1
|
Riley JW, Chance LM, Barshick MR, Johnson SE. Administration of sodium hyaluronate to adult horses prior to and immediately after exercise does not alter the range of motion in either the tarsus or metacarpophalangeal joints. Transl Anim Sci 2024; 8:txae153. [PMID: 39554613 PMCID: PMC11568345 DOI: 10.1093/tas/txae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
Hyaluronic acid (HA), a glycosaminoglycan found in joint synovial fluid, is administered to horses as an anti-inflammatory with lubrication properties. This experiment examined the effects of HA administered before and shortly after an exercise test on metacarpophalangeal (MCP; fetlock) and tibiotarsal (hock) joint range of motion (ROM). Horses were injected intravenously (IV) with placebo (4 mL, saline) or HA (4 mL, 40 mg) 24 h before performing a standardized exercise test (SET) on a high-speed treadmill and again at 6-h post-SET. Passive fetlock flexion was measured at 4 and 24 h post-SET. Hock flexion and extension were measured at 24 h post-SET by videography and kinematic evaluation at the trot. Parameters of the SET were sufficient to cause peak lactate values of 6.6 ± 0.15 mM and a maximum heart rate of 203.6 ± 4.8 bpm. A minor gain (P = 0.08) in fetlock flexion prior to SET was observed in HA horses that were not retained at either 4 or 24 h post-SET. Hock flexion in both limbs was greater (P < 0.05) at 24 h post-SET, independent of treatment. Horses receiving HA exhibited reduced (P = 0.04) right hock extension. No differences in either right or left hock ROM were observed between control and HA-treated horses. From these results, it is concluded that IV HA injections surrounding an exercise stressor offer no substantive gains in either fetlock or hock ROM.
Collapse
Affiliation(s)
- Julia W Riley
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lara M Chance
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Sally E Johnson
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Erxleben DA, Rivas F, Smith I, Poddar S, DeAngelis PL, Rahbar E, Hall AR. High-fidelity and iterative affinity extraction of hyaluronan. PROTEOGLYCAN RESEARCH 2024; 2:e70008. [PMID: 39650564 PMCID: PMC11623434 DOI: 10.1002/pgr2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 12/11/2024]
Abstract
The glycosaminoglycan hyaluronan (HA) serves a variety of crucial physiological functions in vertebrates. Synthesized at the plasma membrane and secreted into the extracellular environment, HA polymers span a wide range of molecular weights (MW) that define their activity through a notable size-function relationship. Analytical technologies for determining HA MW distributions typically require selective extraction from complex biofluids or tissues. A common method for achieving this is immunoprecipitation-like pull-down using specific HA-binding proteins bound to magnetic beads. Here, we present a systematic investigation of experimental variables involved in this process, leading to an affinity extraction protocol that enables iterative bead reuse and reagent lifetime maximization, thereby enhancing the efficiency of the HA extraction process. Our methods provide a framework for general optimization of immunoprecipitation in other contexts with heterogenous analyte sizes.
Collapse
Affiliation(s)
- Dorothea A. Erxleben
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Felipe Rivas
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ian Smith
- Department of BiologyWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Suruchi Poddar
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Paul L. DeAngelis
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Elaheh Rahbar
- Departments of Biomedical Engineering and Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTexasUSA
| | - Adam R. Hall
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Comprehensive Cancer Center, Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
3
|
Lection J, Wagner B, Byron M, Miller A, Rollins A, Chenier T, Cheong SH, Diel de Amorim M. Inflammatory markers for differentiation of endometritis in the mare. Equine Vet J 2024; 56:678-687. [PMID: 38219734 DOI: 10.1111/evj.14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Endometrial biopsy is required to diagnose mares with chronic endometritis and endometrial degenerative fibrosis. An increase in understanding of equine reproductive immunology could be utilised to create less-invasive, time-efficient diagnostic tools especially when evaluating mares for chronic endometritis. OBJECTIVES To evaluate inflammatory cytokine and chemokine concentrations in uterine fluid samples collected by low-volume lavage (LVL) as a potential screening diagnostic biomarker for endometritis. STUDY DESIGN Prospective cross-sectional clinical study. METHODS Forty-six mares underwent a LVL and subsequently endometrial biopsy. Mares were split in three groups: healthy, acute endometritis, and chronic endometrial fibrosis (CEF) based on cytological and histological evaluation. A fluorescent bead-based multiplex assay for IFN-γ, IFN-α, IL-1β, IL-4, IL-10, IL-17, sCD14, TNF-α, CCL2, CCL3, CCL5 and CCL11 were carried out on the LVL fluid. The endometrial biopsy was utilised for histology and qPCR of IFN-γ, IL-1β, IL-6, IL-8, IL-17, TNF-α, CCL2 and CCL3 genes. Statistical analyses examined differences in inflammatory markers and predictive modelling for diseased endometrium. RESULTS Secreted concentrations of IFN-γ were lower in LVL fluid from reproductively healthy mares compared with acute endometritis (p = 0.04) and CEF (p = 0.006). Additionally, IL-17, IL-10, IL-1β, TNF-α, CCL2, CCL3, CCL5 and CCL11 were significantly increased (p ≤ 0.04) in LVL from CEF mares compared with healthy mares. Mares with CCL2 concentrations ≥550 pg/mL (14/14) had 100% probability of having CEF and/or acute endometritis. Healthy mares had lower relative abundance of IL-17 mRNA compared with mares in CEF group [median (interquartile rage) = 14.76 (13.3, 15.3) and 12.4 (10.54, 13.81)], respectively (p = 0.02). MAIN LIMITATIONS Limited sample size: larger numbers of mares with and without endometritis are required and reference intervals in LVL samples have to be established. CONCLUSIONS Inflammatory chemokines and cytokines concentrations differed between healthy mares and mares with acute endometritis or CEF in LVL.
Collapse
Affiliation(s)
- Jennine Lection
- Department of Clinical Sciences, Cornell University, Ithaca, New York, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Michael Byron
- Department of Clinical Sciences, Cornell University, Ithaca, New York, USA
| | - Andrew Miller
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Tracey Chenier
- Department of Population Medicine, University of Guelph, Guelph, Ontario, Canada
| | - Soon Hon Cheong
- Department of Clinical Sciences, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
4
|
Wagner B. Monoclonal antibody development advances immunological research in horses. Vet Immunol Immunopathol 2024; 272:110771. [PMID: 38729028 DOI: 10.1016/j.vetimm.2024.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Host immune analyses require specific reagents to identify cellular and soluble components of the immune system. These immune reagents are often species-specific. For horses, various immunological tools have been developed and tested by different initiatives during the past decades. This article summarizes the development of well characterized monoclonal antibodies (mAbs) for equine immune cells, immunoglobulin isotypes, cytokines, and chemokines.
Collapse
Affiliation(s)
- Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Srivastava T, Nguyen H, Haden G, Diba P, Sowa S, LaNguyen N, Reed-Dustin W, Zhu W, Gong X, Harris EN, Baltan S, Back SA. TSG-6-Mediated Extracellular Matrix Modifications Regulate Hypoxic-Ischemic Brain Injury. J Neurosci 2024; 44:e2215232024. [PMID: 38569926 PMCID: PMC11112645 DOI: 10.1523/jneurosci.2215-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Proteoglycans containing link domains modify the extracellular matrix (ECM) to regulate cellular homeostasis and can also sensitize tissues/organs to injury and stress. Hypoxic-ischemic (H-I) injury disrupts cellular homeostasis by activating inflammation and attenuating regeneration and repair pathways. In the brain, the main component of the ECM is the glycosaminoglycan hyaluronic acid (HA), but whether HA modifications of the ECM regulate cellular homeostasis and response to H-I injury is not known. In this report, employing both male and female mice, we demonstrate that link-domain-containing proteoglycan, TNFα-stimulated gene-6 (TSG-6), is active in the brain from birth onward and differentially modifies ECM HA during discrete neurodevelopmental windows. ECM HA modification by TSG-6 enables it to serve as a developmental switch to regulate the activity of the Hippo pathway effector protein, yes-associated protein 1 (YAP1), in the maturing brain and in response to H-I injury. Mice that lack TSG-6 expression display dysregulated expression of YAP1 targets, excitatory amino acid transporter 1 (EAAT1; glutamate-aspartate transporter) and 2 (EAAT2; glutamate transporter-1). Dysregulation of YAP1 activation in TSG-6-/- mice coincides with age- and sex-dependent sensitization of the brain to H-I injury such that 1-week-old neonates display an anti-inflammatory response in contrast to an enhanced proinflammatory injury reaction in 3-month-old adult males but not females. Our findings thus support that a key regulator of age- and sex-dependent H-I injury response in the mouse brain is modulation of the Hippo-YAP1 pathway by TSG-6-dependent ECM modifications.
Collapse
Affiliation(s)
- Taasin Srivastava
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Hung Nguyen
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Gage Haden
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Parham Diba
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Steven Sowa
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Norah LaNguyen
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - William Reed-Dustin
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Wenbin Zhu
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Xi Gong
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Selva Baltan
- Division of Anesthesiology and Perioperative Medicine (APOM), Oregon Health and Science University (OHSU), Portland, Oregon 97239
| | - Stephen A Back
- Department of Pediatrics, Oregon Health and Science University (OHSU), Portland, Oregon 97239
- Department of Neurology, Oregon Health and Science University (OHSU), Portland, Oregon 97239
| |
Collapse
|
6
|
Erxleben DA, Dodd RJ, Day AJ, Green DE, DeAngelis PL, Poddar S, Enghild JJ, Huebner JL, Kraus VB, Watkins AR, Reesink HL, Rahbar E, Hall AR. Targeted Analysis of the Size Distribution of Heavy Chain-Modified Hyaluronan with Solid-State Nanopores. Anal Chem 2024; 96:1606-1613. [PMID: 38215004 PMCID: PMC11037269 DOI: 10.1021/acs.analchem.3c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The glycosaminoglycan hyaluronan (HA) plays important roles in diverse physiological functions where the distribution of its molecular weight (MW) can influence its behavior and is known to change in response to disease conditions. During inflammation, HA undergoes a covalent modification in which heavy chain subunits of the inter-alpha-inhibitor family of proteins are transferred to its structure, forming heavy chain-HA (HC•HA) complexes. While limited assessments of HC•HA have been performed previously, determining the size distribution of its HA component remains a challenge. Here, we describe a selective method for extracting HC•HA from mixtures that yields material amenable to MW analysis with a solid-state nanopore sensor. After demonstrating the approach in vitro, we validate extraction of HC•HA from osteoarthritic human synovial fluid as a model complex biological matrix. Finally, we apply our technique to pathophysiology by measuring the size distributions of HC•HA and total HA in an equine model of synovitis.
Collapse
Affiliation(s)
- Dorothea A. Erxleben
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Rebecca J. Dodd
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Anthony J. Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Suruchi Poddar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, C 8000, Denmark
| | - Janet L. Huebner
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda R. Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Adam R. Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
7
|
Vishwanath K, Secor EJ, Watkins A, Reesink HL, Bonassar LJ. Loss of effective lubricating viscosity is the primary mechanical marker of joint inflammation in equine synovitis. J Orthop Res 2024. [PMID: 38291343 DOI: 10.1002/jor.25793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 12/24/2023] [Indexed: 02/01/2024]
Abstract
Inflammation of the synovium, known as synovitis, plays an important role in the pathogenesis of osteoarthritis (OA). Synovitis involves the release of a wide variety of pro-inflammatory mediators in synovial fluid (SF) that damage the articular cartilage extracellular matrix and induce death and apoptosis in chondrocytes. The composition of synovial fluid is dramatically altered by inflammation in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. However, the relationship between key biochemical markers of joint inflammation and mechanical function of SF is not well understood. Here, we demonstrate the application of a novel analytical framework to measure the effective viscosity for SF lubrication of cartilage, which is distinct from conventional rheological viscosity. Notably, in a well-established equine model of synovitis, this effective lubricating viscosity decreased by up to 10,000-fold for synovitis SF compared to a ~4 fold change in conventional viscosity measurements. Further, the effective lubricating viscosity was strongly inversely correlated (r = -0.6 to -0.8) to multiple established biochemical markers of SF inflammation, including white blood cell count, prostaglandin E2 (PGE2 ), and chemokine ligand (CCLs) concentrations, while conventional measurements of viscosity were poorly correlated to these markers. These findings demonstrate the importance of experimental and analytical approaches to characterize functional lubricating properties of synovial fluid and their relationships to soluble biomarkers to better understand the progression of OA.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | - Erica J Secor
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Amanda Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Moreno IY, Parsaie A, Gesteira TF, Coulson-Thomas VJ. Characterization of the Limbal Epithelial Stem Cell Niche. Invest Ophthalmol Vis Sci 2023; 64:48. [PMID: 37906057 PMCID: PMC10619699 DOI: 10.1167/iovs.64.13.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose Limbal epithelial stem cells (LESCs) reside within a LSC niche (LSCN). We recently identified that hyaluronan (HA) is a major constituent of the LSCN, and that HA is necessary for maintaining LESCs in the "stem cell" state, both in vitro and in vivo. Herein, we characterized the LSCN to identify key components of the HA-specific LSCN. Methods The cornea and limbal rim were dissected from mouse corneas, subjected to mRNA extraction, and sequenced using a NextSeq 500 (Illumina) and data processed using CLC Genomics Workbench 20 (Qiagen) and the STRING database to identify key components of the LSCN. Their expression was confirmed by real-time PCR, Western blotting, and immunohistochemistry. Furthermore, the differential expression of key compounds in different corneal cell types were determined with single-cell RNA sequencing. Results We identified that the hyaladherins inter-alpha-inhibitor (IαI), TSG-6 and versican are highly expressed in the limbus. Specifically, HA/HC complexes are present in the LSCN, in the stroma underlying the limbal epithelium, and surrounding the limbal vasculature. For IαI, heavy chains 5 and 2 (HC5 and HC2) were found to be the most highly expressed HCs in the mouse and human limbus and were associate with HA-forming HA/HC-specific matrices. Conclusions The LSCN contains HA/HC complexes, which have been previously correlated with stem cell niches. The identification of HA/HC complexes in the LSCN could serve as a new therapeutic avenue for treating corneal pathology. Additionally, HA/HC complexes could be used as a substrate for culturing LESCs before LESC transplantation.
Collapse
Affiliation(s)
- Isabel Y. Moreno
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Arian Parsaie
- College of Optometry, University of Houston, Houston, Texas, United States
- College of Natural Science and Mathematics, University of Houston, Houston, Texas, United States
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
9
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
10
|
Sin YJA, MacLeod R, Tanguay AP, Wang A, Braender-Carr O, Vitelli TM, Jay GD, Schmidt TA, Cowman MK. Noncovalent hyaluronan crosslinking by TSG-6: Modulation by heparin, heparan sulfate, and PRG4. Front Mol Biosci 2022; 9:990861. [PMID: 36275631 PMCID: PMC9579337 DOI: 10.3389/fmolb.2022.990861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The size, conformation, and organization of the glycosaminoglycan hyaluronan (HA) affect its interactions with soluble and cell surface-bound proteins. HA that is induced to form stable networks has unique biological properties relative to unmodified soluble HA. AlphaLISA assay technology offers a facile and general experimental approach to assay protein-mediated networking of HA in solution. Connections formed between two end-biotinylated 50 kDa HA (bHA) chains can be detected by signal arising from streptavidin-coated donor and acceptor beads being brought into close proximity when the bHA chains are bridged by proteins. We observed that incubation of bHA with the protein TSG-6 (tumor necrosis factor alpha stimulated gene/protein 6, TNFAIP/TSG-6) leads to dimerization or higher order multimerization of HA chains in solution. We compared two different heparin (HP) samples and two heparan sulfate (HS) samples for the ability to disrupt HA crosslinking by TSG-6. Both HP samples had approximately three sulfates per disaccharide, and both were effective in inhibiting HA crosslinking by TSG-6. HS with a relatively high degree of sulfation (1.75 per disaccharide) also inhibited TSG-6 mediated HA networking, while HS with a lower degree of sulfation (0.75 per disaccharide) was less effective. We further identified Proteoglycan 4 (PRG4, lubricin) as a TSG-6 ligand, and found it to inhibit TSG-6-mediated HA crosslinking. The effects of HP, HS, and PRG4 on HA crosslinking by TSG-6 were shown to be due to HP/HS/PRG4 inhibition of HA binding to the Link domain of TSG-6. Using the AlphaLISA platform, we also tested other HA-binding proteins for ability to create HA networks. The G1 domain of versican (VG1) effectively networked bHA in solution but required a higher concentration than TSG-6. Cartilage link protein (HAPLN1) and the HA binding protein segment of aggrecan (HABP, G1-IGD-G2) showed only low and variable magnitude HA networking effects. This study unambiguously demonstrates HA crosslinking in solution by TSG-6 and VG1 proteins, and establishes PRG4, HP and highly sulfated HS as modulators of TSG-6 mediated HA crosslinking.
Collapse
Affiliation(s)
- Yun Jin Ashley Sin
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Rebecca MacLeod
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Adam P. Tanguay
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
| | - Andrew Wang
- New York Medical College, Valhalla, NY, United States
| | - Olivia Braender-Carr
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Teraesa M. Vitelli
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Gregory D. Jay
- Department of Emergency Medicine, Warren Alpert Medical School and School of Engineering, Brown University, Providence, RI, United States
| | - Tannin A. Schmidt
- Department of Biomedical Engineering, School of Dental Medicine, UConn Health, Farmington, CT, United States
- *Correspondence: Mary K. Cowman, ; Tannin A. Schmidt,
| | - Mary K. Cowman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
- Department of Orthopedic Surgery, Grossman School of Medicine, New York University, New York, NY, United States
- *Correspondence: Mary K. Cowman, ; Tannin A. Schmidt,
| |
Collapse
|
11
|
Bayat P, Rambaud C, Priem B, Bourderioux M, Bilong M, Poyer S, Pastoriza-Gallego M, Oukhaled A, Mathé J, Daniel R. Comprehensive structural assignment of glycosaminoglycan oligo- and polysaccharides by protein nanopore. Nat Commun 2022; 13:5113. [PMID: 36042212 PMCID: PMC9427770 DOI: 10.1038/s41467-022-32800-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Glycosaminoglycans are highly anionic functional polysaccharides with information content in their structure that plays a major role in the communication between the cell and the extracellular environment. The study presented here reports the label-free detection and analysis of glycosaminoglycan molecules at the single molecule level using sensing by biological nanopore, thus addressing the need to decipher structural information in oligo- and polysaccharide sequences, which remains a major challenge for glycoscience. We demonstrate that a wild-type aerolysin nanopore can detect and characterize glycosaminoglycan oligosaccharides with various sulfate patterns, osidic bonds and epimers of uronic acid residues. Size discrimination of tetra- to icosasaccharides from heparin, chondroitin sulfate and dermatan sulfate was investigated and we show that different contents and distributions of sulfate groups can be detected. Remarkably, differences in α/β anomerization and 1,4/1,3 osidic linkages can also be detected in heparosan and hyaluronic acid, as well as the subtle difference between the glucuronic/iduronic epimers in chondroitin and dermatan sulfate. Although, at this stage, discrimination of each of the constituent units of GAGs is not yet achieved at the single-molecule level, the resolution reached in this study is an essential step toward this ultimate goal.
Collapse
Affiliation(s)
- Parisa Bayat
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Charlotte Rambaud
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Bernard Priem
- CNRS, CERMAV, University Grenoble Alpes, Grenoble, France
| | | | - Mélanie Bilong
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | - Salomé Poyer
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France
| | | | | | - Jérôme Mathé
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France.
| | - Régis Daniel
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, France.
| |
Collapse
|
12
|
Rivas F, Erxleben D, Smith I, Rahbar E, DeAngelis PL, Cowman MK, Hall AR. Methods for isolating and analyzing physiological hyaluronan: a review. Am J Physiol Cell Physiol 2022; 322:C674-C687. [PMID: 35196167 PMCID: PMC8977137 DOI: 10.1152/ajpcell.00019.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023]
Abstract
The carbohydrate hyaluronan (or hyaluronic acid, HA) is found in all human tissues and biofluids where it has wide-ranging functions in health and disease that are dictated by both its abundance and size. Consequently, hyaluronan evaluation in physiological samples has significant translational potential. Although the analytical tools and techniques for probing other biomolecules such as proteins and nucleic acids have become standard approaches in biochemistry, those available for investigating hyaluronan are less well established. In this review, we survey methods related to the assessment of native hyaluronan in biological specimens, including protocols for separating it from biological matrices and technologies for determining its concentration and molecular weight.
Collapse
Affiliation(s)
- Felipe Rivas
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Dorothea Erxleben
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ian Smith
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mary K Cowman
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Adam R Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
13
|
Kocurkova A, Nesporova K, Sandanusova M, Kerberova M, Lehka K, Velebny V, Kubala L, Ambrozova G. Endogenously-Produced Hyaluronan and Its Potential to Regulate the Development of Peritoneal Adhesions. Biomolecules 2021; 12:biom12010045. [PMID: 35053193 PMCID: PMC8773905 DOI: 10.3390/biom12010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Formation of peritoneal adhesions (PA) is one of the major complications following intra-abdominal surgery. It is primarily caused by activation of the mesothelial layer and underlying tissues in the peritoneal membrane resulting in the transition of mesothelial cells (MCs) and fibroblasts to a pro-fibrotic phenotype. Pro-fibrotic transition of MCs—mesothelial-to-mesenchymal transition (MMT), and fibroblasts activation to myofibroblasts are interconnected to changes in cellular metabolism and culminate in the deposition of extracellular matrix (ECM) in the form of fibrotic tissue between injured sides in the abdominal cavity. However, ECM is not only a mechanical scaffold of the newly synthetized tissue but reciprocally affects fibrosis development. Hyaluronan (HA), an important component of ECM, is a non-sulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcUA) that can affect the majority of processes involved in PA formation. This review considers the role of endogenously produced HA in the context of different fibrosis-related pathologies and its overlap in the development of PA.
Collapse
Affiliation(s)
- Anna Kocurkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Kristina Nesporova
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Miriam Sandanusova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Michaela Kerberova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
| | - Katerina Lehka
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Correspondence:
| |
Collapse
|