizing care for cancer patients. However, by loweringbarriers against self-reactivity, ICIs often result in varying degrees of autoimmunity. Cardiovascular complications, particularly myocarditis but also arrhythmias, pericarditis, and vasculitis, have emerged as significant complications associated with ICIs. In this review, we examine the clinical aspects and basic science principles that underlie ICI-associated myocarditis and other cardiovascular toxicities. In addition, we discuss current therapeutic approaches. We believe a better mechanistic understanding of ICI-associated toxicities can lead to improved patient outcomes by reducing treatment-related morbidity.
Collapse
Affiliation(s)
- Sarah Waliany
- Department of Medicine, Stanford University, Stanford, California 94305, USA;
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA
| | - Ronald M Witteles
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joel W Neal
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Division of Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Patricia Nguyen
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Mark M Davis
- Department of Microbiology and Immunology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joe-Elie Salem
- Sorbonne Université, INSERM, CIC-1901 Paris-Est, CLIP² Galilée, UNICO-GRECO Cardio-Oncology Program, and Department of Pharmacology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, F-75013 Paris, France.,Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA; .,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Sean M Wu
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Javid J Moslehi
- Cardio-Oncology Program, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA; .,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Han Zhu
- Department of Medicine, Stanford University, Stanford, California 94305, USA; .,Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
19
|
Rahman AH, Homann D. Mass cytometry and type 1 diabetes research in the age of single-cell data science. Curr Opin Endocrinol Diabetes Obes 2020; 27:231-239. [PMID: 32618635 PMCID: PMC7596883 DOI: 10.1097/med.0000000000000549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW New single-cell tec. hnologies developed over the past decade have considerably reshaped the biomedical research landscape, and more recently have found their way into studies probing the pathogenesis of type 1 diabetes (T1D). In this context, the emergence of mass cytometry in 2009 revolutionized immunological research in two fundamental ways that also affect the T1D world: first, its ready embrace by the community and rapid dissemination across academic and private science centers alike established a new standard of analytical complexity for the high-dimensional proteomic stratification of single-cell populations; and second, the somewhat unexpected arrival of mass cytometry awoke the flow cytometry field from its seeming sleeping beauty stupor and precipitated substantial technological advances that by now approach a degree of analytical dimensionality comparable to mass cytometry. RECENT FINDINGS Here, we summarize in detail how mass cytometry has thus far been harnessed for the pursuit of discovery studies in T1D science; we provide a succinct overview of other single-cell analysis platforms that already have been or soon will be integrated into various T1D investigations; and we briefly consider how effective adoption of these technologies requires an adjusted model for expense allocation, prioritization of experimental questions, division of labor, and recognition of scientific contributions. SUMMARY The introduction of contemporary single-cell technologies in general, and of mass cytometry, in particular, provides important new opportunities for current and future T1D research; the necessary reconfiguration of research strategies to accommodate implementation of these technologies, however, may both broaden research endeavors by fostering genuine team science, and constrain their actual practice because of the need for considerable investments into infrastructure and technical expertise.
Collapse
Affiliation(s)
| | - Dirk Homann
- Precision Immunology Institute
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Gambichler T, Reuther J, Scheel CH, Becker JC. On the use of immune checkpoint inhibitors in patients with viral infections including COVID-19. J Immunother Cancer 2020; 8:jitc-2020-001145. [PMID: 32611687 PMCID: PMC7358098 DOI: 10.1136/jitc-2020-001145] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
The present review summarizes up-to-date evidence addressing the frequently discussed clinical controversies regarding the use of immune checkpoint inhibitors (ICIs) in cancer patients with viral infections, including AIDS, hepatitis B and C, progressive multifocal leukoencephalopathy, influenza, and COVID-19. In detail, we provide available information on (1) safety regarding the risk of new infections, (2) effects on the outcome of pre-existing infections, (3) whether immunosuppressive drugs used to treat ICI-related adverse events affect the risk of infection or virulence of pre-existing infections, (4) whether the use of vaccines in ICI-treated patients is considered safe, and (5) whether there are beneficial effects of ICIs that even qualify them as a therapeutic approach for these viral infections.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Judith Reuther
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Christina H Scheel
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany .,Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Jürgen Christian Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Dermatology, University Duisburg-Essen, Essen, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Fung TH, Yang KY, Lui KO. An emerging role of regulatory T-cells in cardiovascular repair and regeneration. Theranostics 2020; 10:8924-8938. [PMID: 32802172 PMCID: PMC7415793 DOI: 10.7150/thno.47118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has demonstrated that immune cells play an important role in the regulation of tissue repair and regeneration. After injury, danger signals released by the damaged tissue trigger the initial pro-inflammatory phase essential for removing pathogens or cellular debris that is later replaced by the anti-inflammatory phase responsible for tissue healing. On the other hand, impaired immune regulation can lead to excessive scarring and fibrosis that could be detrimental for the restoration of organ function. Regulatory T-cells (Treg) have been revealed as the master regulator of the immune system that have both the immune and regenerative functions. In this review, we will summarize their immune role in the induction and maintenance of self-tolerance; as well as their regenerative role in directing tissue specific response for repair and regeneration. The latter is clearly demonstrated when Treg enhance the differentiation of stem or progenitor cells such as satellite cells to replace the damaged skeletal muscle, as well as the proliferation of parenchymal cells including neonatal cardiomyocytes for functional regeneration. Moreover, we will also discuss the reparative and regenerative role of Treg with a particular focus on blood vessels and cardiac tissues. Last but not least, we will describe the ongoing clinical trials with Treg in the treatment of autoimmune diseases that could give clinically relevant insights into the development of Treg therapy targeting tissue repair and regeneration.
Collapse
|
22
|
Li J, Liang C, Yang KY, Huang X, Han MY, Li X, Chan VW, Chan KS, Liu D, Huang ZP, Zhou B, Lui KO. Specific ablation of CD4 + T-cells promotes heart regeneration in juvenile mice. Am J Cancer Res 2020; 10:8018-8035. [PMID: 32724455 PMCID: PMC7381734 DOI: 10.7150/thno.42943] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Unlike adult cardiomyocytes, neonatal cardiomyocytes can readily proliferate that contributes to a transient regenerative potential after myocardial injury in mice. We have recently reported that CD4+ regulatory T-cells promote this process; however, the role of other CD4+ T-cell subsets as well as CD8+ T-cells in postnatal heart regeneration has been less studied. Methods: by comparing the regenerating postnatal day (P) 3 and the non-regenerating P8 heart after injury, we revealed the heterogeneity of CD4+ and CD8+ T-cells in the myocardium through single cell analysis. We also specifically ablated CD4+ and CD8+ T-cells using the lytic anti-CD4 and -CD8 monoclonal antibodies, respectively, in juvenile mice at P8 after myocardial injury. Results: we observe significantly more CD4+FOXP3- conventional T-cells in the P8 heart when compared to that of the P3 heart within a week after injury. Surprisingly, such a difference is not seen in CD8+ T-cells that appear to have no function as their depletion does not reactivate heart regeneration. On the other hand, specific ablation of CD4+ T-cells contributes to mitigated cardiac fibrosis and increased cardiomyocyte proliferation after injury in juvenile mice. Single-cell transcriptomic profiling reveals a pro-fibrotic CD4+ T-cell subset in the P8 but not P3 heart. Moreover, there are likely more Th1 and Th17 cells in the P8 than P3 heart. We further demonstrate that cytokines of Th1 and Th17 cells can directly reduce the proliferation and increase the apoptosis of neonatal cardiomyocytes. Moreover, ablation of CD4+ T-cells can directly or indirectly facilitate the polarization of macrophages away from the pro-fibrotic M2-like signature in the juvenile heart. Nevertheless, ablation of CD4+ T-cells alone does not offer the same protection in the adult heart after myocardial infarction, suggesting a developmental change of immune cells including CD4+ T-cells in the regulation of age-related mammalian heart repair. Conclusions: our results demonstrate that ablation of CD4+ but not CD8+ T-cells promotes heart regeneration in juvenile mice; and CD4+ T-cells play a distinct role in the regulation of heart regeneration and repair during development.
Collapse
|
23
|
A Brief Communication on Circulating PD-1-positive T-Regulatory Lymphocytes in Melanoma Patients Undergoing Adjuvant Immunotherapy With Nivolumab. J Immunother 2020; 42:265-268. [PMID: 31145230 DOI: 10.1097/cji.0000000000000277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Upregulation of T-regulatory lymphocytes (Tregs) is one of numerous immune escape mechanisms of malignancies. In the present pilot study we aimed to study the effect of adjuvant nivolumab during the initiation of treatment on circulating Tregs subpopulations in patients with stage III melanoma. We subsequently recruited patients with stage III melanoma who had the indication for adjuvant anti-programmed death 1 (PD-1) treatment with nivolumab. Blood collections were performed before the initiation of nivolumab and before every 2-week therapy cycle. Flow cytometry was performed for the determination of circulating CD4CD25highCD127PD-1(PD-1Tregs) and CD4CD25highCD127CTLA-4 (CTLA-4Tregs) Treg populations. Circulating PD-1Tregs [18.1% (range, 2.9%-41.7%) vs. 4.2% (0.4%-9.8%), P=0.0001] significantly decreased after the first cycle of immunotherapy and maintained decreased during a 3-month course of treatment. By contrast, CTLA-4Tregs significantly increased after the first nivolumab dose when compared with CTLA-4Tregs before the second treatment [0.75 (0-45.5) vs. 2.1 (0.1-90.8), P=0.0002]. Blood levels of PD-1Tregs and CTLA-4Tregs remained more or less decreased and increased during a 3-month therapy with nivolumab, respectively. Data of PD-1Tregs as well as CTLA-4Tregs was not significantly associated with frequencies of immune-related adverse events (P<0.05). In conclusion, we have demonstrated that circulating PD-1Tregs of melanoma patients in stage III rapidly and continuously decline after the initiation of adjuvant treatment with the PD-1 blocking antibody nivolumab. By contrast, this decline is paralleled with an increase of CTLA-4Tregs. The expression of PD-1 and CTLA-4 on Tregs might be a potential biomarker for the efficacy of immune checkpoint blockade in melanoma.
Collapse
|
24
|
Li J, Li X, Liang C, Ling L, Chen Z, Wong CK, Waldmann H, Lui KO. Coreceptor blockade targeting CD4 and CD8 allows acceptance of allogeneic human pluripotent stem cell grafts in humanized mice. Biomaterials 2020; 248:120013. [PMID: 32278152 DOI: 10.1016/j.biomaterials.2020.120013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 01/19/2023]
Abstract
We have previously demonstrated that short-term coreceptor blockade with non-lytic monoclonal antibodies enables the long-term survival of fully allogeneic embryonic stem cell (ESC) transplants in mice. Here, we describe the use of Hu-PBL humanized mice to determine whether short-term coreceptor blockade with humanized anti-human CD4 and CD8 antibodies can achieve the same outcome towards human ESC derivatives. While control Hu-PBL mice rejected allogeneic hESC-derived transplants within weeks, mice treated with coreceptor blocking antibodies held their grafts for 7 weeks, the duration of the study. Rejection in the control mice was associated with demonstrable infiltrates of human CD45 white blood cells, predominantly of CD8 T-cells, whereas anti-CD4, but not anti-CD8 antibody treated mice showed remarkably reduced lymphocyte infiltration and prolonged allograft survival, indicating that the CD4+ T-cells were crucial to the rejection process. Our results give support to the principle that short-term blockade of T-cell co-receptors can achieve long-term acceptance of regenerative cell transplants in humans.
Collapse
Affiliation(s)
- Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xisheng Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Cai Liang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lijun Ling
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Yoshida S, Miyagawa S, Toyofuku T, Fukushima S, Kawamura T, Kawamura A, Kashiyama N, Nakamura Y, Toda K, Sawa Y. Syngeneic Mesenchymal Stem Cells Reduce Immune Rejection After Induced Pluripotent Stem Cell-Derived Allogeneic Cardiomyocyte Transplantation. Sci Rep 2020; 10:4593. [PMID: 32165680 PMCID: PMC7067786 DOI: 10.1038/s41598-020-58126-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023] Open
Abstract
Avoiding immune rejection after allogeneic induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) transplantation is a concern. However, mesenchymal stem cells (MSCs) can suppress immune rejection. To determine whether MSC co-transplantation can reduce immune rejection after allogeneic iPSC-CM transplantation, the latter cell type, harbouring a luciferase transgene, was subcutaneously transplanted alone or together with syngeneic MSCs into BALB/c mice. Bioluminescence imaging revealed that MSC co-transplantation significantly improved graft survival (day 7: iPSC-CMs alone 34 ± 5%; iPSC-CMs with MSCs, 61 ± 7%; P = 0.008). MSC co-transplantation increased CD4 + CD25 + FOXP3 + regulatory T cell numbers, apoptotic CD8-positive T cells, and IL-10 and TGF-beta expression at the implantation site. Analysis using a regulatory T cell depletion model indicated that enhanced regulatory T cell populations in the iPSC-CM with MSC group partially contributed to the extended iPSC-CM survival. Further, MSCs affected activated lymphocytes directly through cell–cell contact, which reduced the CD8/CD4 ratio, the proportion of Th1-positive cells among CD4-positive cells, and the secretion of several inflammation-related cytokines. Syngeneic MSC co-transplantation might thus control allogeneic iPSC-CM rejection by mediating immune tolerance via regulatory T cells and cell–cell contact with activated lymphocytes; this approach has promise for cardiomyogenesis-based therapy using allogeneic iPSC-CMs for severe heart failure.
Collapse
Affiliation(s)
- Shohei Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihiko Toyofuku
- Department of Immunology and Molecular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ai Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriyuki Kashiyama
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Nakamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
26
|
Liang C, Yang KY, Chan VW, Li X, Fung TH, Wu Y, Tian XY, Huang Y, Qin L, Lau JY, Lui KO. CD8 + T-cell plasticity regulates vascular regeneration in type-2 diabetes. Theranostics 2020; 10:4217-4232. [PMID: 32226549 PMCID: PMC7086373 DOI: 10.7150/thno.40663] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we observe that the ischemic tissues of type-2 diabetic (T2D) patients and mice have significantly more CD8+ T-cells than that of their normoglycemic counterparts, respectively. However, the role of CD8+ T-cells in the pathogenesis of diabetic vascular complication has been less studied. Methods: We employed loss-of-function studies in mouse models using the non-lytic anti-CD8 antibody that blocks tissue infiltration of CD8+ T-cells into the injured tissue. We also performed genome-wide, single-cell RNA-sequencing of CD8+ T-cells to uncover their role in the pathogenesis of diabetic vascular diseases. Results: The vascular density is negatively correlated with the number of CD8+ T-cells in the ischemic tissues of patients and mice after injury. CD8+ T-cells or their supernatant can directly impair human and murine angiogenesis. Compared to normoglycemic mice that can regenerate their blood vessels after injury, T2D mice fail in this regeneration. Treatment with the CD8 checkpoint blocking antibody increases the proliferation and function of endothelial cells in both Leprdb/db mice and diet-induced diabetic Cdh5-Cre;Rosa-YFP lineage-tracing mice after ischemic injury. Furthermore, single-cell transcriptomic profiling reveals that CD8+ T-cells of T2D mice showed a de novo cell fate change from the angiogenic, tissue-resident memory cells towards the effector and effector memory cells after injury. Functional revascularization by CD8 checkpoint blockade is mediated through unleashing such a poised lineage commitment of CD8+ T-cells from T2D mice. Conclusion: Our results reveal that CD8+ T-cell plasticity regulates vascular regeneration; and give clinically relevant insights into the potential development of immunotherapy targeting vascular diseases associated with obesity and diabetes.
Collapse
|
27
|
Zhang X, Lv X, Chen M, Liu H. Analysis of Blimp-1 and PD-1/PD-L1 Immune Checkpoint in an Autoimmune Thyroiditis Animal Model. Int J Endocrinol 2020; 2020:6543593. [PMID: 32351559 PMCID: PMC7178515 DOI: 10.1155/2020/6543593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE B lymphocyte-induced maturation protein 1 (Blimp-1) and programmed cell death protein 1 (PD-1) have opposing roles in the development of T cells; however, the mechanism of autoimmune thyroiditis- (AIT-) associated abortion is unclear. The present study investigated the expression of Blimp-1 and PD-1/PD-ligand 1 (PD-L1) in AIT-associated pregnancy loss and elucidated the related signaling pathway involving in the inflammatory response. METHODS An experimental fetal loss model with autoimmune thyroiditis was established after murine thyroglobulin- (mTg-) immunized CBA/J female mice mating with Balb/c males. ELISA was employed to investigate the TgAb level in the serum of CBA/J female mice. The expression of Blimp-1, PD-1/PD-L1, mammalian target protein rapamycin (mTOR), and Foxp3 proteins in the placenta and spleen was detected through immunofluorescence staining and western blotting. RESULTS ELISA indicated that the serum TgAb level in the mTg group was higher than that in the control group (P < 0.001). Fetal resorption rates increased in the mTg group compared with those in the control group (45.63% vs. 3.1%, P < 0.05). Blimp-1 levels in the placenta and spleen were higher in the AIT-related miscarriage group than in the control group. However, the expression of PD-1/PD-L1 and Foxp3 was significantly decreased in the placenta and spleen in the AIT-related miscarriage group. CONCLUSION Blimp-1 participates in the pathogenesis of autoimmune thyroid disease-associated pregnancy loss through the inflammatory immune response, which is potentially mediated through the PD-1/PD-L1 signaling pathway.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, China
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoshu Lv
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengya Chen
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, China
| | - Haixia Liu
- Department of Endocrinology and Metabolism, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
28
|
Gambichler T, Schröter U, Höxtermann S, Susok L, Stockfleth E, Becker JC. Decline of programmed death-1-positive circulating T regulatory cells predicts more favourable clinical outcome of patients with melanoma under immune checkpoint blockade. Br J Dermatol 2019; 182:1214-1220. [PMID: 31361026 DOI: 10.1111/bjd.18379] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The role of T regulatory lymphocytes (Tregs) and their immunosuppressive mechanisms in the context of programmed death (PD)-1 blockade is not completely understood. OBJECTIVES To assess the impact of PD-1-blocking antibody treatment on Treg subpopulations in the blood. METHODS We studied circulating Treg subpopulations in patients with melanoma under nivolumab or pembrolizumab treatment using flow cytometry and correlated these findings with clinical outcomes. RESULTS These analyses revealed that the frequency of CD4+ CD25++ CD127- PD-1+ lymphocytes (PD-1+ Tregs) significantly decreased after the first cycle of immunotherapy (23% vs. 8·6%, P = 0·043). Compared with patients who did not show a significant decline of PD-1+ Tregs after the first treatment, those who did had better clinical outcomes with respect to progression-free survival (PFS, P = 0·022) and melanoma-specific death (MSD, P = 0·0038). Multivariate analysis confirmed that a significant decline of PD-1+ Tregs in peripheral blood after the first treatment cycle is a significant predictor of more favourable PFS and MSD (P = 0·04 and 0·017, respectively). Interestingly, the occurrence of immune-related adverse events was also an independent predictor for decreased risk of MSD (P = 0·047; odds ratio 0·064, 95% confidence interval 0·0042-0·97). CONCLUSIONS We provide preliminary evidence that circulating PD-1+ Tregs rapidly decline after the initiation of treatment with PD-1-blocking antibodies, which is associated with reduced risk of melanoma progression and MSD. Patients showing no decrease of these PD-1+ Tregs in peripheral blood are characterized by an impaired response to immune checkpoint blockade and worse outcome. What's already known about this topic? Programmed death (PD)-1-blocking antibodies are highly effective in melanoma treatment. However, more than half of patients do not benefit from this therapy and to date it is difficult to predict which patients will respond to it. What does this study add? PD-1-blocking antibody therapy rapidly results in a decline of circulating PD-1+ T regulatory cells (Tregs). What is the translational message? Patients showing a decrease of PD-1+ Tregs appear to have better clinical outcome under PD-1 treatment.
Collapse
Affiliation(s)
- T Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - U Schröter
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - S Höxtermann
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - L Susok
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - E Stockfleth
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - J C Becker
- Translational Skin Cancer Research, DKTK Partner Site Essen/Düsseldorf, West German Cancer Center, Dermatology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To provide an updated summary of discoveries made to date resulting from genome-wide association study (GWAS) and sequencing studies, and to discuss the latest loci added to the growing repertoire of genetic signals predisposing to type 1 diabetes (T1D). RECENT FINDINGS Genetic studies have identified over 60 loci associated with T1D susceptibility. GWAS alone does not specifically inform on underlying mechanisms, but in combination with other sequencing and omics-data, advances are being made in our understanding of T1D genetic etiology and pathogenesis. Current knowledge indicates that genetic variation operating in both pancreatic β cells and in immune cells is central in mediating T1D risk. One of the main challenges is to determine how these recently discovered GWAS-implicated variants affect the expression and function of gene products. Once we understand the mechanism of action for disease-causing variants, we will be well placed to apply targeted genomic approaches to impede the premature activation of the immune system in an effort to ultimately prevent the onset of T1D.
Collapse
Affiliation(s)
- Marina Bakay
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
| | - Rahul Pandey
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
| | - Struan F A Grant
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Suite 1216B, Philadelphia, PA, 19104-4318, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Li J, Yang KY, Tam RCY, Chan VW, Lan HY, Hori S, Zhou B, Lui KO. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics 2019; 9:4324-4341. [PMID: 31285764 PMCID: PMC6599663 DOI: 10.7150/thno.32734] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The neonatal mouse heart is capable of transiently regenerating after injury from postnatal day (P) 0-7 and macrophages are found important in this process. However, whether macrophages alone are sufficient to orchestrate this regeneration; what regulates cardiomyocyte proliferation; why cardiomyocytes do not proliferate after P7; and whether adaptive immune cells such as regulatory T-cells (Treg) influence neonatal heart regeneration have less studied. Methods: We employed both loss- and gain-of-function transgenic mouse models to study the role of Treg in neonatal heart regeneration. In loss-of-function studies, we treated mice with the lytic anti-CD25 antibody that specifically depletes Treg; or we treated FOXP3DTR with diphtheria toxin that specifically ablates Treg. In gain-of-function studies, we adoptively transferred hCD2+ Treg from NOD.Foxp3hCD2 to NOD/SCID that contain Treg as the only T-cell population. Furthermore, we performed single-cell RNA-sequencing of Treg to uncover paracrine factors essential for cardiomyocyte proliferation. Results: Unlike their wild type counterparts, NOD/SCID mice that are deficient in T-cells but harbor macrophages fail to regenerate their injured myocardium at as early as P3. During the first week of injury, Treg are recruited to the injured cardiac muscle but their depletion contributes to more severe cardiac fibrosis. On the other hand, adoptive transfer of Treg results in mitigated fibrosis and enhanced proliferation and function of the injured cardiac muscle. Mechanistically, single-cell transcriptomic profiling reveals that Treg could be a source of regenerative factors. Treg directly promote proliferation of both mouse and human cardiomyocytes in a paracrine manner; and their secreted factors such as CCL24, GAS6 or AREG potentiate neonatal cardiomyocyte proliferation. By comparing the regenerating P3 and non-regenerating P8 heart, there is a significant increase in the absolute number of intracardiac Treg but the whole transcriptomes of these Treg do not differ regardless of whether the neonatal heart regenerates. Furthermore, even adult Treg, given sufficient quantity, possess the same regenerative capability. Conclusion: Our results demonstrate a regenerative role of Treg in neonatal heart regeneration. Treg can directly facilitate cardiomyocyte proliferation in a paracrine manner.
Collapse
Affiliation(s)
- Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y. Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rachel Chun Yee Tam
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W. Chan
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Yao Lan
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kathy O. Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|