1
|
Bahi M, Li C, Wang G, Korman BD. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int J Mol Sci 2024; 25:4728. [PMID: 38731946 PMCID: PMC11084945 DOI: 10.3390/ijms25094728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Korman
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, USA; (M.B.)
| |
Collapse
|
2
|
Huang J, Zhu H, Liu S, Li M, Li Y, Luo H, Zuo X. Protein profiling in systemic sclerosis patients with different pulmonary complications using proteomic antibody microarray. Arthritis Res Ther 2024; 26:29. [PMID: 38233947 PMCID: PMC10792928 DOI: 10.1186/s13075-024-03267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD) are leading causes of systemic sclerosis (SSc)-related death. In this study, we aimed to identify biomarkers for detecting SSc pulmonary complications that are mild and in the early stages to improve the prognosis. METHODS We screened for serum biomarkers using a proteomic antibody microarray that simultaneously assessed 1000 proteins. Differentially expressed proteins were further verified using ELISA. Finally, we performed a correlation analysis using clinical data. RESULTS We identified 125 differentially expressed proteins, of which calcitonin, sclerostin (SOST), CD40, and fibronectin were selected for further verification. Serum calcitonin and SOST levels were significantly elevated in all SSc pulmonary complication subgroups, whereas serum calcitonin levels were higher in the SSc with PAH subgroup than in the SSc without PAH and ILD subgroup. Serum SOST levels were possibly associated with the presence of ILD and positively related to the presence of cardiac and gastrointestinal involvement. Serum CD40 and calcitonin levels appeared to be positively related to the presence of renal involvement, and serum calcitonin was also positively related to the presence of gastrointestinal involvement. CONCLUSIONS This study indicated that serum calcitonin and SOST levels may be promising biomarkers for SSc-related PAH and ILD, respectively. Further research is needed to verify this result and understand the underlying mechanisms.
Collapse
Affiliation(s)
- Jing Huang
- Department of Rheumatology, Xiangya Hospital, Central South University, Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital, Central South University, Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Changsha, China
| | - Sijia Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, No.1 Shuaifuyuan, Beijing, 100730, China.
| | - Yisha Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Changsha, China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Changsha, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Changsha, China
| |
Collapse
|
3
|
Motta F, Tonutti A, Isailovic N, Ceribelli A, Costanzo G, Rodolfi S, Selmi C, De Santis M. Proteomic aptamer analysis reveals serum biomarkers associated with disease mechanisms and phenotypes of systemic sclerosis. Front Immunol 2023; 14:1246777. [PMID: 37753072 PMCID: PMC10518467 DOI: 10.3389/fimmu.2023.1246777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune connective tissue disease that affects multiple organs, leading to elevated morbidity and mortality with limited treatment options. The early detection of organ involvement is challenging as there is currently no serum marker available to predict the progression of SSc. The aptamer technology proteomic analysis holds the potential to correlate SSc manifestations with serum proteins up to femtomolar concentrations. Methods This is a two-tier study of serum samples from women with SSc (including patients with interstitial lung disease - ILD - at high-resolution CT scan) and age-matched healthy controls (HC) that were first analyzed with aptamer-based proteomic analysis for over 1300 proteins. Proposed associated proteins were validated by ELISA first in an independent cohort of patients with SSc and HC, and selected proteins subject to further validation in two additional cohorts. Results The preliminary aptamer-based proteomic analysis identified 33 proteins with significantly different concentrations in SSc compared to HC sera and 9 associated with SSc-ILD, including proteins involved in extracellular matrix formation and cell-cell adhesion, angiogenesis, leukocyte recruitment, activation, and signaling. Further validations in independent cohorts ultimately confirmed the association of specific proteins with early SSc onset, specific organ involvement, and serum autoantibodies. Conclusions Our multi-tier proteomic analysis identified serum proteins discriminating patients with SSc and HC or associated with different SSc subsets, disease duration, and manifestations, including ILD, skin involvement, esophageal disease, and autoantibodies.
Collapse
Affiliation(s)
- Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Natasa Isailovic
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Giovanni Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Stefano Rodolfi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
4
|
Li Y, Chen Y, Yang L, Li Y, Bai J, Feng P, Tang P, Xiang R, Huang W, Li A. Increased plasma expression of a disintegrin and metalloproteinase with thrombospondin motifs like 4 in patients with idiopathic pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Pulm Circ 2023; 13:e12267. [PMID: 37448441 PMCID: PMC10337014 DOI: 10.1002/pul2.12267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) and chronic thromboembolic pulmonary hypertension (CTEPH) can result in right heart failure. We aimed to evaluate the plasma protein levels of a disintegrin and metalloproteinase with thrombospondin motifs like 4 (ADAMTSL4) and its relationship with IPAH and CTEPH. Plasma ADAMTSL4 protein levels were measured using proteomics analysis in eight patients with IPAH and nine healthy controls. ADAMTSL4 levels in pulmonary tissues were assessed using bioinformatics tools. Protein expression of ADAMTSL4 in platelet-derived growth factor (PDGF)-BB-treated primary rat pulmonary arterial smooth muscle cells (PASMCs) was detected by Western blot. Plasma ADAMTSL4 concentrations were measured in 45 patients (15 with IPAH and 30 with CTEPH) using enzyme-linked immunosorbent assay (ELISA). Correlation between ADAMTSL4 levels and clinical parameters was evaluated. In patients with IPAH, the plasma levels of ADAMTSL4 protein were significantly higher than those in healthy controls (flod change [FC] 1.85, p < 0.05), and mRNA expression levels were significantly elevated (log FC 0.66, p < 0.05). The protein expression of ADAMTSL4 was significantly increased in PDGF-BB-treated PASMCs compared to that in the control grAoup (p < 0.05). Plasma ADAMTSL4 protein levels in patients with IPAH (4.71 ± 0.73 ng/mL, p < 0.01) and CTEPH (4.22 ± 0.66 ng/mL, p < 0.01) were higher than in healthy controls (3.01 ± 0.46 ng/mL). Plasma ADAMATL4 protein levels had a cutoff value of 3.55 ng/mL based on the receiver operator characteristic curve and were positively correlated with mean pulmonary artery pressure (mPAP) (r = 0.305, p < 0.05). In patients with IPAH and CTEPH, elevated plasma ADAMTSL4 levels were positively associated with mPAP.
Collapse
Affiliation(s)
- Yan Li
- Cardiovascular Laboratory, Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yunwei Chen
- Cardiovascular Laboratory, Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Institute of Life ScienceChongqing Medical UniversityChongqingChina
| | - Lingzhi Yang
- Cardiovascular Laboratory, Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Institute of Life ScienceChongqing Medical UniversityChongqingChina
| | - Yan Li
- Cardiovascular Laboratory, Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Institute of Life ScienceChongqing Medical UniversityChongqingChina
| | - Jingwen Bai
- Cardiovascular Laboratory, Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Institute of Life ScienceChongqing Medical UniversityChongqingChina
| | - Panpan Feng
- Cardiovascular Laboratory, Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ping Tang
- Cardiovascular Laboratory, Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Rui Xiang
- Cardiovascular Laboratory, Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wei Huang
- Cardiovascular Laboratory, Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Institute of Life ScienceChongqing Medical UniversityChongqingChina
| | - Ailing Li
- Cardiovascular Laboratory, Department of CardiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Institute of Life ScienceChongqing Medical UniversityChongqingChina
| |
Collapse
|
5
|
Sanges S, Rice L, Tu L, Valenzi E, Cracowski JL, Montani D, Mantero JC, Ternynck C, Marot G, Bujor AM, Hachulla E, Launay D, Humbert M, Guignabert C, Lafyatis R. Biomarkers of haemodynamic severity of systemic sclerosis-associated pulmonary arterial hypertension by serum proteome analysis. Ann Rheum Dis 2023; 82:365-373. [PMID: 36600187 PMCID: PMC9918672 DOI: 10.1136/ard-2022-223237] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To mine the serum proteome of patients with systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH) and to detect biomarkers that may assist in earlier and more effective diagnosis and treatment. METHODS Patients with limited cutaneous SSc, no extensive interstitial lung disease and no PAH-specific therapy were included. They were classified as cases if they had PAH confirmed by right heart catheterisation (RHC) and serum collected on the same day as RHC; and as controls if they had no clinical evidence of PAH. RESULTS Patients were mostly middle-aged females with anticentromere-associated SSc. Among 1129 proteins assessed by a high-throughput proteomic assay (SOMAscan), only 2 were differentially expressed and correlated significantly with pulmonary vascular resistance (PVR) in SSc-PAH patients (n=15): chemerin (ρ=0.62, p=0.01) and SET (ρ=0.62, p=0.01). To validate these results, serum levels of chemerin were measured by ELISA in an independent cohort. Chemerin levels were confirmed to be significantly higher (p=0.01) and correlate with PVR (ρ=0.42, p=0.04) in SSc-PAH patients (n=24). Chemerin mRNA expression was detected in fibroblasts, pulmonary artery smooth muscle cells (PA-SMCs)/pericytes and mesothelial cells in SSc-PAH lungs by single-cell RNA-sequencing. Confocal immunofluorescence revealed increased expression of a chemerin receptor, CMKLR1, on SSc-PAH PA-SMCs. SSc-PAH serum seemed to induce higher PA-SMC proliferation than serum from SSc patients without PAH. This difference appeared neutralised when adding the CMKLR1 inhibitor α-NETA. CONCLUSION Chemerin seems an interesting surrogate biomarker for PVR in SSc-PAH. Increased chemerin serum levels and CMKLR1 expression by PA-SMCs may contribute to SSc-PAH pathogenesis by inducing PA-SMC proliferation.
Collapse
Affiliation(s)
- Sébastien Sanges
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Lisa Rice
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
| | - Ly Tu
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - David Montani
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Kremlin-Bicêtre, France
| | - Julio C Mantero
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
| | - Camille Ternynck
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Guillemette Marot
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
- Inria, MODAL: MOdels for Data Analysis and Learning, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR 2014 - US 41 - PLBS, bilille, Lille, France
| | - Andreea M Bujor
- Boston University School of Medicine, E5 Arthritis Center, Boston, Massachusetts, USA
| | - Eric Hachulla
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - David Launay
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Marc Humbert
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
- AP-HP, Department of Respiratory and Intensive Care Medicine, Hôpital Bicêtre, Kremlin-Bicêtre, France
| | - Christophe Guignabert
- Université Paris Saclay, School of Medicine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Robert Lafyatis
- Division of Rheumatology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Moccaldi B, De Michieli L, Binda M, Famoso G, Depascale R, Perazzolo Marra M, Doria A, Zanatta E. Serum Biomarkers in Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044178. [PMID: 36835590 PMCID: PMC9967966 DOI: 10.3390/ijms24044178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening complication of connective tissue diseases (CTDs) characterised by increased pulmonary arterial pressure and pulmonary vascular resistance. CTD-PAH is the result of a complex interplay among endothelial dysfunction and vascular remodelling, autoimmunity and inflammatory changes, ultimately leading to right heart dysfunction and failure. Due to the non-specific nature of the early symptoms and the lack of consensus on screening strategies-except for systemic sclerosis, with a yearly transthoracic echocardiography as recommended-CTD-PAH is often diagnosed at an advanced stage, when the pulmonary vessels are irreversibly damaged. According to the current guidelines, right heart catheterisation is the gold standard for the diagnosis of PAH; however, this technique is invasive, and may not be available in non-referral centres. Hence, there is a need for non-invasive tools to improve the early diagnosis and disease monitoring of CTD-PAH. Novel serum biomarkers may be an effective solution to this issue, as their detection is non-invasive, has a low cost and is reproducible. Our review aims to describe some of the most promising circulating biomarkers of CTD-PAH, classified according to their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Laura De Michieli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Giulia Famoso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Roberto Depascale
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498212190
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
7
|
Piera-Velazquez S, Dillon ST, Gu X, Libermann TA, Jimenez SA. Aptamer proteomics of serum exosomes from patients with Primary Raynaud's and patients with Raynaud's at risk of evolving into Systemic Sclerosis. PLoS One 2022; 17:e0279461. [PMID: 36548367 PMCID: PMC9779033 DOI: 10.1371/journal.pone.0279461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A major unmet need for Systemic Sclerosis (SSc) clinical management is the lack of biomarkers for the early diagnosis of patients with Raynaud's Phenomenon at high risk of evolving into SSc. OBJECTIVE To identify proteins contained within serum exosomes employing an aptamer proteomic analysis that may serve to reveal patients with Raynaud's Phenomenon at risk of developing SSc. METHODS Exosomes were isolated from serum samples from patients with Primary Raynaud's Phenomenon and from patients with Raynaud's Phenomenon harbouring serum antinuclear antibodies (ANA) who may be at high risk of evolving into SSc. The expression of 1,305 proteins was quantified using SOMAscan aptamer proteomics, and associations of the differentially elevated or reduced proteins with the clinical subsets of Raynaud's Phenomenon were assessed. RESULTS Twenty one differentially elevated and one differentially reduced (absolute fold change >|1.3|) proteins were identified. Principal component analysis using these 22 most differentially expressed proteins resulted in excellent separation of the two Raynaud's Phenomenon clinical subsets. Remarkably, the most differentially elevated proteins are involved in enhanced inflammatory responses, immune cell activation and cell migration, and abnormal vascular functions. CONCLUSION Aptamer proteomic analysis of circulating exosomes identified differentially elevated or reduced proteins between Raynaud's Phenomenon at high risk of evolving into SSc and Primary Raynaud's Phenomenon patients. Some of these proteins are involved in relevant biological pathways that may play a role in SSc pathogenesis including enhanced inflammatory responses, immune cell activation, and endothelial cell and vascular abnormalities.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Scleroderma Center of Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Simon T. Dillon
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xuesong Gu
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Towia A. Libermann
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SAJ); (TAL)
| | - Sergio A. Jimenez
- Jefferson Institute of Molecular Medicine, Scleroderma Center of Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (SAJ); (TAL)
| |
Collapse
|
8
|
Noviani M, Chellamuthu VR, Albani S, Low AHL. Toward Molecular Stratification and Precision Medicine in Systemic Sclerosis. Front Med (Lausanne) 2022; 9:911977. [PMID: 35847779 PMCID: PMC9279904 DOI: 10.3389/fmed.2022.911977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Systemic sclerosis (SSc), a complex multi-systemic disease characterized by immune dysregulation, vasculopathy and fibrosis, is associated with high mortality. Its pathogenesis is only partially understood. The heterogenous pathological processes that define SSc and its stages present a challenge to targeting appropriate treatment, with differing treatment outcomes of SSc patients despite similar initial clinical presentations. Timing of the appropriate treatments targeted at the underlying disease process is critical. For example, immunomodulatory treatments may be used for patients in a predominantly inflammatory phase, anti-fibrotic treatments for those in the fibrotic phase, or combination therapies for those in the fibro-inflammatory phase. In advancing personalized care through precision medicine, groups of patients with similar disease characteristics and shared pathological processes may be identified through molecular stratification. This would improve current clinical sub-setting systems and guide personalization of therapies. In this review, we will provide updates in SSc clinical and molecular stratification in relation to patient outcomes and treatment responses. Promises of molecular stratification through advances in high-dimensional tools, including omic-based stratification (transcriptomics, genomics, epigenomics, proteomics, cytomics, microbiomics) and machine learning will be discussed. Innovative and more granular stratification systems that integrate molecular characteristics to clinical phenotypes would potentially improve therapeutic approaches through personalized medicine and lead to better patient outcomes.
Collapse
Affiliation(s)
- Maria Noviani
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore
- Duke–National University of Singapore Medical School, Singapore, Singapore
| | | | - Salvatore Albani
- Duke–National University of Singapore Medical School, Singapore, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Andrea Hsiu Ling Low
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore
- Duke–National University of Singapore Medical School, Singapore, Singapore
- *Correspondence: Andrea Hsiu Ling Low
| |
Collapse
|
9
|
Rice LM, Mantero JC, Stratton EA, Warburton R, Roberts K, Hill N, Simms RW, Domsic R, Farber HW, Lafyatis R. Correction: Serum biomarker for diagnostic evaluation of pulmonary arterial hypertension in systemic sclerosis. Arthritis Res Ther 2022; 24:118. [PMID: 35606822 PMCID: PMC9125924 DOI: 10.1186/s13075-022-02816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Lisa M Rice
- Boston University School of Medicine, E5 Arthritis Center, 72 E Concord Street, Boston, MA, 0211, USA.
| | - Julio C Mantero
- Boston University School of Medicine, E5 Arthritis Center, 72 E Concord Street, Boston, MA, 0211, USA
| | - Eric A Stratton
- Boston University School of Medicine, E5 Arthritis Center, 72 E Concord Street, Boston, MA, 0211, USA
| | | | | | | | - Robert W Simms
- Boston University School of Medicine, E5 Arthritis Center, 72 E Concord Street, Boston, MA, 0211, USA
| | - Robyn Domsic
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Harrison W Farber
- Boston University School of Medicine, E5 Arthritis Center, 72 E Concord Street, Boston, MA, 0211, USA
| | - Robert Lafyatis
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Zaaroor Levy M, Rabinowicz N, Yamila Kohon M, Shalom A, Berl A, Hornik-Lurie T, Drucker L, Tartakover Matalon S, Levy Y. MiRNAs in Systemic Sclerosis Patients with Pulmonary Arterial Hypertension: Markers and Effectors. Biomedicines 2022; 10:biomedicines10030629. [PMID: 35327430 PMCID: PMC8945806 DOI: 10.3390/biomedicines10030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a major cause of death in systemic sclerosis (SSc). Early detection may improve patient outcomes. Methods: We searched for circulating miRNAs that would constitute biomarkers in SSc patients with PAH (SSc-PAH). We compared miRNA levels and laboratory parameters while evaluating miRNA levels in white blood cells (WBCs) and myofibroblasts. Results: Our study found: 1) miR-26 and miR-let-7d levels were significantly lower in SSc-PAH (n = 12) versus SSc without PAH (SSc-noPAH) patients (n = 25); 2) a positive correlation between miR-26 and miR-let-7d and complement-C3; 3) GO-annotations of genes that are miR-26/miR-let-7d targets and that are expressed in myofibroblast cells, suggesting that these miRNAs regulate the TGF-β-pathway; 4) reduced levels of both miRNAs accompanied fibroblast differentiation to myofibroblasts, while macitentan (endothelin receptor-antagonist) increased the levels. WBCs of SSc-noPAH and SSc-PAH patients contained equal amounts of miR-26/miR-let-7d. During the study, an echocardiograph that predicted PAH development, showed increased pulmonary artery pressure in three SSc-noPAH patients. At study initiation, those patients and an additional SSc-noPAH patient, who eventually developed PAH, had miR-let-7d/miR-26 levels similar to those of SSc-PAH patients. This implies that reduced miR-let-7d/miR-26 levels might be an early indication of PAH. Conclusions: miR-26 and miR-let-7d may be serological markers for SSc-PAH. The results of our study suggest their involvement in myofibroblast differentiation and complement pathway activation, both of which are active in PAH development.
Collapse
Affiliation(s)
- Mor Zaaroor Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Noa Rabinowicz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Maia Yamila Kohon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Avshalom Shalom
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Ariel Berl
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | | | - Liat Drucker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Shelly Tartakover Matalon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
- Correspondence: (S.T.M.); (Y.L.); Tel./Fax: +972-9-74721992 (S.T.M.)
| | - Yair Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (M.Z.L.); (N.R.); (M.Y.K.); (A.S.); (A.B.); (L.D.)
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel
- Department of Internal Medicine E, Meir Medical Center, Kfar Saba 4428164, Israel
- Correspondence: (S.T.M.); (Y.L.); Tel./Fax: +972-9-74721992 (S.T.M.)
| |
Collapse
|
11
|
Qin X, Li T, Sun W, Guo X, Fang Q. Proteomic analysis of pulmonary arterial hypertension. Ther Adv Chronic Dis 2021; 12:20406223211047304. [PMID: 34729151 PMCID: PMC8482352 DOI: 10.1177/20406223211047304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal cardiovascular disorder
with high morbidity and mortality. Diagnosis and treatment of this disease at an
early stage would greatly improve outcomes. The molecular indicators of PAH are
mostly nonspecific, and diagnostic and prognostic biomarkers are urgently
needed. A more comprehensive understanding of the molecular mechanisms
underlying this complex disease is crucial for the development of new and more
effective therapeutics to improve patient outcomes. In this article, we review
published literature on proteomic biomarkers and underlying molecular mechanisms
in PAH and their value for disease management, aiming to deepen our
understanding of the disease and, ultimately, pave the way for clinical
application.
Collapse
Affiliation(s)
- Xiaohan Qin
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianhao Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Dongcheng District, Beijing 100730, China
| | - Quan Fang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Wangfujing Dongcheng District, Beijing 100730, China
| |
Collapse
|
12
|
Inhibition of FSTL3 abates the proliferation and metastasis of renal cell carcinoma via the GSK-3β/β-catenin signaling pathway. Aging (Albany NY) 2021; 13:22528-22543. [PMID: 34555811 PMCID: PMC8507290 DOI: 10.18632/aging.203564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Renal cell carcinoma (RCC) is a lethal malignancy of the genitourinary system. Follistatin-like 3 (FSTL3), which mediates cell differentiation and growth, acts as a biomarker of tumors and participates in cancer development and progression. Presently, the FSTL3’s functions in RCC were investigated. Quantitative reverse transcription PCR (qRT-PCR), Western Blot, and enzyme linked immunosorbent assay (ELISA) were conducted to verify FSTL3 expression in RCC tissues and cell lines. BrdU assay and CCK8 experiment were made to monitor cell proliferation. Transwell was implemented to examine the invasion of the cells. Flow cytometry analyzed cell apoptosis, and Western Blot evaluated the protein levels of E-cadherin, Twist, and Slug. In the meantime, the protein profiles of the GSK-3β, β-catenin, and TGF-β signaling pathways were ascertained. Moreover, the Xenograft tumor model was constructed in nude mice for measuring tumor growth in vivo. The statistics showed that FSTL3 presented an overexpression in RCC, and patients with a lower expression of FSTL3 manifested a better prognosis. Down-regulated FSTL3 hampered the proliferation, invasion, EMT, and tumor growth of RCC cells and caused cell apoptosis. On the contrary, FSTL3 overexpression enhanced the malignant behaviors of RCC cells. Furthermore, FSTL3 knockdown bolstered GSK-3β, suppressed β-catenin, and reduced BMP1-SMAD pathway activation. Inhibited β-catenin substantially mitigated FSTL3-mediated promoting functions in RCC. In short, FSTL3 functions as an oncogene in RCC by modulating the GSK-3β/β-catenin signaling pathway.
Collapse
|
13
|
Bauer Y, de Bernard S, Hickey P, Ballard K, Cruz J, Cornelisse P, Chadha-Boreham H, Distler O, Rosenberg D, Doelberg M, Roux S, Nayler O, Lawrie A. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: machine learning on proteomics from the DETECT cohort. Eur Respir J 2021; 57:13993003.02591-2020. [PMID: 33334933 PMCID: PMC8276065 DOI: 10.1183/13993003.02591-2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating complication of systemic sclerosis (SSc). Screening for PAH in SSc has increased detection, allowed early treatment for PAH and improved patient outcomes. Blood-based biomarkers that reliably identify SSc patients at risk of PAH, or with early disease, would significantly improve screening, potentially leading to improved survival, and provide novel mechanistic insights into early disease. The main objective of this study was to identify a proteomic biomarker signature that could discriminate SSc patients with and without PAH using a machine learning approach and to validate the findings in an external cohort. Serum samples from patients with SSc and PAH (n=77) and SSc without pulmonary hypertension (non-PH) (n=80) were randomly selected from the clinical DETECT study and underwent proteomic screening using the Myriad RBM Discovery platform consisting of 313 proteins. Samples from an independent validation SSc cohort (PAH n=22 and non-PH n=22) were obtained from the University of Sheffield (Sheffield, UK). Random forest analysis identified a novel panel of eight proteins, comprising collagen IV, endostatin, insulin-like growth factor binding protein (IGFBP)-2, IGFBP-7, matrix metallopeptidase-2, neuropilin-1, N-terminal pro-brain natriuretic peptide and RAGE (receptor for advanced glycation end products), that discriminated PAH from non-PH in SSc patients in the DETECT Discovery Cohort (average area under the receiver operating characteristic curve 0.741, 65.1% sensitivity/69.0% specificity), which was reproduced in the Sheffield Confirmatory Cohort (81.1% accuracy, 77.3% sensitivity/86.5% specificity). This novel eight-protein biomarker panel has the potential to improve early detection of PAH in SSc patients and may provide novel insights into the pathogenesis of PAH in the context of SSc. Early screening for pulmonary arterial hypertension in patients with systemic sclerosis improves patient outcome. This study identified a novel eight-protein biomarker panel that has the potential to assist early detection of PAH in this patient group.https://bit.ly/373BNkL
Collapse
Affiliation(s)
- Yasmina Bauer
- Galapagos GmbH, Basel, Switzerland.,Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | - Peter Hickey
- Dept of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK.,Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | | | | - Oliver Distler
- Dept of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | - Allan Lawrie
- Dept of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Launay D, Sanges S, Sobanski V. Time for precision medicine in systemic sclerosis-associated pulmonary arterial hypertension. Eur Respir J 2021; 57:57/6/2100205. [PMID: 34168056 DOI: 10.1183/13993003.00205-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 11/05/2022]
Affiliation(s)
- David Launay
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France .,Inserm, Lille, France.,CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des maladies autoimmunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - Sébastien Sanges
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France.,Inserm, Lille, France.,CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des maladies autoimmunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - Vincent Sobanski
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France.,Inserm, Lille, France.,CHU Lille, Service de Médecine Interne et Immunologie Clinique, Centre de référence des maladies autoimmunes systémiques rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France.,Institut Universitaire de France (IUF), Lille, France
| |
Collapse
|
15
|
Soluble Biomarkers for Prediction of Vascular and Gastrointestinal Disease Severity in Patients with Systemic Sclerosis. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Serum Midkine, estimated glomerular filtration rate and chronic kidney disease-related events in elderly women: Perth Longitudinal Study of Aging Women. Sci Rep 2020; 10:14499. [PMID: 32879333 PMCID: PMC7468100 DOI: 10.1038/s41598-020-71353-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/07/2020] [Indexed: 11/09/2022] Open
Abstract
Midkine (MDK), a heparin-binding growth factor cytokine, is involved in the pathogenesis of kidney diseases by augmenting leukocyte trafficking and activation. Animal models and small case control studies have implicated MDK as a pathological biomarker in chronic kidney diseases (CKD), however this is yet to be confirmed in prospective human studies. In a prospective study of 499 elderly, predominantly Caucasian women aged over 70 years the association between serum MDK collected in 1998, and renal function change and the risk of CKD-related hospitalisations and deaths at 5 and 14.5 years, respectively, was examined. Baseline serum MDK was not associated with 5-year change in estimated glomerular filtration rate using the CKD Epidemiology Collaboration creatinine and cystatin C equation (Standardised β = - 0.09, 95% confidence interval - 3.76-0.48, p = 0.129), 5-year rapid decline in renal function (odds ratio = 0.97, 95% confidence interval 0.46-2.02, p = 0.927) or the risk of 14.5-year CKD-related hospitalisations and deaths (hazard ratio = 1.27, 95% confidence interval .66-2.46, p = 0.470) before or after adjusting for major risk factors. In conclusion, in this cohort of elderly women with normal or mildly impaired renal function, serum MDK was not associated with renal function change or future CKD-related hospitalisations and deaths, suggesting that MDK may not be an early biomarker for progression of CKD.
Collapse
|
17
|
Collison J. Serum biomarkers for diagnosing PAH. Nat Rev Rheumatol 2018; 14:560. [DOI: 10.1038/s41584-018-0085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|