1
|
Mbye M, Ali AH, Kamal-Eldin A, Banat F. The impact of camel milk and its products on diabetes mellitus management: A review of bioactive components and therapeutic potential. NFS JOURNAL 2025; 38:100204. [DOI: 10.1016/j.nfs.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Arain MA, Khaskheli GB, Barham GS, Marghazani IB. Lactoferrin's role in modulating NF-κB pathway to alleviate diabetes-associated inflammation: A novel in-silico study. Heliyon 2024; 10:e34051. [PMID: 39092264 PMCID: PMC11292243 DOI: 10.1016/j.heliyon.2024.e34051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Lactoferrin (LF), a multifunctional glycoprotein found in mammalian milk and various exocrine secretions, plays a pivotal role in modulating various responses. Lactoferrin plays a significant role in type-2 diabetes by improving hepatic insulin resistance and pancreatic dysfunction however, the exact mechanism for this improvement is not thoroughly elucidated. To this date, there are no evidence that attributes the direct interaction of lactoferrin with components of NF-κB pathway. Considering this precedent, the current study aimed to investigate the interaction of LF with key components of NF-κB pathway using molecular docking and simulation approaches. Results indicated that LF has shown highly stable interactions with IL-1β, IL-6, IκBα and NF-κB, and relatively weaker interactions with IKK and TNF-α. All four trajectories, including root mean square of deviations (RMSD), root mean square of fluctuation (RMSF), hydrogen bond interactions, and radius of gyration (RoG), confirmed the stable interactions of LF with NF-κB pathway components. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) analysis further supports their stable interactions. To the best of our knowledge, this is the first study to provide convincing evidence that LF can interact with all six major components of the NF-κB pathway. This study provides pioneering in-silico evidence that lactoferrin (LF) can interact with all six major components of the NF-κB pathway, demonstrating highly stable interactions with IL-1β, IL-6, IκBα, and NF-κB, and relatively weaker interactions with IKK and TNF-α. These findings suggest that LF and its peptides have significant potential for both preventive and therapeutic applications by targeting the NF-κB pathway to inhibit inflammation, thereby improving insulin sensitivity and aiding in the management of diabetes.
Collapse
Affiliation(s)
- Muhammad Asif Arain
- Faculty of Animal Husbandry & Veterinary Sciences, Sindh Agriculture University, Tandojam, 70060, Pakistan
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal, 90150, Pakistan
| | - Gul Bahar Khaskheli
- Faculty of Animal Husbandry & Veterinary Sciences, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Ghulam Shabir Barham
- Faculty of Animal Husbandry & Veterinary Sciences, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Illahi Bakhsh Marghazani
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal, 90150, Pakistan
| |
Collapse
|
3
|
Li Y, Li J, Dong Y, Wang C, Cai Z. Bovine lactoferrin inhibits inflammatory response and apoptosis in lipopolysaccharide-induced acute lung injury by targeting the PPAR-γ pathway. Mol Biol Rep 2024; 51:492. [PMID: 38578368 DOI: 10.1007/s11033-024-09436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Lactoferrin (LF) is an iron-binding multifunctional cationic glycoprotein. Previous studies have demonstrated that LF may be a potential drug for treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In this study, we explored the anti-inflammatory effect and mechanism of bovine lactoferrin (bLF) in ALI using the RNA sequencing (RNA-seq) technology and transcriptome analysis. METHODS AND RESULTS Based on the differentially expressed genes (DEGs) obtained from RNA-seq of the Lung from mouse model, the bioinformatics workflow was implemented using the BGISEQ-500 platform. The protein-protein interaction (PPI) network was obtained using STRING, and the hub gene was screened using Cytoscape. To verify the results of transcriptome analysis, the effects of bLF on Lipopolysaccharide (LPS)-induced BEAS-2B cells and its anti-reactive oxygen species (ROS), anti-inflammatory, and antiapoptotic effects were studied via Cell Counting Kit-8 (CCK-8) test, active oxygen detection test, ELISA, and western blot assay. Transcriptome analysis revealed that two hub gene modules of DEGs were screened via PPI analysis using the STRING and MCODE plug-ins of Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these core modules are enriched in the PPAR (peroxisome proliferator-activated receptor) and AMPK (AMP-activated protein kinase) signaling pathways. Through cell experiments, our study shows that bLF can inhibit ROS, inflammatory reaction, and LPS-induced BEAS-2B cell apoptosis, which are significantly antagonized by the PPAR-γ inhibitor GW9662. CONCLUSION This study has suggested that the PPAR-γ pathway is the critical target of bLF in anti-inflammatory reactions and apoptosis of ALI, which provides a direction for further research.
Collapse
Affiliation(s)
- Yantao Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Junhu Li
- Emergency Department, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Yan Dong
- Emergency Department, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Can Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Zhigang Cai
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
- Hebei Key Laboratory of Respiratory Critical Care Medicine, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
- Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
4
|
Shiu WC, Liu ZS, Chen BY, Ku YW, Chen PW. Evaluation of a Standard Dietary Regimen Combined with Heat-Inactivated Lactobacillus gasseri HM1, Lactoferrin-Producing HM1, and Their Sonication-Inactivated Variants in the Management of Metabolic Disorders in an Obesity Mouse Model. Foods 2024; 13:1079. [PMID: 38611383 PMCID: PMC11011380 DOI: 10.3390/foods13071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This study investigated the impact of incorporating various inactivated probiotic formulations, with or without recombinant lactoferrin (LF) expression, into a standard chow diet on metabolic-related disorders in obese mice. After inducing obesity through a 13-week high-fat diet followed by a standard chow diet, mice received daily oral administrations of different probiotics for 6 weeks using the oral gavage approach. These probiotic formulations consisted of a placebo (MRS), heat-inactivated Lactobacillus gasseri HM1 (HK-HM1), heat-killed LF-expression HM1 (HK-HM1/LF), sonication-killed HM1 (SK-HM1), and sonication-killed LF-expression HM1 (SK-HM1/LF). The study successfully induced obesity, resulting in worsened glucose tolerance and insulin sensitivity. Interestingly, the regular diet alone improved glucose tolerance, and the addition of inactivated probiotics further enhanced this effect, with SK-HM1/LF demonstrating the most noticeable improvement. However, while regular dietary intervention alone improved insulin sensitivity, probiotic supplementation did not provide additional benefits in this aspect. Inflammation in perirenal and epididymal fat tissues was partially alleviated by the regular diet and further improved by probiotics, particularly by SK-HM1, which showed the most significant reduction. Additionally, HK-HM1 and HK-HM1/LF supplements could contribute to the improvement of serum total triglycerides or total cholesterol, respectively. Overall, incorporating inactivated probiotics into a regular diet may enhance metabolic indices, and recombinant LF may offer potential benefits for improving glucose tolerance.
Collapse
Affiliation(s)
- Wei-Chen Shiu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan;
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 33302, Taiwan
| | - Bo-Yuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
| | - Yu-We Ku
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
- Animal and Plant Disease Control Center Yilan County, Wujie Township, Yilan County 268015, Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402202, Taiwan; (W.-C.S.); (B.-Y.C.); (Y.-W.K.)
| |
Collapse
|
5
|
Mohandas S, Milan KL, Anuradha M, Ramkumar KM. Exploring Lactoferrin as a novel marker for disease pathology and ferroptosis regulation in gestational diabetes. J Reprod Immunol 2024; 161:104182. [PMID: 38159430 DOI: 10.1016/j.jri.2023.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Iron overload is linked to heightened susceptibility to ferroptosis, a process increasingly implicated in diabetes pathogenesis. This present study aims to assess the utility of Lactoferrin in predicting different stages of GDM and explore its association with disease pathology and ferroptosis. In this observational study, 72 pregnant women were recruited and categorized into three groups: healthy pregnant women without diabetes (NGDM, n = 24), early gestational diabetes (eGDM, n = 24), and established gestational diabetes (GDM, n = 24), all receiving standard antenatal care at 12 weeks of gestation. Circulating levels of ferritin, soluble transferrin receptor (sTFR), and Lactoferrin using multiplexed bead-based cytokine immunoassay. Gene expression analysis focused on analyzing crucial ferroptosis regulators, SLC7A11 and GPX4, in isolated peripheral blood mononuclear cells (PBMCs). A significant elevation in ferritin levels and a decrease in the sTFR: Ferritin ratio supported iron overload and disrupted iron homeostasis in GDM subjects. Notably, Lactoferrin levels were significantly lower in women with GDM than in the control group and those with eGDM. This decline in Lactoferrin correlated with increased hyperglycemia indicators and reduced expression of ferroptosis regulators among GDM patients. Furthermore ROC curve analysis demonstrated that Lactoferrin shows promise as a valuable marker for distinguishing individuals with GDM from those with eGDM. Lactoferrin shows promise as a biomarker for detecting GDM. These findings indicate its role as a potential biomarker and highlight Lactoferrin as a critical regulator of hyperglycemia and ferroptosis in women with GDM.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kunnath Lakshmanan Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Murugesan Anuradha
- Department of Obstetrics & Gynecology, SRM Medical College Hospital and Research Centre, Kattankulathur 603203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
6
|
Ayoub MA, Yap PG, Mudgil P, Khan FB, Anwar I, Muhammad K, Gan CY, Maqsood S. Invited review: Camel milk-derived bioactive peptides and diabetes-Molecular view and perspectives. J Dairy Sci 2024; 107:649-668. [PMID: 37709024 DOI: 10.3168/jds.2023-23733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
In dairy science, camel milk (CM) constitutes a center of interest for scientists due to its known beneficial effect on diabetes as demonstrated in many in vitro, in vivo, and clinical studies and trials. Overall, CM had positive effects on various parameters related to glucose transport and metabolism as well as the structural and functional properties of the pancreatic β-cells and insulin secretion. Thus, CM consumption may help manage diabetes; however, such a recommendation will become rationale and clinically conceivable only if the exact molecular mechanisms and pathways involved at the cellular levels are well understood. Moreover, the application of CM as an alternative antidiabetic tool may first require the identification of the exact bioactive molecules behind such antidiabetic properties. In this review, we describe the advances in our knowledge of the molecular mechanisms reported to be involved in the beneficial effects of CM in managing diabetes using different in vitro and in vivo models. This mainly includes the effects of CM on the different molecular pathways controlling (1) insulin receptor signaling and glucose uptake, (2) the pancreatic β-cell structure and function, and (3) the activity of key metabolic enzymes in glucose metabolism. Moreover, we described the current status of the identification of CM-derived bioactive peptides and their structure-activity relationship study and characterization in the context of molecular markers related to diabetes. Such an overview will not only enrich our scientific knowledge of the plausible mode of action of CM in diabetes but should ultimately rationalize the claim of the potential application of CM against diabetes. This will pave the way toward new directions and ideas for developing a new generation of antidiabetic products taking benefits from the chemical composition of CM.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Irfa Anwar
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (i2U) Building, SAINS@USM Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Soliman MO, El-Kamel AH, Shehat MG, Bakr BA, El-Moslemany RM. Lactoferrin decorated bilosomes for the oral delivery of quercetin in type 2 diabetes: In vitro and in vivo appraisal. Int J Pharm 2023; 647:123551. [PMID: 37884217 DOI: 10.1016/j.ijpharm.2023.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Despite its tremendous potential for type 2 diabetes management, quercetin (QRC) suffers poor gastric stability, poor bioavailability, and extensive first pass metabolism. Drug encapsulation into bilosomes (BSL) has proven enhanced properties in-vitro and in-vivo. Herein, this work endeavoured to evaluate efficacy of QRC-encapsulated bilosomes capped with lactoferrin (LF); a milk protein with antidiabetic potential, for type 2 diabetes oral treatment. The optimized formulation (LF-QRC-BSL) was evaluated in-vitro on α-amylase enzyme inhibition and insulin resistant HepG2 cell model and in vivo on streptozocin/high fat diet induced diabetes in rats. LF-QRC-BSL showed a small size (68.1 nm), a narrow PDI (0.18) and a -25.5 mV zeta potential. A high entrapment efficiency (94 %) with sustained release were also observed. LF-QRC-BSL displayed 100 % permeation through excised diabetic rat intestines after 6 h, 70.2 % inhibition of α-amylase enzyme in-vitro and an augmented recovery of glucose uptake in insulin resistant cells. In diabetic rats, LF-QRC-BSL resulted in significant decrease in blood glucose level, improved lipid profile and tissue injury markers with reduced oxidative stress and inflammatory markers. Further, histopathological examination of the kidneys, liver and pancreas revealed an almost restored normal condition comparable to the negative control. Overall, LF-QRC-BSL have proven to be a promising therapy for type 2 diabetes.
Collapse
Affiliation(s)
- Mai O Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Ianiro G, Niro A, Rosa L, Valenti P, Musci G, Cutone A. To Boost or to Reset: The Role of Lactoferrin in Energy Metabolism. Int J Mol Sci 2023; 24:15925. [PMID: 37958908 PMCID: PMC10650157 DOI: 10.3390/ijms242115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Many pathological conditions, including obesity, diabetes, hypertension, heart disease, and cancer, are associated with abnormal metabolic states. The progressive loss of metabolic control is commonly characterized by insulin resistance, atherogenic dyslipidemia, inflammation, central obesity, and hypertension, a cluster of metabolic dysregulations usually referred to as the "metabolic syndrome". Recently, nutraceuticals have gained attention for the generalized perception that natural substances may be synonymous with health and balance, thus becoming favorable candidates for the adjuvant treatment of metabolic dysregulations. Among nutraceutical proteins, lactoferrin (Lf), an iron-binding glycoprotein of the innate immune system, has been widely recognized for its multifaceted activities and high tolerance. As this review shows, Lf can exert a dual role in human metabolism, either boosting or resetting it under physiological and pathological conditions, respectively. Lf consumption is safe and is associated with several benefits for human health, including the promotion of oral and gastrointestinal homeostasis, control of glucose and lipid metabolism, reduction of systemic inflammation, and regulation of iron absorption and balance. Overall, Lf can be recommended as a promising natural, completely non-toxic adjuvant for application as a long-term prophylaxis in the therapy for metabolic disorders, such as insulin resistance/type II diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antonella Niro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| |
Collapse
|
9
|
Yami HA, Tahmoorespur M, Javadmanesh A, Tazarghi A, Sekhavati MH. The immunomodulatory effects of lactoferrin and its derived peptides on NF-κB signaling pathway: A systematic review and meta-analysis. Immun Inflamm Dis 2023; 11:e972. [PMID: 37647433 PMCID: PMC10413819 DOI: 10.1002/iid3.972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Lactoferrin is a versatile protein with important modulatory functions in inflammation and immune response. This glycoprotein can bind and sequester iron and LPS, thereby intervening in certain signaling pathways and biological processes. In the present meta-analysis, we aimed to pool experimental data regarding the immunomodulatory effects of lactoferrin and its derived peptides on the NF-κB signaling pathway. MATERIALS We searched PubMed, Google Scholar, and Web of Science databases and obtained all related articles published before April 2022. Finally, 25 eligible studies were selected, and their reports were analyzed. METHODS We used Review Manager Version 5.2 to compute the standardized mean difference (SMD) and its 95% confidence interval. In addition, the source of heterogeneity was explored using meta-regression and sensitivity analysis. The symmetry of the funnel plot and Egger's test were also used to evaluate publication bias utilizing Comprehensive Meta-Analysis Version 2. RESULTS Comparing the group of cells and animals exposed to lipopolysaccharide alone with the group that received pretreatment with lactoferrin and its derivatives, we observed significant reductions in TNF-α, IL-1 beta, and IL-6 levels by 8.73 pg/mL, 2.21 pg/mL, and 3.24 pg/mL, respectively, in the second group. Additionally, IKK-β, p-IκB, and NF-κB (p65) levels were significantly lower by 7.37-fold, 15.02-fold, and 3.88-fold, respectively, in various cells and tissues. CONCLUSION Based on the results of this meta-analysis, lactoferrin and its derived peptides can be considered potent prophylactic and therapeutic candidates against inflammation-associated diseases by targeting the NF-kB pathway.
Collapse
Affiliation(s)
- Hojjat Allah Yami
- Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of BiotechnologyFerdowsi University of MashhadMashhadIran
| | - Abbas Tazarghi
- Department of Microbiology, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
10
|
Jańczuk A, Brodziak A, Król J, Czernecki T. Properties of Yoghurt Fortified in Lactoferrin with Effect of Storage Time. Animals (Basel) 2023; 13:ani13101610. [PMID: 37238040 DOI: 10.3390/ani13101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The stability of fortified yoghurts during refrigerated storage is important for industry and the consumer. The aim of the study was to evaluate the nutritional value, microbiological quality, organoleptic properties, and structure of natural yoghurts made with the addition of lactoferrin during refrigerated storage. In this study, we produced natural yoghurts fortified in lactoferrin, using YC-X11 yoghurt starter culture based on Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Physicochemical (acidity, nutritional value and structure) as well as microbiological and organoleptic changes occurring during 28-days refrigerated storage were determined. Storage research made it possible to determine the direction of changes taking place in the products. The analysed parameters did not differ statistically significantly between the control yoghurts and those with the addition of lactoferrin. Textural and rheological studies also shown that the addition of lactoferrin did not significantly change the structure of the yoghurt. The yoghurts were characterized by high sanitary and hygienic quality during the whole refrigerated storage. Lactoferrin has a positive effect on the durability of the product.
Collapse
Affiliation(s)
- Anna Jańczuk
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Aneta Brodziak
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Dietitian Service, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
11
|
Artym J, Zimecki M. Colostrum Proteins in Protection against Therapy-Induced Injuries in Cancer Chemo- and Radiotherapy: A Comprehensive Review. Biomedicines 2023; 11:biomedicines11010114. [PMID: 36672622 PMCID: PMC9856106 DOI: 10.3390/biomedicines11010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
In this article, we review the benefits of application of colostrum and colostrum-derived proteins in animal models and clinical trials that include chemotherapy with antimetabolic drugs, radiotherapy and surgical interventions. A majority of the reported investigations was performed with bovine colostrum (BC) and native bovine or recombinant human lactoferrin (LF), applied alone, in nutraceutics or in combination with probiotics. Apart from reducing side effects of the applied therapeutics, radiation and surgical procedures, BC and LF augmented their efficacy and improved the wellness of patients. In conclusion, colostrum and colostrum proteins, preferably administered with probiotic bacteria, are highly recommended for inclusion to therapeutic protocols in cancer chemo- and radiotherapy as well as during the surgical treatment of cancer patients.
Collapse
|
12
|
Jańczuk A, Brodziak A, Czernecki T, Król J. Lactoferrin-The Health-Promoting Properties and Contemporary Application with Genetic Aspects. Foods 2022; 12:foods12010070. [PMID: 36613286 PMCID: PMC9818722 DOI: 10.3390/foods12010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of the study is to present a review of literature data on lactoferrin's characteristics, applications, and multiple health-promoting properties, with special regard to nutrigenomics and nutrigenetics. The article presents a new approach to food ingredients. Nowadays, lactoferrin is used as an ingredient in food but mainly in pharmaceuticals and cosmetics. In the European Union, bovine lactoferrin has been legally approved for use as a food ingredient since 2012. However, as our research shows, it is not widely used in food production. The major producers of lactoferrin and the few available food products containing it are listed in the article. Due to anti-inflammatory, antibacterial, antiviral, immunomodulatory, antioxidant, and anti-tumour activity, the possibility of lactoferrin use in disease prevention (as a supportive treatment in obesity, diabetes, as well as cardiovascular diseases, including iron deficiency and anaemia) is reported. The possibility of targeted use of lactoferrin is also presented. The use of nutrition genomics, based on the identification of single nucleotide polymorphisms in genes, for example, FTO, PLIN1, TRAP2B, BDNF, SOD2, SLC23A1, LPL, and MTHFR, allows for the effective stratification of people and the selection of the most optimal bioactive nutrients, including lactoferrin, whose bioactive potential cannot be considered without taking into account the group to which they will be given.
Collapse
Affiliation(s)
- Anna Jańczuk
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Aneta Brodziak
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-8-1445-6836
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Dietitian Service, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
13
|
Li H, Yao Q, Li C, Fan L, Wu H, Zheng N, Wang J. Lactoferrin Inhibits the Development of T2D-Induced Colon Tumors by Regulating the NT5DC3/PI3K/AKT/mTOR Signaling Pathway. Foods 2022; 11:foods11243956. [PMID: 36553697 PMCID: PMC9777659 DOI: 10.3390/foods11243956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although increasing evidence shows the association between type 2 diabetes (T2D) and colorectal cancer, the related mechanism remains unclear. This study examined the suppressive effect of lactoferrin (LF) on the development of T2D-induced colon cancer. First, a co-cultured cell model consisting of NCM460 and HT29 cells was constructed to mimic the progression of T2D into colon cancer. The migration ability of NCM460 cells increased significantly (p < 0.05) after cultivation in HT29 cell medium (high glucose), while LF suppressed the progression of T2D to colon cancer by regulating the 5′-nucleotidase domain-containing 3 (NT5DC3) protein and the PI3K/AKT/mTOR signaling pathway in diabetic BALB/c mice and in cell models. A mutation assay of the phosphorylation site in the NT5DC3 protein and a surface plasmon resonance (SPR) protein binding test were performed to further ascertain a mechanistic link between LF and the NT5DC3 protein. The results indicated that LF specifically bound to the NT5DC3 protein to activate its phosphorylation at the Thr6 and Ser11 sites. Next, metabolic-specific staining and localization experiments further confirmed that LF acted as a phosphate donor for NT5DC3 protein phosphorylation by regulating the downstream metabolic pathway in T2D-induced colon tumors, which was specifically accomplished by controlling Thr6/Ser11 phosphorylation in NT5DC3 and its downstream effectors. These data on LF and NT5DC3 protein may suggest a new therapeutic strategy for cancer prevention, especially in T2D patients susceptible to colon cancer.
Collapse
Affiliation(s)
- Huiying Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (H.L.); (J.W.)
| | - Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chaonan Li
- Beijing Key Laboratory of Food Processing and Safety in Forestry, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoming Wu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (H.L.); (J.W.)
| |
Collapse
|
14
|
Mayneris-Perxachs J, Moreno-Navarrete JM, Fernández-Real JM. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol 2022; 18:683-698. [PMID: 35986176 DOI: 10.1038/s41574-022-00721-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Iron is critical for the appearance and maintenance of life on Earth. Almost all organisms compete or cooperate for iron acquisition, demonstrating the importance of this essential element for the biological and physiological processes that are key for the preservation of metabolic homeostasis. In humans and other mammals, the bidirectional interactions between the bacterial component of the gut microbiota and the host for iron acquisition shape both host and microbiota metabolism. Bacterial functions influence host iron absorption, whereas the intake of iron, iron deficiency and iron excess in the host affect bacterial biodiversity, taxonomy and function, resulting in changes in bacterial virulence. These consequences of the host-microbial crosstalk affect systemic levels of iron, its storage in different tissues and host glucose metabolism. At the interface between the host and the microbiota, alterations in the host innate immune system and in circulating soluble factors that regulate iron (that is, hepcidin, lipocalin 2 and lactoferrin) are associated with metabolic disease. In fact, patients with obesity-associated metabolic dysfunction and insulin resistance exhibit dysregulation in iron homeostasis and alterations in their gut microbiota profile. From an evolutionary point of view, the pursuit of two important nutrients - glucose and iron - has probably driven human evolution towards the most efficient pathways and genes for human survival and health.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine, Universitat de Girona, Girona, Spain.
| |
Collapse
|
15
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
16
|
Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022; 925:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022]
Abstract
Evidence supports a strong bidirectional association between depression and Type 2 diabetes mellitus (T2DM). The harmful impact of oxidative stress and chronic inflammation on the development of both disorders is widely accepted. Nuclear factor erythroid 2-related factor 2 (NRF2) is a pertinent target in disease management owing to its reputation as the master regulator of antioxidant responses. NRF2 influences the expression of various cytoprotective phase 2 antioxidant genes, which is hampered in both depression and T2DM. Through interaction and crosstalk with several signaling pathways, NRF2 endeavors to contain the widespread oxidative damage and persistent inflammation involved in the pathophysiology of depression and T2DM. NRF2 promotes the neuroprotective and insulin-sensitizing properties of its upstream and downstream targets, thereby interrupting and preventing disease advancement. Standard antidepressant and antidiabetic drugs may be powerful against these disorders, but unfortunately, they come bearing distressing side effects. Therefore, exploiting the therapeutic potential of NRF2 activators presents an exciting opportunity to manage such bidirectional and comorbid conditions.
Collapse
|
17
|
Berthon BS, Williams LM, Williams EJ, Wood LG. Effect of Lactoferrin Supplementation on Inflammation, Immune Function, and Prevention of Respiratory Tract Infections in Humans: A Systematic Review and Meta-analysis. Adv Nutr 2022; 13:1799-1819. [PMID: 35481594 PMCID: PMC9526865 DOI: 10.1093/advances/nmac047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 01/28/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein present in human and bovine milk with antimicrobial and immune-modulating properties. This review aimed to examine the evidence for the effect of Lf supplementation on inflammation, immune function, and respiratory tract infections (RTIs) in humans. Online databases were searched up to December 2020 to identify relevant, English-language articles that examined the effect of Lf supplementation in human subjects of all ages, on either inflammation, immune cell populations or activity, or the incidence, duration, or severity of respiratory illness or RTIs. Twenty-five studies (n = 20 studies in adults) were included, of which 8 of 13 studies (61%) in adults reported a decrease in at least 1 systemic inflammatory biomarker. Immune function improved in 6 of 8 studies (75%) in adults, with changes in immune cell populations in 2 of 6 studies (33%), and changes in immune cell activity in 2 of 5 studies (40%). RTI outcomes were reduced in 6 of 10 studies (60%) (n = 5 in adults, n = 5 in children), with decreased incidence in 3 of 9 studies (33%), and either decreased frequency (2/4, 50%) or duration (3/6, 50%) in 50% of studies. In adults, Lf reduced IL-6 [mean difference (MD): -24.9 pg/mL; 95% CI: -41.64, -8.08 pg/mL], but not C-reactive protein (CRP) [standardized mean difference: -0.09; 95% CI: -0.82, 0.65], or NK cell cytotoxicity [MD: 4.84%; 95% CI: -3.93, 13.60%]. RTI incidence was reduced in infants and children (OR: 0.78; 95% CI: 0.61, 0.98) but not in adults (OR: 1.00; 95% CI: 0.76, 1.32). Clinical studies on Lf supplementation are limited, although findings show 200 mg Lf/d reduces systemic inflammation, while formulas containing 35-833 mg Lf/d may reduce RTI incidence in infants and children, suggesting improved immune function. Future research is required to determine optimal supplementation strategies and populations most likely to benefit from Lf supplementation. This trial was registered at PROSPERO (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021232186) as CRD42021232186.
Collapse
Affiliation(s)
| | - Lily M Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Evan J Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
18
|
Du Y, Li D, Chen J, Li YH, Zhang Z, Hidayat K, Wan Z, Xu JY, Qin LQ. Lactoferrin improves hepatic insulin resistance and pancreatic dysfunctions in high-fat diet and streptozotocin-induced diabetic mice. Nutr Res 2022; 103:47-58. [DOI: 10.1016/j.nutres.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022]
|
19
|
Anwar I, Khan FB, Maqsood S, Ayoub MA. Camel Milk Targeting Insulin Receptor—Toward Understanding the Antidiabetic Effects of Camel Milk. Front Nutr 2022; 8:819278. [PMID: 35223937 PMCID: PMC8864127 DOI: 10.3389/fnut.2021.819278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Camel milk (CM) is known for its beneficial virtues in the human diet and health. This includes its antidiabetic properties demonstrated in many in vitro and in vivo studies. Nevertheless, the scientific rationale behind the molecular and cellular basis of such beneficial effects and the exact antidiabetic agent(s)/mechanism(s) are still elusive. In this review, we focused on the recent advances supporting the targeting of insulin receptor (IR) by CM components. Indeed, our recent work reported that CM proteins and derived peptides pharmacologically target IR in vitro leading to its activation and potentiation of insulin-mediated responses. The review describes the experimental approaches used to investigate the effects of CM on IR in vitro based on the fractionation of CM whey proteins to purify functional proteins and their hydrolysis by gastric proteases to generate bioactive peptides. In addition, we illustrated our cellular and molecular model consisting of studying the functional activity of CM fractions on IR and its downstream signaling pathways in the hepatocarcinoma (HepG2) and the human embryonic kidney (HEK293) cells using the bioluminescence resonance energy transfer (BRET), phosphorylation, and glucose uptake assays. Overall, our work demonstrated for the first time that CM lactoferrin and CM-derived bioactive peptides positively modulate IR and its related signaling pathways in HepG2 and HEK293 cells. As a conclusion, the pharmacological targeting of IR by CM sheds more light on the antidiabetic properties of CM by providing its molecular basis that may constitute a solid rationale for the development of new generation of antidiabetic tools from CM-derived proteins and peptides and the utilization of CM in the management of diabetes. The sequencing and the synthesis of the potent bioactive CM peptides may open promising perspectives for their application as antidiabetic agents.
Collapse
Affiliation(s)
- Irfa Anwar
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, The United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, The United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Mohammed Akli Ayoub
| |
Collapse
|
20
|
Joshi H, Vastrad B, Joshi N, Vastrad C. Integrated bioinformatics analysis reveals novel key biomarkers in diabetic nephropathy. SAGE Open Med 2022; 10:20503121221137005. [PMID: 36385790 PMCID: PMC9661593 DOI: 10.1177/20503121221137005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: The underlying molecular mechanisms of diabetic nephropathy have yet not been investigated clearly. In this investigation, we aimed to identify key genes involved in the pathogenesis and prognosis of diabetic nephropathy. Methods: We downloaded next-generation sequencing data set GSE142025 from Gene Expression Omnibus database having 28 diabetic nephropathy samples and nine normal control samples. The differentially expressed genes between diabetic nephropathy and normal control samples were analyzed. Biological function analysis of the differentially expressed genes was enriched by Gene Ontology and REACTOME pathways. Then, we established the protein–protein interaction network, modules, miRNA-differentially expressed gene regulatory network and transcription factor-differentially expressed gene regulatory network. Hub genes were validated by using receiver operating characteristic curve analysis. Results: A total of 549 differentially expressed genes were detected including 275 upregulated and 274 downregulated genes. The biological process analysis of functional enrichment showed that these differentially expressed genes were mainly enriched in cell activation, integral component of plasma membrane, lipid binding, and biological oxidations. Analyzing the protein–protein interaction network, miRNA-differentially expressed gene regulatory network and transcription factor-differentially expressed gene regulatory network, we screened hub genes MDFI, LCK, BTK, IRF4, PRKCB, EGR1, JUN, FOS, ALB, and NR4A1 by the Cytoscape software. The receiver operating characteristic curve analysis confirmed that hub genes were of diagnostic value. Conclusions: Taken above, using integrated bioinformatics analysis, we have identified key genes and pathways in diabetic nephropathy, which could improve our understanding of the cause and underlying molecular events, and these key genes and pathways might be therapeutic targets for diabetic nephropathy.
Collapse
Affiliation(s)
- Harish Joshi
- Endocrine and Diabetes Care Center, Hubbali, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, KLE Society’s College of Pharmacy, Gadag, India
| | - Nidhi Joshi
- Dr. D. Y. Patil Medical College, Kolhapur, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Dharwad, India
- Chanabasayya Vastrad, Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, India.
| |
Collapse
|
21
|
Khan FB, Anwar I, Redwan EM, Palakkott A, Ashraf A, Kizhakkayil J, Iratni R, Maqsood S, Akli Ayoub M. Camel and bovine milk lactoferrins activate insulin receptor and its related AKT and ERK1/2 pathways. J Dairy Sci 2021; 105:1848-1861. [PMID: 34955280 DOI: 10.3168/jds.2021-20934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/01/2021] [Indexed: 01/24/2023]
Abstract
Lactoferrin (LF) is a milk protein that may be an interesting candidate for the antidiabetic properties of milk due to its well-documented bioactivity and implication in diabetes. Here, we investigated the functional action of LF purified from camel and bovine milk (cLF, bLF) on insulin receptors (IR) and their pharmacology and signaling in hepatocarcinoma (HepG2) and human embryonic kidney (HEK293) cells. For this, we examined IR activation by bioluminescence resonance energy transfer (BRET) technology and the phosphorylation of its key downstream signaling kinases by western blot. The purified cLF and bLF induced phosphorylation of IR, AKT, and ERK1/2 in HepG2 and HEK293 cells. The BRET assays in HEK293 cells confirm the pharmacological action of cLF and bLF on IR, with a possible allosteric mode of action. This reveals for the first time the bioactivity of LF toward IR function, indicating it as a potential bioactive protein behind the antidiabetic properties of camel milk.
Collapse
Affiliation(s)
- Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Irfa Anwar
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Kingdom of Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria 21394, Egypt
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Arshida Ashraf
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Jaleel Kizhakkayil
- Department of Nutrition and Health, College of Medicine and Health Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates UAE.
| |
Collapse
|
22
|
Mohamed H, Ranasinghe M, Amir N, Nagy P, Gariballa S, Adem A, Kamal‐Eldin A. A study on variability of bioactive proteins in camel (
Camelus dromedarius
) milk: Insulin, insulin‐like growth factors, lactoferrin, immunoglobulin G, peptidoglycan recognition protein‐1, lysozyme and lactoperoxidase. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Huda Mohamed
- Department of Food Science College of Agriculture and Veterinary MedicineUnited Arab Emirates University Al‐AinUnited Arab Emirates
| | - Meththa Ranasinghe
- Department of Food Science College of Agriculture and Veterinary MedicineUnited Arab Emirates University Al‐AinUnited Arab Emirates
| | - Naheed Amir
- Department of Pharmacology and Therapeutics College of Medicine and Health Sciences United Arab Emirates University Al‐AinUnited Arab Emirates
| | - Peter Nagy
- Farm and Veterinary Department Emirates Industry for Camel Milk and Products (EICMP) Umm Nahad DubaiUnited Arab Emirates
| | - Salah Gariballa
- Department of Internal Medicine College of Medicine and Health Sciences United Arab Emirates University Al‐AinUnited Arab Emirates
| | - Abdu Adem
- Department of Pharmacology College of Medicine and Health Sciences Khalifa University Abu Dhabi United Arab Emirates
| | - Afaf Kamal‐Eldin
- Department of Food Science College of Agriculture and Veterinary MedicineUnited Arab Emirates University Al‐AinUnited Arab Emirates
| |
Collapse
|
23
|
Cao X, Liu C, Zhang M, Bi R, Fu M, Korik E, Chen J, Gao J, Semak I, Liu J. Bovine lactoferrin and Lentinus edodes mycelia polysaccharide complex: The formation and the activity to protect islet β cells. Int J Biol Macromol 2021; 191:811-820. [PMID: 34592222 DOI: 10.1016/j.ijbiomac.2021.09.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022]
Abstract
The formation of complexes may be used for the development of delivery systems in foods field. The aim of this study was to explore the interaction mechanism between Lentinus edodes mycelia polysaccharide (LMP) and bovine lactoferrin (BLF), and the activity of LMP-BLF complex to inhibit oxidative stress in islet β cells. The interaction mechanisms of LMP with BLF were investigated with multi-spectroscopic techniques. The multi-spectroscopic analysis result showed that LMP bound with BLF by van der Waals force and hydrogen bond. The quenching mechanism of BLF with LMP was static quenching. Cell viability, reactive oxygen species (ROS) level, apoptosis and the related signaling pathways were detected with thiazolyl blue tetrazolium bromide (MTT) assay, 2,7-Dichlorofluorescin diacetate (DCFH-DA) staining, Hoechst 33258 staining and Western blot methods respectively. The complex alleviated apoptosis induced by hydrogen peroxide (H2O2), and inhibited oxidative stress via MAPK pathways in MIN6 cells. In addition, the complex was able to promote glucose uptake in HepG2 cells. These results will broaden our understanding of LMP-BLF complexes and the applications of polysaccharide-protein complexes in the foods field.
Collapse
Affiliation(s)
- Xiangyu Cao
- Department of Biological Sciences, School of life Science, Liaoning University, Chongshan Road 66, Shenyang 110036, PR China
| | - Chengying Liu
- Department of Biological Sciences, School of life Science, Liaoning University, Chongshan Road 66, Shenyang 110036, PR China
| | - Mengmeng Zhang
- Department of Biochemistry Belarusian State University, Nezavisimisty Ave., 4, BSU, The Faculty of Biology, 220030 Minsk, Belarus
| | - Ruochen Bi
- Department of Biological Sciences, School of life Science, Liaoning University, Chongshan Road 66, Shenyang 110036, PR China
| | - Mingyang Fu
- Department of Biological Sciences, School of life Science, Liaoning University, Chongshan Road 66, Shenyang 110036, PR China
| | - Elena Korik
- Department of Biochemistry Belarusian State University, Nezavisimisty Ave., 4, BSU, The Faculty of Biology, 220030 Minsk, Belarus
| | - Jiahe Chen
- Department of Biological Sciences, School of life Science, Liaoning University, Chongshan Road 66, Shenyang 110036, PR China
| | - Jianyun Gao
- Department of Biological Sciences, School of life Science, Liaoning University, Chongshan Road 66, Shenyang 110036, PR China
| | - Igor Semak
- Department of Biochemistry Belarusian State University, Nezavisimisty Ave., 4, BSU, The Faculty of Biology, 220030 Minsk, Belarus.
| | - Jianli Liu
- Department of Biological Sciences, School of life Science, Liaoning University, Chongshan Road 66, Shenyang 110036, PR China.
| |
Collapse
|
24
|
Costagliola G, Nuzzi G, Spada E, Comberiati P, Verduci E, Peroni DG. Nutraceuticals in Viral Infections: An Overview of the Immunomodulating Properties. Nutrients 2021; 13:nu13072410. [PMID: 34371920 PMCID: PMC8308811 DOI: 10.3390/nu13072410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, including vitamin D, vitamin A, zinc, lactoferrin, polyphenols coenzyme Q, magnesium, and selenium, are implicated in the modulation of the complex molecular pathways involved in the immune response against viral pathogens. A common element of the activity of nutraceuticals is their ability to enhance the innate immune response against pathogens by acting on the major cellular subsets and inducing the release of pro-inflammatory cytokines and antimicrobial peptides. In some cases, this action is accompanied by a direct antimicrobial effect, as evidenced in the specific case of lactoferrin. Furthermore, nutraceuticals act through complex molecular mechanisms to minimize the damage caused by the activation of the immune system against pathogens, reducing the oxidative damage, influencing the antigen presentation, enhancing the differentiation and proliferation of regulatory T cells, driving the differentiation of lymphocyte subsets, and modulating the production of pro-inflammatory cytokines. In this paper, we review the main molecular mechanisms responsible for the immunomodulatory function of nutraceuticals, focusing on the most relevant aspects for the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Giulia Nuzzi
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Erika Spada
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, 20142 Milan, Italy;
- Department of Health Science, University of Milan, 20142 Milan, Italy
| | - Diego G. Peroni
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
- Correspondence: ; Tel.: +39-50-799-2100
| |
Collapse
|
25
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
26
|
Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, Kandimalla R. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021; 10:1340. [PMID: 34071497 PMCID: PMC8228721 DOI: 10.3390/cells10061340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate β cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | - Moumita Gangopadhyay
- School of Life Science and Biotechnology, ADAMAS University, Barasat, Kolkata 700126, West Bengal, India;
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India;
| | - Vijaykrishna Medala
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| |
Collapse
|
27
|
Chen L, Liu R, He X, Pei S, Li D. Effects of brown seaweed polyphenols, a class of phlorotannins, on metabolic disorders via regulation of fat function. Food Funct 2021; 12:2378-2388. [PMID: 33645609 DOI: 10.1039/d0fo02886j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that fat dysfunction is the main driver of development of metabolic disorders. Changes in diet and lifestyle are particularly important to reverse the current global rise in obesity-related metabolic disorders. Seaweed has been consumed for thousands of years, and it is rich in bioactive compounds, especially unique polyphenols. The aim of the present review is to summarize the effects of different seaweed polyphenols on fat function in metabolic disorders and the related mechanisms. Seaweed polyphenols activate white adipose tissue to "brown" or "beige" adipose tissue to enhance energy consumption. In addition, the amelioration of fat factor imbalance and inflammatory response is also considered as an important reason for the regulation of lipid function with seaweed polyphenols. The present review provides an important basis for using seaweed polyphenols as potential dietary supplements to prevent metabolic disorders.
Collapse
Affiliation(s)
- Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | | | | | | | | |
Collapse
|
28
|
Vasilyev V, Sokolov A, Kostevich V, Elizarova A, Gorbunov N, Panasenko O. Binding of lactoferrin to the surface of low-density lipoproteins modified by myeloperoxidase prevents intracellular cholesterol accumulation by human blood monocytes. Biochem Cell Biol 2021; 99:109-116. [DOI: 10.1139/bcb-2020-0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myeloperoxidase (MPO) is a unique heme-containing peroxidase that can catalyze the formation of hypochlorous acid (HOCl). The strong interaction of MPO with low-density lipoproteins (LDL) promotes proatherogenic modification of LDL by HOCl. The MPO-modified LDL (Mox-LDL) accumulate in macrophages, resulting in the formation of foam cells, which is the pathognomonic symptom of atherosclerosis. A promising approach to prophylaxis and atherosclerosis therapy is searching for remedies that prevent the modification or accumulation of LDL in macrophages. Lactoferrin (LF) has several application points in obesity pathogenesis. We aimed to study LF binding to Mox-LDL and their accumulation in monocytes transformed into macrophages. Using surface plasmon resonance and ELISA techniques, we observed no LF interaction with intact LDL, whereas Mox-LDL strongly interacted with LF. The affinity of Mox-LDL to LF increased with the degree of oxidative modification of LDL. Moreover, an excess of MPO did not prevent interaction of Mox-LDL with LF. LF inhibits accumulation of cholesterol in macrophages exposed to Mox-LDL. The results obtained reinforce the notion of LF potency as a remedy against atherosclerosis.
Collapse
Affiliation(s)
- V.B. Vasilyev
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - A.V. Sokolov
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - V.A. Kostevich
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - A.Yu. Elizarova
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
| | - N.P. Gorbunov
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - O.M. Panasenko
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
29
|
Nemati M, Akseh S, Amiri M, Reza Nejabati H, Jodati A, Fathi Maroufi N, Faridvand Y, Nouri M. Lactoferrin suppresses LPS-induced expression of HMGB1, microRNA 155, 146, and TLR4/MyD88/NF-кB pathway in RAW264.7 cells. Immunopharmacol Immunotoxicol 2021; 43:153-159. [PMID: 33435756 DOI: 10.1080/08923973.2021.1872616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This current study evaluated the underlying mechanisms of LF against the inflammatory microRNAs (miRNAs), HMGB1 expression, and TLR4-MyD88-NF-кB pathway in LPS-activated murine RAW264.7 cells. METHODS MTT assay was used to assess cell metabolism and the cell culture levels of the cytokines (TNF-α, IL-6) were evaluated by Enzyme-linked immunosorbent assay (ELISA). The expression of miRNAs was quantified by using qPCR and the expression of HMGB1, TLR4, MyD88, and phosphorylated NF-κB (P-p65) were determined with Western blot and qPCR, respectively. RESULTS The results indicated that LF downregulates IL-6 and TNF-α expression. LF exhibited the degradation of P-p65 and reduced the production of HMGB1, TLR4, and MyD88 in LPS-induced inflammatory response. Importantly, in parallel with the suppression of cytokines and HMGB1-TLR4-MyD88-NF-кB pathway, LF could induce a decrease in inflammatory selected miRNAs, mmu-mir-155, and mmu-mir-146a expression. CONCLUSIONS Altogether, these findings provide LF as a prominent anti-inflammatory agent that could modulate HMGB1, mmu-mir-155, mmu-mir-146a, and TLR4/MyD88/NF-кB pathway.
Collapse
Affiliation(s)
- Maryam Nemati
- Department of Genetic, Islamic Azad University - Tabriz Branch, Tabriz, Iran.,Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeideh Akseh
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Amiri
- Faculty of Paramedical Sciences, Department of Medical Laboratory, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hamid Reza Nejabati
- Faculty of Medicine, Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Faculty of Medicine, Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Elafin inhibits obesity, hyperglycemia, and liver steatosis in high-fat diet-treated male mice. Sci Rep 2020; 10:12785. [PMID: 32733043 PMCID: PMC7393145 DOI: 10.1038/s41598-020-69634-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
Elafin is an antimicrobial and anti-inflammatory protein. We hypothesize that elafin expression correlates with diabetes. Among non-diabetic and prediabetic groups, men have significantly higher serum elafin levels than women. Men with type 2 diabetes mellitus (T2DM) have significantly lower serum elafin levels than men without T2DM. Serum elafin levels are inversely correlated with fasting blood glucose and hemoglobin A1c levels in men with T2DM, but not women with T2DM. Lentiviral elafin overexpression inhibited obesity, hyperglycemia, and liver steatosis in high-fat diet (HFD)-treated male mice. Elafin-overexpressing HFD-treated male mice had increased serum leptin levels, and serum exosomal miR181b-5p and miR219-5p expression. Transplantation of splenocytes and serum exosomes from elafin-overexpressing HFD-treated donor mice reduced food consumption and fat mass, and increased adipose tissue leptin mRNA expression in HFD-treated recipient mice. Elafin improved leptin sensitivity via reduced interferon-gamma expression and induced adipose leptin expression via increased miR181b-5p and miR219-5p expression. Subcutaneous and oral administration of modified elafin inhibited obesity, hyperglycemia, and liver steatosis in the HFD-treated mice. Circulating elafin levels are associated with hyperglycemia in men with T2DM. Elafin, via immune-derived miRNAs and cytokine, activates leptin sensitivity and expression that subsequently inhibit food consumption, obesity, hyperglycemia, and liver steatosis in HFD-treated male mice.
Collapse
|
31
|
Yahaya T, Shemishere U. Association between Bioactive Molecules in Breast Milk and Type 1 Diabetes Mellitus. Sultan Qaboos Univ Med J 2020; 20:e5-e12. [PMID: 32190364 PMCID: PMC7065699 DOI: 10.18295/squmj.2020.20.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/23/2019] [Accepted: 11/03/2019] [Indexed: 02/05/2023] Open
Abstract
The association between breastfeeding and type 1 diabetes mellitus (T1DM) is controversial. However, several recent studies have established a link between these two factors, necessitating a need to review this subject to raise public awareness. Current research indicates that breast milk contains a variety of bioactive substances including immunoglobulins, oligosaccharides, insulin, lactoferrin, lysozyme, cytokines, epidermal growth factors, leukocytes, nucleotides, beneficial bacteria and vitamins. Such substances strengthen the breastfeeding infant's immune system, both directly, by increasing gut microbiota diversity and attacking harmful bacteria and pro-inflammatory molecules, and indirectly, by increasing thymus performance. Accordingly, a lack of or inadequate breastfeeding may predispose infants to several autoimmune disorders, including T1DM. Nursing mothers and caregivers are therefore advised to follow optimal breastfeeding practices prior to introducing complementary foods.
Collapse
Affiliation(s)
- Tajudeen Yahaya
- Department of Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| | - Ufuoma Shemishere
- Department of Biochemistry & Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Nigeria
| |
Collapse
|
32
|
Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone A. Lactoferrin in Aseptic and Septic Inflammation. Molecules 2019; 24:molecules24071323. [PMID: 30987256 PMCID: PMC6480387 DOI: 10.3390/molecules24071323] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Lactoferrin (Lf), a cationic glycoprotein able to chelate two ferric irons per molecule, is synthesized by exocrine glands and neutrophils. Since the first anti-microbial function attributed to Lf, several activities have been discovered, including the relevant anti-inflammatory one, especially associated to the down-regulation of pro-inflammatory cytokines, as IL-6. As high levels of IL-6 are involved in iron homeostasis disorders, Lf is emerging as a potent regulator of iron and inflammatory homeostasis. Here, the role of Lf against aseptic and septic inflammation has been reviewed. In particular, in the context of aseptic inflammation, as anemia of inflammation, preterm delivery, Alzheimer’s disease and type 2 diabetes, Lf administration reduces local and/or systemic inflammation. Moreover, Lf oral administration, by decreasing serum IL-6, reverts iron homeostasis disorders. Regarding septic inflammation occurring in Chlamydia trachomatis infection, cystic fibrosis and inflammatory bowel disease, Lf, besides the anti-inflammatory activity, exerts a significant activity against bacterial adhesion, invasion and colonization. Lastly, a critical analysis of literature in vitro data reporting contradictory results on the Lf role in inflammatory processes, ranging from pro- to anti-inflammatory activity, highlighted that they depend on cell models, cell metabolic status, stimulatory or infecting agents as well as on Lf iron saturation degree, integrity and purity.
Collapse
Affiliation(s)
- Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
| |
Collapse
|