1
|
Sanchez C, Campeau A, Liu-Bryan R, Mikuls TR, O'Dell JR, Gonzalez DJ, Terkeltaub R. Effective xanthine oxidase inhibitor urate lowering therapy in gout is linked to an emergent serum protein interactome of complement and inflammation modulators. Sci Rep 2024; 14:24598. [PMID: 39426967 PMCID: PMC11490615 DOI: 10.1038/s41598-024-74154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
Urate-lowering treatment (ULT) to target with xanthine oxidase inhibitors (XOIs) paradoxically causes early increase in gouty arthritis flares. Because delayed reduction in flare burden is mechanistically unclear, we tested for ULT inflammation responsiveness markers. Unbiased proteomics analyzed blood samples (baseline, 48 weeks ULT) in two, independent ULT out trial cohorts (n = 19, n = 30). STRING-db and multivariate analyses supplemented determinations of altered proteins via Wilcoxon matched pairs signed rank testing in XOI ULT responders. Mechanistic studies characterized proteomes of cultured XOI-treated murine bone marrow macrophages (BMDMs). At 48 weeks ULT, serum urate normalized in all gout patients, and flares declined in association with significantly altered proteins (p < 0.05) in clustering and proteome networks in sera and peripheral blood mononuclear cells. Sera demonstrated altered complement activation and regulatory gene ontology biologic processes. In both cohorts, a treatment-emergent serum interactome included key gouty inflammation mediators (C5, IL-1B, CXCL8, IL6). Last, febuxostat treatment decreased complement activation biologic process proteins in cultured BMDMs. Reduced gout flares are linked with a XOI treatment-emergent serum protein interactome that includes inflammation regulators, associated with altered complement activation and regulatory biologic processes. Serum and leukocyte proteomics could help identify when gouty inflammatory processes begin to subside in response to ULT.Trial Registration: ClinicalTrials.gov Identifier NCT02579096, posted October 19, 2015.
Collapse
Affiliation(s)
- Concepcion Sanchez
- Department of Pharmacology, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Collaborative Center for Multiplexed Proteomics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Collaborative Center for Multiplexed Proteomics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ru Liu-Bryan
- Division of Rheumatology, Autoimmunity and Inflammation, Department of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA
| | - Ted R Mikuls
- Department of Internal Medicine, University of Nebraska Medical Center, MSB 5544, 983331, Omaha, NE, 68198-3331, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - James R O'Dell
- Department of Internal Medicine, University of Nebraska Medical Center, MSB 5544, 983331, Omaha, NE, 68198-3331, USA
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, and Collaborative Center for Multiplexed Proteomics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert Terkeltaub
- Division of Rheumatology, Autoimmunity and Inflammation, Department of Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Pu L, Xu H, Wang Z, Li R, Ai C, Song X, Zhang L, Cheng X, Wang G, Wang X, Yang S, Chen Z, Liu W. Intermittent high altitude hypoxia induced liver and kidney injury leading to hyperuricemia. Arch Biochem Biophys 2024; 758:110078. [PMID: 38944139 DOI: 10.1016/j.abb.2024.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
About 140 million people worldwide live at an altitude above 2500 m. Studies have showed an increase of the incidence of hyperuricemia among plateau populations, but little is known about the possible mechanisms. This study aims to assess the effects of high altitude on hyperuricemia and explore the corresponding mechanisms at the histological, inflammatory and molecular levels. This study finds that intermittent hypobaric hypoxia (IHH) exposure results in an increase of serum uric acid level and a decrease of uric acid clearance rate. Compared with the control group, the IHH group shows significant increases in hemoglobin concentration (HGB) and red blood cell counts (RBC), indicating that high altitude hyperuricemia is associated with polycythemia. This study also shows that IHH exposure induces oxidative stress, which causes the injury of liver and renal structures and functions. Additionally, altered expressions of organic anion transporter 1 (OAT1) and organic cation transporter 1 (OCT1) of kidney have been detected in the IHH exposed rats. The adenosine deaminase (ADA) expression levels and the xanthione oxidase (XOD) and ADA activity of liver of the IHH exposure group have significantly increased compared with those of the control group. Furthermore, the spleen coefficients, IL-2, IL-1β and IL-8, have seen significant increases among the IHH exposure group. TLR/MyD88/NF-κB pathway is activated in the process of IHH induced inflammatory response in joints. Importantly, these results jointly show that IHH exposure causes hyperuricemia. IHH induced oxidative stress along with liver and kidney injury, unusual expression of the uric acid synthesis/excretion regulator and inflammatory response, thus suggesting a potential mechanism underlying IHH-induced hyperuricemia.
Collapse
Affiliation(s)
- Lingling Pu
- Academy of Military Medical Sciences, Tianjin 300050, China
| | - Hongbao Xu
- Academy of Military Medical Sciences, Tianjin 300050, China
| | - Zirou Wang
- Academy of Military Medical Sciences, Tianjin 300050, China
| | - Ran Li
- Academy of Military Medical Sciences, Tianjin 300050, China
| | - Chongyi Ai
- Academy of Military Medical Sciences, Tianjin 300050, China
| | - Xiaona Song
- Academy of Military Medical Sciences, Tianjin 300050, China
| | - Ling Zhang
- Academy of Military Medical Sciences, Tianjin 300050, China
| | - Xiaoling Cheng
- Academy of Military Medical Sciences, Tianjin 300050, China
| | - Guangrui Wang
- Academy of Military Medical Sciences, Tianjin 300050, China
| | - Xinxing Wang
- Academy of Military Medical Sciences, Tianjin 300050, China
| | | | - Zhaoli Chen
- Academy of Military Medical Sciences, Tianjin 300050, China.
| | - Weili Liu
- Academy of Military Medical Sciences, Tianjin 300050, China.
| |
Collapse
|
3
|
Karakaya T, Slaufova M, Di Filippo M, Hennig P, Kündig T, Beer HD. CARD8: A Novel Inflammasome Sensor with Well-Known Anti-Inflammatory and Anti-Apoptotic Activity. Cells 2024; 13:1032. [PMID: 38920661 PMCID: PMC11202080 DOI: 10.3390/cells13121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Inflammasomes comprise a group of protein complexes with fundamental roles in the induction of inflammation. Upon sensing stress factors, their assembly induces the activation and release of the pro-inflammatory cytokines interleukin (IL)-1β and -18 and a lytic type of cell death, termed pyroptosis. Recently, CARD8 has joined the group of inflammasome sensors. The carboxy-terminal part of CARD8, consisting of a function-to-find-domain (FIIND) and a caspase activation and recruitment domain (CARD), resembles that of NLR family pyrin domain containing 1 (NLRP1), which is recognized as the main inflammasome sensor in human keratinocytes. The interaction with dipeptidyl peptidases 8 and 9 (DPP8/9) represents an activation checkpoint for both sensors. CARD8 and NLRP1 are activated by viral protease activity targeting their amino-terminal region. However, CARD8 also has some unique features compared to the established inflammasome sensors. Activation of CARD8 occurs independently of the inflammasome adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC), leading mainly to pyroptosis rather than the activation and secretion of pro-inflammatory cytokines. CARD8 was also shown to have anti-inflammatory and anti-apoptotic activity. It interacts with, and inhibits, several proteins involved in inflammation and cell death, such as the inflammasome sensor NLRP3, CARD-containing proteins caspase-1 and -9, nucleotide-binding oligomerization domain containing 2 (NOD2), or nuclear factor kappa B (NF-κB). Single nucleotide polymorphisms (SNPs) of CARD8, some of them occurring at high frequencies, are associated with various inflammatory diseases. The molecular mechanisms underlying the different pro- and anti-inflammatory activities of CARD8 are incompletely understood. Alternative splicing leads to the generation of multiple CARD8 protein isoforms. Although the functional properties of these isoforms are poorly characterized, there is evidence that suggests isoform-specific roles. The characterization of the functions of these isoforms, together with their cell- and disease-specific expression, might be the key to a better understanding of CARD8's different roles in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Tugay Karakaya
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland; (T.K.); (M.S.); (M.D.F.); (P.H.); (T.K.)
| | - Marta Slaufova
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland; (T.K.); (M.S.); (M.D.F.); (P.H.); (T.K.)
| | - Michela Di Filippo
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland; (T.K.); (M.S.); (M.D.F.); (P.H.); (T.K.)
| | - Paulina Hennig
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland; (T.K.); (M.S.); (M.D.F.); (P.H.); (T.K.)
| | - Thomas Kündig
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland; (T.K.); (M.S.); (M.D.F.); (P.H.); (T.K.)
- Faculty of Medicine, University of Zurich, CH-8006 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, CH-8952 Schlieren, Switzerland; (T.K.); (M.S.); (M.D.F.); (P.H.); (T.K.)
- Faculty of Medicine, University of Zurich, CH-8006 Zurich, Switzerland
| |
Collapse
|
4
|
Sanchez C, Campeau A, Liu-Bryan R, Mikuls TR, O'Dell JR, Gonzalez DJ, Terkeltaub R. Effective xanthine oxidase inhibitor urate lowering therapy in gout is linked to an emergent serum protein interactome of complement activation and inflammation modulators. RESEARCH SQUARE 2024:rs.3.rs-4278877. [PMID: 38766125 PMCID: PMC11100878 DOI: 10.21203/rs.3.rs-4278877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Urate-lowering treatment (ULT) to target with xanthine oxidase inhibitors (XOIs) paradoxically causes early increase in gouty arthritis flares. Because delayed reduction in flare burden is mechanistically unclear, we tested for ULT inflammation responsiveness markers. Methods Unbiased proteomics analyzed blood samples (baseline, 48 weeks ULT) in two, independent ULT out trial cohorts (n = 19, n = 30). STRING-db and multivariate analyses supplemented determinations of altered proteins via Wilcoxon matched pairs signed rank testing in XOI ULT responders. Mechanistic studies characterized proteomes of cultured XOI-treated murine bone marrow macrophages (BMDMs). Results At 48 weeks ULT, serum urate normalized in all gout patients, and flares declined, with significantly altered proteins (p < 0.05) in clustering and proteome networks in sera and peripheral blood mononuclear cells. Serum proteome changes included decreased complement C8 heterotrimer C8A and C8G chains and chemokine PPBP/CXCL7, and increased urate crystal phagocytosis inhibitor sCD44. In both cohorts, a treatment-emergent serum interactome included key gouty inflammation mediators (C5, IL-1B, CXCL8, IL6). Last, febuxostat inhibited complement activation pathway proteins in cultured BMDMs. Conclusions Reduced gout flares are kinked with a XOI-treatment emergent complement- and inflammation-regulatory serum protein interactome. Serum and leukocyte proteomes could help identify onset of anti-inflammatory responsiveness to ULT in gout. Trial registration ClinicalTrials.gov Identifier: NCT02579096, posted October 19, 2015.
Collapse
|
5
|
Sanchez C, Campeau A, Liu-Bryan R, Mikuls T, O'Dell J, Gonzalez D, Terkeltaub R. Sustained xanthine oxidase inhibitor treat to target urate lowering therapy rewires a tight inflammation serum protein interactome. RESEARCH SQUARE 2024:rs.3.rs-3770277. [PMID: 38260556 PMCID: PMC10802734 DOI: 10.21203/rs.3.rs-3770277/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Effective xanthine oxidoreductase inhibition (XOI) urate-lowering treatment (ULT) to target significantly reduces gout flare burden and synovitis between 1-2 years therapy, without clearing all monosodium urate crystal deposits. Paradoxically, treat to target ULT is associated with increased flare activity for at least 1 year in duration on average, before gout flare burden decreases. Since XOI has anti-inflammatory effects, we tested for biomarkers of sustained, effective ULT that alters gouty inflammation. Methods We characterized the proteome of febuxostat-treated murine bone marrow macrophages. Blood samples (baseline and 48 weeks ULT) were analyzed by unbiased proteomics in febuxostat and allopurinol ULT responders from two, independent, racially and ethnically distinct comparative effectiveness trial cohorts (n=19, n=30). STRING-db and multivariate analyses supplemented determinations of significantly altered proteins via Wilcoxon matched pairs signed rank testing. Results The proteome of cultured IL-1b-stimulated macrophages revealed febuxostat-induced anti-inflammatory changes, including for classical and alternative pathway complement activation pathways. At 48 weeks ULT, with altered purine metabolism confirmed by serum metabolomics, serum urate dropped >30%, to normal (<6.8 mg/dL) in all the studied patients. Overall, flares declined from baseline. Treated gout patient sera and peripheral blood mononuclear cells (PBMCs) showed significantly altered proteins (p<0.05) in clustering and proteome networks. CRP was not a useful therapy response biomarker. By comparison, significant serum proteome changes included decreased complement C8 heterotrimer C8A and C8G chains essential for C5b-9 membrane attack complex assembly and function; increase in the NLRP3 inflammasome activation promoter vimentin; increased urate crystal phagocytosis inhibitor sCD44; increased gouty inflammation pro-resolving mediator TGFB1; decreased phagocyte-recruiting chemokine PPBP/CXCL7, and increased monocyte/macrophage-expressed keratin-related proteins (KRT9,14,16) further validated by PBMC proteomics. STRING-db analyses of significantly altered serum proteins from both cohorts revealed a tight interactome network including central mediators of gouty inflammation (eg, IL-1B, CXCL8, IL6, C5). Conclusions Rewiring of inflammation mediators in a tight serum protein interactome was a biomarker of sustained XOI-based ULT that effectively reduced serum urate and gout flares. Monitoring of the serum and PBMC proteome, including for changes in the complement pathway could help determine onset and targets of anti-inflammatory changes in response to effective, sustained XOI-based ULT.Trial Registration: ClinicalTrials.gov Identifier: NCT02579096.
Collapse
|
6
|
de Lima JD, de Paula AGP, Yuasa BS, de Souza Smanioto CC, da Cruz Silva MC, Dos Santos PI, Prado KB, Winter Boldt AB, Braga TT. Genetic and Epigenetic Regulation of the Innate Immune Response to Gout. Immunol Invest 2023; 52:364-397. [PMID: 36745138 DOI: 10.1080/08820139.2023.2168554] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gout is a disease caused by uric acid (UA) accumulation in the joints, causing inflammation. Two UA forms - monosodium urate (MSU) and soluble uric acid (sUA) have been shown to interact physically with inflammasomes, especially with the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3), albeit the role of the immune response to UA is poorly understood, given that asymptomatic hyperuricemia does also exist. Macrophage phagocytosis of UA activate NLRP3, lead to cytokines release, and ultimately, lead to chemoattract neutrophils and lymphocytes to the gout flare joint spot. Genetic variants of inflammasome genes and of genes encoding their molecular partners may influence hyperuricemia and gout susceptibility, while also influencing other comorbidities such as metabolic syndrome and cardiovascular diseases. In this review, we summarize the inflammatory responses in acute and chronic gout, specifically focusing on innate immune cell mechanisms and genetic and epigenetic characteristics of participating molecules. Unprecedently, a novel UA binding protein - the neuronal apoptosis inhibitor protein (NAIP) - is suggested as responsible for the asymptomatic hyperuricemia paradox.Abbreviation: β2-integrins: leukocyte-specific adhesion molecules; ABCG2: ATP-binding cassete family/breast cancer-resistant protein; ACR: American college of rheumatology; AIM2: absent in melanoma 2, type of pattern recognition receptor; ALPK1: alpha-protein kinase 1; ANGPTL2: angiopoietin-like protein 2; ASC: apoptosis-associated speck-like protein; BIR: baculovirus inhibitor of apoptosis protein repeat; BIRC1: baculovirus IAP repeat-containing protein 1; BIRC2: baculoviral IAP repeat-containing protein 2; C5a: complement anaphylatoxin; cAMP: cyclic adenosine monophosphate; CARD: caspase activation and recruitment domains; CARD8: caspase recruitment domain-containing protein 8; CASP1: caspase 1; CCL3: chemokine (C-C motif) ligand 3; CD14: cluster of differentiation 14; CD44: cluster of differentiation 44; Cg05102552: DNA-methylation site, usually cytosine followed by guanine nucleotides; contains arbitrary identification code; CIDEC: cell death-inducing DNA fragmentation factor-like effector family; CKD: chronic kidney disease; CNV: copy number variation; CPT1A: carnitine palmitoyl transferase - type 1a; CXCL1: chemokine (CXC motif) ligand 1; DAMPs: damage associated molecular patterns; DC: dendritic cells; DNMT(1): maintenance DNA methyltransferase; eQTL: expression quantitative trait loci; ERK1: extracellular signal-regulated kinase 1; ERK2: extracellular signal-regulated kinase 2; EULAR: European league against rheumatism; GMCSF: granulocyte-macrophage colony-stimulating factor; GWAS: global wide association studies; H3K27me3: tri-methylation at the 27th lysine residue of the histone h3 protein; H3K4me1: mono-methylation at the 4th lysine residue of the histone h3 protein; H3K4me3: tri-methylation at the 4th lysine residue of the histone h3 protein; HOTAIR: human gene located between hoxc11 and hoxc12 on chromosome 12; IκBα: cytoplasmatic protein/Nf-κb transcription inhibitor; IAP: inhibitory apoptosis protein; IFNγ: interferon gamma; IL-1β: interleukin 1 beta; IL-12: interleukin 12; IL-17: interleukin 17; IL18: interleukin 18; IL1R1: interleukin-1 receptor; IL-1Ra: interleukin-1 receptor antagonist; IL-22: interleukin 22; IL-23: interleukin 23; IL23R: interleukin 23 receptor; IL-33: interleukin 33; IL-6: interleukin 6; IMP: inosine monophosphate; INSIG1: insulin-induced gene 1; JNK1: c-jun n-terminal kinase 1; lncRNA: long non-coding ribonucleic acid; LRR: leucine-rich repeats; miR: mature non-coding microRNAs measuring from 20 to 24 nucleotides, animal origin; miR-1: miR followed by arbitrary identification code; miR-145: miR followed by arbitrary identification code; miR-146a: miR followed by arbitrary identification code, "a" stands for mir family; "a" family presents similar mir sequence to "b" family, but different precursors; miR-20b: miR followed by arbitrary identification code; "b" stands for mir family; "b" family presents similar mir sequence to "a" family, but different precursors; miR-221: miR - followed by arbitrary identification code; miR-221-5p: miR followed by arbitrary identification code; "5p" indicates different mature miRNAs generated from the 5' arm of the pre-miRNA hairpin; miR-223: miR followed by arbitrary identification code; miR-223-3p: mir followed by arbitrary identification code; "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; miR-22-3p: miR followed by arbitrary identification code, "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; MLKL: mixed lineage kinase domain-like pseudo kinase; MM2P: inductor of m2-macrophage polarization; MSU: monosodium urate; mTOR: mammalian target of rapamycin; MyD88: myeloid differentiation primary response 88; n-3-PUFAs: n-3-polyunsaturated fatty-acids; NACHT: acronym for NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from podospora anserina) and TP1 (telomerase-associated protein); NAIP: neuronal apoptosis inhibitory protein (human); Naip1: neuronal apoptosis inhibitory protein type 1 (murine); Naip5: neuronal apoptosis inhibitory protein type 5 (murine); Naip6: neuronal apoptosis inhibitory protein type 6 (murine); NBD: nucleotide-binding domain; Nek7: smallest NIMA-related kinase; NET: neutrophil extracellular traps; Nf-κB: nuclear factor kappa-light-chain-enhancer of activated b cells; NFIL3: nuclear-factor, interleukin 3 regulated protein; NIIMA: network of immunity in infection, malignancy, and autoimmunity; NLR: nod-like receptor; NLRA: nod-like receptor NLRA containing acidic domain; NLRB: nod-like receptor NLRA containing BIR domain; NLRC: nod-like receptor NLRA containing CARD domain; NLRC4: nod-like receptor family CARD domain containing 4; NLRP: nod-like receptor NLRA containing PYD domain; NLRP1: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 1; NLRP12: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 12; NLRP3: nod-like receptor family pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain; NRBP1: nuclear receptor-binding protein; Nrf2: nuclear factor erythroid 2-related factor 2; OR: odds ratio; P2X: group of membrane ion channels activated by the binding of extracellular; P2X7: p2x purinoceptor 7 gene; p38: member of the mitogen-activated protein kinase family; PAMPs: pathogen associated molecular patters; PBMC: peripheral blood mononuclear cells; PGGT1B: geranylgeranyl transferase type-1 subunit beta; PHGDH: phosphoglycerate dehydrogenase; PI3-K: phospho-inositol; PPARγ: peroxisome proliferator-activated receptor gamma; PPARGC1B: peroxisome proliferative activated receptor, gamma, coactivator 1 beta; PR3: proteinase 3 antigen; Pro-CASP1: inactive precursor of caspase 1; Pro-IL1β: inactive precursor of interleukin 1 beta; PRR: pattern recognition receptors; PYD: pyrin domain; RAPTOR: regulatory associated protein of mTOR complex 1; RAS: renin-angiotensin system; REDD1: regulated in DNA damage and development 1; ROS: reactive oxygen species; rs000*G: single nuclear polymorphism, "*G" is related to snp where replaced nucleotide is guanine, usually preceded by an id number; SLC2A9: solute carrier family 2, member 9; SLC7A11: solute carrier family 7, member 11; SMA: smooth muscular atrophy; Smac: second mitochondrial-derived activator of caspases; SNP: single nuclear polymorphism; Sp3: specificity protein 3; ST2: serum stimulation-2; STK11: serine/threonine kinase 11; sUA: soluble uric acid; Syk: spleen tyrosine kinase; TAK1: transforming growth factor beta activated kinase; Th1: type 1 helper T cells; Th17: type 17 helper T cells; Th2: type 2 helper T cells; Th22: type 22 helper T cells; TLR: tool-like receptor; TLR2: toll-like receptor 2; TLR4: toll-like receptor 4; TNFα: tumor necrosis factor alpha; TNFR1: tumor necrosis factor receptor 1; TNFR2: tumor necrosis factor receptor 2; UA: uric acid; UBAP1: ubiquitin associated protein; ULT: urate-lowering therapy; URAT1: urate transporter 1; VDAC1: voltage-dependent anion-selective channel 1.
Collapse
Affiliation(s)
- Jordana Dinorá de Lima
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Bruna Sadae Yuasa
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Maria Clara da Cruz Silva
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Karin Braun Prado
- Genetics Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Program of Internal Medicine, Universidade Federal do Parana (UFPR), Curitiba, Brazil
- Genetics Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | - Tárcio Teodoro Braga
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
- Biosciences and Biotechnology Program, Instituto Carlos Chagas (ICC), Fiocruz-Parana, Brazil
| |
Collapse
|
7
|
Liu YR, Wang JQ, Li J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front Immunol 2023; 14:1137822. [PMID: 37051231 PMCID: PMC10083392 DOI: 10.3389/fimmu.2023.1137822] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Gout arthritis (GA) is a common and curable type of inflammatory arthritis that has been attributed to a combination of genetic, environmental and metabolic factors. Chronic deposition of monosodium urate (MSU) crystals in articular and periarticular spaces as well as subsequent activation of innate immune system in the condition of persistent hyperuricemia are the core mechanisms of GA. As is well known, drugs for GA therapy primarily consists of rapidly acting anti-inflammatory agents and life-long uric acid lowering agents, and their therapeutic outcomes are far from satisfactory. Although MSU crystals in articular cartilage detected by arthrosonography or in synovial fluid found by polarization microscopy are conclusive proofs for GA, the exact molecular mechanism of NLRP3 inflammasome activation in the course of GA still remains mysterious, severely restricting the early diagnosis and therapy of GA. On the one hand, the activation of Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome requires nuclear factor kappa B (NF-κB)-dependent transcriptional enhancement of NLRP3, precursor (pro)-caspase-1 and pro-IL-1β, as well as the assembly of NLRP3 inflammasome complex and sustained release of inflammatory mediators and cytokines such as IL-1β, IL-18 and caspase-1. On the other hand, NLRP3 inflammasome activated by MSU crystals is particularly relevant to the initiation and progression of GA, and thus may represent a prospective diagnostic biomarker and therapeutic target. As a result, pharmacological inhibition of the assembly and activation of NLRP3 inflammasome may also be a promising avenue for GA therapy. Herein, we first introduced the functional role of NLRP3 inflammasome activation and relevant biological mechanisms in GA based on currently available evidence. Then, we systematically reviewed therapeutic strategies for targeting NLRP3 by potentially effective agents such as natural products, novel compounds and noncoding RNAs (ncRNAs) in the treatment of MSU-induced GA mouse models. In conclusion, our present review may have significant implications for the pathogenesis, diagnosis and therapy of GA.
Collapse
Affiliation(s)
- Ya-ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Grade 3 Pharmaceutical Chemistry Laboratory, State Administration of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Ya-ru Liu, ; Jun Li,
| | - Jie-quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Ya-ru Liu, ; Jun Li,
| |
Collapse
|
8
|
Association between NLRP3 rs10754558 and CARD8 rs2043211 Variants and Susceptibility to Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24044184. [PMID: 36835594 PMCID: PMC9963401 DOI: 10.3390/ijms24044184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Nod-like receptor protein 3 (NLRP3) is a multi-protein complex belonging to the innate immune system, whose activation by danger stimuli promotes inflammatory cell death. Evidence supports the crucial role of NLRP3 inflammasome activation in the transition of acute kidney injury to Chronic Kidney Disease (CKD), by promoting both inflammation and fibrotic processes. Variants of NLRP3 pathway-related genes, such as NLRP3 itself and CARD8, have been associated with susceptibility to different autoimmune and inflammatory diseases. In this study, we investigated for the first time the association of functional variants of NLRP3 pathway-related genes (NLRP3-rs10754558, CARD8-rs2043211), with a susceptibility to CKD. A cohort of kidney transplant recipients, dialysis and CKD stage 3-5 patients (303 cases) and a cohort of elderly controls (85 subjects) were genotyped for the variants of interest and compared by using logistic regression analyses. Our analysis showed a significantly higher G allele frequency of the NLRP3 variant (67.3%) and T allele of the CARD8 variant (70.8%) among cases, compared with the control sample (35.9 and 31.2%, respectively). Logistic regressions showed significant associations (p < 0.001) between NLRP3 and CARD8 variants and cases. Our results suggest that the NLRP3 rs10754558 and CARD8 rs2043211 variants could be associated with a susceptibility to CKD.
Collapse
|
9
|
NLRP3 Susceptible Gene Polymorphisms in Patients with Primary Gouty Arthritis and Hyperuricemia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1427607. [PMID: 36051474 PMCID: PMC9427315 DOI: 10.1155/2022/1427607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022]
Abstract
Polymorphisms have been identified to predispose to primary gouty arthritis (GA) and hyperuricemia (HUA). Here, we accessed the five polymorphisms of rs10754558, rs35829419, rs3738448, rs3806268, and rs7525979 in NLRP3 on GA and HUA susceptibility. We collected 1198 samples (314 GA, 377 HUA, and 507 controls) for this case-control study. Our data detected that the rs3806268 (GA vs. AA: OR = 0.65, p = 0.012) was significantly associated with the susceptibility to GA. The rs3738448 (TT vs. GG: OR = 2.05, p = 0.024) and rs7525979 (TT vs. CC: OR = 1.96, p = 0.037) were significantly associated with the susceptibility to HUA. The rs3806268 AG genotype presented decreased risk of GA among the hypertension (OR = 0.54, p = 0.0093), smoking (OR = 0.59, p = 0.018), and no obesity (OR = 0.60, p = 0.0097) subjects compared to the GG genotype group. The rs3738448 TT genotype demonstrated increased risk of HUA among the hypertension (OR = 4.10, p = 0.0056) and no drinking population (OR = 3.56, p = 0.016) compared to the GG genotype group. The rs7525979 TT genotype demonstrated increased risk of HUA among the hypertension (OR = 4.01, p = 0.0064) and no drinking population (OR = 3.24, p = 0.034) compared to the CC genotype group. Furthermore, a significant haplotype effect of rs10754558/C-rs35829419/C-rs3738448/G-rs3806268/A-rs7525979/C was found (OR = 1.60, p = 0.0046) compared with GCGAC haplotype. Bioinformatics analyses indicated that rs3738448, rs3806268, and rs7525979 might influence the gene regulation, while the T-allele of rs3738448 increased the stability of NLRP3-mRNA. Collectively, our case-control study confirms NLRP3 polymorphisms might participate in regulating immune and inflammation responses in GA and HUA.
Collapse
|
10
|
Zhao J, Guo S, Schrodi SJ, He D. Trends in the Contribution of Genetic Susceptibility Loci to Hyperuricemia and Gout and Associated Novel Mechanisms. Front Cell Dev Biol 2022; 10:937855. [PMID: 35813212 PMCID: PMC9259951 DOI: 10.3389/fcell.2022.937855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
Hyperuricemia and gout are complex diseases mediated by genetic, epigenetic, and environmental exposure interactions. The incidence and medical burden of gout, an inflammatory arthritis caused by hyperuricemia, increase every year, significantly increasing the disease burden. Genetic factors play an essential role in the development of hyperuricemia and gout. Currently, the search on disease-associated genetic variants through large-scale genome-wide scans has primarily improved our understanding of this disease. However, most genome-wide association studies (GWASs) still focus on the basic level, whereas the biological mechanisms underlying the association between genetic variants and the disease are still far from well understood. Therefore, we summarized the latest hyperuricemia- and gout-associated genetic loci identified in the Global Biobank Meta-analysis Initiative (GBMI) and elucidated the comprehensive potential molecular mechanisms underlying the effects of these gene variants in hyperuricemia and gout based on genetic perspectives, in terms of mechanisms affecting uric acid excretion and reabsorption, lipid metabolism, glucose metabolism, and nod-like receptor pyrin domain 3 (NLRP3) inflammasome and inflammatory pathways. Finally, we summarized the potential effect of genetic variants on disease prognosis and drug efficacy. In conclusion, we expect that this summary will increase our understanding of the pathogenesis of hyperuricemia and gout, provide a theoretical basis for the innovative development of new clinical treatment options, and enhance the capabilities of precision medicine for hyperuricemia and gout treatment.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of WI-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of WI-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of WI-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of WI-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
The Role of Inflammasomes in Osteoarthritis and Secondary Joint Degeneration Diseases. Life (Basel) 2022; 12:life12050731. [PMID: 35629398 PMCID: PMC9146751 DOI: 10.3390/life12050731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis is age-related and the most common form of arthritis. The main characteristics of the disease are progressive loss of cartilage and secondary synovial inflammation, which finally result in pain, joint stiffness, and functional disability. Similarly, joint degeneration is characteristic of systemic inflammatory diseases such as rheumatoid arthritis and gout, with the associated secondary type of osteoarthritis. Studies suggest that inflammation importantly contributes to the progression of the disease. Particularly, cytokines TNFα and IL-1β drive catabolic signaling in affected joints. IL-1β is a product of inflammasome activation. Inflammasomes are inflammatory multiprotein complexes that propagate inflammation in various autoimmune and autoinflammatory conditions through cell death and the release of inflammatory cytokines and damage-associated molecule patterns. In this article, we review genetic, marker, and animal studies that establish inflammasomes as important drivers of secondary arthritis and discuss the current evidence for inflammasome involvement in primary osteoarthritis. The NLRP3 inflammasome has a significant role in the development of secondary osteoarthritis, and several studies have provided evidence of its role in the development of primary osteoarthritis, while other inflammasomes cannot be excluded. Inflammasome-targeted therapeutic options might thus provide a promising strategy to tackle these debilitating diseases.
Collapse
|
12
|
Ji A, Shaukat A, Takei R, Bixley M, Cadzow M, Topless RK, Major TJ, Phipps-Green A, Merriman ME, Hindmarsh JH, Stamp LK, Dalbeth N, Li C, Merriman TR. Aotearoa New Zealand Māori and Pacific Population-amplified Gout Risk Variants: CLNK Is a Separate Risk Gene at the SLC2A9 Locus. J Rheumatol 2021; 48:1736-1744. [PMID: 34210831 DOI: 10.3899/jrheum.201684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The Māori and Pacific (Polynesian) population of Aotearoa New Zealand has a high prevalence of gout. Our aim was to identify potentially functional missense genetic variants in candidate inflammatory genes amplified in frequency that may underlie the increased prevalence of gout in Polynesian populations. METHODS A list of 712 inflammatory disease-related genes was generated. An in silico targeted exome set was extracted from whole genome sequencing data in people with gout of various ancestral groups (Polynesian, European, East Asian; n = 55, 780, 135, respectively) to identify Polynesian-amplified common missense variants (minor allele frequency > 0.05). Candidate functional variants were tested for association with gout by multivariable-adjusted regression analysis in 2528 individuals of Polynesian ancestry. RESULTS We identified 26 variants common in the Polynesian population and uncommon in the European and East Asian populations. Three of the 26 population-amplified variants were nominally associated with the risk of gout (rs1635712 [KIAA0319], ORmeta = 1.28, Pmeta = 0.03; rs16869924 [CLNK], ORmeta = 1.37, Pmeta = 0.002; rs2070025 [fibrinogen A alpha chain (FGA)], ORmeta = 1.34, Pmeta = 0.02). The CLNK variant, within the established SLC2A9 gout locus, was genetically independent of the association signal at SLC2A9. CONCLUSION We provide nominal evidence for the existence of population-amplified genetic variants conferring risk of gout in Polynesian populations. Polymorphisms in CLNK have previously been associated with gout in other populations, supporting our evidence for the association of this gene with gout.
Collapse
Affiliation(s)
- Aichang Ji
- A. Ji, PhD, Research Fellow, C. Li, PhD, Professor, Shandong Provincial Key Laboratory of Metabolic Diseases, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Amara Shaukat
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Riku Takei
- R. Takei, MSc, Scientist, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA
| | - Matthew Bixley
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Murray Cadzow
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ruth K Topless
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Tanya J Major
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Amanda Phipps-Green
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Marilyn E Merriman
- A. Shaukat, MSc, Doctoral Student, M. Bixley, MSc, Assistant Research Fellow, M. Cadzow, PhD, Research Fellow, R.K. Topless, BSc, Assistant Research Fellow, T.J. Major, PhD, Research Fellow, A. Phipps-Green, MSc, Assistant Research Fellow, M.E. Merriman, BSc, Research Assistant, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jennie Harré Hindmarsh
- J. Harré Hindmarsh, PhD, Research Coordinator, Ngāti Porou Hauora Charitable Trust, Te Puia Springs, Tairāwhiti East Coast, New Zealand
| | - Lisa K Stamp
- L.K. Stamp, PhD, Professor, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Nicola Dalbeth
- N. Dalbeth, MD, Professor, Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Changgui Li
- A. Ji, PhD, Research Fellow, C. Li, PhD, Professor, Shandong Provincial Key Laboratory of Metabolic Diseases, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tony R Merriman
- T.R. Merriman, BSc, Research Assistant, Shandong Provincial Key Laboratory of Metabolic Diseases, the Affiliated Hospital of Qingdao University, Qingdao, China, Department of Biochemistry, University of Otago, Dunedin, New Zealand, and Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, USA. A. Ji and A. Shaukat contributed equally to this work.
| |
Collapse
|
13
|
Pang H, Sun X, Luo S, Lin J, Shi X, Xiao Y, Huang G, Li X, Xie Z, Zhou Z. The polymorphism of the CARD8 inflammasome-related gene is associated with glutamic-acid-decarboxylase-antibody positivity in patients with type 1 diabetes mellitus. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1131. [PMID: 34430572 PMCID: PMC8350628 DOI: 10.21037/atm-21-1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
Abstract
Background This study sought to examine the correlation between 2 single-nucleotide polymorphisms (SNPs; rs10403848 and rs2043211) in the caspase recruitment domain-containing protein 8 (CARD8) gene and the risks and clinical features of patients with type 1 diabetes mellitus (T1DM) in the Han Chinese population. Methods A case-control study involving the Han Chinese population was designed, and individuals diagnosed with classical T1DM and healthy controls were enrolled in this study. MassARRAY genotyped the SNPs of rs10403848 and rs2043211. Logistic regression and chi-square analyses were conducted to compare the allele distributions and genotypes of the T1DM and healthy control participants. A Kruskal-Wallis 1-way analysis of variance was used to perform the genotype-phenotype analysis for the T1DM patients. Results In total, 510 participants with classical T1DM and 531 sex-matched healthy control participants participated in this study. The CARD8 SNP of rs2043211 was significantly associated with the rate of glutamic-acid-decarboxylase-antibody (GADA) positivity among T1DM patients (P=0.021). However, no significant differences in the distributions of alleles or the genotypes of rs10403848 and rs2043211 were observed between the case and control groups, and these 2 SNPs were not associated with T1DM under various inheritance models. Conclusions The rs10403848 and rs2043211 polymorphisms of CARD8 were not associated with susceptibility to T1DM. However, rs2043211 was found to be correlated with GADA positivity in participants with T1DM.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiajie Shi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Clavijo-Cornejo D, Hernández-González O, Gutierrez M. The current role of NLRP3 inflammasome polymorphism in gout susceptibility. Int J Rheum Dis 2021; 24:1257-1265. [PMID: 34390315 DOI: 10.1111/1756-185x.14205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The NLR family pyrin domain containing 3 (NLRP3) signaling pathway has an important role in inflammation mediated by monosodium urate crystals in gout, and the characterization of single nucleotide polymorphisms (SNPs) have helped to recognize disease susceptibility. OBJECTIVE The aim of this review is to provide an overview of the potential role of the inflammasome gene SNPs as a susceptibility factor for gout, discussing the current evidence available. METHODS This review analyzes the relevant literature in the field of inflammasome SNPs and gout published in the last 10 years. The systematic research was performed in 16 articles, including both the SNPs associated and those not associated with gout, with the goal to have a complete overview. RESULTS Sixty-nine SNPs from 10 different genes have been reported in the literature. Of these, 13 SNPs present association with gout susceptibility in different populations, while 56 have been established as not being associated with the disease. CONCLUSIONS This review is a summary of the potential role of inflammasome gene SNPs and their association with gout risk, all of them related with NLRP3 inflammasome signaling, suggesting these polymorphisms are susceptibility candidates and genetic markers for gout. From the 69 SNPs analyzed in the literature, 13 of them have been associated with gout as follows: NLRP3 (rs3806268 and rs10754558), CARD8 (rs2043211), TLR4 (rs2149356), CD14 (rs2569190), IL-1β (rs1143623), P2RX7 (rs2230911, rs1653624, rs7958316 and rs17525809) and PPARGC1B (rs45520937, rs10491360 and rs7712296) in different populations.
Collapse
Affiliation(s)
- Denise Clavijo-Cornejo
- Division of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| | | | - Marwin Gutierrez
- Division of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación, Mexico City, Mexico
| |
Collapse
|
15
|
Sandoval-Plata G, Nakafero G, Chakravorty M, Morgan K, Abhishek A. Association between serum urate, gout and comorbidities: a case-control study using data from the UK Biobank. Rheumatology (Oxford) 2021; 60:3243-3251. [PMID: 33313843 DOI: 10.1093/rheumatology/keaa773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/13/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES To examine the association between comorbidities and serum urate (SU), gout and comorbidities, and to determine whether the association between gout and comorbidities is independent of SU. METHODS We performed a case-control study using UK Biobank data. Two separate analyses were conducted: one excluding participants with gout to investigate the association between comorbidities and SU and the other with participants with gout as the index condition to examine the association between gout and comorbidities. SU was measured at the baseline visit. Self-reported physician-diagnosed illnesses were used to define gout and comorbidities, except for chronic kidney disease (CKD), which was defined using an estimated glomerular filtration rate cut-off. Participants prescribed urate-lowering treatment were also classified as gout. Logistic regression was used to examine associations. Odds ratios (ORs) and 95% CIs were calculated and adjusted for covariates including comorbidities and SU. RESULTS Data for 458 781 UK Biobank participants were used to examine the association between comorbidities and SU. There was an association between hypertension, ischaemic heart disease (IHD), congestive cardiac failure (CCF), hyperlipidaemia, CKD and SU with and adjusted OR (aOR) of 1.10-3.14 for each 1 mg/dl SU increase. A total of 10 265 gout cases and 458 781 controls were included in the analysis of association between gout and comorbidities. Gout associated independently with hypertension, IHD, CCF, hyperlipidaemia and diabetes, with aORs of 1.21-4.15 after adjusting for covariates including SU. CONCLUSION Comorbidities associate with increasing SU. The association between gout and cardiometabolic comorbidities was independent of SU, suggesting separate SU-independent mechanisms such as inflammation driven by crystal deposition, pro-inflammatory genotype or non-purine dietary factors.
Collapse
Affiliation(s)
- Gabriela Sandoval-Plata
- Academic Rheumatology, University of Nottingham, Nottingham, UK.,Nottingham National Institute for Health Research Biomedical Research Centre, Nottingham, UK.,Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | - Kevin Morgan
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Abhishek Abhishek
- Academic Rheumatology, University of Nottingham, Nottingham, UK.,Nottingham National Institute for Health Research Biomedical Research Centre, Nottingham, UK
| |
Collapse
|
16
|
Galozzi P, Bindoli S, Luisetto R, Sfriso P, Ramonda R, Scanu A, Oliviero F. Regulation of crystal induced inflammation: current understandings and clinical implications. Expert Rev Clin Immunol 2021; 17:773-787. [PMID: 34053376 DOI: 10.1080/1744666x.2021.1937129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Accumulation of abnormal crystals in the body, derived from endogenous or exogenous materials can drive a wide spectrum of inflammatory disease states. It is well established that intra-articular deposition of monosodium urate (MSU) and calcium pyrophoshate (CPP) crystals contributes to joint destruction through pro-inflammatory processes.Areas covered: This review will focus on current understanding and recent novelty about the mechanisms and the clinical implications of the inflammation induced by MSU and CPP crystals.Expert opinion: Advances in molecular biology reveal that at the base of the inflammatory cascade, stimulated by MSU or CPP crystals, there are many complex cellular mechanisms mainly involving the NLRP3 inflammasome, the hallmark of autoinflammatory syndromes. The extensive studies carried out through in vitro and in vivo models along with a better clinical definition of the disease has led to an optimized use of existing drugs and the introduction of novel therapeutic strategies. In particular, the identification of IL-1 as the most important target in gout and pseudogout has made it possible to expand the pharmacological indications of anti-IL-1 biological drugs, opening new therapeutic perspectives for patients.
Collapse
Affiliation(s)
- Paola Galozzi
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Sara Bindoli
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology-DISCOG, University of Padova, Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Anna Scanu
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Autoinflammatory Features in Gouty Arthritis. J Clin Med 2021; 10:jcm10091880. [PMID: 33926105 PMCID: PMC8123608 DOI: 10.3390/jcm10091880] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
In the panorama of inflammatory arthritis, gout is the most common and studied disease. It is known that hyperuricemia and monosodium urate (MSU) crystal-induced inflammation provoke crystal deposits in joints. However, since hyperuricemia alone is not sufficient to develop gout, molecular-genetic contributions are necessary to better clinically frame the disease. Herein, we review the autoinflammatory features of gout, from clinical challenges and differential diagnosis, to the autoinflammatory mechanisms, providing also emerging therapeutic options available for targeting the main inflammatory pathways involved in gout pathogenesis. This has important implication as treating the autoinflammatory aspects and not only the dysmetabolic side of gout may provide an effective and safer alternative for patients even in the prevention of possible gouty attacks.
Collapse
|
18
|
Tseng CC, Wong MC, Liao WT, Chen CJ, Lee SC, Yen JH, Chang SJ. Genetic Variants in Transcription Factor Binding Sites in Humans: Triggered by Natural Selection and Triggers of Diseases. Int J Mol Sci 2021; 22:ijms22084187. [PMID: 33919522 PMCID: PMC8073710 DOI: 10.3390/ijms22084187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Variants of transcription factor binding sites (TFBSs) constitute an important part of the human genome. Current evidence demonstrates close links between nucleotides within TFBSs and gene expression. There are multiple pathways through which genomic sequences located in TFBSs regulate gene expression, and recent genome-wide association studies have shown the biological significance of TFBS variation in human phenotypes. However, numerous challenges remain in the study of TFBS polymorphisms. This article aims to cover the current state of understanding as regards the genomic features of TFBSs and TFBS variants; the mechanisms through which TFBS variants regulate gene expression; the approaches to studying the effects of nucleotide changes that create or disrupt TFBSs; the challenges faced in studies of TFBS sequence variations; the effects of natural selection on collections of TFBSs; in addition to the insights gained from the study of TFBS alleles related to gout, its associated comorbidities (increased body mass index, chronic kidney disease, diabetes, dyslipidemia, coronary artery disease, ischemic heart disease, hypertension, hyperuricemia, osteoporosis, and prostate cancer), and the treatment responses of patients.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (J.-H.Y.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Man-Chun Wong
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Wei-Ting Liao
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Correspondence: (W.-T.L.); (S.-J.C.); Tel.: +886-7-3121101 (W.-T.L.); +886-7-5916679 (S.-J.C.); Fax:+886-7-3125339 (W.-T.L.); +886-7-5919264 (S.-J.C.)
| | - Chung-Jen Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan;
| | - Su-Chen Lee
- Laboratory Diagnosis of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.T.); (J.-H.Y.)
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Biological Science and Technology, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Shun-Jen Chang
- Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, Kaohsiung 81148, Taiwan
- Correspondence: (W.-T.L.); (S.-J.C.); Tel.: +886-7-3121101 (W.-T.L.); +886-7-5916679 (S.-J.C.); Fax:+886-7-3125339 (W.-T.L.); +886-7-5919264 (S.-J.C.)
| |
Collapse
|
19
|
Abstract
Multiple interacting checkpoints are involved in the pathophysiology of gout. Hyperuricemia is the key risk factor for gout and is considered a prerequisite for monosodium urate (MSU) crystal formation. Urate underexcretion through renal and gut mechanisms is the major mechanism for hyperuricemia in most people. Multiple genetic, environmental, and metabolic factors are associated with serum urate and alter urate transport or synthesis. Urate supersaturation is the most important factor for MSU crystal formation, and other factors such as temperature, pH, and connective tissue components also play a role. The nucleotide-binding oligomerization domain leucine-rich repeats and pyrin domain-containing protein 3 inflammasome plays a pivotal role in the inflammatory response to MSU crystals, and interleukin 1β is the key cytokine mediating the inflammatory cascade. Variations in the regulatory mechanisms of this inflammatory response may affect an individual's susceptibility to developing gout. Tophus formation is the cardinal feature of advanced gout, and both MSU crystals and the inflammatory tissue component of the tophus contribute to the development of structural joint damage owing to gout. In this article, we review the pathophysiologic mechanisms of hyperuricemia, MSU crystal formation and the associated inflammatory response, tophus formation, and structural joint damage in gout.
Collapse
|
20
|
CARD8 and IL1B Polymorphisms Influence MRI Brain Patterns in Newborns with Hypoxic-Ischemic Encephalopathy Treated with Hypothermia. Antioxidants (Basel) 2021; 10:antiox10010096. [PMID: 33445495 PMCID: PMC7826682 DOI: 10.3390/antiox10010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation and oxidative stress are recognized as important contributors of brain injury in newborns due to a perinatal hypoxic-ischemic (HI) insult. Genetic variability in these pathways could influence the response to HI and the outcome of brain injury. The aim of our study was to evaluate the impact of common single-nucleotide polymorphisms in the genes involved in inflammation and response to oxidative stress on brain injury in newborns after perinatal HI insult based on the severity and pattern of magnetic resonance imaging (MRI) findings. The DNA of 44 subjects was isolated from buccal swabs. Genotyping was performed for NLRP3 rs35829419, CARD8 rs2043211, IL1B rs16944, IL1B rs1143623, IL1B rs1071676, TNF rs1800629, CAT rs1001179, SOD2 rs4880, and GPX1 rs1050450. Polymorphism in CARD8 was found to be protective against HI brain injury detected by MRI overall findings. Polymorphisms in IL1B were associated with posterior limb of internal capsule, basal ganglia, and white matter brain patterns determined by MRI. Our results suggest a possible association between genetic variability in inflammation- and antioxidant-related pathways and the severity of brain injury after HI insult in newborns.
Collapse
|
21
|
Ying Q, Wang J, Li Y, Sun N, Di Y, Shen M, Fu S. Urate crystal deposition in hyperuricemic children: a dual energy computed tomography study. Arch Med Sci 2021; 17:100-105. [PMID: 33488861 PMCID: PMC7811330 DOI: 10.5114/aoms/89835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/09/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The incidence of hyperuricemia (HUA) at younger ages is increasing along the coastal regions of China. This study aimed to compare the frequency of dual energy CT (DECT) urate crystal deposition between symptomatic hyperuricemic children and asymptomatic hyperuricemic children. MATERIAL AND METHODS Fifty-six hyperuricemic children were divided into a Joint Group (n = 33) and an Asymptomatic Group (n = 23) according to whether they had a history of arthritis symptoms, which includes rapid onset monoarthritis with intense pain and swelling. We analyzed DECT scans of their feet from the Joint Group and the Asymptomatic Group and compared their clinical features. RESULTS DECT urate deposits were observed in 28/33 (84.8%) children with symptomatic HUA and 14/23 (60.9%) with asymptomatic HUA. We found 60 areas of urate deposition in the Joint Group; DECT urate crystal deposition was most frequently observed in the first metatarsophalangeal (MTP) joint (30.0%), ankle joint (15.0%), and calcaneus (13.3%). 39 urate deposits were found in the Asymptomatic Group; DECT urate crystal deposition was most frequently observed in the calcaneus (25.6%), the first MTP joint (17.9%), and the first phalanx (15.4%). CONCLUSIONS Urate deposition can occur in children with HUA, and these deposits occur more frequently in hyperuricemic children with a history of arthritis symptoms. Also, the urate deposition in the first MTP joint and calcaneus was more prevalent than in other joints. It is important to give more attention to hyperuricemic children.
Collapse
Affiliation(s)
- Qianqian Ying
- Medicine School of Ningbo University, Ningbo, Zhejiang, China
| | - Jiapei Wang
- Department of Pediatric Rheumatoid Immunity, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Yunyan Li
- Department of Pediatric Rheumatoid Immunity, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Nan Sun
- Department of Pediatric Immunity, Tianjin Children’s Hospital, Tianjin, China
| | - Yazhen Di
- Department of Pediatric Rheumatoid Immunity, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Mengjiao Shen
- Department of Pediatric Rheumatoid Immunity, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang, China
| | - Shiwei Fu
- Medicine School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
22
|
Bodofsky S, Merriman TR, Thomas TJ, Schlesinger N. Advances in our understanding of gout as an auto-inflammatory disease. Semin Arthritis Rheum 2020; 50:1089-1100. [PMID: 32916560 DOI: 10.1016/j.semarthrit.2020.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
Gout, the most common inflammatory arthritis, is the result of hyperuricemia and inflammation induced by monosodium urate (MSU) crystal deposition. However, most people with hyperuricemia will never develop gout, implying a molecular-genetic contribution to the development of gout. Recent genomic studies reveal links between certain genetic variations and gout. We highlight recent advances in our understanding of gout as an auto-inflammatory disease. We review the auto-inflammatory aspects of gout, including the inflammasome and thirteen gout-associated inflammatory-pathway genes and associated comorbidities. This information provides important insights into emerging immune-modulating targets in the management of gout, and future novel therapeutic targets in gout treatment. Cumulatively, this has important implications for treating gout as an auto-inflammatory disease, as opposed to a purely metabolic disease.
Collapse
Affiliation(s)
- Shari Bodofsky
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States.
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - T J Thomas
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| |
Collapse
|
23
|
Klück V, van Deuren RC, Cavalli G, Shaukat A, Arts P, Cleophas MC, Crișan TO, Tausche AK, Riches P, Dalbeth N, Stamp LK, Hindmarsh JH, Jansen TLTA, Janssen M, Steehouwer M, Lelieveld S, van de Vorst M, Gilissen C, Dagna L, Van de Veerdonk FL, Eisenmesser EZ, Kim S, Merriman TR, Hoischen A, Netea MG, Dinarello CA, Joosten LA. Rare genetic variants in interleukin-37 link this anti-inflammatory cytokine to the pathogenesis and treatment of gout. Ann Rheum Dis 2020; 79:536-544. [PMID: 32114511 DOI: 10.1136/annrheumdis-2019-216233] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Gout is characterised by severe interleukin (IL)-1-mediated joint inflammation induced by monosodium urate crystals. Since IL-37 is a pivotal anti-inflammatory cytokine suppressing the activity of IL-1, we conducted genetic and functional studies aimed at elucidating the role of IL-37 in the pathogenesis and treatment of gout. METHODS Variant identification was performed by DNA sequencing of all coding bases of IL37 using molecular inversion probe-based resequencing (discovery cohort: gout n=675, controls n=520) and TaqMan genotyping (validation cohort: gout n=2202, controls n=2295). Predictive modelling of the effects of rare variants on protein structure was followed by in vitro experiments evaluating the impact on protein function. Treatment with recombinant IL-37 was evaluated in vitro and in vivo in a mouse model of gout. RESULTS We identified four rare variants in IL37 in six of the discovery gout patients; p.(A144P), p.(G174Dfs*16), p.(C181*) and p.(N182S), whereas none emerged in healthy controls (Fisher's exact p-value=0.043). All variants clustered in the functional domain of IL-37 in exon 5 (p-value=5.71×10-5). Predictive modelling and functional studies confirmed loss of anti-inflammatory functions and we substantiated the therapeutic potential of recombinant IL-37 in the treatment of gouty inflammation. Furthermore, the carrier status of p.(N182S)(rs752113534) was associated with increased risk (OR=1.81, p-value=0.031) of developing gout in hyperuricaemic individuals of Polynesian ancestry. CONCLUSION Here, we provide genetic as well as mechanistic evidence for the role of IL-37 in the pathogenesis of gout, and highlight the therapeutic potential of recombinant IL-37 for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Viola Klück
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosanne C van Deuren
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giulio Cavalli
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Amara Shaukat
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Peer Arts
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Maartje C Cleophas
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tania O Crișan
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Anne-Kathrin Tausche
- Department of Internal Medicine, Section of Rheumatology, University Clinic Carl Gustav Carus, Dresden, Saxonia, Germany
| | - Philip Riches
- Rheumatology and Bone Disease, University of Edinburgh, Edinburgh, UK
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Lisa K Stamp
- Department of Medicine, Otago University, Christchurch, Canterbury, New Zealand
| | - Jennie Harré Hindmarsh
- Te Rangawairua o Paratene Ngata Research Centre, Ngāti Porou Hauora Charitable Trust, Te Puia Springs, Tairāwhiti, New Zealand
| | - Tim L Th A Jansen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Marloes Steehouwer
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefan Lelieveld
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje van de Vorst
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lorenzo Dagna
- Internal Medicine and Clinical Immunology, Vita-Salute San Raffaele University, Milan, Italy
| | - Frank L Van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Denver, Colorado, USA
| | - SooHyun Kim
- Laboratory of Cytokine Immunology, Konkuk University, Seoul, Korea (the Republic of)
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Charles A Dinarello
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medicine, University of Colorado Denver, Denver, Colorado, USA
| | - Leo Ab Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Universitatea de Medicina si Farmacie Iuliu Hatieganu, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Wang Z, Zhao Y, Phipps-Green A, Liu-Bryan R, Ceponis A, Boyle DL, Wang J, Merriman TR, Wang W, Terkeltaub R. Differential DNA Methylation of Networked Signaling, Transcriptional, Innate and Adaptive Immunity, and Osteoclastogenesis Genes and Pathways in Gout. Arthritis Rheumatol 2020; 72:802-814. [PMID: 31738005 DOI: 10.1002/art.41173] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In gout, autoinflammatory responses to urate crystals promote acute arthritis flares, but the pathogeneses of tophi, chronic synovitis, and erosion are less well understood. Defining the pathways of epigenomic immunity training can reveal novel pathogenetic factors and biomarkers. The present study was undertaken to seminally probe differential DNA methylation patterns utilizing epigenome-wide analyses in patients with gout. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from a San Diego cohort of patients with gout (n = 16) and individually matched healthy controls (n = 14). PBMC methylome data were processed with ChAMP package in R. ENCODE data and Taiji data analysis software were used to analyze transcription factor (TF)-gene networks. As an independent validation cohort, whole blood DNA samples from New Zealand Māori subjects (n = 13 patients with gout, n = 16 control subjects without gout) were analyzed. RESULTS Differentially methylated loci clearly separated gout patients from controls, as determined by hierarchical clustering and principal components analyses. IL23R, which mediates granuloma formation and cell invasion, was identified as one of the multiple differentially methylated gout risk genes. Epigenome-wide analyses revealed differential methylome pathway enrichment for B and T cell receptor signaling, Th17 cell differentiation and interleukin-17 signaling, convergent longevity regulation, circadian entrainment, and AMP-activated protein kinase signaling, which are pathways that impact inflammation via insulin-like growth factor 1 receptor, phosphatidylinositol 3-kinase/Akt, NF-κB, mechanistic target of rapamycin signaling, and autophagy. The gout cohorts overlapped for 37 (52.9%) of the 70 TFs with hypomethylated sequence enrichment and for 30 (78.9%) of the 38 enriched KEGG pathways identified via TFs. Evidence of shared differentially methylated gout TF-gene networks, including the NF-κB activation-limiting TFs MEF2C and NFATC2, pointed to osteoclast differentiation as the most strongly weighted differentially methylated pathway that overlapped in both gout cohorts. CONCLUSION These findings of differential DNA methylation of networked signaling, transcriptional, innate and adaptive immunity, and osteoclastogenesis genes and pathways suggest that they could serve as novel therapeutic targets in the management of flares, tophi, chronic synovitis, and bone erosion in patients with gout.
Collapse
Affiliation(s)
| | | | | | - Ru Liu-Bryan
- University of California, San Diego and San Diego VAMC
| | | | | | - Jun Wang
- University of California, San Diego
| | | | - Wei Wang
- University of California, San Diego
| | | |
Collapse
|
25
|
Wrigley R, Phipps-Green AJ, Topless RK, Major TJ, Cadzow M, Riches P, Tausche AK, Janssen M, Joosten LAB, Jansen TL, So A, Harré Hindmarsh J, Stamp LK, Dalbeth N, Merriman TR. Pleiotropic effect of the ABCG2 gene in gout: involvement in serum urate levels and progression from hyperuricemia to gout. Arthritis Res Ther 2020; 22:45. [PMID: 32164793 PMCID: PMC7069001 DOI: 10.1186/s13075-020-2136-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The ABCG2 Q141K (rs2231142) and rs10011796 variants associate with hyperuricaemia (HU). The effect size of ABCG2 rs2231142 on urate is ~ 60% that of SLC2A9, yet the effect size on gout is greater. We tested the hypothesis that ABCG2 plays a role in the progression from HU to gout by testing for association of ABCG2 rs2231142 and rs10011796 with gout using HU controls. METHODS We analysed 1699 European gout cases and 14,350 normouricemic (NU) and HU controls, and 912 New Zealand (NZ) Polynesian (divided into Eastern and Western Polynesian) gout cases and 696 controls. Association testing was performed using logistic and linear regression with multivariate adjusting for confounding variables. RESULTS In Europeans and Polynesians, the ABCG2 141K (T) allele was associated with gout using HU controls (OR = 1.85, P = 3.8E- 21 and ORmeta = 1.85, P = 1.3E- 03, respectively). There was evidence for an effect of 141K in determining HU in European (OR = 1.56, P = 1.7E- 18) but not in Polynesian (ORmeta = 1.49, P = 0.057). For SLC2A9 rs11942223, the T allele associated with gout in the presence of HU in European (OR = 1.37, P = 4.7E- 06), however significantly weaker than ABCG2 rs2231142 141K (PHet = 0.0023). In Western Polynesian and European, there was epistatic interaction between ABCG2 rs2231142 and rs10011796. Combining the presence of the 141K allele with the rs10011796 CC-genotype increased gout risk, in the presence of HU, 21.5-fold in Western Polynesian (P = 0.009) and 2.6-fold in European (P = 9.9E- 06). The 141K allele of ABCG2 associated with increased gout flare frequency in Polynesian (Pmeta = 2.5E- 03). CONCLUSION These data are consistent with a role for ABCG2 141K in gout in the presence of established HU.
Collapse
Affiliation(s)
- Rebekah Wrigley
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand
| | | | - Ruth K Topless
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand
| | - Tanya J Major
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand
| | - Philip Riches
- Rheumatic Diseases Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Anne-Kathrin Tausche
- Department of Rheumatology, University Clinic "Carl-Gustav-Carus", Dresden, Germany
| | - Matthijs Janssen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tim L Jansen
- Department of Rheumatology, VieCuri Medical Center, Venlo, The Netherlands
| | - Alexander So
- Laboratory of Rheumatology, University of Lausanne, CHUV, Nestlé 05-5029, 1011, Lausanne, Switzerland
| | | | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Many novel genetic associations in the field of hyperuricaemia and gout have been described recently. This review discusses advances in gout genetics and their potential clinical applications. RECENT FINDINGS Genome-wide association studies have identified approximately 30 serum urate-associated loci, some of which represent targets for drug development in gout. Some genes implicated in initiating the inflammatory response to deposited crystals in gout flares have also been described. In addition, genetic studies have been used to understand the link between hyperuricaemia and other comorbidities, particularly cardiometabolic diseases. ABCG2 has been established as a key genetic determinant in the onset of gout, and plays a role in the progression and severity of disease. Recent pharmacogenetic studies have also demonstrated the association between ABCG2 and poor response to allopurinol, and the link between HLA-B58:01 genotype and adverse drug reactions to allopurinol. SUMMARY Advances in gout genetics have provided important molecular insights into disease pathogenesis, better characterized the pharmacogenetics of allopurinol, and raised the possibility of using genetic testing to provide personalized treatment for patients. Prospective studies are now needed to clarify whether genetic testing in gout provides further benefit when added to established clinical management.
Collapse
|
27
|
Mavčič B, Antolič V, Dolžan V. Association of NLRP3 and CARD8 Inflammasome Polymorphisms With Aseptic Loosening After Primary Total Hip Arthroplasty. J Orthop Res 2020; 38:417-421. [PMID: 31529732 DOI: 10.1002/jor.24474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Our aim was to investigate the association of inflammasome polymorphisms NLRP3 rs35829419 (p. Q705K) and CARD8 rs2043211 (p. C10X) with aseptic loosening of total hip endoprostheses. We asked whether patients with the loosening of total hip arthroplasty earlier than 15 years after primary implantation had a higher proportion of the polymorphisms Q705K and C10X in comparison to subjects without loosening. A retrospective case-control study compared 36 patients with total hip endoprosthesis loosening earlier than 15 years after primary implantation and 51 control subjects with unloosened total hip endoprostheses, matched for gender, age, and follow-up period. Buccal mucosa samples were used for genomic DNA analysis and genotyped for NLRP3 rs35829419 and CARD8 rs2043211 using a fluorescence-based competitive allele-specific real-time polymerase chain reaction. The proportion of subjects with both wild-type NLRP3 and CARD8 (i.e., without Q705K or C10X) was considerably higher in the control group when compared with patients with early total hip arthroplasty loosening (49% vs. 28%; p = 0.05). After adjustment for gender, age, and follow-up, patients with combined wild type of both NLRP3 and CARD8 had significantly smaller odds for early implant loosening (odds ratio 0.33, p = 0.02). Investigated polymorphisms may influence several inflammatory pathways and contribute to the loosening of artificial implants with potential clinical significance for the appropriate selection of patients and endoprostheses when planning elective total hip arthroplasty. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:417-421, 2020.
Collapse
Affiliation(s)
- Blaž Mavčič
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Faculty of Medicine, University of Ljubljana, Zaloška 9, SI-1000, Ljubljana, Slovenia
| | - Vane Antolič
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Faculty of Medicine, University of Ljubljana, Zaloška 9, SI-1000, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
28
|
Spel L, Martinon F. Inflammasomes contributing to inflammation in arthritis. Immunol Rev 2020; 294:48-62. [DOI: 10.1111/imr.12839] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lotte Spel
- Departement of Biochemistry University of Lausanne Epalinges Switzerland
| | - Fabio Martinon
- Departement of Biochemistry University of Lausanne Epalinges Switzerland
| |
Collapse
|
29
|
Elevated Interleukin 1β and Interleukin 6 Levels in the Serum of Children With Hyperuricemia. J Clin Rheumatol 2019; 24:65-69. [PMID: 29232321 DOI: 10.1097/rhu.0000000000000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSES The aim of this study was to investigate the serum levels and clinical significance of interleukin 1β (IL-1β) and IL-6 in children with hyperuricemia (HUA). METHODS We included 71 children with HUA and 71 children with no HUA as control subjects. Children with HUA were divided into groups I and II according to whether they had a history of acute gout-like attacks (including sudden monoarthritis of rapid onset with intense pain and swelling). Group I was examined twice (A, in the acute phase; B, in the remission phase). Serum IL-1β and IL-6 levels were measured by enzyme-linked immunosorbent assay. RESULTS Serum IL-1β and IL-6 levels were increased in children with HUA and were overall statistically different from the control group (P < 0.05, respectively). Serum IL-1β and IL-6 were significantly higher in group IA in comparison with group IB, group II, and control subjects (P < 0.05, respectively), as well as in groups IB and II compared with control subjects (P < 0.05, respectively). In group IB, the serum IL-1β and IL-6 concentrations were higher than those in group II, but there were no statistical differences (P > 0.05). In addition, in children with HUA, serum IL-1β and IL-6 levels were positively associated with white blood cell count, neutrophil count, monocyte count, uric acid levels, erythrocyte sedimentation rate, C-reactive protein, blood urea nitrogen, and serum creatinine levels (all P < 0.05), but were not associated with triglycerides, total cholesterol, low-density lipoprotein cholesterol, or high-density lipoprotein cholesterol levels (all P > 0.05). CONCLUSION IL-1β and IL-6 levels are increased in children with hyperuricemia, even if they have not had acute gout. Further studies are necessary to fully characterize the significance of IL-1β and IL-6 found in HUA children, and whether they could be correlated with long-term prognosis.
Collapse
|
30
|
Major TJ, Dalbeth N, Stahl EA, Merriman TR. An update on the genetics of hyperuricaemia and gout. Nat Rev Rheumatol 2019; 14:341-353. [PMID: 29740155 DOI: 10.1038/s41584-018-0004-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A central aspect of the pathogenesis of gout is elevated urate concentrations, which lead to the formation of monosodium urate crystals. The clinical features of gout result from an individual's immune response to these deposited crystals. Genome-wide association studies (GWAS) have confirmed the importance of urate excretion in the control of serum urate levels and the risk of gout and have identified the kidneys, the gut and the liver as sites of urate regulation. The genetic contribution to the progression from hyperuricaemia to gout remains relatively poorly understood, although genes encoding proteins that are involved in the NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome pathway play a part. Genome-wide and targeted sequencing is beginning to identify uncommon population-specific variants that are associated with urate levels and gout. Mendelian randomization studies using urate-associated genetic variants as unconfounded surrogates for lifelong urate exposure have not supported claims that urate is causal for metabolic conditions that are comorbidities of hyperuricaemia and gout. Genetic studies have also identified genetic variants that predict responsiveness to therapies (for example, urate-lowering drugs) for treatment of hyperuricaemia. Future research should focus on large GWAS (that include asymptomatic hyperuricaemic individuals) and on increasing the use of whole-genome sequencing data to identify uncommon genetic variants with increased penetrance that might provide opportunities for clinical translation.
Collapse
Affiliation(s)
- Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Eli A Stahl
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
31
|
Shin JI, Lee KH, Joo YH, Lee JM, Jeon J, Jung HJ, Shin M, Cho S, Kim TH, Park S, Jeon BY, Jeong H, Lee K, Kang K, Oh M, Lee H, Lee S, Kwon Y, Oh GH, Kronbichler A. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J Autoimmun 2019; 103:102299. [PMID: 31326231 DOI: 10.1016/j.jaut.2019.06.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes are a multi-protein platform forming a part of the innate immune system. Inflammasomes are at standby status and can be activated when needed. Inflammasome activation is an important mechanism for the production of active interleukin (IL)-1β and IL-18, which have important roles to instruct adaptive immunity. Active forms of inflammasomes trigger a series of inflammatory cascades and lead to the differentiation and polarization of naïve T cells and secretion of various cytokines, which can induce various kinds of autoimmune and rheumatic diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), gout, Sjögren's syndrome, Behçet's disease, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgA vasculitis (former Henoch-Schönlein purpura ). In this review, we summarize studies published on inflammasomes and review their roles in various autoimmune diseases. Understanding of the role of inflammasomes may facilitate the diagnosis of autoimmune diseases and the development of tailored therapies in the future.
Collapse
Affiliation(s)
- Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea
| | - Yo Han Joo
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon M Lee
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Jaewook Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Jae Jung
- Yonsei University College of Medicine, Seoul, South Korea
| | - Minkyue Shin
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seobum Cho
- Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Hwan Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyuk Park
- Yonsei University College of Medicine, Seoul, South Korea
| | - Bong Yeol Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunwoo Jeong
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kangto Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kyutae Kang
- Yonsei University College of Medicine, Seoul, South Korea
| | - Myungsuk Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hansang Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seungchul Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Yeji Kwon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Geun Ho Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Merriman T, Terkeltaub R. PPARGC1B: insight into the expression of the gouty inflammation phenotype: PPARGC1B and gouty inflammation. Rheumatology (Oxford) 2019; 56:323-325. [PMID: 28003496 DOI: 10.1093/rheumatology/kew453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/04/2016] [Indexed: 01/07/2023] Open
Affiliation(s)
- Tony Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Robert Terkeltaub
- VA San Diego Healthcare System.,Department of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
33
|
Dalbeth N, Choi HK, Terkeltaub R. Review: Gout: A Roadmap to Approaches for Improving Global Outcomes. Arthritis Rheumatol 2019; 69:22-34. [PMID: 27389665 DOI: 10.1002/art.39799] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022]
Affiliation(s)
| | - Hyon K Choi
- Massachusetts General Hospital and Harvard Medical School, Boston
| | - Robert Terkeltaub
- VA San Diego Healthcare System and University of California, San Diego
| |
Collapse
|
34
|
Day RO, Lau W, Stocker SL, Aung E, Coleshill MJ, Schulz M, Bechara J, Carland JE, Graham GG, Williams KM, McLachlan AJ. Management of gout in older people. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2019. [DOI: 10.1002/jppr.1511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Richard O. Day
- St Vincent's Hospital Clinical School; UNSW Medicine; Sydney Australia
- Department of Clinical Pharmacology and Toxicology; St Vincent's Hospital; Sydney Australia
| | - Wendy Lau
- Westmead Hospital; Sydney Australia
- UNSW Medicine; Sydney Australia
| | - Sophie L. Stocker
- Department of Clinical Pharmacology and Toxicology; St Vincent's Hospital; Sydney Australia
- UNSW Medicine; Sydney Australia
| | - Eindra Aung
- Department of Clinical Pharmacology and Toxicology; St Vincent's Hospital; Sydney Australia
| | - Mathew J. Coleshill
- Department of Clinical Pharmacology and Toxicology; St Vincent's Hospital; Sydney Australia
- UNSW Medicine; Sydney Australia
| | - Marcel Schulz
- Department of Clinical Pharmacology and Toxicology; St Vincent's Hospital; Sydney Australia
- UNSW Medicine; Sydney Australia
| | - Jacob Bechara
- Department of Clinical Pharmacology and Toxicology; St Vincent's Hospital; Sydney Australia
- UNSW Medicine; Sydney Australia
| | - Jane E. Carland
- Department of Clinical Pharmacology and Toxicology; St Vincent's Hospital; Sydney Australia
- UNSW Medicine; Sydney Australia
| | | | | | - Andrew J. McLachlan
- Sydney Pharmacy School; University of Sydney; Sydney Australia
- Department of Clinical Pharmacology; St Vincent's Hospital; Sydney Darlinghurst Australia
| |
Collapse
|
35
|
Zhu W, Deng Y, Zhou X. Multiple Membrane Transporters and Some Immune Regulatory Genes are Major Genetic Factors to Gout. Open Rheumatol J 2018; 12:94-113. [PMID: 30123371 PMCID: PMC6062909 DOI: 10.2174/1874312901812010094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 01/10/2023] Open
Abstract
Gout is a common form of inflammatory arthritis caused by hyperuricemia and the deposition of Monosodium Urate (MSU) crystals. It is also considered as a complex disorder in which multiple genetic factors have been identified in association with its susceptibility and/or clinical outcomes. Major genes that were associated with gout include URAT1, GLUT9, OAT4, NPT1 (SLC17A1), NPT4 (SLC17A3), NPT5 (SLC17A4), MCT9, ABCG2, ABCC4, KCNQ1, PDZK1, NIPAL1, IL1β, IL-8, IL-12B, IL-23R, TNFA, MCP-1/CCL2, NLRP3, PPARGC1B, TLR4, CD14, CARD8, P2X7R, EGF, A1CF, HNF4G and TRIM46, LRP2, GKRP, ADRB3, ADH1B, ALDH2, COMT, MAOA, PRKG2, WDR1, ALPK1, CARMIL (LRRC16A), RFX3, BCAS3, CNIH-2, FAM35A and MYL2-CUX2. The proteins encoded by these genes mainly function in urate transport, inflammation, innate immunity and metabolism. Understanding the functions of gout-associated genes will provide important insights into future studies to explore the pathogenesis of gout, as well as to develop targeted therapies for gout.
Collapse
Affiliation(s)
- Weifeng Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yan Deng
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Ophthalmology of Children, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaodong Zhou
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
36
|
Merriman TR, Wilcox PL. Cardio-metabolic disease genetic risk factors among Māori and Pacific Island people in Aotearoa New Zealand: current state of knowledge and future directions. Ann Hum Biol 2018; 45:202-214. [PMID: 29877153 DOI: 10.1080/03014460.2018.1461929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Cardio-metabolic conditions in Aotearoa New Zealand (NZ) Māori and non-indigenous Polynesian (Pacific) populations have been increasing in prevalence and severity, especially over the last two decades. OBJECTIVES To assess knowledge on genetic and non-genetic risk factors for cardio-metabolic disease in the Māori and Pacific populations residing in Aotearoa NZ by a semi-systematic review of the PubMed database. To outline possible future directions in genetic epidemiological research with Māori and Pacific communities. RESULTS There have been few studies to confirm that risk factors in other populations also associate with cardio-metabolic conditions in Māori and Pacific populations. Such data are important when interventions are considered. Genetic studies have been sporadic, with no genome-wide association studies done. CONCLUSIONS Biomedical research with Māori and Pacific communities is important to reduce the prevalence and impact of the cardio-metabolic diseases, as precision medicine is implemented in other Aotearoa NZ populations using overseas findings. Genuine engagement with Māori and Pacific communities is needed to ensure positive outcomes for genetic studies, from data collection through to analysis and dissemination. Important is building trust, understanding by researchers of fundamental cultural concepts and implementing protocols that minimise risks and maximise benefits. Approaches that utilise information such as genealogical information and whole genome sequencing technologies will provide new insights into cardio-metabolic conditions-and new interventions for affected individuals and families.
Collapse
Affiliation(s)
- Tony R Merriman
- a Biochemistry Department , University of Otago , Dunedin , Aotearoa , New Zealand
| | - Phillip L Wilcox
- b Department of Mathematics and Statistics , University of Otago , Dunedin , Aotearoa , New Zealand
| |
Collapse
|
37
|
Abstract
Genome-wide association studies (GWAS) have identified nearly 30 loci associated with urate concentrations that also influence the subsequent risk of gout. The ABCG2 Q141 K variant is highly likely to be causal and results in internalization of ABCG2, which can be rescued by drugs. Three other GWAS loci contain uric acid transporter genes, which are also highly likely to be causal. However identification of causal genes at other urate loci is challenging. Finally, relatively little is known about the genetic control of progression from hyperuricemia to gout. Only 4 small GWAS have been published for gout.
Collapse
Affiliation(s)
- Tony Merriman
- Department of Biochemistry, University of Otago, 710 Cumberland Street, Dunedin 9054, New Zealand.
| |
Collapse
|
38
|
Gosling AL, Boocock J, Dalbeth N, Harré Hindmarsh J, Stamp LK, Stahl EA, Choi HK, Matisoo-Smith EA, Merriman TR. Mitochondrial genetic variation and gout in Māori and Pacific people living in Aotearoa New Zealand. Ann Rheum Dis 2018; 77:571-578. [PMID: 29247128 DOI: 10.1136/annrheumdis-2017-212416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Mitochondria have an important role in the induction of the NLRP3 inflammasome response central in gout. The objective was to test whether mitochondrial genetic variation and copy number in New Zealand Māori and Pacific (Polynesian) people in Aotearoa New Zealand associate with susceptibility to gout. METHODS 437 whole mitochondrial genomes from Māori and Pacific people (predominantly men) from Aotearoa New Zealand (327 people with gout, 110 without gout) were sequenced. Mitochondrial DNA copy number variation was determined by assessing relative read depth using data produced from whole genome sequencing (32 cases, 43 controls) and targeted resequencing of urate loci (151 cases, 222 controls). Quantitative PCR was undertaken for replication of copy number findings in an extended sample set of 1159 Māori and Pacific men and women (612 cases, 547 controls). RESULTS There was relatively little mitochondrial genetic diversity, with around 96% of those sequenced in this study belonging to the B4a1a and derived sublineages. A B haplogroup heteroplasmy in hypervariable region I was found to associate with a higher risk of gout among the mitochondrial sequenced sample set (position 16181: OR=1.57, P=0.001). Increased copies of mitochondrial DNA were found to protect against gout risk with the effect being consistent when using hyperuricaemic controls across each of the three independent sample sets (OR=0.89, P=0.007; OR=0.90, P=0.002; OR=0.76, P=0.03). Paradoxically, an increase of mitochondrial DNA also associated with an increase in gout flare frequency in people with gout in the two larger sample sets used for the copy number analysis (β=0.003, P=7.1×10-7; β=0.08, P=1.2×10-4). CONCLUSION Association of reduced copy number with gout in hyperuricaemia was replicated over three Polynesian sample sets. Our data are consistent with emerging research showing that mitochondria are important for the colocalisation of the NLRP3 and ASC inflammasome subunits, a process essential for the generation of interleukin-1β in gout.
Collapse
Affiliation(s)
- Anna L Gosling
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - James Boocock
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Eli A Stahl
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, USA
| | - Hyon K Choi
- Section of Rheumatology and Clinical Epidemiology Unit, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
39
|
Alexander K, Conley YP, Levine JD, Cooper BA, Paul SM, Mastick J, West C, Miaskowski C. Cytokine Gene Polymorphisms Associated With Various Domains of Quality of Life in Women With Breast Cancer. J Pain Symptom Manage 2018; 55:334-350.e3. [PMID: 28947144 PMCID: PMC5794537 DOI: 10.1016/j.jpainsymman.2017.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
CONTEXT Little is known about the phenotypic and molecular characteristics associated with various domains of quality of life (QOL) in women after breast cancer surgery. OBJECTIVES In a sample of women with breast cancer (n = 398), purposes were as follows: to identify latent classes with distinct trajectories of QOL from before surgery through six months after surgery and to evaluate for differences in demographic and clinical characteristics, as well as for polymorphisms in cytokine genes, between these latent classes. METHODS Latent class analyses were done to identify subgroups of patients with distinct QOL outcomes. Candidate gene analyses were done to identify cytokine gene polymorphisms associated with various domains of QOL (i.e., physical, psychological, spiritual, social). RESULTS One latent class was identified for the psychological and spiritual domains. Two latent classes were identified for the social domain and overall QOL scores. Three latent classes were identified for the physical domain. For the physical and social domains, as well as for the overall QOL scores, distinct phenotypic characteristics (i.e., younger age, poorer functional status, higher body mass index, and receipt of adjuvant chemotherapy) and a number of cytokine gene polymorphisms (CXCL8, NFKB2, TNFSF, IL1B, IL13, and NFKB1) were associated with membership in the lower QOL classes. CONCLUSIONS Findings suggest that women experience distinctly different physical well-being, social well-being, and total QOL outcomes during and after breast cancer surgery. The genetic associations identified suggest that cytokine dysregulation influences QOL outcomes. However, specific QOL domains may be impacted by different cytokines.
Collapse
Affiliation(s)
| | | | - Jon D Levine
- University of California, San Francisco, California, USA
| | - Bruce A Cooper
- University of California, San Francisco, California, USA
| | - Steven M Paul
- University of California, San Francisco, California, USA
| | - Judy Mastick
- University of California, San Francisco, California, USA
| | - Claudia West
- University of California, San Francisco, California, USA
| | | |
Collapse
|
40
|
da Silva WC, Reis EC, Oshiro TM, Pontillo A. Genetics of Inflammasomes. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 108:321-341. [PMID: 30536178 DOI: 10.1007/978-3-319-89390-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mutations in inflammasome genes are responsible for rare monogenic and polygenic autoinflammatory diseases. On the other side, genetic polymorphisms in the same molecules contribute to the development of common multifactorial diseases (i.e., autoimmune diseases, cardiovascular pathologies, cancer). In this chapter we depicted the current knowledge about inflammasome genetics.
Collapse
Affiliation(s)
- Wanessa Cardoso da Silva
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.
- Avenida Dr. Enéas de Carvalho Aguiar, 470 - Instituto de Medicina Tropical (IMT) Prédio 2 - 3° andar, São Paulo, SP, Brasil.
| | - Edione C Reis
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Avenida Prof. Lineu Prestes, 1730 - 05508-000 Cidade Universitária, São Paulo, SP, Brasil
| | - Telma M Oshiro
- Laboratório de Investigação em Dermatologia e Imunodeficiências, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Avenida Dr. Enéas de Carvalho Aguiar, 470 - Instituto de Medicina Tropical (IMT) Prédio 2 - 3° andar, São Paulo, SP, Brasil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- Avenida Prof. Lineu Prestes, 1730 - 05508-000 Cidade Universitária, São Paulo, SP, Brasil
| |
Collapse
|
41
|
Affiliation(s)
- Claudio Borghi
- a Department of Medical and Surgical Science (DIMEC) , Alma Mater Studiorum University of Bologna , Bologna , Italy
| |
Collapse
|
42
|
Abhishek A, Valdes AM, Jenkins W, Zhang W, Doherty M. Triggers of acute attacks of gout, does age of gout onset matter? A primary care based cross-sectional study. PLoS One 2017; 12:e0186096. [PMID: 29023487 PMCID: PMC5638318 DOI: 10.1371/journal.pone.0186096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES To determine the proportion of people with gout who self-report triggers of acute attacks; identify the commonly reported triggers, and examine the disease and demographic features associated with self-reporting any trigger(s) of acute attacks of gout. METHODS Individuals with gout were asked to fill a questionnaire enquiring about triggers that precipitated their acute gout attacks. Binary logistic regression was used to compute odds ratio (OR) and 95% confidence intervals (CI) to examine the association between having ≥1 self-reported trigger of acute gout and disease and demographic risk factors and to adjust for covariates. All statistical analyses were performed using STATA. RESULTS 550 participants returned completed questionnaires. 206 (37.5%) reported at least one trigger of acute attacks, and less than 5% reported >2 triggers. Only 28.73% participants reported that their most recent gout attack was triggered by dietary or lifestyle risk factors. The most frequently self-reported triggers were alcohol intake (14.18%), red-meat or sea-food consumption (6%), dehydration (4.91%), injury or excess activity (4.91%), and excessively warm or cold weather (4.36% and 5.45%). Patients who had onset of gout before the age of 50 years were significantly more likely to identify a trigger for precipitating their acute gout attacks (aOR (95%CI) 1.73 (1.12-2.68) after adjusting for covariates. CONCLUSION Most people with gout do not identify any triggers for acute attacks, and identifiable triggers are more common in those with young onset gout. Less than 20% people self-reported acute gout attacks from conventionally accepted triggers of gout e.g. alcohol, red-meat intake, while c.5% reported novel triggers such as dehydration, injury or physical activity, and weather extremes.
Collapse
Affiliation(s)
- Abhishek Abhishek
- Academic Rheumatology, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Nottingham, United Kingdom
- * E-mail:
| | - Ana M. Valdes
- Academic Rheumatology, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Nottingham, United Kingdom
| | - Wendy Jenkins
- Academic Rheumatology, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Nottingham, United Kingdom
| | - Weiya Zhang
- Academic Rheumatology, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Nottingham, United Kingdom
| | - Michael Doherty
- Academic Rheumatology, University of Nottingham, Clinical Sciences Building, Nottingham City Hospital, Nottingham, United Kingdom
| |
Collapse
|
43
|
Abstract
The acute symptoms of gout are triggered by the inflammatory response to monosodium urate crystals, mediated principally by macrophages and neutrophils. Innate immune pathways are of key importance in the pathogenesis of gout, in particular the activation of the NLRP3 inflammasome, which leads to the release of IL-1β and other pro-inflammatory cytokines. The orchestration of this pro-inflammatory cascade involves multiple intracellular and extracellular receptors and enzymes interacting with environmental influences that modulate the inflammatory state. Furthermore, the resolution of inflammation in gout is becoming better understood. This Review highlights recent advances in our understanding of both positive and negative regulatory pathways, as well as the genetic and environmental factors that modulate the inflammatory response. Some of these pathways can be manipulated and present novel therapeutic opportunities for the treatment of acute gout attacks.
Collapse
Affiliation(s)
- Alexander K So
- Service of Rheumatology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Avenue Pierre Decker 4, 1011 Lausanne, Switzerland
| | - Fabio Martinon
- Department of Biochemistry, University of Lausanne, 155 Chemin des Boveresses, 1066 Epalinges, Switzerland
| |
Collapse
|
44
|
Xanthine oxidoreductase and its inhibitors: relevance for gout. Clin Sci (Lond) 2017; 130:2167-2180. [PMID: 27798228 DOI: 10.1042/cs20160010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
Xanthine oxidoreductase (XOR) is the rate-limiting enzyme in purine catabolism and converts hypoxanthine to xanthine, and xanthine into uric acid. When concentrations of uric acid exceed its biochemical saturation point, crystals of uric acid, in the form of monosodium urate, emerge and can predispose an individual to gout, the commonest form of inflammatory arthritis in men aged over 40 years. XOR inhibitors are primarily used in the treatment of gout, reducing the formation of uric acid and thereby, preventing the formation of monosodium urate crystals. Allopurinol is established as first-line therapy for gout; a newer alternative, febuxostat, is used in patients unable to tolerate allopurinol. This review provides an overview of gout, a detailed analysis of the structure and function of XOR, discussion on the pharmacokinetics and pharmacodynamics of XOR inhibitors-allopurinol and febuxostat, and the relevance of XOR in common comorbidities of gout.
Collapse
|
45
|
Abstract
Acute gout arthritis flares contribute dominantly to gout-specific impaired health-related quality of life, representing a progressively increasing public health problem. Flares can be complex and expensive to treat, partly due to the frequent comorbidities. Unmet needs in gout management are more pressing given the markedly increasing gout flare hospital admission rates. In addition, chronic gouty arthritis can cause joint damage and functional impairment. This review addresses new knowledge on the basis for the marked, inherent variability of responses to deposited urate crystals, including the unpredictable and self-limited aspects of many gout flares. Specific topics reviewed include how innate immunity and two-signal inflammasome activation intersect with diet, metabolism, nutritional biosensing, the microbiome, and the phagocyte cytoskeleton and cell fate. The paper discusses the roles of endogenous constitutive regulators of inflammation, including certain nutritional biosensors, and emerging genetic and epigenetic factors. Recent advances in the basis of variability in responses to urate crystals in gout provide information about inflammatory arthritis, and have identified potential new targets and strategies for anti-inflammatory prevention and treatment of gouty arthritis.
Collapse
Affiliation(s)
- Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA. .,Department of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
46
|
Chang WC, Jan Wu YJ, Chung WH, Lee YS, Chin SW, Chen TJ, Chang YS, Chen DY, Hung SI. Genetic variants of PPAR-gamma coactivator 1B augment NLRP3-mediated inflammation in gouty arthritis. Rheumatology (Oxford) 2017; 56:457-466. [PMID: 28394398 DOI: 10.1093/rheumatology/kew337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 12/22/2022] Open
Abstract
Objective Gout is characterized by recurrent attacks of arthritis with hyperuricaemia and urate crystal-induced inflammation. Although urate transporters are known as risk factors, the immunogenetics of gouty inflammation remains unclear. This study aimed to investigate the genetic association between immune/metabolism regulators and gout. Methods We enrolled 448 gout patients and 943 population controls from Taiwan; all were Han Chinese. We screened association between gout and 22 variants of candidate genes, including NLRP3 , caspase 1, peroxisome proliferator-activated receptor-γ, proliferator-activated receptor-γ coactivator 1α ( PPARGC1A ) and 1β ( PPARGC1B ). The association was validated by replication and combined-sample analyses. Functional assays were performed by quantitative PCR, ELISA, siRNA knockdown and transfection using THP-1 cells, peripheral blood mononuclear cells and synovial cells from patients. Results Gouty arthritis exhibited significant association with variants of peroxisome PPARGC1B , which included a missense single nucleotide polymorphism, rs45520937 [P = 6.66 × 10 -9 ; odds ratio (95% CI): 1.85 (1.51, 2.28)]. Expression of PPARGC1B and NLRP3 was induced in urate crystal-activated THP-1, peripheral blood mononuclear cells and synovial cells from gout patients in acute stage. siRNA knockdown of PPARGC1B upregulated NLRP3 in urate crystal-activated macrophages. Compared with the wild-type carriers, patients with the risk A allele of rs45520937 showed statistically increased NLRP3 (P = 0.044) and plasma IL-1β (P = 0.006). Transfection of PPARGC1B cDNA with rs45520937 A allele to macrophages significantly augmented the expression of NLRP3 and IL-1β. Conclusion Genetic variants of PPARGC1B are significantly associated with gout, and a missense single nucleotide polymorphism, rs45520937, augments NLRP3 and IL-1β expression. These data suggest that variants of PPARGC1B , a regulator of metabolism and inflammation, contribute to the pathogenesis of gouty arthritis.
Collapse
Affiliation(s)
- Wan-Chun Chang
- Institute of Pharmacology, Program in Molecular Medicine, School of Medicine, National Yang-Ming University, Taipei
| | - Yeong-Jian Jan Wu
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Keelung
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taipei
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan
| | - See-Wen Chin
- Institute of Pharmacology, Program in Molecular Medicine, School of Medicine, National Yang-Ming University, Taipei.,Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taipei
| | - Ting-Jui Chen
- Institute of Pharmacology, Program in Molecular Medicine, School of Medicine, National Yang-Ming University, Taipei.,Department of Dermatology, Wan Fang Hospital, Taipei Medical University, Taipei
| | - Yu-Sun Chang
- Institute of Biomedical Sciences, Molecular Medicine Research Center, School of Medicine, Chang Gung University, Taoyuan
| | - Der-Yuan Chen
- Department of Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shuen-Iu Hung
- Institute of Pharmacology, Program in Molecular Medicine, School of Medicine, National Yang-Ming University, Taipei
| |
Collapse
|
47
|
Dalbeth N, Stamp LK, Merriman TR. The genetics of gout: towards personalised medicine? BMC Med 2017; 15:108. [PMID: 28566086 PMCID: PMC5452604 DOI: 10.1186/s12916-017-0878-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, there have been major advances in the understanding of the genetic basis of hyperuricaemia and gout as well as of the pharmacogenetics of urate-lowering therapy. Key findings include the reporting of 28 urate-associated loci, the discovery that ABCG2 plays a central role on extra-renal uric acid excretion, the identification of genes associated with development of gout in the context of hyperuricaemia, recognition that ABCG2 variants influence allopurinol response, and the impact of HLA-B*5801 testing in reducing the prevalence of allopurinol hypersensitivity in high-risk populations. These advances, together with the reducing cost of whole genome sequencing, mean that integrated personalised medicine approaches may soon be possible in clinical practice. Genetic data may inform assessment of disease prognosis in individuals with hyperuricaemia or established gout, personalised lifestyle advice, selection and dosing of urate-lowering therapy, and prevention of serious medication adverse effects. In this article, we summarise the discoveries from genome-wide association studies and discuss the potential for translation of these findings into clinical practice.
Collapse
Affiliation(s)
- Nicola Dalbeth
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
48
|
Cleophas MC, Joosten LA, Stamp LK, Dalbeth N, Woodward OM, Merriman TR. ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:129-142. [PMID: 28461764 PMCID: PMC5404803 DOI: 10.2147/pgpm.s105854] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a result of the association of a common polymorphism (rs2231142, Q141K) in the ATP-binding cassette G2 (ABCG2) transporter with serum urate concentration in a genome-wide association study, it was revealed that ABCG2 is an important uric acid transporter. This review discusses the relevance of ABCG2 polymorphisms in gout, possible etiological mechanisms, and treatment approaches. The 141K ABCG2 urate-increasing variant causes instability in the nucleotide-binding domain, leading to decreased surface expression and function. Trafficking of the protein to the cell membrane is altered, and instead, there is an increased ubiquitin-mediated proteasomal degradation of the variant protein as well as sequestration into aggresomes. In humans, this leads to decreased uric acid excretion through both the kidney and the gut with the potential for a subsequent compensatory increase in renal urinary excretion. Not only does the 141K polymorphism in ABCG2 lead to hyperuricemia through renal overload and renal underexcretion, but emerging evidence indicates that it also increases the risk of acute gout in the presence of hyperuricemia, early onset of gout, tophi formation, and a poor response to allopurinol. In addition, there is some evidence that ABCG2 dysfunction may promote renal dysfunction in chronic kidney disease patients, increase systemic inflammatory responses, and decrease cellular autophagic responses to stress. These results suggest multiple benefits in restoring ABCG2 function. It has been shown that decreased ABCG2 141K surface expression and function can be restored with colchicine and other small molecule correctors. However, caution should be exercised in any application of these approaches given the role of surface ABCG2 in drug resistance.
Collapse
Affiliation(s)
- M C Cleophas
- Department of Internal Medicine.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - L A Joosten
- Department of Internal Medicine.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - L K Stamp
- Department of Medicine, University of Otago Christchurch, Christchurch
| | - N Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - O M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
49
|
Day RO, Kannangara DR, Stocker SL, Carland JE, Williams KM, Graham GG. Allopurinol: insights from studies of dose–response relationships. Expert Opin Drug Metab Toxicol 2016; 13:449-462. [DOI: 10.1080/17425255.2017.1269745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Richard O. Day
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- St Vincent’s Clinical School, UNSW Australia, Darlinghurst, Sydney, Australia
| | - Diluk R.W. Kannangara
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- St Vincent’s Clinical School, UNSW Australia, Darlinghurst, Sydney, Australia
| | - Sophie L. Stocker
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- School of Medical Sciences, UNSW Australia, Kensington, Sydney, Australia
| | - Jane E. Carland
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- School of Medical Sciences, UNSW Australia, Kensington, Sydney, Australia
| | - Kenneth M. Williams
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- School of Medical Sciences, UNSW Australia, Kensington, Sydney, Australia
| | - Garry G. Graham
- Department of Clinical Pharmacology & Toxicology, St Vincent’s Hospital, Darlinghurst, Sydney, Australia
- School of Medical Sciences, UNSW Australia, Kensington, Sydney, Australia
| |
Collapse
|
50
|
Abstract
Gout is a chronic disease of deposition of monosodium urate crystals, which form in the presence of increased urate concentrations. Although environmental factors contribute to hyperuricaemia, renal and gut excretion of urate is central to regulation of serum urate, and genetic factors are important. Activation of the NLRP3 inflammasome and release of interleukin 1β have key roles in initiation of acute gout flares. A "treat to target serum urate" approach is essential for effective gout management; long-term lowering of serum urate to less than 360 μmol/L leads to crystal dissolution and ultimately to suppression of flares. An allopurinol dose-escalation strategy is frequently effective for achieving treatment targets, and several new urate-lowering drugs are also available. Worldwide, rates of initiation and continuation of urate-lowering therapy are very low, and, consequently, achievement of serum urate targets is infrequent. Strategies to improve quality of gout care are needed.
Collapse
Affiliation(s)
- Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|