1
|
Gao Y, Yang L, Yao Q, Wang J, Zheng N. Butyrate improves recovery from experimental necrotizing enterocolitis by metabolite hesperetin through potential inhibition the PI3K-Akt pathway. Biomed Pharmacother 2024; 176:116876. [PMID: 38850657 DOI: 10.1016/j.biopha.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is one of the most common and serious intestinal illnesses in newborns and seriously affects their long-term prognosis and survival. Butyrate is a short-chain fatty acid that can relieve intestinal inflammation, but its mechanism of action is unclear. Results from an in vivo neonatal rat model has shown that butyrate caused an improved recovery from NEC. These protective effects were associated with the metabolite of hesperetin, as determined by metabolomics and molecular biological analysis. Furthermore, transcriptomics combined with inhibitor assays were used to investigate the mechanism of action of hesperetin in an in vitro NEC model (IEC-6 cells exposed to LPS) to further investigate the mechanism by which butyrate attenuates NEC. The transcriptomics analysis showed that the PI3K-Akt signaling pathway was involved in the anti-NEC effect of hesperitin. Subsequently, the results using an inhibitor of PI3K (LY294002) indicated that the suppression could be explained by the hesperetin-induced expression of tight junction (TJ) proteins by potentially blocking the PI3K-Akt signaling pathway. In summary, the present study demonstrated that butyrate could improve recovery from NEC with a hesperetin metabolite, causing potential inhibition of the phosphorylation of the PI3K-Akt signaling pathway, resulting in the increased expression of TJ proteins. These findings reveal a potential new therapeutic pathway for the treatment of NEC.
Collapse
Affiliation(s)
- Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liting Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Wang D, Zheng Z, Yu H, Dou D, Gao Y, Xu S, Li Z, Sun L, Qiu X, Zhong X. Impact of humid climate on rheumatoid arthritis faecal microbiome and metabolites. Sci Rep 2023; 13:16846. [PMID: 37803075 PMCID: PMC10558475 DOI: 10.1038/s41598-023-43964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2023] [Indexed: 10/08/2023] Open
Abstract
Studies have shown that high humidity is a condition that aggravates the pain of rheumatoid arthritis (RA), but the relevant mechanism is controversial. Currently, there is a lack of experimental animal studies on high humidity as an adverse factor related to the pathogenesis of RA. We used healthy SD rats and collagen-induced arthritis (CIA) rats to investigate the effects of high humidity on arthritis. Integrated metabolomics analyses of faeces and 16S rRNA sequencing of the faecal microbiota were performed to comprehensively assess the diversity of the faecal microbiota and metabolites in healthy and CIA rats. In this study, high humidity aggravated arthritis in CIA rats, which manifested as articular cartilage lesions, increased arthritis scores, and an increase in proinflammatory cytokines. High humidity had a certain effect on the articular cartilage extent, arthritis score and proinflammatory cytokines of healthy rats as well. Furthermore, high humidity caused significant changes in faecal microbes and metabolites in both healthy and CIA rats. 16S rRNA sequencing of faecal samples showed that high humidity increased the amount of inflammation-related bacteria in healthy and CIA rats. Faecal metabolomics results showed that high humidity significantly altered the level of faecal metabolites in healthy rats and CIA rats, and the changes in biological functions were mainly related to the inflammatory response and oxidative stress. Combined analysis showed that there was a strong correlation between the faecal microbiota and faecal metabolites. High humidity is an adverse factor for the onset and development of RA, and its mechanism is related to the inflammatory response and oxidative stress. However, the question of how high humidity impacts RA pathogenesis needs to be further investigated.
Collapse
Affiliation(s)
- Dingnan Wang
- Institute of Synopsis of Golden Chamber Department, School of Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Zhili Zheng
- Institute of Synopsis of Golden Chamber Department, School of Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Han Yu
- Formulas of Chinese Medicine, Basic Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, People's Republic of China
| | - Dou Dou
- Institute of Synopsis of Golden Chamber Department, School of Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yining Gao
- Institute of Synopsis of Golden Chamber Department, School of Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Shuang Xu
- Institute of Synopsis of Golden Chamber Department, School of Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Zhiming Li
- Institute of Synopsis of Golden Chamber Department, School of Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Lili Sun
- Institute of Synopsis of Golden Chamber Department, School of Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xudong Qiu
- Institute of Synopsis of Golden Chamber Department, School of Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xianggen Zhong
- Institute of Synopsis of Golden Chamber Department, School of Chinese Medicine College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
3
|
Schuh BM, Macáková K, Feješ A, Groß T, Belvončíková P, Janko J, Juskanič D, Hollý S, Borbélyová V, Šteňová E, Pastorek M, Vlková B, Celec P. Sex differences in long-term effects of collagen-induced arthritis in middle-aged mice. Front Physiol 2023; 14:1195604. [PMID: 37449011 PMCID: PMC10337783 DOI: 10.3389/fphys.2023.1195604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory disorder with high prevalence among middle-aged women. Collagen-induced arthritis (CIA) is the most widely used animal model of RA, however, sex differences and long-term effects of CIA in mice are poorly described in the literature. Aim: Therefore, the present study aimed to analyze the long-term effects of CIA on the joints of middle-aged mice of both sexes and to describe potential sex differences. Materials and methods: CIA was induced in middle-aged DBA/1J mice by immunization with bovine type II collagen and complete Freund's adjuvant. Saline was administered to control mice. Arthritis score assessment, plethysmometry, and thermal imaging of the joints were performed weekly for 15 weeks. Locomotor activity, micro-computed tomography, joint histology and biochemical analyses were performed at the end of the experiment. Results: Our results indicate a similar prevalence of arthritis in both sexes of mice-67% (8/12) of females and 89% (8/9) males with an earlier onset in males (day 14 vs. day 35). After the arthritis scores peaked on day 56 for males and day 63 for females, they steadily declined until the end of the experiment on day 105. A similar dynamics was observed in paw volume and temperature analyzing different aspects of joint inflammation. Long-term consequences including higher proteinuria (by 116%), loss of bone density (by 33.5%) and joint damage in terms of synovial hyperplasia as well as bone and cartilage erosions were more severe in CIA males compared to CIA females. There were no significant differences in locomotor activity between CIA mice and CTRL mice of any sex. Conclusion: This is the first study to describe the long-term effects of the CIA model in terms of sex differences in DBA/1J mice. Our results indicate sex differences in the dynamics, but not in the extent of arthritis. An earlier onset of arthritis and more severe consequences on joints, bones and kidneys were found in males. The underlying immune pathomechanisms responsible for the limited duration of the arthritis symptoms and the opposite sex difference in comparison to RA patients require further investigation.
Collapse
Affiliation(s)
| | - Kristína Macáková
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Andrej Feješ
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Tim Groß
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Paulína Belvončíková
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Jakub Janko
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Dominik Juskanič
- Jessenius-Diagnostic Center, Nitra, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Samuel Hollý
- Jessenius-Diagnostic Center, Nitra, Slovakia
- First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Veronika Borbélyová
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Emőke Šteňová
- 1st Department of Internal Medicine, Faculty of Medicine, University Hospital, Comenius University, Bratislava, Slovakia
| | - Michal Pastorek
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Barbora Vlková
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
- Faculty of Medicine, Institute of Pathophysiology, Comenius University, Bratislava, Slovakia
| |
Collapse
|
4
|
Eom S, Lee S, Lee J, Pyeon M, Yeom HD, Song JH, Choi EJ, Lee M, Lee JH, Chang JY. Molecular Mechanism of L-Pyroglutamic Acid Interaction with the Human Sour Receptor. J Microbiol Biotechnol 2023; 33:203-210. [PMID: 36655284 PMCID: PMC9998207 DOI: 10.4014/jmb.2212.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/20/2023]
Abstract
Taste is classified into five types, each of which has evolved to play its respective role in mammalian survival. Sour taste is one of the important ways to judge whether food has gone bad, and the sour taste receptor (PKD2L1) is the gene behind it. Here, we investigated whether L-pyroglutamic acid interacts with sour taste receptors through electrophysiology and mutation experiments using Xenopus oocytes. R299 of hPKD2L1 was revealed to be involved in L-pyroglutamic acid binding in a concentration-dependent manner. As a result, it is possible to objectify the change in signal intensity according to the concentration of L-pyroglutamic acid, an active ingredient involved in the taste of kimchi, at the molecular level. Since the taste of other ingredients can also be measured with the method used in this experiment, it is expected that an objective database of taste can be created.
Collapse
Affiliation(s)
- Sanung Eom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiwon Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Minsu Pyeon
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye Duck Yeom
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Hee Song
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Eun Ji Choi
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Moeun Lee
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Junho H Lee
- Department of Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
5
|
Zhu Y, Zhang L, Zhang X, Wu D, Chen L, Hu C, Wen C, Zhou J. Tripterygium wilfordii glycosides ameliorates collagen-induced arthritis and aberrant lipid metabolism in rats. Front Pharmacol 2022; 13:938849. [PMID: 36105231 PMCID: PMC9465305 DOI: 10.3389/fphar.2022.938849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, and the dysregulation of lipid metabolism has been found to play an important role in the pathogenesis of RA and is related to the severity and prognosis of patients. Tripterygium wilfordii glycosides (TWG) is extracted from the roots of Tripterygium wilfordii Hook F. with anti-inflammatory and immunosuppressive effects, and numerous clinical trials have supported its efficacy in the treatment of RA. Some evidence suggested that TWG can modulate the formation of lipid mediators in various innate immune cells; however whether it can improve RA-related lipid disorders has not been systematically studied. In the study, type Ⅱ collagen-induced arthritis (CIA) model was used to investigate the efficacy of TWG in the treatment of RA and its effect on lipid metabolism. Paw volume, arthritis score, pathological changes of ankle joint, serum autoantibodies and inflammatory cytokines were detected to assess the therapeutic effect on arthritis in CIA rats. Then, shotgun lipidomics based on multi-dimensional mass spectrometry platform was performed to explore the alterations in serum lipidome caused by TWG. The study showed that TWG could effectively ameliorate arthritis in CIA rats, such as reducing paw volume and arthritis score, alleviating the pathological damages of joint, and preventing the production of anti-CII autoantibodies and IL-1β cytokine. Significant increase in ceramide and decrease in lysophosphatidylcholine were observed in CIA rats, and were highly correlated with arthritis score and IL-1β level. After TWG treatment, these lipid abnormalities can be corrected to a great extent. These data demonstrate that TWG exerts a beneficial therapeutic effect on aberrant lipid metabolism which may provide new insights for further exploring the role and mechanism of TWG in the treatment of RA.
Collapse
Affiliation(s)
- Yitian Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Luyun Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiafeng Zhang
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dehong Wu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Leiming Chen
- Department of Nephrology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Changfeng Hu
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Chengping Wen, ; Jia Zhou, , orcid.org/0000-0003-2182-8440
| | - Jia Zhou
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Chengping Wen, ; Jia Zhou, , orcid.org/0000-0003-2182-8440
| |
Collapse
|