1
|
Chen B, Liu J. Mechanisms associated with cuproptosis and implications for ovarian cancer. J Inorg Biochem 2024; 257:112578. [PMID: 38797108 DOI: 10.1016/j.jinorgbio.2024.112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer, a profoundly fatal gynecologic neoplasm, exerts a substantial economic strain on nations globally. The formidable challenge of its frequent relapse necessitates the exploration of novel cytotoxic agents, efficacious antineoplastic medications with minimal adverse effects, and strategies to surmount resistance to primary chemotherapeutic agents. These endeavors aim to supplement extant pharmacological interventions and elucidate molecular mechanisms underlying induced cytotoxicity, distinct from conventional therapeutic modalities. Recent scientific research has unveiled a novel form of cellular demise, known as copper-death, which is contingent upon the intracellular concentration of copper. Diverging from conventional mechanisms of cellular demise, copper-death exhibits a pronounced reliance on mitochondrial respiration, particularly the tricarboxylic acid (TCA) cycle. Tumor cells manifest distinctive metabolic profiles and elevated copper levels in comparison to their normal counterparts. The advent of copper-death presents alluring possibilities for targeted therapeutic interventions within the realm of cancer treatment. Hence, the primary objective of this review is to present an overview of the proteins and intricate mechanisms associated with copper-induced cell death, while providing a comprehensive summary of the knowledge acquired regarding potential therapeutic approaches for ovarian cancer. These findings will serve as valuable references to facilitate the advancement of customized therapeutic interventions for ovarian cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Jiaqi Liu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Yan S, Zhao Y, Yan J, Guan Y, Lyu M, Xu G, Yang X, Bai Y, Yao S. Low Expression of Lipoic Acid Synthase Aggravates Silica-Induced Pulmonary Fibrosis by Inhibiting the Differentiation of Tregs in Mice. Antioxid Redox Signal 2024; 41:216-232. [PMID: 38062726 DOI: 10.1089/ars.2023.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Aims: In addition to reducing the respiratory function, crystalline silica (SiO2) disturbs the immune response by affecting immune cells during the progression of silicosis. Regulatory T cell (Treg) differentiation may play a key role in the abnormal polarization of T helper cell (Th)1 and Th2 cells in the development of silicosis-induced fibrosis. Alpha-lipoic acid (ALA) has immunomodulatory effects by promoting Tregs differentiation. Thus, ALA may have a therapeutic potential for treating autoimmune disorders in patients with silicosis. However, little is known regarding whether ALA regulates the immune system during silicosis development. Results: We found that the expression levels of collagen increased, and the antioxidant capacity was lower in the Lias-/-+SiO2 group than in the Lias+/++SiO2 group. The proportion of Tregs decreased in the peripheral blood and spleen tissue in mice exposed to SiO2. The proportion of Tregs in the Lias-/-+SiO2 group was significantly lower than that in the Lias+/++SiO2 group. Supplementary exogenous ALA attenuates the accumulation of inflammatory cells and extracellular matrix in lung tissues. ALA promotes the immunological balance between Th17 and Treg responses during the development of silicosis-induced fibrosis. Innovation and Conclusion: Our findings confirmed that low expression of lipoic acid synthase aggravates SiO2-induced silicosis, and that supplementary exogenous ALA has therapeutic potential by improving Tregs in silicosis fibrosis.
Collapse
Affiliation(s)
- Sensen Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Jingyi Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yabo Guan
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Mengdi Lyu
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Xuesi Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yichun Bai
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
3
|
Xu G, Li W, Zhao Y, Fan T, Gao Q, Wang Y, Zhang F, Gao M, An Z, Yang Z. Overexpression of Lias Gene Alleviates Cadmium-Induced Kidney Injury in Mice Involving Multiple Effects: Metabolism, Oxidative Stress, and Inflammation. Biol Trace Elem Res 2024; 202:2797-2811. [PMID: 37804446 DOI: 10.1007/s12011-023-03883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
Oxidative stress is an important mechanism underlying toxicity induced by cadmium (Cd) exposure. However, there are significant differences of the antioxidant baseline in different populations. This means that different human has different intensity of oxidative stress in vivo after exposure to toxicants. LiasH/H mouse is a specific model which is created by genetically modifying the Lias 3'-untranslated region (3'-UTR). LiasH/H mice express high levels of LA and have high endogenous antioxidant capacity which is approximately 150% higher than wild-type C57BL/6 J mice (WT, Lias+/+). But more importantly, they have dual roles of metal chelator and antioxidant. Here, we applied this mouse model to evaluate the effect of endogenous antioxidant levels in the body on alleviating Cd-induced renal injury including Cd metabolism, oxidative stress, and inflammation. In the experiment, mice drank water containing Cd (50 mg/L), for 12 weeks. Many biomarkers of Cd metabolism, oxidative stress, inflammation, and major pathological changes in the kidney were examined. The results showed overexpression of the Lias gene decreased Cd burden in the body of mice, mitigated oxidative stress, attenuated the inflammatory response, and subsequent alleviated cadmium-induced kidney injury in mice.
Collapse
Affiliation(s)
- Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| | - Weibing Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Ting Fan
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Qiyu Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yongbin Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Mingjing Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Zijiang Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
4
|
Zhang X, Tao T, Qiu Y, Guo X, Zhu X, Zhou X. Copper-mediated novel cell death pathway in tumor cells and implications for innovative cancer therapies. Biomed Pharmacother 2023; 168:115730. [PMID: 37864891 DOI: 10.1016/j.biopha.2023.115730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Previous investigations have unraveled an array of cellular demise modalities, encompassing apoptosis, necrosis, pyroptosis, iron death, and several others. These diverse pathways of cell death have been harnessed as therapeutic strategies for eradicating tumor cells. Recent scientific inquiries have unveiled a novel mode of cell death, namely copper death, which is contingent upon intracellular copper levels. Diverging from conventional cell death mechanisms, copper death exhibits a heightened reliance on mitochondrial respiration, specifically the tricarboxylic acid (TCA) cycle. Tumor cells exhibit distinctive metabolic profiles and an elevated copper content compared to their normal counterparts. The emergence of copper death presents a tantalizing prospect for targeted therapies in the realm of cancer treatment. Thus, the primary objective of this review is to introduce the proteins and intricate mechanisms underlying copper death, while comprehensively summarizing the extensive body of knowledge concerning its ramifications across diverse tumor types. The insights garnered from this comprehensive synthesis will serve as an invaluable reference for driving the development of tailor-made therapeutic interventions for tumors.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Yishu Qiu
- Department of Biology, College of Arts and Science, New York University, New York, USA
| | - Xiaojun Guo
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
5
|
Banik S, Ghosh A, Sato H, Onoue S. The efficacy of alpha-lipoic acid in the management of burning mouth syndrome: An updated systematic review of randomized controlled clinical trials. Health Sci Rep 2023; 6:e1186. [PMID: 37021013 PMCID: PMC10069235 DOI: 10.1002/hsr2.1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Background and Aims Burning mouth syndrome (BMS) causes burning or uncomfortable feelings in the oral cavity without any obvious injuries. This condition's etiopathogenesis is still unknown, consequently, BMS management is very challenging. Alpha-lipoic acid (ALA) is a naturally occurring potent bioactive compound that has been found to be useful in the management of BMS in many studies. Therefore, we conducted a comprehensive systematic review to investigate the usefulness of ALA in the management of BMS based on randomized controlled trials (RCTs). Methods Different electronic databases, including PubMed, Scopus, Embase, Web of Science, and Google Scholar, were extensively searched to find relevant studies. Results This study included nine RCTs that matched the inclusion criteria. In most studies, ALA was given at a dose of 600-800 mg/day, with up to two months of follow-up. The majority of studies (six out of nine studies) indicated that ALA was more effective in BMS patients than in the placebo-controlled group. Conclusions This comprehensive systematic review provides evidence of the positive outcomes of the treatment of BMS with ALA. However, more research might be needed before ALA can be considered the first-line therapy for BMS.
Collapse
Affiliation(s)
- Sujan Banik
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
- Laboratory of Biopharmacy, School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
| | - Antara Ghosh
- Laboratory of Biopharmacy, School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
| | - Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
| |
Collapse
|
6
|
Ceylanlı D, Şehirli AÖ, Gençosman S, Teralı K, Şah H, Gülmez N, Sayıner S. Protective Effects of Alpha-Lipoic Acid against 5-Fluorouracil-Induced Gastrointestinal Mucositis in Rats. Antioxidants (Basel) 2022; 11:1930. [PMID: 36290656 PMCID: PMC9598092 DOI: 10.3390/antiox11101930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 03/23/2024] Open
Abstract
Alpha-lipoic acid (ALA) is extensively utilized in multivitamin formulas and anti-aging products. The purpose of this study was to investigate the potential protective benefits of ALA on 5-fluorouracil (5-FU)-induced gastrointestinal mucositis in Wistar albino rats. Tissues from the stomach, small intestine, and large intestine were excised, and blood sera were obtained to identify biochemical indices such as TNF-α, IL-1β, MDA, GPx, SOD, MMP-1, -2, -8, and TIMP-1. A histopathological study was also performed. The results revealed mucositis-elevated TNF-, IL-1, MDA, MMP-1, -2, -8, and TIMP-1 levels in both tissues and sera, and these values dropped dramatically following ALA treatment. Reduced SOD and GPx activities in mucositis groups were reversed in ALA-treated groups. The damage produced by mucositis in the stomach and small intestine regressed in the ALA-treated group, according to histopathological evaluation. Consequently, the implementation of ALA supplementation in 5-FU therapy may act as a protective intervention for cancer patients with gastrointestinal mucositis. In light of the findings, ALA, a food-derived antioxidant with pleiotropic properties, may be an effective treatment for 5-FU-induced gastrointestinal mucositus, and prevent oxidative stress, inflammation, and tissue damage in cancer patients receiving 5-FU therapy.
Collapse
Affiliation(s)
- Deniz Ceylanlı
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Ahmet Özer Şehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Sevgi Gençosman
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, 99258 Nicosia, Northern Cyprus, Turkey
| | - Hüseyin Şah
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| | - Nurhayat Gülmez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Siirt University, 56100 Siirt, Turkey
| | - Serkan Sayıner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, North Cyprus, Turkey
| |
Collapse
|
7
|
Kocak A, Ural C, Harmanci D, Oktan MA, Afagh A, Sarioglu S, Yilmaz O, Birlik M, Akdogan GG, Cavdar Z. Protective effects of alpha-lipoic acid on bleomycin-induced skin fibrosis through the repression of NADPH Oxidase 4 and TGF-β1/Smad3 signaling pathways. Hum Exp Toxicol 2022; 41:9603271211065975. [PMID: 35187969 DOI: 10.1177/09603271211065975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to determine the protective effects of alpha-lipoic acid (ALA), which is known as a powerful antioxidant, and the possible related molecular mechanisms that mediate its favorable action on skin fibrosis in the bleomycin (BLM)-induced scleroderma (SSc) model in mice. The experimental design was established with four groups of eight mice: Control, ALA (100 mg/kg), BLM (5 μg/kg), and BLM + ALA group. BLM was administered via subcutaneous (sc) once a day while ALA was injected intraperitoneally (ip) twice a week for 21 days. Histopathological and biochemical analyses showed that ALA significantly reduced BLM-induced dermal thickness, inflammation score, and mRNA expression of tumor necrosis factor-alpha (TNF-α) in the skin. Besides, the mRNA expressions of the subunits of NADPH oxidase, which are Nox4 and p22phox, were found to be significantly induced in the BLM group. However, ALA significantly reduced their mRNA expression, which were in parallel to its decreasing effect on serum total oxidant status (TOS) level. Moreover, it was found that ALA downregulated the mRNA expressions of alpha-smooth muscle actin (α-SMA), collagen type I and fibronectin in the skin tissue of the BLM group. Additionally, it was shown that ALA reduced significantly the TGF-β1 and p-Smad3 protein expressions in the BLM + ALA group. On the other hand, ALA did not exhibit any significant effect on the p38 mitogen-activated kinase (MAPK) activation induced by BLM. All these findings point out that ALA may be a promising treatment for the attenuation of skin fibrosis in SSc patients.
Collapse
Affiliation(s)
- Ayse Kocak
- Department of Molecular Medicine, 37508Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey.,Department of Internal Medicine, Division of Nephrology, 37508Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Cemre Ural
- Department of Molecular Medicine, 37508Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey
| | - Duygu Harmanci
- Department of Molecular Medicine, 37508Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey
| | - Mehmet Asi Oktan
- Department of Internal Medicine, Division of Nephrology, 37508Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Aysan Afagh
- Department of Molecular Medicine, 37508Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey
| | - Sulen Sarioglu
- Department of Pathology, 37508Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Osman Yilmaz
- Department of Laboratory Animal Science, 37508Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey
| | - Merih Birlik
- Department of Internal Medicine, Division of Rheumatology, 37508Dokuz Eylul University, School of Medicine, Izmir, Turkey
| | - Gul Guner Akdogan
- Department of Biochemistry, 52973Izmir University of Economics, School of Medicine, Izmir, Turkey
| | - Zahide Cavdar
- Department of Molecular Medicine, 37508Dokuz Eylul University, Health Sciences Institute, Izmir, Turkey
| |
Collapse
|
8
|
Gogulska Z, Smolenska Z, Turyn J, Mika A, Zdrojewski Z. Lipid Alterations in Systemic Sclerosis. Front Mol Biosci 2022; 8:761721. [PMID: 34993231 PMCID: PMC8724564 DOI: 10.3389/fmolb.2021.761721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Systemic sclerosis (SSc) is an autoimmune disease with an elusive etiology and poor prognosis. Due to its diverse clinical presentation, a personalized approach is obligatory and needs to be based on a comprehensive biomarker panel. Therefore, particular metabolomic studies are necessary. Lipidomics addressed these issues and found disturbances in several crucial metabolic pathways. Aim of Review: The review aims to briefly summarize current knowledge related to lipid alterations in systemic sclerosis, highlight its importance, and encourage further research in this field. Key Scientific Concepts of Review: In this review, we summarized the studies on the lipidomic pattern, fatty acids, lipoproteins, cholesterol, eicosanoids, prostaglandins, leukotrienes, lysophospholipids, and sphingolipids in systemic sclerosis. Researchers demonstrated several alternate aspects of lipid metabolism. As we aimed to present our findings in a comprehensive view, we decided to divide our findings into three major groups: “serum lipoproteins,” “fatty acids and derivatives,” and “cellular membrane components,” as we do believe they play a prominent role in SSc pathology.
Collapse
Affiliation(s)
- Zuzanna Gogulska
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Zaneta Smolenska
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Zdrojewski
- Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
9
|
Interleukin-31 promotes fibrosis and T helper 2 polarization in systemic sclerosis. Nat Commun 2021; 12:5947. [PMID: 34642338 PMCID: PMC8511151 DOI: 10.1038/s41467-021-26099-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic multisystem disorder characterized by fibrosis and autoimmunity. Interleukin (IL)-31 has been implicated in fibrosis and T helper (Th) 2 immune responses, both of which are characteristics of SSc. The exact role of IL-31 in SSc pathogenesis is unclear. Here we show the overexpression of IL-31 and IL-31 receptor A (IL-31RA) in dermal fibroblasts (DFs) from SSc patients. We elucidate the dual role of IL-31 in SSc, where IL-31 directly promotes collagen production in DFs and indirectly enhances Th2 immune responses by increasing pro-Th2 cytokine expression in DFs. Furthermore, blockade of IL-31 with anti-IL-31RA antibody significantly ameliorates fibrosis and Th2 polarization in a mouse model of SSc. Therefore, in addition to defining IL-31 as a mediator of fibrosis and Th2 immune responses in SSc, our study provides a rationale for targeting the IL-31/IL-31RA axis in the treatment of SSc. Systemic sclerosis (SSc) disease involves multisystem fibrosis and autoimmunity with limited treatment options. Here the authors demonstrate that IL-31 and IL-31RA are overexpressed in dermal fibroblasts from SSc patients and show that fibrosis and cytokine release can be reduced upon blocking of IL-31/IL-31RA.
Collapse
|
10
|
Chang M, Xu G, Xiong C, Yang X, Yan S, Tao Y, Li H, Li Y, Yao S, Zhao Y. Alpha-lipoic acid attenuates silica-induced pulmonary fibrosis by improving mitochondrial function via AMPK/PGC1α pathway activation in C57BL/6J mice. Toxicol Lett 2021; 350:121-132. [PMID: 34252510 DOI: 10.1016/j.toxlet.2021.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/22/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
Silicosis is characterized by pulmonary interstitial fibrosis that arises as a result of chronic exposure to silica. The few available treatments only delay its progression. As α-lipoic acid (ALA) has been shown to have various beneficial effects, including mitoprotective, antioxidant, and anti-inflammatory effects, we hypothesized that it may exhibit therapeutic effects in pulmonary fibrosis. Therefore, in the present study, we used a murine model of silicosis to investigate whether supplementation with exogenous ALA could attenuate silica-induced pulmonary fibrosis by improving mitochondrial function. ALA was administered to the model mice via continuous intragastric administration for 28 days, and then the antioxidant and mitoprotective effects of ALA were evaluated. The results showed that ALA decreased the production of reactive oxygen species, protected mitochondria from silica-induced dysfunction, and inhibited extracellular matrix deposition. ALA also decreased hyperglycemia and hyperlipidemia. Activation of the mitochondrial AMPK/PGC1α pathway might be responsible for these ALA-mediated anti-fibrotic effects. Exogenous ALA blocked oxidative stress by activating NRF2. Taken together, these findings demonstrate that exogenous ALA effectively prevents the progression of silicosis in a murine model, likely by stimulating mitochondrial biogenesis and endogenous antioxidant responses. Therefore, ALA can potentially delay the progression of silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Meiyu Chang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Xuesi Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Sensen Yan
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yuchun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, PR China.
| |
Collapse
|
11
|
Banik S, Halder S, Sato H, Onoue S. Self-emulsifying drug delivery system of (R)-α-lipoic acid to improve its stability and oral absorption. Biopharm Drug Dispos 2021; 42:226-233. [PMID: 33843079 DOI: 10.1002/bdd.2277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
The present study was designed to develop a self-emulsifying drug delivery system (SEDDS) of (R)-α-lipoic acid (RLA) to improve the physicochemical and nutraceutical properties of RLA. RLA/SEDDS was prepared using medium-chain triglycerides, Tween 80, and polyethylene glycol 400 as oil, surfactant, and co-surfactant, respectively. The preferable composition of SEDDS was selected according to a pseudo-ternary phase diagram for improved emulsification properties, and its physicochemical and pharmacokinetic properties were evaluated. RLA/SEDDS showed the immediate formation of fine micelles with a mean droplet size of approximately 260 nm when introduced into aqueous media. In simulated gastric fluid, this system could significantly improve the dissolution behavior of RLA and prevent the degradation of RLA, possibly due to the encapsulation of RLA into the emulsion structure. Following the oral administration of RLA/SEDDS (10 mg RLA/kg) in rats, systemic exposure to RLA and dihydrolipoic acid (DHLA), a reduced form of RLA, increased by 7- and 3-fold, respectively. The improved dissolution and gastric stability of RLA could contribute to enhancing systemic exposure to RLA and DHLA after oral administration. From these findings, RLA/SEDDS might be an efficacious dosage option for improving the oral bioavailability as well as nutraceutical properties of RLA.
Collapse
Affiliation(s)
- Sujan Banik
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shimul Halder
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
12
|
Abstract
Scleroderma (SSc) is a complex disease that involves activation of the immune system, vascular complications, and tissue fibrosis. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) mediates trimethylation of lysine 27 of histone 3 (H3K27me3), which acts as a repressive epigenetic mark. Both EZH2 and H3K27me3 were elevated in SSc dermal fibroblasts and endothelial cells compared with healthy controls. EZH2 inhibitor DZNep halted fibrosis both in vitro and in vivo. In SSc fibroblasts, DZNep dose-dependently reduced the expression of profibrotic genes and inhibited migratory activity of SSc fibroblasts. We show that epigenetic dysregulation and overexpression of LRRC16A explains EZH2-mediated fibroblast migration in SSc. In endothelial cells, inhibition of EZH2 restored normal angiogenesis in SSc via activating the Notch pathway, specifically by up-regulating the Notch ligand DLL4. Our results demonstrate that overexpression of EZH2 in SSc fibroblasts and endothelial cells is profibrotic and antiangiogenic. Targeting EZH2 or EZH2-regulated genes might be of therapeutic potential in SSc.
Collapse
|
13
|
Ames PRJ, Bucci T, Merashli M, Amaral M, Arcaro A, Gentile F, Nourooz-Zadeh J, DelgadoAlves J. Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial? Free Radic Res 2018; 52:1063-1082. [PMID: 30226391 DOI: 10.1080/10715762.2018.1525712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future.
Collapse
Affiliation(s)
- Paul R J Ames
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,b Department of Haematology , Dumfries Royal Infirmary , Dumfries , UK
| | - Tommaso Bucci
- c Division of Allergy and Clinical Immunology, Department of Internal Medicine , University of Salerno , Baronissi , Italy
| | - Mira Merashli
- d Department of Rheumatology , American University of Beirut , Beirut , Lebanon
| | - Marta Amaral
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal
| | - Alessia Arcaro
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Fabrizio Gentile
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Jaffar Nourooz-Zadeh
- f Nephrology & Kidney Transplantation Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Jose DelgadoAlves
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,g Immunomediated Systemic Diseases Unit, Medicine 4 , Hospital Fernando Fonseca , Amadora , Portugal
| |
Collapse
|
14
|
Samokhin AO, Stephens T, Wertheim BM, Wang RS, Vargas SO, Yung LM, Cao M, Brown M, Arons E, Dieffenbach PB, Fewell JG, Matar M, Bowman FP, Haley KJ, Alba GA, Marino SM, Kumar R, Rosas IO, Waxman AB, Oldham WM, Khanna D, Graham BB, Seo S, Gladyshev VN, Yu PB, Fredenburgh LE, Loscalzo J, Leopold JA, Maron BA. NEDD9 targets COL3A1 to promote endothelial fibrosis and pulmonary arterial hypertension. Sci Transl Med 2018; 10:eaap7294. [PMID: 29899023 PMCID: PMC6223025 DOI: 10.1126/scitranslmed.aap7294] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Germline mutations involving small mothers against decapentaplegic-transforming growth factor-β (SMAD-TGF-β) signaling are an important but rare cause of pulmonary arterial hypertension (PAH), which is a disease characterized, in part, by vascular fibrosis and hyperaldosteronism (ALDO). We developed and analyzed a fibrosis protein-protein network (fibrosome) in silico, which predicted that the SMAD3 target neural precursor cell expressed developmentally down-regulated 9 (NEDD9) is a critical ALDO-regulated node underpinning pathogenic vascular fibrosis. Bioinformatics and microscale thermophoresis demonstrated that oxidation of Cys18 in the SMAD3 docking region of NEDD9 impairs SMAD3-NEDD9 protein-protein interactions in vitro. This effect was reproduced by ALDO-induced oxidant stress in cultured human pulmonary artery endothelial cells (HPAECs), resulting in impaired NEDD9 proteolytic degradation, increased NEDD9 complex formation with Nk2 homeobox 5 (NKX2-5), and increased NKX2-5 binding to COL3A1 Up-regulation of NEDD9-dependent collagen III expression corresponded to changes in cell stiffness measured by atomic force microscopy. HPAEC-derived exosomal signaling targeted NEDD9 to increase collagen I/III expression in human pulmonary artery smooth muscle cells, identifying a second endothelial mechanism regulating vascular fibrosis. ALDO-NEDD9 signaling was not affected by treatment with a TGF-β ligand trap and, thus, was not contingent on TGF-β signaling. Colocalization of NEDD9 with collagen III in HPAECs was observed in fibrotic pulmonary arterioles from PAH patients. Furthermore, NEDD9 ablation or inhibition prevented fibrotic vascular remodeling and pulmonary hypertension in animal models of PAH in vivo. These data identify a critical TGF-β-independent posttranslational modification that impairs SMAD3-NEDD9 binding in HPAECs to modulate vascular fibrosis and promote PAH.
Collapse
Affiliation(s)
- Andriy O Samokhin
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Thomas Stephens
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bradley M Wertheim
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rui-Sheng Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lai-Ming Yung
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Minwei Cao
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marcel Brown
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Arons
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Majed Matar
- Celsion Corporation, Lawrenceville, NJ 08648, USA
| | - Frederick P Bowman
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kathleen J Haley
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - George A Alba
- Department of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stefano M Marino
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Biotechnology, Akdeniz University, Konyaaltı, Antalya 07058, Turkey
| | - Rahul Kumar
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Dinesh Khanna
- Division of Rheumatology, University of Michigan Scleroderma Program, Ann Arbor, MI 48109, USA
| | - Brian B Graham
- Program in Translational Lung Research, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sachiko Seo
- Department of Hematology and Oncology, National Cancer Research Center East, Kashiwa-shi, Chiba-ken 277-8577, Japan
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Krishnamoorthy E, Hassan S, Hanna LE, Padmalayam I, Rajaram R, Viswanathan V. Homology modeling of Homo sapiens lipoic acid synthase: Substrate docking and insights on its binding mode. J Theor Biol 2017; 420:259-266. [DOI: 10.1016/j.jtbi.2016.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/22/2016] [Accepted: 09/05/2016] [Indexed: 10/20/2022]
|
16
|
Bilska-Wilkosz A, Iciek M, Kowalczyk-Pachel D, Górny M, Sokołowska-Jeżewicz M, Włodek L. Lipoic Acid as a Possible Pharmacological Source of Hydrogen Sulfide/Sulfane Sulfur. Molecules 2017; 22:molecules22030388. [PMID: 28257119 PMCID: PMC6155427 DOI: 10.3390/molecules22030388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 02/03/2023] Open
Abstract
The aim of the present study was to verify whether lipoic acid (LA) itself is a source of H2S and sulfane sulfur. It was investigated in vitro non-enzymatically and enzymatically (in the presence of rat tissue homogenate). The results indicate that both H2S and sulfane sulfur are formed from LA non-enzymatically in the presence of environmental light. These results suggest that H2S is the first product of non-enzymatic light-dependent decomposition of LA that is, probably, next oxidized to sulfane sulfur-containing compound(s). The study performed in the presence of rat liver and kidney homogenate revealed an increase of H2S level in samples containing LA and its reduced form dihydrolipoic acid (DHLA). It was accompanied by a decrease in sulfane sulfur level. It seems that, in these conditions, DHLA acts as a reducing agent that releases H2S from an endogenous pool of sulfane sulfur compounds present in tissues. Simultaneously, it means that exogenous LA cannot be a direct donor of H2S/sulfane sulfur in animal tissues. The present study is an initial approach to the question whether LA itself is a donor of H2S/sulfane sulfur.
Collapse
Affiliation(s)
- Anna Bilska-Wilkosz
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| | - Małgorzata Iciek
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| | - Danuta Kowalczyk-Pachel
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| | - Magdalena Górny
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| | - Maria Sokołowska-Jeżewicz
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| | - Lidia Włodek
- Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum, 7 Kopernika Street, 31-034 Kraków, Poland.
| |
Collapse
|
17
|
Kilinc F, Sener S, Akbaş A, Metin A, Kirbaş S, Neselioglu S, Erel O. Oxidative stress parameters in localized scleroderma patients. Arch Dermatol Res 2016; 308:625-629. [DOI: 10.1007/s00403-016-1682-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 07/01/2016] [Accepted: 08/30/2016] [Indexed: 11/28/2022]
|
18
|
Activation of the Thromboxane A2 Receptor by 8-Isoprostane Inhibits the Pro-Angiogenic Effect of Vascular Endothelial Growth Factor in Scleroderma. J Invest Dermatol 2015; 135:3153-3162. [PMID: 26288351 PMCID: PMC4648660 DOI: 10.1038/jid.2015.323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/16/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022]
Abstract
The pathogenesis of scleroderma (SSc) includes components of autoimmunity, vascular dysfunction, and accumulation of extracellular matrix. 8-isoprostane, an oxidized lipid created by oxidative stress, activates the thromboxane A2 receptor (TXAR) and ROCK pathway. In this study we determined whether the TXAR was activated by 8-isoprostane in SSc endothelial cells (ECs), and whether this pathway inhibited VEGF-induced angiogenesis. Elevated 8-isoprostane was observed in plasma and conditioned media from SSc patients. SSc conditioned media inhibited EC tube formation, while addition of vitamin E, by reducing 8-isoprostane, increased tube formation. VEGF did not induce angiogenesis in SSc ECs, but vitamin E or TXAR inhibition restored its effect. The expression of TXAR, RhoA, and ROCK1/2 were elevated in SSc ECs. ROCK activity and 8-isoprostane-induced ROCK activation were significantly higher in SSc ECs while VEGF had no effect. The hyper-activation of the TXAR leads to inhibition of VEGF-induced angiogenesis, as inhibition of the TXAR pathway results in blockade of 8-isoprostane induced ROCK activation and restoration of VEGF activity. These results suggest that the TXAR pathway plays a crucial role in angiogenesis and that 8-isoprostane is not just a by-product of oxidative stress, but also plays a significant role in the impaired angiogenesis that characterizes SSc.
Collapse
|
19
|
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol 2015; 6:272. [PMID: 26106387 PMCID: PMC4459100 DOI: 10.3389/fimmu.2015.00272] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023] Open
Abstract
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| | - Monica Brown
- Section of Pediatric Rheumatology, Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Bradley C Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Arnold E Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| |
Collapse
|
20
|
Cellular and molecular mechanisms in the pathophysiology of systemic sclerosis. ACTA ACUST UNITED AC 2015; 63:61-8. [DOI: 10.1016/j.patbio.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/06/2015] [Indexed: 12/18/2022]
|