1
|
Hao Q, Sun M, Liu Y. The spectrum of B cells in the pathogenesis, diagnosis and therapeutic applications of immunoglobulin G4-related disease. Clin Transl Immunology 2023; 12:e1477. [PMID: 38034079 PMCID: PMC10685088 DOI: 10.1002/cti2.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Immunoglobulin G4 (IgG4)-related disease is a chronic fibroinflammatory disease mediated by immune disorders. Given the challenging clinical diagnosis and treatment, knowledge of the pathogenesis of IgG4-related disease is important. The typical elevation of serum IgG4 concentrations and infiltration of IgG4-positive plasma cells in the involved tissues indicate the involvement of B lymphocytes in the pathogenesis of IgG4-related disease. Mass production of autoantibodies reflects abnormal activation of B cells, which causes tissue damage. Circulating plasmablasts are recently discovered markers that correlate with serum IgG4 concentration, the extent of organ involvement and disease activity. B-cell depletion therapy is an emerging curative strategy that can significantly alleviate clinical manifestations and achieve remission in patients with IgG4-related disease. These findings highlight the potential role of B cells in IgG4-related disease. In this review, we discuss the pathogenic impact of B lymphocytes on IgG4-related disease and describe novel therapies targeting B cells.
Collapse
Affiliation(s)
- Qiyuan Hao
- Department of Rheumatology and ImmunologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Meng Sun
- Pediatric ImmunologyChildren and Women Hospital, Karolinska InstituteStockholmSweden
| | - Yanying Liu
- Department of Rheumatology and ImmunologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Ni J, Liu X, Zhang R, Wang H, Liang J, Hou Y, Dou H. Systemic administration of Shikonin ameliorates cognitive impairment and neuron damage in NPSLE mice. J Neuroimmunol 2023; 382:578166. [PMID: 37536051 DOI: 10.1016/j.jneuroim.2023.578166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Shikonin is an anti-inflammatory natural herbal drug extracted from Lithospermum erythrorhizon and its therapeutic effect on neuropsychiatric systemic lupus erythematosus (NPSLE) is yet unknown. In our study, Shikonin significantly reversed the cognitive impairment and alleviated the brain tissue damage in NPSLE mice. The permeability of blood-brain barrier was also verified to be repaired in Shikonin-treated NPSLE mice. In particular, we found that Shikonin alleviated neuroinflammation through inhibiting β-catenin signaling pathway, thereby depressing the activation of microglia and the loss of neuronal synapses. Overall, Shikonin may be a promising candidate drug for NPSLE through diminishing neuroinflammation and repairing neuron damage.
Collapse
Affiliation(s)
- Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China
| | - Ruowen Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China
| | - Hailin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, PR China.
| |
Collapse
|
3
|
Mok CC. Targeted Small Molecules for Systemic Lupus Erythematosus: Drugs in the Pipeline. Drugs 2023; 83:479-496. [PMID: 36972009 PMCID: PMC10042116 DOI: 10.1007/s40265-023-01856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Despite the uncertainty of the pathogenesis of systemic lupus erythematosus, novel small molecules targeting specific intracellular mechanisms of immune cells are being developed to reverse the pathophysiological processes. These targeted molecules have the advantages of convenient administration, lower production costs, and the lack of immunogenicity. The Janus kinases, Bruton's tyrosine kinases, and spleen tyrosine kinases are important enzymes for activating downstream signals from various receptors on immune cells that include cytokines, growth factor, hormones, Fc, CD40, and B-cell receptors. Suppression of these kinases impairs cellular activation, differentiation, and survival, leading to diminished cytokine actions and autoantibody secretion. Intracellular protein degradation by immunoproteasomes, levered by the cereblon E3 ubiquitin ligase complex, is an essential process for the regulation of cellular functions and survival. Modulation of the immunoproteasomes and cereblon leads to depletion of long-lived plasma cells, reduced plasmablast differentiation, and production of autoantibodies and interferon-α. The sphingosine 1-phosphate/sphingosine 1-phosphate receptor-1 pathway is responsible for lymphocyte trafficking, regulatory T-cell/Th17 cell homeostasis, and vascular permeability. Sphingosine 1-phosphate receptor-1 modulators limit the trafficking of autoreactive lymphocytes across the blood-brain barrier, increase regulatory T-cell function, and decrease production of autoantibodies and type I interferons. This article summarizes the development of these targeted small molecules in the treatment of systemic lupus erythematosus, and the future prospect for precision medicine.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Tsing Chung Koon Road, New Territories, Hong Kong SAR, China.
| |
Collapse
|
4
|
Fang X, Liu C, Zhang K, Yang W, Wu Z, Shen S, Ma Y, Lu X, Chen Y, Lu T, Hu Q, Jiang Y. Discovery of orally active 1,4,5,6,8-pentaazaacenaphthylens as novel, selective, and potent covalent BTK inhibitors for the treatment of rheumatoid arthritis. Eur J Med Chem 2023; 246:114940. [PMID: 36462441 DOI: 10.1016/j.ejmech.2022.114940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Bruton's tyrosine kinase (BTK) plays a crucial role in adaptive and immune responses by modulating B-cell, Fc, toll-like, and chemokine receptor signaling pathways. BTK inhibition is a promising therapeutic approach for the treatment of inflammatory and autoimmune diseases. The development of novel, highly selective, and less toxic BTK inhibitors may be beneficial for the treatment of autoimmune diseases with unmet medical needs. In this study, structure-based drug design was used to discover a series of novel, potent, and selective covalent BTK inhibitors with a 1,4,5,6,8-pentaazaacenaphthylen scaffold. Among them, compound 36R exhibited high kinase selectivity, long target occupancy time, appropriate pharmacokinetic properties, and dose-dependent efficacy in a rat model of collagen-induced arthritis. Therefore, 36R is a novel BTK inhibitor requiring further development for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xiaobao Fang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Kun Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Wanping Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zewen Wu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yule Ma
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Xun Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| | - Yulei Jiang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| |
Collapse
|
5
|
Comparison of Intermolecular Interactions of Irreversible and Reversible Inhibitors with Bruton’s Tyrosine Kinase via Molecular Dynamics Simulations. Molecules 2022; 27:molecules27217451. [DOI: 10.3390/molecules27217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a key protein from the TEC family and is involved in B-cell lymphoma occurrence and development. Targeting BTK is therefore an effective strategy for B-cell lymphoma treatment. Since previous studies on BTK have been limited to structure-function analyses of static protein structures, the dynamics of conformational change of BTK upon inhibitor binding remain unclear. Here, molecular dynamics simulations were conducted to investigate the molecular mechanisms of association and dissociation of a reversible (ARQ531) and irreversible (ibrutinib) small-molecule inhibitor to/from BTK. The results indicated that the BTK kinase domain was found to be locked in an inactive state through local conformational changes in the DFG motif, and P-, A-, and gatekeeper loops. The binding of the inhibitors drove the outward rotation of the C-helix, resulting in the upfolded state of Trp395 and the formation of the salt bridge of Glu445-Arg544, which maintained the inactive conformation state. Met477 and Glu475 in the hinge region were found to be the key residues for inhibitor binding. These findings can be used to evaluate the inhibitory activity of the pharmacophore and applied to the design of effective BTK inhibitors. In addition, the drug resistance to the irreversible inhibitor Ibrutinib was mainly from the strong interaction of Cys481, which was evidenced by the mutational experiment, and further confirmed by the measurement of rupture force and rupture times from steered molecular dynamics simulation. Our results provide mechanistic insights into resistance against BTK-targeting drugs and the key interaction sites for the development of high-quality BTK inhibitors. The steered dynamics simulation also offers a means to rapidly assess the binding capacity of newly designed inhibitors.
Collapse
|
6
|
Robak E, Robak T. Bruton's Kinase Inhibitors for the Treatment of Immunological Diseases: Current Status and Perspectives. J Clin Med 2022; 11:2807. [PMID: 35628931 PMCID: PMC9145705 DOI: 10.3390/jcm11102807] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The use of Bruton's tyrosine kinase (BTK) inhibitors has changed the management of patients with B-cell lymphoid malignancies. BTK is an important molecule that interconnects B-cell antigen receptor (BCR) signaling. BTK inhibitors (BTKis) are classified into three categories, namely covalent irreversible inhibitors, covalent reversible inhibitors, and non-covalent reversible inhibitors. Ibrutinib is the first covalent, irreversible BTK inhibitor approved in 2013 as a breakthrough therapy for chronic lymphocytic leukemia patients. Subsequently, two other covalent, irreversible, second-generation BTKis, acalabrutinib and zanubrutinib, have been developed for lymphoid malignancies to reduce the ibrutinib-mediated adverse effects. More recently, irreversible and reversible BTKis have been under development for immune-mediated diseases, including autoimmune hemolytic anemia, immune thrombocytopenia, multiple sclerosis, pemphigus vulgaris, atopic dermatitis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's disease, and chronic spontaneous urticaria, among others. This review article summarizes the preclinical and clinical evidence supporting the role of BTKis in various autoimmune, allergic, and inflammatory conditions.
Collapse
Affiliation(s)
- Ewa Robak
- Department of Dermatology, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-510 Lodz, Poland
| |
Collapse
|
7
|
Kim DS, Park Y, Choi JW, Park SH, Cho ML, Kwok SK. Lactobacillus acidophilus Supplementation Exerts a Synergistic Effect on Tacrolimus Efficacy by Modulating Th17/Treg Balance in Lupus-Prone Mice via the SIGNR3 Pathway. Front Immunol 2021; 12:696074. [PMID: 34956169 PMCID: PMC8704231 DOI: 10.3389/fimmu.2021.696074] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTacrolimus (Tac) is an immunosuppressant used in the treatment of systemic lupus erythematosus (SLE); however, it induces T cell subset imbalances by reducing regulatory T (Treg) cells. Lactobacillus acidophilus (LA) is reported to have therapeutic efficacy in immune-mediated diseases via T cell regulation.MethodsThis study investigated whether a combination therapy of LA and Tac improves the therapeutic efficacy of Tac by modulating T cell subset populations in an animal model of SLE. Eight-week-old MRL/lpr mice were orally administered with 5 mg/kg of Tac and/or 50 mg/kg of LA daily for 8 weeks. Cecal microbiota compositions, serum autoantibodies levels, the degree of proteinuria, histological changes in the kidney, and populations of various T cell subsets in the spleen were analyzed.ResultsMice presented with significant gut dysbiosis, which were subsequently recovered by the combination treatment of Tac and LA. Double negative T cells in the peripheral blood and spleens of MRL/lpr mice were significantly decreased by the combination therapy. The combination treatment reduced serum levels of anti-dsDNA antibodies and Immunoglobulin G2a, and renal pathology scores were also markedly alleviated. The combination therapy induced Treg cells and decreased T helper 17 (Th17) cells both in vitro and in vivo. In vitro treatment with LA induced the production of indoleamine-2,3-dioxygenase, programmed death-ligand 1, and interleukin-10 via the specific intracellular adhesion molecule-3 grabbing non-integrin homolog-related 3 receptor signals.ConclusionThe present findings indicate that LA augments the therapeutic effect of Tac and modulates Th17/Treg balance in a murine model of SLE.
Collapse
Affiliation(s)
- Da Som Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho, ; Seung-Ki Kwok,
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho, ; Seung-Ki Kwok,
| |
Collapse
|
8
|
Ringheim GE, Wampole M, Oberoi K. Bruton's Tyrosine Kinase (BTK) Inhibitors and Autoimmune Diseases: Making Sense of BTK Inhibitor Specificity Profiles and Recent Clinical Trial Successes and Failures. Front Immunol 2021; 12:662223. [PMID: 34803999 PMCID: PMC8595937 DOI: 10.3389/fimmu.2021.662223] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical development of BTK kinase inhibitors for treating autoimmune diseases has lagged behind development of these drugs for treating cancers, due in part from concerns over the lack of selectivity and associated toxicity profiles of first generation drug candidates when used in the long term treatment of immune mediated diseases. Second generation BTK inhibitors have made great strides in limiting off-target activities for distantly related kinases, though they have had variable success at limiting cross-reactivity within the more closely related TEC family of kinases. We investigated the BTK specificity and toxicity profiles, drug properties, disease associated signaling pathways, clinical indications, and trial successes and failures for the 13 BTK inhibitor drug candidates tested in phase 2 or higher clinical trials representing 7 autoimmune and 2 inflammatory immune-mediated diseases. We focused on rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic lupus erythematosus (SLE) where the majority of BTK nonclinical and clinical studies have been reported, with additional information for pemphigus vulgaris (PV), Sjogren’s disease (SJ), chronic spontaneous urticaria (CSU), graft versus host disease (GVHD), and asthma included where available. While improved BTK selectivity versus kinases outside the TEC family improved clinical toxicity profiles, less profile distinction was evident within the TEC family. Analysis of genetic associations of RA, MS, and SLE biomarkers with TEC family members revealed that BTK and TEC family members may not be drivers of disease. They are, however, mediators of signaling pathways associated with the pathophysiology of autoimmune diseases. BTK in particular may be associated with B cell and myeloid differentiation as well as autoantibody development implicated in immune mediated diseases. Successes in the clinic for treating RA, MS, PV, ITP, and GVHD, but not for SLE and SJ support the concept that BTK plays an important role in mediating pathogenic processes amenable to therapeutic intervention, depending on the disease. Based on the data collected in this study, we propose that current compound characteristics of BTK inhibitor drug candidates for the treatment of autoimmune diseases have achieved the selectivity, safety, and coverage requirements necessary to deliver therapeutic benefit.
Collapse
Affiliation(s)
- Garth E Ringheim
- Clinical Pharmacology and Translational Medicine, Eisai Inc, Woodcliff Lake, NJ, United States
| | | | - Kinsi Oberoi
- Science Group, Clarivate, Philadelphia, PA, United States
| |
Collapse
|
9
|
Byun JY, Koh YT, Jang SY, Witcher JW, Chan JR, Pustilnik A, Daniels MJ, Kim YH, Suh KH, Linnik MD, Lee YM. Target modulation and pharmacokinetics/pharmacodynamics translation of the BTK inhibitor poseltinib for model-informed phase II dose selection. Sci Rep 2021; 11:18671. [PMID: 34548595 PMCID: PMC8455565 DOI: 10.1038/s41598-021-98255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/01/2021] [Indexed: 01/14/2023] Open
Abstract
The selective Bruton tyrosine kinase (BTK) inhibitor poseltinib has been shown to inhibit the BCR signal transduction pathway and cytokine production in B cells (Park et al.Arthritis Res. Ther.18, 91, 10.1186/s13075-016-0988-z, 2016). This study describes the translation of nonclinical research studies to a phase I clinical trial in healthy volunteers in which pharmacokinetics (PKs) and pharmacodynamics (PDs) were evaluated for dose determination. The BTK protein kinase inhibitory effects of poseltinib in human peripheral blood mononuclear cells (PBMCs) and in rats with collagen-induced arthritis (CIA) were evaluated. High-dimensional phosphorylation analysis was conducted on human immune cells such as B cells, CD8 + memory cells, CD4 + memory cells, NK cells, neutrophils, and monocytes, to map the impact of poseltinib on BTK/PLC and AKT signaling pathways. PK and PD profiles were evaluated in a first-in-human study in healthy donors, and a PK/PD model was established based on BTK occupancy. Poseltinib bound to the BTK protein and modulated BTK phosphorylation in human PBMCs. High-dimensional phosphorylation analysis of 94 nodes showed that poseltinib had the highest impact on anti-IgM + CD40L stimulated B cells, however, lower impacts on anti-CD3/CD-28 stimulated T cells, IL-2 stimulated CD4 + T cells and NK cells, M-CSF stimulated monocytes, or LPS-induced granulocytes. In anti-IgM + CD40L stimulated B cells, poseltinib inhibited the phosphorylation of BTK, AKT, and PLCγ2. Moreover, poseltinib dose dependently improved arthritis disease severity in CIA rat model. In a clinical phase I trial for healthy volunteers, poseltinib exhibited dose-dependent and persistent BTK occupancy in PBMCs of all poseltinib-administrated patients in the study. More than 80% of BTK occupancy at 40 mg dosing was maintained for up to 48 h after the first dose. A first-in-human healthy volunteer study of poseltinib established target engagement with circulating BTK protein. Desirable PK and PD properties were observed, and a modeling approach was used for rational dose selection for subsequent trials. Poseltinib was confirmed as a potential BTK inhibitor for the treatment of autoimmune diseases. Trial registration: This article includes the results of a clinical intervention on human participants [NCT01765478].
Collapse
Affiliation(s)
- Joo-Yun Byun
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 14 Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Yi T Koh
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA
| | - Sun Young Jang
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 14 Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Jennifer W Witcher
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA
| | - Jason R Chan
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA
| | - Anna Pustilnik
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA
| | - Mark J Daniels
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA
| | - Young Hoon Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 14 Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Kwee Hyun Suh
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 14 Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Matthew D Linnik
- Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, 92121, USA.
| | - Young-Mi Lee
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 14 Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea.
| |
Collapse
|
10
|
Arneson LC, Carroll KJ, Ruderman EM. Bruton's Tyrosine Kinase Inhibition for the Treatment of Rheumatoid Arthritis. Immunotargets Ther 2021; 10:333-342. [PMID: 34485183 PMCID: PMC8409514 DOI: 10.2147/itt.s288550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/04/2021] [Indexed: 02/02/2023] Open
Abstract
Bruton’s tyrosine kinase (BTK) inhibitors are an emerging class of drugs that inhibit B cell receptor activation, FC-γ receptor signaling, and osteoclast proliferation. Following on approval for treatment of hematologic malignancies, BTK inhibitors are now under investigation to treat a number of different autoimmune diseases, including rheumatoid arthritis (RA). While the results of BTK inhibitors in RA animal models have been promising, the ensuing human clinical trial outcomes have been rather equivocal. This review will outline the mechanisms of BTK inhibition and its potential impact on immune mediated disease, the types of BTK inhibitors being studied for RA, the findings from both preclinical and clinical trials of BTK inhibitors in RA, and directions for future research.
Collapse
Affiliation(s)
- Laura C Arneson
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kristen J Carroll
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric M Ruderman
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
11
|
Neys SFH, Rip J, Hendriks RW, Corneth OBJ. Bruton's Tyrosine Kinase Inhibition as an Emerging Therapy in Systemic Autoimmune Disease. Drugs 2021; 81:1605-1626. [PMID: 34609725 PMCID: PMC8491186 DOI: 10.1007/s40265-021-01592-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune disorders are complex heterogeneous chronic diseases involving many different immune cells. A significant proportion of patients respond poorly to therapy. In addition, the high burden of adverse effects caused by "classical" anti-rheumatic or immune modulatory drugs provides a need to develop more specific therapies that are better tolerated. Bruton's tyrosine kinase (BTK) is a crucial signaling protein that directly links B-cell receptor (BCR) signals to B-cell activation, proliferation, and survival. BTK is not only expressed in B cells but also in myeloid cells, and is involved in many different signaling pathways that drive autoimmunity. This makes BTK an interesting therapeutic target in the treatment of autoimmune diseases. The past decade has seen the emergence of first-line BTK small-molecule inhibitors with great efficacy in the treatment of B-cell malignancies, but with unfavorable safety profiles for use in autoimmunity due to off-target effects. The development of second-generation BTK inhibitors with superior BTK specificity has facilitated the investigation of their efficacy in clinical trials with autoimmune patients. In this review, we discuss the role of BTK in key signaling pathways involved in autoimmunity and provide an overview of the different inhibitors that are currently being investigated in clinical trials of systemic autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, as well as available results from completed trials.
Collapse
Affiliation(s)
- Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Winkler A, Sun W, De S, Jiao A, Sharif MN, Symanowicz PT, Athale S, Shin JH, Wang J, Jacobson BA, Ramsey SJ, Dower K, Andreyeva T, Liu H, Hegen M, Homer BL, Brodfuehrer J, Tilley M, Gilbert SA, Danto SI, Beebe JJ, Barnes BJ, Pascual V, Lin LL, Kilty I, Fleming M, Rao VR. The Interleukin-1 Receptor-Associated Kinase 4 Inhibitor PF-06650833 Blocks Inflammation in Preclinical Models of Rheumatic Disease and in Humans Enrolled in a Randomized Clinical Trial. Arthritis Rheumatol 2021; 73:2206-2218. [PMID: 34423919 PMCID: PMC8671219 DOI: 10.1002/art.41953] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the role of PF-06650833, a highly potent and selective small-molecule inhibitor of interleukin-1-associated kinase 4 (IRAK4), in autoimmune pathophysiology in vitro, in vivo, and in the clinical setting. METHODS Rheumatoid arthritis (RA) inflammatory pathophysiology was modeled in vitro through 1) stimulation of primary human macrophages with anti-citrullinated protein antibody immune complexes (ICs), 2) RA fibroblast-like synoviocyte (FLS) cultures stimulated with Toll-like receptor (TLR) ligands, as well as 3) additional human primary cell cocultures exposed to inflammatory stimuli. Systemic lupus erythematosus (SLE) pathophysiology was simulated in human neutrophils, dendritic cells, B cells, and peripheral blood mononuclear cells stimulated with TLR ligands and SLE patient ICs. PF-06650833 was evaluated in vivo in the rat collagen-induced arthritis (CIA) model and the mouse pristane-induced and MRL/lpr models of lupus. Finally, RNA sequencing data generated with whole blood samples from a phase I multiple-ascending-dose clinical trial of PF-06650833 were used to test in vivo human pharmacology. RESULTS In vitro, PF-06650833 inhibited human primary cell inflammatory responses to physiologically relevant stimuli generated with RA and SLE patient plasma. In vivo, PF-06650833 reduced circulating autoantibody levels in the pristane-induced and MRL/lpr murine models of lupus and protected against CIA in rats. In a phase I clinical trial (NCT02485769), PF-06650833 demonstrated in vivo pharmacologic action pertinent to SLE by reducing whole blood interferon gene signature expression in healthy volunteers. CONCLUSION These data demonstrate that inhibition of IRAK4 kinase activity can reduce levels of inflammation markers in humans and provide confidence in the rationale for clinical development of IRAK4 inhibitors for rheumatologic indications.
Collapse
Affiliation(s)
| | | | - Saurav De
- The Feinstein Institute, Manhasset, New York
| | | | | | | | - Shruti Athale
- Baylor Institute for Immunology Research, Dallas, Texas
| | | | - Ju Wang
- Pfizer, Cambridge, Massachusetts
| | | | | | | | | | - Heng Liu
- Pfizer, Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Recent Advances in BTK Inhibitors for the Treatment of Inflammatory and Autoimmune Diseases. Molecules 2021; 26:molecules26164907. [PMID: 34443496 PMCID: PMC8399599 DOI: 10.3390/molecules26164907] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) plays a crucial role in B-cell receptor and Fc receptor signaling pathways. BTK is also involved in the regulation of Toll-like receptors and chemokine receptors. Given the central role of BTK in immunity, BTK inhibition represents a promising therapeutic approach for the treatment of inflammatory and autoimmune diseases. Great efforts have been made in developing BTK inhibitors for potential clinical applications in inflammatory and autoimmune diseases. This review covers the recent development of BTK inhibitors at preclinical and clinical stages in treating these diseases. Individual examples of three types of inhibitors, namely covalent irreversible inhibitors, covalent reversible inhibitors, and non-covalent reversible inhibitors, are discussed with a focus on their structure, bioactivity and selectivity. Contrary to expectations, reversible BTK inhibitors have not yielded a significant breakthrough so far. The development of covalent, irreversible BTK inhibitors has progressed more rapidly. Many candidates entered different stages of clinical trials; tolebrutinib and evobrutinib are undergoing phase 3 clinical evaluation. Rilzabrutinib, a covalent reversible BTK inhibitor, is now in phase 3 clinical trials and also offers a promising future. An analysis of the protein–inhibitor interactions based on published co-crystal structures provides useful clues for the rational design of safe and effective small-molecule BTK inhibitors.
Collapse
|
14
|
Baek WY, Lee SM, Lee SW, Son IO, Choi S, Suh CH. Intravenous Administration of Toll-Like Receptor Inhibitory Peptide 1 is Effective for the Treatment of Systemic Lupus Erythematosus in a Mus musculus Model. JOURNAL OF RHEUMATIC DISEASES 2021; 28:133-142. [PMID: 37475994 PMCID: PMC10324895 DOI: 10.4078/jrd.2021.28.3.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 07/22/2023]
Abstract
Objective Systemic lupus erythematosus (SLE) is a common chronic autoimmune inflammatory disease According to recent studies, signaling through Toll-like receptor (TLR) protein, which promotes the production of inflammatory cytokines, leads to the development of SLE TLR-inhibitory peptide 1 (TIP1) has been newly identified for the treatment of autoimmune diseases. Methods The effect of TIP1 was analyzed in an SLE mouse model (MRL/lpr) The mice in the control treatment group (n=5) were administered an intravenous injection of phosphate-buffered saline twice weekly, whereas the mice in the TIP1 treatment group (n=6) were administered an intravenous injection of TIP1 (1 nmol/g) twice weekly MRL/mpj mice (n=5) were selected as normal controls The mice were injected for 4 weeks between 14 and 18 weeks of age, followed by assays of their spleen, kidneys, lymph nodes, serum, and urine. Results The antinuclear antibody and inflammatory cytokine (interferon-α) in the serum as well as levels of albumin in the urine of the mice in the TIP1 treatment group had decreased when compared to those of mice in the control treatment group Kidney inflammation in mice in the TIP1 treatment group was alleviated The mRNA expression levels of TLR7- or TLR9-related downstream signaling molecules also decreased in all organs of the mice in the TIP1 treatment group. Conclusion Intravenous treatment with TIP1 reduces symptoms and markers of inflammation in MRL/lpr mice Hence, TIP1 is a promising medication for the treatment of SLE.
Collapse
Affiliation(s)
- Wook-Young Baek
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sung-Min Lee
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - Sang-Won Lee
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - In-Ok Son
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
15
|
Niclosamide suppresses the expansion of follicular helper T cells and alleviates disease severity in two murine models of lupus via STAT3. J Transl Med 2021; 19:86. [PMID: 33632240 PMCID: PMC7908700 DOI: 10.1186/s12967-021-02760-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Autoantibody production against endogenous cellular components is pathogenic feature of systemic lupus erythematosus (SLE). Follicular helper T (TFH) cells aid in B cell differentiation into autoantibody-producing plasma cells (PCs). The IL-6 and IL-21 cytokine-mediated STAT3 signaling are crucial for the differentiation to TFH cells. Niclosamide is an anti-helminthic drug used to treat parasitic infections but also exhibits a therapeutic effect on autoimmune diseases due to its potential immune regulatory effects. In this study, we examined whether niclosamide treatment could relieve lupus-like autoimmunity by modulating the differentiation of TFH cells in two murine models of lupus. Methods 10-week-old MRL/lpr mice were orally administered with 100 mg/kg of niclosamide or with 0.5% methylcellulose (MC, vehicle) daily for 7 weeks. TLR7 agonist, resiquimod was topically applied to an ear of 8-week-old C57BL/6 mice 3 times a week for 5 weeks. And they were orally administered with 100 mg/kg of niclosamide or with 0.5% MC daily for 5 weeks. Every mouse was analyzed for lupus nephritis, proteinuria, autoantibodies, immune complex, immune cell subsets at the time of the euthanization. Results Niclosamide treatment greatly improved proteinuria, anti-dsDNA antibody levels, immunoglobulin subclass titers, histology of lupus nephritis, and C3 deposition in MRL/lpr and R848-induced mice. In addition, niclosamide inhibited the proportion of TFH cells and PCs in the spleens of these animals, and effectively suppressed differentiation of TFH-like cells and expression of associated genes in vitro. Conclusions Niclosamide exerted therapeutic effects on murine lupus models by suppressing TFH cells and plasma cells through STAT3 inhibition. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02760-2.
Collapse
|
16
|
Zhang D, Wang M, Shi G, Pan P, Ji J, Li P. Regulating T Cell Population Alleviates SLE by Inhibiting mTORC1/C2 in MRL/lpr Mice. Front Pharmacol 2021; 11:579298. [PMID: 33597869 PMCID: PMC7883674 DOI: 10.3389/fphar.2020.579298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/04/2023] Open
Abstract
It’s well known that the mammalian target of rapamycin (mTOR) exerts a critical role in the regulator of immune cells and is associated with T cells dysfunction in patients with systemic lupus erythematosus (SLE). Antigen-induced T-cell proliferation via mTORC1 suppressed by Rapamycin has been used to improve SLE primarily. Previously it has showed that INK128, a highly potent, specific orally inhibitor of mTORC1 and mTORC2, significantly attenuates SLE in pristine-induced lupus mice. Herein we compared the cure effects of INK128 and rapamycin on lupus mice. We treated MRL/lpr mice with INK128 or rapamycin at 12 weeks-age. The effect of the two inhibitors on the lupus mice was determined by immunohistochemistry. The effect of the two inhibitors on T cell populations was investigated by flow cytometry. The mTOR signaling was measured by Western Blot. INK128 remarkably alleviated SLE by reducing splenomegaly, renal inflammation and damage, and resuming T-cell dysfunction. The more effective of INK128 on SLE than rapamycin. INK128 effectively suppressed mTORC1 and mTORC2 activity in T cells, but rapamycin just suppressed mTORC1 activity. Thus, our results show that INK128 is can effectively alleviate SLE and be used as one of the potential clinical therapeutic candidates for SLE.
Collapse
Affiliation(s)
- Dongya Zhang
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meiling Wang
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoping Shi
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Pan
- Department of Anesthesiology, Kunshan Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, China
| | - Jianjian Ji
- Key Laboratory of Inflammation and Immunoregulation, School of Medical and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengfei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Genovese MC, Spindler A, Sagawa A, Park W, Dudek A, Kivitz A, Chao J, Chan LSM, Witcher J, Barchuk W, Nirula A. Safety and Efficacy of Poseltinib, Bruton's Tyrosine Kinase Inhibitor, in Patients With Rheumatoid Arthritis: A Randomized, Double-blind, Placebo-controlled, 2-part Phase II Study. J Rheumatol 2020; 48:969-976. [PMID: 33323529 DOI: 10.3899/jrheum.200893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of poseltinib (formerly LY3337641/HM71224), an irreversible covalent inhibitor of Bruton's tyrosine kinase in a 2-part, phase II trial (RAjuvenate; ClinicalTrials.gov: NCT02628028) in adults with active rheumatoid arthritis (RA). METHODS In Part A, 36 patients with mildly active RA were randomized 1:1:1:1 to oral poseltinib 5, 10, or 30 mg or placebo once daily for 4 weeks to assess safety and tolerability. No safety signals precluded moving to Part B, where 250 patients with moderate-to-severe RA were randomized 1:1:1:1 to oral poseltinib 5 mg (n = 63), 10 mg (n = 62), or 30 mg (n = 63), or placebo (n = 62) once daily for 12 weeks. Parts A and B permitted stable doses of background disease-modifying antirheumatic drugs. The primary endpoint in Part B was proportion of patients achieving 20% improvement in American College of Rheumatology criteria (ACR20) at Week 12. Logistic regression compared each poseltinib dose to placebo for primary and secondary endpoints. Nonresponder imputation was used for missing data. RESULTS After interim analysis showed low likelihood of demonstrating significant efficacy, the sponsor discontinued Part B of the study. One hundred and eighty-nine (76%) patients completed 12 weeks in Part B; 61 discontinued study treatment (27 [44%] due to study termination by sponsor). There was no statistically significant difference in ACR20 response between any dose of poseltinib and placebo at Week 12 (P > 0.05 for all comparisons). Five serious adverse events occurred (n = 2, placebo; n = 3, 30 mg); there was 1 death due to a fall. CONCLUSION While no safety findings precluded continuation, the study was terminated after interim data demonstrated low likelihood of benefit in RA.
Collapse
Affiliation(s)
- Mark C Genovese
- M.C. Genovese, MD, Division of Immunology and Rheumatology, Stanford University, Palo Alto, California, USA;
| | - Alberto Spindler
- A. Spindler, MD, Centro Medico Privado de Reumatologia, Tucumán, Argentina
| | - Akira Sagawa
- A. Sagawa, MD, Sagawa Akira Rheumatology Clinic, Sapporo, Japan
| | - Won Park
- W. Park, MD, PhD, Division of Rheumatology, IN-HA University, Incheon, Korea
| | - Anna Dudek
- A. Dudek, MD, PhD, AMED Medical Center, Warsaw, Poland
| | - Alan Kivitz
- A. Kivitz MD, CPI, Altoona Center for Clinical Research, Duncansville, Pennsylvania, USA
| | - Jeannie Chao
- J. Chao, MD, L. Chan, MS, J. Witcher, PhD, W. Barchuk, MD, A. Nirula, MD, PhD, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Lai Shan Melanie Chan
- J. Chao, MD, L. Chan, MS, J. Witcher, PhD, W. Barchuk, MD, A. Nirula, MD, PhD, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jennifer Witcher
- J. Chao, MD, L. Chan, MS, J. Witcher, PhD, W. Barchuk, MD, A. Nirula, MD, PhD, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - William Barchuk
- J. Chao, MD, L. Chan, MS, J. Witcher, PhD, W. Barchuk, MD, A. Nirula, MD, PhD, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Ajay Nirula
- J. Chao, MD, L. Chan, MS, J. Witcher, PhD, W. Barchuk, MD, A. Nirula, MD, PhD, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Litzenburger T, Steffgen J, Benediktus E, Müller F, Schultz A, Klein E, Ramanujam M, Harcken C, Gupta A, Wu J, Wiebe S, Li X, Flack M, Padula SJ, Visvanathan S, Hünnemeyer A, Hui J. Safety, pharmacokinetics and pharmacodynamics of BI 705564, a highly selective, covalent inhibitor of Bruton's tyrosine kinase, in Phase I clinical trials in healthy volunteers. Br J Clin Pharmacol 2020; 87:1824-1838. [PMID: 32986868 PMCID: PMC9290462 DOI: 10.1111/bcp.14571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Aims To evaluate the safety, pharmacokinetics and pharmacodynamics of single‐ and multiple‐rising doses (MRDs) of BI 705564 and establish proof of mechanism. Methods BI 705564 was studied in 2 placebo‐controlled, Phase I clinical trials testing single‐rising doses (1–160 mg) and MRDs (1–80 mg) of BI 705564 over 14 days in healthy male volunteers. Blood samples were analysed for BI 705564 plasma concentration, Bruton's tyrosine kinase (BTK) target occupancy (TO) and CD69 expression in B cells stimulated ex vivo. A substudy was conducted in allergic, otherwise healthy, MRD participants. Safety was assessed in both studies. Results All doses of BI 705564 were well tolerated. Geometric mean BI 705564 plasma terminal half‐life ranged from 10.1 to 16.9 hours across tested doses, with no relevant accumulation after multiple dosing. Doses ≥20 mg resulted in ≥85% average TO that was maintained for ≥48 hours after single‐dose administration. Functional effects of BTK signalling were demonstrated by dose‐dependent inhibition of CD69 expression. In allergic participants, BI 705564 treatment showed a trend in wheal size reduction in a skin prick test and complete inhibition of basophil activation. Mild bleeding‐related adverse events were observed with BI 705564; bleeding time increased in 1/12 participants (8.3%) who received placebo vs 26/48 (54.2%) treated with BI 705564. Conclusion BI 705564 showed efficient target engagement through durable TO and inhibition of ex vivo B‐cell activation, and proof of mechanism through effects on allergic skin responses. Mild bleeding‐related adverse events were probably related to inhibition of platelet aggregation by BTK inhibition.
Collapse
Affiliation(s)
| | | | | | - Fabian Müller
- Boehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Armin Schultz
- CRS Clinical Research Services Mannheim GmbH Mannheim Germany
| | - Elliott Klein
- Boehringer Ingelheim Pharmaceuticals Ridgefield CT USA
| | | | | | - Alpana Gupta
- Boehringer Ingelheim Pharmaceuticals Ridgefield CT USA
| | - Jing Wu
- Boehringer Ingelheim Pharmaceuticals Ridgefield CT USA
| | - Sabrina Wiebe
- Boehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Xiujiang Li
- Boehringer Ingelheim Pharmaceuticals Ridgefield CT USA
| | - Mary Flack
- Boehringer Ingelheim Pharmaceuticals Ridgefield CT USA
| | | | | | | | - Jianan Hui
- Boehringer Ingelheim Pharmaceuticals Ridgefield CT USA
| |
Collapse
|
19
|
Intermittent Fasting Aggravates Lupus Nephritis through Increasing Survival and Autophagy of Antibody Secreting Cells in MRL/lpr Mice. Int J Mol Sci 2020; 21:ijms21228477. [PMID: 33187196 PMCID: PMC7696283 DOI: 10.3390/ijms21228477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the main contributors to organ damage are antibodies against autoantigens, such as double-stranded DNA (dsDNA). Calorie restriction and intermittent fasting (IF) have been shown to improve autoimmune disease symptoms in patients and animal models. Here, we tested the hypothesis that IF might improve symptoms in MRL/lpr mice, which spontaneously develop an SLE-like disease. Groups of mice were fed every other day (IF) or provided food ad libitum (controls), and various lupus-associated clinicopathological parameters were analyzed for up to 28 weeks. Contrary to expectations, anti-dsDNA antibody levels, immune complex deposition in the kidney, and glomerular injury were higher in the IF group than the control group, although there were no differences in spleen and lymph node weights between groups. Proteinuria was also worsened in the IF group. IF also increased the abundance of B cells, plasmablasts, and plasma cells and elevated autophagy in plasma cells in the spleen and lymph nodes. Secretion of anti-dsDNA antibody by splenocytes in vitro was reduced by chloroquine-induced inhibition of autophagy. These results suggest that IF exacerbates lupus nephritis in MRL/lpr mice by increasing autoantibody immune complex formation.
Collapse
|
20
|
Jang SG, Lee J, Hong SM, Kwok SK, Cho ML, Park SH. Metformin enhances the immunomodulatory potential of adipose-derived mesenchymal stem cells through STAT1 in an animal model of lupus. Rheumatology (Oxford) 2020; 59:1426-1438. [PMID: 31904843 DOI: 10.1093/rheumatology/kez631] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) are considered potential therapeutic agents for treating autoimmune disease because of their immunomodulatory capacities and anti-inflammatory effects. However, several studies have shown that there is no consistency in the effectiveness of the MSCs to treat autoimmune disease, including SLE. In this study, we investigated whether metformin could enhance the immunoregulatory function of MSCs, what mechanism is relevant, and whether metformin-treated MSCs could be effective in an animal lupus model. METHODS Adipose-derived (Ad)-MSCs were cultured for 72 h in the presence of metformin. Immunoregulatory factors expression was analysed by real-time PCR and ELISA. MRL/lpr mice weekly injected intravenously with 1 × 106 Ad-MSCs or metformin-treated Ad-MSCs for 8 weeks. 16-week-old mice were sacrificed and proteinuria, anti-dsDNA IgG antibody, glomerulonephritis, immune complex, cellular subset were analysed in each group. RESULTS Metformin enhanced the immunomodulatory functions of Ad-MSCs including IDO, IL-10 and TGF-β. Metformin upregulated the expression of p-AMPK, p-STAT1 and inhibited the expression of p-STAT3, p-mTOR in Ad-MSCs. STAT1 inhibition by siRNA strongly diminished IDO, IL-10, TGF-β in metformin-treated Ad-MSCs. As a result, metformin promoted the immunoregulatory effect of Ad-MSCs by enhancing STAT1 expression, which was dependent on the AMPK/mTOR pathway. Administration of metformin-treated Ad-MSCs resulted in significant disease activity improvement including inflammatory phenotype, glomerulonephritis, proteinuria and anti-dsDNA IgG antibody production in MRL/lpr mice. Moreover, metformin-treated Ad-MSCs inhibited CD4-CD8- T-cell expansion and Th17/Treg cell ratio. CONCLUSION Metformin optimized the immunoregulatory properties of Ad-MSCs and may be a novel therapeutic agent for the treatment of lupus.
Collapse
Affiliation(s)
- Se Gwang Jang
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeseon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Min Hong
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical ScienceThe Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
21
|
Torke S, Weber MS. Inhibition of Bruton´s tyrosine kinase as a novel therapeutic approach in multiple sclerosis. Expert Opin Investig Drugs 2020; 29:1143-1150. [DOI: 10.1080/13543784.2020.1807934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sebastian Torke
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| |
Collapse
|
22
|
Dent EL, Taylor EB, Turbeville HR, Ryan MJ. Curcumin attenuates autoimmunity and renal injury in an experimental model of systemic lupus erythematosus. Physiol Rep 2020; 8:e14501. [PMID: 32652896 PMCID: PMC7354090 DOI: 10.14814/phy2.14501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder with prevalent hypertension and renal disease. To avoid side effects of immunosuppressive drugs, alternative therapies are needed. Curcumin has been used in Eastern medicine for its anti‐inflammatory and antioxidant properties. This study tested whether oral curcumin administration attenuates autoimmunity and renal injury during SLE. Female NZBWF1 (model of SLE) and NZW/LacJ (control) mice were administered curcumin (500 mg kg‐1 day‐1, oral gavage) for 14 days in two separate groups beginning at either 26 or 32 weeks of age. Body weight and composition were monitored throughout the study. Immune activity was assessed by spleen weight, circulating dsDNA autoantibodies, and B lymphocytes. Renal injury (albumin excretion, glomerulosclerosis, blood urea nitrogen (BUN)) was measured as a hemodynamic function (glomerular filtration rate (GFR), mean arterial pressure (MAP)) in conscious mice. Body weight and composition were maintained in curcumin‐treated SLE mice, but decreased in vehicle‐treated SLE mice. Curcumin‐treated SLE mice had lower spleen weight and renal injury (glomerulosclerosis) compared to vehicle‐treated SLE mice when treatment started at 26 weeks of age. When curcumin treatment started at 32 weeks of age, renal injury (glomerulosclerosis, BUN) was reduced in SLE mice compared to vehicle‐treated SLE mice. GFR was reduced, and MAP was increased in vehicle‐treated SLE mice compared to controls; however, these were not improved with curcumin. No significant changes were observed in curcumin‐treated control mice. These data suggest that curcumin modulates autoimmune activity and may lessen renal injury in female mice with SLE.
Collapse
Affiliation(s)
- Elena L Dent
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Erin B Taylor
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hannah R Turbeville
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J Ryan
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,GV (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
23
|
Catlett IM, Nowak M, Kundu S, Zheng N, Liu A, He B, Girgis IG, Grasela DM. Safety, pharmacokinetics and pharmacodynamics of branebrutinib (BMS-986195), a covalent, irreversible inhibitor of Bruton's tyrosine kinase: Randomised phase I, placebo-controlled trial in healthy participants. Br J Clin Pharmacol 2020; 86:1849-1859. [PMID: 32198939 PMCID: PMC7444767 DOI: 10.1111/bcp.14290] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
Aims Branebrutinib (BMS‐986195) is a potent, highly selective, oral, small‐molecule, covalent inhibitor of Bruton's tyrosine kinase (BTK). This study evaluated safety, pharmacokinetics and pharmacodynamics of branebrutinib in healthy participants. Methods This double‐blind, placebo‐controlled, single‐ and multiple‐ascending dose (SAD; MAD) Phase I study (NCT02705989) enrolled participants into 3 parts: SAD, MAD and JMAD (MAD in first‐generation Japanese participants). In each part, participants were randomised 3:1 to receive branebrutinib (SAD: 0.3–30 mg; [J]MAD: 0.3–10 mg) or placebo. Participants in the MAD parts received branebrutinib daily for 14 days and were followed for 14 days postdosing. Safety was assessed by monitoring, laboratory and physical examinations, vital signs, and recording adverse events (AEs). Pharmacodynamics were assessed with a mass spectrometry assay that measured drug‐occupied and free BTK. Results The SAD, MAD and JMAD parts of the study included 40, 32 and 24 participants. Branebrutinib was well tolerated and AEs were mild/moderate, except for 1 serious AE that led to discontinuation. Branebrutinib was rapidly absorbed, with maximum plasma concentration occurring within 1 hour and a half‐life of 1.2—1.7 hours, dropping to undetectable levels within 24 hours. BTK occupancy was rapid, with 100% occupancy reached after a single 10‐mg dose. BTK occupancy decayed predictably over time (mean half‐life in MAD panels: 115–154 hours), such that pharmacodynamic effects were maintained after branebrutinib plasma levels fell below the lower limit of quantification. Conclusion Rapid and high occupancy of BTK and the lack of notable safety findings support further clinical development of branebrutinib.
Collapse
Affiliation(s)
| | | | | | | | - Ang Liu
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Bing He
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | |
Collapse
|
24
|
Ren J, Catalina MD, Eden K, Liao X, Read KA, Luo X, McMillan RP, Hulver MW, Jarpe M, Bachali P, Grammer AC, Lipsky PE, Reilly CM. Selective Histone Deacetylase 6 Inhibition Normalizes B Cell Activation and Germinal Center Formation in a Model of Systemic Lupus Erythematosus. Front Immunol 2019; 10:2512. [PMID: 31708928 PMCID: PMC6823248 DOI: 10.3389/fimmu.2019.02512] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
Autoantibody production by plasma cells (PCs) plays a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). The molecular pathways by which B cells become pathogenic PC secreting autoantibodies in SLE are incompletely characterized. Histone deactylase 6 (HDAC6) is a unique cytoplasmic HDAC that modifies the interaction of a number of tubulin- associated proteins; inhibition of HDAC6 has been shown to be beneficial in murine models of SLE, but the downstream pathways accounting for the therapeutic benefit have not been clearly delineated. In the current study, we sought to determine whether selective HDAC6 inhibition would abrogate abnormal B cell activation in SLE. We treated NZB/W lupus mice with the selective HDAC6 inhibitor, ACY-738, for 4 weeks beginning at 20 weeks-of age. After only 4 weeks of treatment, manifestation of lupus nephritis (LN) were greatly reduced in these animals. We then used RNAseq to determine the genomic signatures of splenocytes from treated and untreated mice and applied computational cellular and pathway analysis to reveal multiple signaling events associated with B cell activation and differentiation in SLE that were modulated by HDAC6 inhibition. PC development was abrogated and germinal center (GC) formation was greatly reduced. When the HDAC6 inhibitor-treated lupus mouse gene signatures were compared to human lupus patient gene signatures, the results showed numerous immune, and inflammatory pathways increased in active human lupus were significantly decreased in the HDAC6 inhibitor treated animals. Pathway analysis suggested alterations in cellular metabolism might contribute to the normalization of lupus mouse spleen genomic signatures, and this was confirmed by direct measurement of the impact of the HDAC6 inhibitor on metabolic activities of murine spleen cells. Taken together, these studies show HDAC6 inhibition decreases B cell activation signaling pathways and reduces PC differentiation in SLE and suggest that a critical event might be modulation of cellular metabolism.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle D Catalina
- AMPEL BioSolutions, Charlottesville, VA, United States.,RILITE Research Institute, Charlottesville, VA, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kaitlin A Read
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xin Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ryan P McMillan
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Matthew Jarpe
- Regenacy Pharmaceuticals, Waltham, MA, United States
| | | | - Amrie C Grammer
- AMPEL BioSolutions, Charlottesville, VA, United States.,RILITE Research Institute, Charlottesville, VA, United States
| | - Peter E Lipsky
- AMPEL BioSolutions, Charlottesville, VA, United States.,RILITE Research Institute, Charlottesville, VA, United States
| | - Christopher M Reilly
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States
| |
Collapse
|
25
|
Suarez-Fueyo A, Tsokos MG, Kwok SK, Maeda K, Katsuyama E, Lapchak PH, Tsokos GC. Hyaluronic Acid Synthesis Contributes to Tissue Damage in Systemic Lupus Erythematosus. Front Immunol 2019; 10:2172. [PMID: 31572382 PMCID: PMC6753633 DOI: 10.3389/fimmu.2019.02172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
Hyaluronic acid (HA), a component of the extracellular matrix, is the ligand for CD44 and has been implicated in the pathogenesis of kidney inflammation in patients with systemic lupus erythematosus (SLE), but its direct role and mechanism of action have not been studied. Here we show that administration of hymecromone (4-Methylumbelliferone, 4-MU), an HA synthesis inhibitor, to lupus-prone mice suppressed dramatically lupus-related pathology. Interestingly, 4-MU stopped the appearance of disease when administered prior to its onset and inhibited the progression of disease when administered after its appearance. Inhibition of HA synthesis in vivo reduced tissue damage and the number of intrarenal lymphoid cell infiltrates including double negative CD3+CD4-CD8- T cells which are known to be involved in the pathogenesis of SLE. Exposure of human peripheral blood mononuclear cells to HA in vitro increased the generation of CD3+CD4-CD8- T cells through a mechanism involving Rho-associated kinase. Our results signify the importance of the HA-rich tissue microenvironment in the activation of lymphocytes to cause tissue damage in SLE and suggest the consideration of inhibition of HA synthesis to treat patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, Siddiqui N, Al-Harbi MM, Attia SM, Bakheet SA. Inhibition of Bruton's tyrosine kinase and IL-2 inducible T-cell kinase suppresses both neutrophilic and eosinophilic airway inflammation in a cockroach allergen extract-induced mixed granulocytic mouse model of asthma using preventative and therapeutic strategy. Pharmacol Res 2019; 148:104441. [PMID: 31505252 DOI: 10.1016/j.phrs.2019.104441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 01/10/2023]
Abstract
Asthma is a complex airways disease with a wide spectrum which ranges from eosinophilic (Th2 driven) to mixed granulocytic (Th2/Th17 driven) phenotypes. Mixed granulocytic asthma is a cause of concern as corticosteroids often fail to control this phenotype. Different kinases such as Brutons's tyrosine kinase (BTK) and IL-2 inducible T cell kinase (ITK) play a pivotal role in shaping allergic airway inflammation. Ibrutinib is primarily a BTK inhibitor, however it is reported to be an ITK inhibitor as well. In this study, we sought to determine the effect of Ibrutinib on Th1, Th17 and Th2 immune responses in a cockroach allergen extract (CE)-induced mixed granulocytic (eosinophilic and neutrophilic) mouse model in preventative mode. Ibrutinib attenuated neutrophilic inflammation at a much lower doses (25-75 μg/mouse) in CE-induced mixed granulocytic asthma whereas Th2/Th17 immune responses remained unaffected at these doses. However, at a much higher dose, i.e. 250 μg/mouse, Ibrutinib remarkably suppressed both Th17/Th2 and lymphocytic/neutrophilic/eosinophilic airway inflammation. At molecular level, Ibrutinib suppressed phosphorylation of BTK in neutrophils at lower doses and ITK in CD4 + T cells at higher doses in CE-treated mice. Further, effects of Ibrutinib were compared with dexamethasone on CE-induced mixed granulocytic asthma in therapeutic mode. Ibrutinib was able to control granulocytic inflammation along with Th2/Th17 immune response in therapeutic mode whereas dexamethasone limited only Th2/eosinophilic inflammation. Thus, Ibrutinib has the potential to suppress both Th17/Th2 and neutrophilic/eosinophilic inflammation during mixed granulocytic asthma and therefore may be pursued as alternative therapeutic option in difficult-to-treat asthma which is resistant to corticosteroids.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Durcan L, O'Dwyer T, Petri M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet 2019; 393:2332-2343. [PMID: 31180030 DOI: 10.1016/s0140-6736(19)30237-5] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterised by the loss of self-tolerance and formation of nuclear autoantigens and immune complexes resulting in inflammation of multiple organs. The clinical presentation of SLE is heterogeneous, can involve one or more organs, including the skin, kidneys, joints, and nervous system, and take a chronic or relapsing and remitting disease course. SLE is most common in women and in those of non-white ethnicity. Because of the multitude of presentations, manifestations, and serological abnormalities in patients with SLE, diagnosis can be challenging. Therapeutic approaches predominantly involve immunomodulation and immunosuppression and are targeted to the specific organ manifestation, with the aim of achieving low disease activity. Despite many treatment advances and improved diagnostics, SLE continues to cause substantial morbidity and premature mortality. Current management strategies, although helpful, are limited by high failure rates and toxicity. An overreliance on corticosteroid therapy contributes to much of the long-term organ damage. In this Seminar, we outline the classification criteria for SLE, current treatment strategies and medications, the evidence supporting their use, and explore potential future therapies.
Collapse
Affiliation(s)
- Laura Durcan
- Department of Rheumatology, Beaumont Hospital, Dublin, Ireland; Department of Medicine, The Royal College of Surgeons of Ireland, Dublin, Ireland.
| | - Tom O'Dwyer
- School of Physiotherapy, Trinity College, Dublin, Ireland
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| |
Collapse
|
28
|
Feng Y, Duan W, Cu X, Liang C, Xin M. Bruton's tyrosine kinase (BTK) inhibitors in treating cancer: a patent review (2010-2018). Expert Opin Ther Pat 2019; 29:217-241. [PMID: 30888232 DOI: 10.1080/13543776.2019.1594777] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Bruton's tyrosine kinase (BTK) plays a critical role in the regulation of survival, proliferation, activation and differentiation of B-lineage cells. It participates by regulating multiple cellular signaling pathways, including B cell receptor and FcR signaling cascades. BTK is abundantly expressed and constitutively active in the pathogenesis of B cell hematological malignancies, as well as several autoimmune diseases. Therefore, BTK is considered as an attractive target for treatment of B-lineage lymphomas, leukemias, and some autoimmune diseases. Many industry and academia efforts have been made to explore small molecular BTK inhibitors. AREAS COVERED This review aims to provide an overview of the patented BTK inhibitors for the treatment of cancer from 2010 to 2018. EXPERT OPINION BTK inhibitors attract much interest for their therapeutic potential in the treatment of cancers and autoimmune diseases, especially for B cell hematological malignancies. In 2013, ibrutinib was approved by the FDA as the first-in-class BTK inhibitors for the treatment of mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL), and now it is also undergoing clinical evaluation for other indications in either single or combined therapy. It is clear that BTK inhibitors can provide a promising clinical benefit in treating B-lineage lymphomas and leukemias.
Collapse
Affiliation(s)
- Yifan Feng
- a Department of Medicinal Chemistry, School of Pharmacy, Health Science Center , Xi'an Jiaotong University , Xi'an , Shaanxi P.R. China
| | - Weiming Duan
- a Department of Medicinal Chemistry, School of Pharmacy, Health Science Center , Xi'an Jiaotong University , Xi'an , Shaanxi P.R. China
| | - Xiaochuan Cu
- b Department of Orthopedics , People's Hospital of Fufeng County in Shaanxi Province , Baoji , Shaanxi P.R. China
| | - Chengyuan Liang
- c Department of Pharmacy , Shaanxi University of Science & Technology , Xi'an , Shaanxi P.R. China
| | - Minhang Xin
- a Department of Medicinal Chemistry, School of Pharmacy, Health Science Center , Xi'an Jiaotong University , Xi'an , Shaanxi P.R. China
| |
Collapse
|
29
|
Haselmayer P, Camps M, Liu-Bujalski L, Nguyen N, Morandi F, Head J, O'Mahony A, Zimmerli SC, Bruns L, Bender AT, Schroeder P, Grenningloh R. Efficacy and Pharmacodynamic Modeling of the BTK Inhibitor Evobrutinib in Autoimmune Disease Models. THE JOURNAL OF IMMUNOLOGY 2019; 202:2888-2906. [PMID: 30988116 DOI: 10.4049/jimmunol.1800583] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Because of its role in mediating both B cell and Fc receptor signaling, Bruton's tyrosine kinase (BTK) is a promising target for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Evobrutinib is a novel, highly selective, irreversible BTK inhibitor that potently inhibits BCR- and Fc receptor-mediated signaling and, thus, subsequent activation and function of human B cells and innate immune cells such as monocytes and basophils. We evaluated evobrutinib in preclinical models of RA and SLE and characterized the relationship between BTK occupancy and inhibition of disease activity. In mouse models of RA and SLE, orally administered evobrutinib displayed robust efficacy, as demonstrated by reduction of disease severity and histological damage. In the SLE model, evobrutinib inhibited B cell activation, reduced autoantibody production and plasma cell numbers, and normalized B and T cell subsets. In the RA model, efficacy was achieved despite failure to reduce autoantibodies. Pharmacokinetic/pharmacodynamic modeling showed that mean BTK occupancy in blood cells of 80% was linked to near-complete disease inhibition in both RA and SLE mouse models. In addition, evobrutinib inhibited mast cell activation in a passive cutaneous anaphylaxis model. Thus, evobrutinib achieves efficacy by acting both on B cells and innate immune cells. Taken together, our data show that evobrutinib is a promising molecule for the chronic treatment of B cell-driven autoimmune disorders.
Collapse
Affiliation(s)
- Philipp Haselmayer
- Translational Innovation Platform Immunology, Merck KGaA, Darmstadt 64293, Germany
| | | | - Lesley Liu-Bujalski
- Medicinal Chemistry, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Ngan Nguyen
- Medicinal Chemistry, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Federica Morandi
- Molecular Pharmacology, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Jared Head
- Molecular Pharmacology, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Alison O'Mahony
- Eurofins DiscoverX Corporation, South San Francisco, CA 94080
| | - Simone C Zimmerli
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Billerica, MA 01821; and
| | - Lisa Bruns
- Translational Innovation Platform Immunology, Merck KGaA, Darmstadt 64293, Germany
| | - Andrew T Bender
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Billerica, MA 01821; and
| | - Patricia Schroeder
- Translational Pharmacology, EMD Serono Research and Development Institute, Billerica, MA 01821
| | - Roland Grenningloh
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Billerica, MA 01821; and
| |
Collapse
|
30
|
Recent developments in systemic lupus erythematosus pathogenesis and applications for therapy. Curr Opin Rheumatol 2019; 30:222-228. [PMID: 29206660 DOI: 10.1097/bor.0000000000000474] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) pathogenesis is complex. Aberrancies of immune function that previously were described but not well understood are now becoming better characterized, in part through recognition of monogenic cases of lupus-like disease. RECENT FINDINGS We highlight here recent descriptions of metabolic dysfunction, cytokine dysregulation, signaling defects, and DNA damage pathways in SLE. Specifically, we review the effects of signaling abnormalities in mammalian target of rapamycin, Rho kinase, Bruton's tyrosine kinase, and Ras pathways. The importance of DNA damage sensing and repair pathways, and their influence on the overproduction of type I interferon in SLE are also reviewed. SUMMARY Recent findings in SLE pathogenesis expand on previous understandings of broad immune dysfunction. These findings have clinical applications, as the dysregulated pathways described here can be targeted by existing and preclinical therapies.
Collapse
|
31
|
Chalmers SA, Glynn E, Garcia SJ, Panzenbeck M, Pelletier J, Dimock J, Seccareccia E, Bosanac T, Khalil S, Harcken C, Webb D, Nabozny G, Fine JS, Souza D, Klein E, Herlitz L, Ramanujam M, Putterman C. BTK inhibition ameliorates kidney disease in spontaneous lupus nephritis. Clin Immunol 2018; 197:205-218. [PMID: 30339790 DOI: 10.1016/j.clim.2018.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022]
Abstract
Lupus nephritis is a common disease manifestation of SLE, in which immune complex deposition and macrophage activation are important contributors to disease pathogenesis. Bruton's tyrosine kinase (BTK) plays an important role in both B cell and FcgammaR mediated myeloid cell activation. In the current study, we examined the efficacy of BI-BTK-1, a recently described irreversible BTK inhibitor, in the classical NZB × NZW F1 (NZB/W) and MRL/lpr spontaneous mouse models of SLE. NZB/W mice were randomly assigned to a treatment (0.3 mg/kg, 1 mg/kg, 3 mg/kg and 10 mg/kg) or control group and began treatment at 22 weeks of age. The experimental setup was similar in MRL/lpr mice, but with a single treated (10 mg/kg, beginning at 8-9 weeks of age) and control group. A separate experiment was performed in the MRL/lpr strain to assess the ability of BI-BTK-1 to reverse established kidney disease. Early treatment with BI-BTK-1 significantly protected NZB/W and MRL/lpr mice from the development of proteinuria, correlating with significant renal histological protection, decreased anti-DNA titers, and increased survival in both strains. BI-BTK-1 treated mice displayed a significant decrease in nephritis-associated inflammatory mediators (e.g. LCN2 and IL-6) in the kidney, combined with a significant inhibition of immune cell infiltration and accumulation. Importantly, BI-BTK-1 treatment resulted in the reversal of established kidney disease. BTK inhibition significantly reduced total B cell numbers and all B cell subsets (immature, transitional, follicular, marginal zone, and class switched) in the spleen of NZB/W mice. Overall, the significant efficacy of BI-BTK-1 in ameliorating multiple pathological endpoints associated with kidney disease in two distinct murine models of spontaneous lupus nephritis provides a strong rationale for BTK inhibition as a promising treatment approach for lupus nephritis.
Collapse
Affiliation(s)
- Samantha A Chalmers
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Elizabeth Glynn
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Sayra J Garcia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Mark Panzenbeck
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Josephine Pelletier
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Janice Dimock
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Elise Seccareccia
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA; Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Todd Bosanac
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Sara Khalil
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Christian Harcken
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Deborah Webb
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Gerald Nabozny
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Jay S Fine
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Donald Souza
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Elliott Klein
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Leal Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA.
| | - Meera Ramanujam
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA.
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
32
|
Satterthwaite AB. Bruton's Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus. Front Immunol 2018; 8:1986. [PMID: 29403475 PMCID: PMC5786522 DOI: 10.3389/fimmu.2017.01986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches for lupus, which is currently treated primarily with non-specific immunosuppression. Here, we review the contribution of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, to disease in murine lupus models. Both gain- and loss-of-function genetic studies have revealed that Btk plays multiple roles in the production of autoantibodies. These include promoting the activation, plasma cell differentiation, and class switching of autoreactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody levels, B cell activation, and kidney damage in several lupus models. These studies suggest that Btk may promote end-organ damage both by facilitating the production of autoantibodies and by mediating the inflammatory response of myeloid cells to these immune complexes. While Btk has not been associated with SLE in GWAS studies, SLE B cells display signaling defects in components both upstream and downstream of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, these observations indicate that limiting Btk activity is critical for maintaining B cell tolerance and preventing the development of autoimmune disease. Btk inhibitors, generally well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic approach for SLE.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|