1
|
Bahgat OT, Rizk DE, Kenawy HI, Barwa R. Characterization of non-O157 enterohemorrhagic Escherichia coli isolated from different sources in Egypt. BMC Microbiol 2024; 24:488. [PMID: 39574016 PMCID: PMC11580514 DOI: 10.1186/s12866-024-03636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O157 is implicated in serious food and water-borne diseases as hemorrhagic colitis (HC), and the potentially fatal hemolytic uremic syndrome (HUS). However, new players of non-O157 EHEC have been implicated in serious infections worldwide. This work aims at analyzing serotype and genotypic-based virulence profile of EHEC local isolates. METHODS A total of 335 samples were collected from different sources in Egypt. E. coli was isolated and subjected to serotyping. Non-O157 EHEC isolates were tested for virulence genes using PCR, phenotypic examination, phylogenetic typing, and molecular investigation by ERIC typing and MLST to disclose genetic relatedness of isolates. A heat map was used to identify potential associations between the origin of the isolates, their phenotypic and genotypic characteristics. RESULTS A total of 105 out of 335 isolates were identified as E. coli. Surprisingly, 49.5% of these isolates were EHEC, where O111, O91, O26 and O55 were the most prevalent serotypes including 38.46% from stool, 21.15% urine, 23.1% cheese, 9.62% meat products, 3.85% from both yogurt and sewage water. Screening 15 different virulence genes revealed that sheA, stx2 and eae were the most prevalent with abundance rates of 85%, 75% and 36%, respectively. Fifteen profiles of virulence gene association were identified, where the most abundant one was stx2/sheA (19%) followed by stx2/stx2g/sheA/eae (11.5%). Both stx2/sheA/eae and stx2/stx2g/sheA were equally distributed in 9.6% of total isolates. Phylogenetic typing revealed that pathogenic phylogroups B2 and D were detected among clinical isolates only. Forty-six different patterns were detected by ERIC genotyping. MLST resolved three sequence types of ST70, ST120 and ST394. The heat map showed that 21 isolates were of 70% similarity, 9 groups were of 100% clonality. CONCLUSIONS The prevalence of non-O157 EHEC pathotype was marginally higher among the food isolates compared to the clinical ones. The endemic ST120 was detected in cheese, necessitating crucial measures to prevent the spread of this clone. Clinical EHEC isolates exhibited a higher score, and combination of virulence genes compared to food and sewage water isolates, thereby posing a significant public health concern.
Collapse
Affiliation(s)
- Omnia T Bahgat
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dina E Rizk
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Hany I Kenawy
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Barwa
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Basualdo J, Iocoli GA, Gómez MA, Zabaloy MC. Dairy effluent management systems as a potential persistence source of Shiga toxin-producing Escherichia coli (STEC) strains. Rev Argent Microbiol 2024:S0325-7541(24)00119-6. [PMID: 39516110 DOI: 10.1016/j.ram.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/01/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogenic enterobacteria of significant public health importance due to their association with highly prevalent human diseases. STEC is ubiquitous in livestock environments, and its presence in the environment emphasizes the importance of properly managing agricultural effluents to reduce health risks from contamination. In order to detect STEC in the effluent treatment systems of two dairy farms ("A" and "B") in the southwest of Buenos Aires province, samples ("A", n=88; "B", n=72) were taken at two different times of the year (winter and spring) and at various points in the treatment systems. Analysis markers for virulence genes (stx, eae, saa, and ehxA) revealed the presence of STEC in 13.1% of the samples, showing an increase in spring and differences between dairy farms possibly related to their maintenance conditions. After manure, sediments showed the highest proportion of STEC-positive samples, which is relevant due to the ability of these strains to survive in the environment through biofilm formation. Eight genetic profiles were identified among all STEC-positive samples, which are associated with STEC strains that can cause hemolytic uremic syndrome (HUS) and other gastrointestinal diseases. This demonstrates the role of dairy farm environments in the region as reservoirs of pathogenic STEC strains and their impact on public health.
Collapse
Affiliation(s)
- Jessica Basualdo
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Gastón A Iocoli
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Marisa A Gómez
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María Celina Zabaloy
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Zhang P, Liu L, Sheng H, Zhang M, Wang T, Chang G, Wang Y, Bai L, Wang X. Antibiotic Resistance and Genomic Analysis of Shiga Toxin-Producing Escherichia coli from Dairy Cattle, Raw Milk, and Farm Environment in Shaanxi Province, China. Foodborne Pathog Dis 2024; 21:624-633. [PMID: 39042484 DOI: 10.1089/fpd.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
To investigate the epidemiology of Shiga toxin-producing Escherichia coli (STEC) in dairy cattle, 975 samples (185 feces, 34 silage, 36 cattle drinking water, 360 raw milk, and 360 teat skin swabs) were collected from two dairy farms in Baoji and Yangling, Shaanxi Province, China, and were screened for STEC. Whole-genome sequencing was used to analyze the genomic characteristics and potential transmission of STEC isolates. A total of 32 samples were contaminated with STEC, including 4.0% (19/479) in Farm A and 2.6% (13/496) in Farm B. Compared with adult cows (4.5%), nonadult cows had a higher rate (21.3%) of STEC colonization. A total of 14 serotypes and 11 multilocus sequence typing were identified in 32 STEC isolates, among which O55:H12 (25.0%) and ST101 (31.3%) were the most predominant, respectively. Six stx subtypes/combinations were identified, including stx1a (53.1%), stx2g (15.6%), stx2d, stx2a+stx2d, stx1a+stx2a (6.3%, for each), and stx2a (3.1%). Of 32 STEC isolates, 159 virulence genes and 27 antibiotic resistance genes were detected. Overall, STEC isolates showed low levels of resistance to the 16 antibiotics tested (0-40.6%), with most common resistance to ampicillin (40.6%). The phylogenetic analysis confirmed that STEC in the gut of cattle can be transmitted through feces. The results of this study help to improve our understanding of the epidemiological aspects of STEC in dairy cattle and provide early warning and control of the prevalence and spread of the bacterium.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- College of Food Science, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Lisha Liu
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, Beijing, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yeru Wang
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Li Bai
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Olawole AS, Malahlela MN, Fonkui TY, Marufu MC, Cenci-Goga BT, Grispoldi L, Etter EMC, Tagwireyi WM, Karama M. Occurrence, serotypes and virulence characteristics of Shiga toxin-producing and Enteropathogenic Escherichia coli isolates from dairy cattle in South Africa. World J Microbiol Biotechnol 2024; 40:299. [PMID: 39134916 PMCID: PMC11319423 DOI: 10.1007/s11274-024-04104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Shiga toxin-producing and Enteropathogenic Escherichia coli are foodborne pathogens commonly associated with diarrheal disease in humans. This study investigated the presence of STEC and EPEC in 771 dairy cattle fecal samples which were collected from 5 abattoirs and 9 dairy farms in South Africa. STEC and EPEC were detected, isolated and identified using culture and PCR. Furthermore, 339 STEC and 136 EPEC isolates were characterized by serotype and major virulence genes including stx1, stx2, eaeA and hlyA and the presence of eaeA and bfpA in EPEC. PCR screening of bacterial sweeps which were grown from fecal samples revealed that 42.2% and 23.3% were STEC and EPEC positive, respectively. PCR serotyping of 339 STEC and 136 EPEC isolates revealed 53 different STEC and 19 EPEC serotypes, respectively. The three most frequent STEC serotypes were O82:H8, OgX18:H2, and O157:H7. Only 10% of the isolates were classified as "Top 7" STEC serotypes: O26:H2, 0.3%; O26:H11, 3.2%; O103:H8, 0.6%; and O157:H7, 5.9%. The three most frequent EPEC serotypes were O10:H2, OgN9:H28, and O26:H11. The distribution of major virulence genes among the 339 STEC isolates was as follows: stx1, 72.9%; stx2, 85.7%; eaeA, 13.6% and hlyA, 69.9%. All the 136 EPEC isolates were eaeA-positive but bfpA-negative, while 46.5% carried hlyA. This study revealed that dairy cattle are a major reservoir of STEC and EPEC in South Africa. Further comparative studies of cattle and human STEC and EPEC isolates will be needed to determine the role played by dairy cattle STEC and EPEC in the occurrence of foodborne disease in humans.Please kindly check and confirm the country and city name in affiliation [6].This affiliation is correct.Please kindly check and confirm the affiliationsConfirmed. All Affiliations are accurate.
Collapse
Affiliation(s)
- Alaba S Olawole
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Mogaugedi N Malahlela
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Thierry Y Fonkui
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Munyaradzi C Marufu
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Beniamino T Cenci-Goga
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa
- Departiment of Veterinary Medicine, Laboratorio Di Ispezione Degli Alimenti Di Origine Animale, University of Perugia, 06126, Perugia, Italy
| | - Luca Grispoldi
- Departiment of Veterinary Medicine, Laboratorio Di Ispezione Degli Alimenti Di Origine Animale, University of Perugia, 06126, Perugia, Italy
| | - Eric M C Etter
- CIRAD, UMR ASTRE, 97170, Petit-Bourg, Guadeloupe, France
- ASTRE, University de Montpellier, CIRAD, INRAE, 34398, Montpellier, France
| | - Whatmore M Tagwireyi
- Clinical Sciences, School of Veterinary Medicine, Ross University, P.O. Box 334, Basseterre, West Indies, St Kitts and Nevis
| | - Musafiri Karama
- Department of Paraclinical Sciences, Faculty of Veterinary Science, Veterinary Public Health Section, University of Pretoria, Onderstepoort, 0110, South Africa.
| |
Collapse
|
5
|
Wang X, Yu D, Chui L, Zhou T, Feng Y, Cao Y, Zhi S. A Comprehensive Review on Shiga Toxin Subtypes and Their Niche-Related Distribution Characteristics in Shiga-Toxin-Producing E. coli and Other Bacterial Hosts. Microorganisms 2024; 12:687. [PMID: 38674631 PMCID: PMC11052178 DOI: 10.3390/microorganisms12040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin (Stx), the main virulence factor of Shiga-toxin-producing E. coli (STEC), was first discovered in Shigella dysenteriae strains. While several other bacterial species have since been reported to produce Stx, STEC poses the most significant risk to human health due to its widespread prevalence across various animal hosts that have close contact with human populations. Based on its biochemical and molecular characteristics, Shiga toxin can be grouped into two types, Stx1 and Stx2, among which a variety of variants and subtypes have been identified in various bacteria and host species. Interestingly, the different Stx subtypes appear to vary in their host distribution characteristics and in the severity of diseases that they are associated with. As such, this review provides a comprehensive overview on the bacterial species that have been recorded to possess stx genes to date, with a specific focus on the various Stx subtype variants discovered in STEC, their prevalence in certain host species, and their disease-related characteristics. This review provides a better understanding of the Stx subtypes and highlights the need for rapid and accurate approaches to toxin subtyping for the proper evaluation of the health risks associated with Shiga-toxin-related bacterial food contamination and human infections.
Collapse
Affiliation(s)
- Xuan Wang
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Daniel Yu
- School of Public Health, Univeristy of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Linda Chui
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Tiantian Zhou
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yu Feng
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yuhao Cao
- School of Basic Medical Sciences, Ningbo University, Ningbo 315000, China;
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| |
Collapse
|
6
|
Guibert F, Espinoza K, Taboada-Blanco C, Alonso CA, Oporto R, Castillo AK, Rojo-Bezares B, López M, Sáenz Y, Pons MJ, Ruiz J. Traditional marketed meats as a reservoir of multidrug-resistant Escherichia coli. Int Microbiol 2023:10.1007/s10123-023-00445-y. [PMID: 37995017 DOI: 10.1007/s10123-023-00445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
This study aimed to analyze Escherichia coli from marketed meat samples in Peru. Sixty-six E. coli isolates were recovered from 21 meat samples (14 chicken, 7 beef), and antimicrobial resistance levels and the presence of mechanisms of antibiotic resistance, as well as clonal relationships and phylogeny of colistin-resistant isolates, were established. High levels of antimicrobial resistance were detected, with 93.9% of isolates being multi-drug resistant (MDR) and 76.2% of samples possessing colistin-resistant E. coli; of these, 6 samples from 6 chicken samples presenting mcr-1-producer E. coli. Colistin-resistant isolates were classified into 22 clonal groups, while phylogroup A (15 isolates) was the most common. Extended-spectrum β-lactamase- and pAmpC-producing E. coli were found in 18 and 8 samples respectively, with blaCTX-M-55 (28 isolates; 16 samples) and blaCIT (8 isolates; 7 samples) being the most common of each type. Additionally, blaCTX-M-15, blaCTX-M-65, blaSHV-27, blaOXA-5/10-like, blaDHA, blaEBC and narrow-spectrum blaTEM were detected. In addition, 5 blaCTX-M remained unidentified, and no sought ESBL-encoding gene was detected in other 6 ESBL-producer isolates. The tetA, tetE and tetX genes were found in tigecycline-resistant isolates. This study highlights the presence of MDR E. coli in Peruvian food-chain. The high relevance of CTX-M-55, the dissemination through the food-chain of pAmpC, as well as the high frequency of unrelated colistin-resistant isolates is reported.
Collapse
Affiliation(s)
- Fernando Guibert
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Kathya Espinoza
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Clara Taboada-Blanco
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Carla A Alonso
- Servicio de Análisis Clínicos, Laboratorio de Microbiología, Hospital San Pedro, Logroño, Spain
| | - Rosario Oporto
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Angie K Castillo
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Maria J Pons
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru.
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru.
| |
Collapse
|
7
|
Machado MAM, Castro VS, da Cunha-Neto A, Vallim DC, Pereira RDCL, Dos Reis JO, de Almeida PV, Galvan D, Conte-Junior CA, Figueiredo EEDS. Heat-resistant and biofilm-forming Escherichia coli in pasteurized milk from Brazil. Braz J Microbiol 2023; 54:1035-1046. [PMID: 36811769 PMCID: PMC10235242 DOI: 10.1007/s42770-023-00920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Escherichia coli harboring a transmissible locus of stress tolerance (tLST) and the ability to form biofilms represent a serious risk in dairy production. Thus, we aimed to evaluate the microbiological quality of pasteurized milk from two dairy producers in Mato Grosso, Brazil, with a focus on determining the possible presence of E. coli with heat resistance (60 °C/6 min), biofilm-forming potential phenotypes and genotypes, and antimicrobial susceptibility. For this, fifty pasteurized milk samples from producers named A and B were obtained for 5 weeks to investigate the presence of Enterobacteriaceae members, coliforms, and E. coli. For heat resistance, E. coli isolates were exposed to a water bath at 60 °C for 0 and 6 min. In antibiogram analysis, eight antibiotics belonging to six antimicrobial classes were analyzed. The potential to form biofilms was quantified at 570 nm, and curli expression by Congo Red was analyzed. To determine the genotypic profile, we performed PCR for the tLST and rpoS genes, and pulsed-field gel electrophoresis (PFGE) was used to investigate the clonal profile of the isolates. Thus, producer A presented unsatisfactory microbiological conditions regarding Enterobacteriaceae and coliforms for weeks 4 and 5, while all samples analyzed for producer B were contaminated at above-the-limit levels established by national and international legislation. These unsatisfactory conditions enabled us to isolate 31 E. coli from both producers (7 isolates from producer A and 24 isolates from producer B). In this way, 6 E. coli isolates (5 from producer A and 1 from producer B) were highly heat resistant. However, although only 6 E. coli showed a highly heat-resistant profile, 97% (30/31) of all E. coli were tLST-positive. In contrast, all isolates were sensitive to all antimicrobials tested. In addition, moderate or weak biofilm potential was verified in 51.6% (16/31), and the expression of curli and presence of rpoS was not always related to this biofilm potential. Therefore, the results emphasize the spreading of heat-resistant E. coli with tLST in both producers and indicate the biofilm as a possible source of contamination during milk pasteurization. However, the possibility of E. coli producing biofilm and surviving pasteurization temperatures cannot be ruled out, and this should be investigated.
Collapse
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Graduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Adelino da Cunha-Neto
- Department of Food and Nutrition, Federal University of Mato Grosso - Campus Cuiabá, Fernando Correa da Costa. Avenue, Boa Esperança, Mato Grosso, 78060-900, Brazil
| | | | | | | | | | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- Department of Food and Nutrition, Federal University of Mato Grosso - Campus Cuiabá, Fernando Correa da Costa. Avenue, Boa Esperança, Mato Grosso, 78060-900, Brazil.
- Graduate Program in Animal Science, Federal University of Mato Grosso, Mato Grosso, Brazil.
| |
Collapse
|
8
|
Escherichia coli virulence genes and clonality in strains from diarrhoea in goat kids. Small Rumin Res 2023. [DOI: 10.1016/j.smallrumres.2023.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Habets A, Touzain F, Lucas P, Huong NTT, Iguchi A, Crombé F, Korsak N, Piérard D, Saulmont M, Cox E, Engelen F, Mainil J, Thiry D. Identification of Five Serotypes of Enteropathogenic Escherichia coli from Diarrheic Calves and Healthy Cattle in Belgium and Comparative Genomics with Shigatoxigenic E. coli. Vet Sci 2022; 9:vetsci9090492. [PMID: 36136709 PMCID: PMC9505469 DOI: 10.3390/vetsci9090492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Enteropathogenic Escherichia coli (EPEC) from cattle receive little attention, although some belong to the most notorious O serotypes of attaching/effacing Shigatoxigenic Escherichia coli (AE-STEC) responsible for the uremic and hemolytic syndrome in humans, such as O26. Nevertheless, the O serotypes and virulotypes of the large majority of bovine EPEC remain unidentified. This study aimed to identify five non-classical O serotypes (O123/186, O156, O177, O182, and O183) by a polymerase chain reaction (PCR) among three collections of bovine EPEC from young diarrheic calves, healthy cattle at slaughterhouses, and healthy calves in dairy farms. The virulotypes and sequence types (STs) obtained after the whole genome sequencing of several O156, O177, and O182 bovine EPEC were closely related or identical to the virulotypes and STs of ten bovine and the human AE-STEC of the same O:H serotype. This study allows us to identify more EPEC O serotypes from cattle and to speculate on their evolution. Abstract Enteropathogenic Escherichia coli (EPEC) produce attaching/effacing (AE) lesions and cause non-bloody diarrhea in mammals. A minority of bovine EPEC belong to one of the ten classical serotypes of human and bovine AE-STEC. The purpose of this study was to identify five non-classical O serotypes (O123/186, O156, O177, O182, and O183) among bovine EPEC and to characterize their virulence repertoires by whole genome sequencing. Around 40% of the 307 EPEC from 307 diarrheic calves, 368 EPEC from 47 healthy cattle, and 131 EPEC from 36 healthy calves in dairy farms were analyzed. Serotype O177 was the most frequent among EPEC from diarrheic and healthy calves, while the O156 was the most frequent in healthy cattle. The genomic analysis identified different H serotypes, MLSTypes, and/or eae gene subtypes among the O156 and O177 EPEC, while the O182 was homogeneous. The virulence gene profiles of bovine EPEC were closely related to each other and to the profiles of ten bovine and human AE-STEC. These results emphasize the need for additional studies to identify more O:H serotypes of bovine EPEC and to elucidate their origin and evolution of EPEC with regard to AE-STEC belonging to the same O:H serotypes.
Collapse
Affiliation(s)
- Audrey Habets
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine, Centre for Fundamental and Applied Research in Animals and Heath (FARAH), University of Liège, Quartier Vallée II, Cureghem Avenue 6, B-4000 Liège, Belgium
| | - Fabrice Touzain
- Viral Genetics and Bio-Security Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Pierrick Lucas
- Viral Genetics and Bio-Security Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Nguyen Thi Thu Huong
- Department of Environment and Resource Sciences, University of Miyazaki (UoM), Miyazaki 889-2192, Japan
| | - Atsushi Iguchi
- Department of Environment and Resource Sciences, University of Miyazaki (UoM), Miyazaki 889-2192, Japan
| | - Florence Crombé
- Belgian National Reference Center STEC, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Nicolas Korsak
- Food Microbiology, Department of Food Sciences, Faculty of Veterinary Medicine, Centre for Fundamental and Applied Research in Animals and Heath (FARAH), University of Liège (ULiège), B-4000 Liège, Belgium
| | - Denis Piérard
- Belgian National Reference Center STEC, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Marc Saulmont
- Regional Agency for Animal Health and Identification (ARSIA), B-5590 Ciney, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Frederik Engelen
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Jacques Mainil
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine, Centre for Fundamental and Applied Research in Animals and Heath (FARAH), University of Liège, Quartier Vallée II, Cureghem Avenue 6, B-4000 Liège, Belgium
| | - Damien Thiry
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine, Centre for Fundamental and Applied Research in Animals and Heath (FARAH), University of Liège, Quartier Vallée II, Cureghem Avenue 6, B-4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
10
|
Sváb D, Falgenhauer L, Mag T, Chakraborty T, Tóth I. Genomic Diversity, Virulence Gene, and Prophage Arrays of Bovine and Human Shiga Toxigenic and Enteropathogenic Escherichia coli Strains Isolated in Hungary. Front Microbiol 2022; 13:896296. [PMID: 35865933 PMCID: PMC9294531 DOI: 10.3389/fmicb.2022.896296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli belonging to the enterohemorrhagic (EHEC), Shiga toxin-producing (STEC) and atypical enteropathogenic (aEPEC) pathotypes are significant foodborne zoonotic pathogens posing serious health risks, with healthy cattle as their main reservoir. A representative sampling of Hungarian cattle farms during 2017-2018 yielded a prevalence of 6.5 and 5.8% for STEC and aEPEC out of 309 samples. The draft genomes of twelve STEC (of them 9 EHEC) and four aEPEC of bovine origin were determined. For comparative purposes, we also included 3 EHEC and 2 aEPEC strains of human origin, as well four commensal isolates and one extraintestinal pathogenic E. coli (ExPEC) obtained from animals in a final set of 26 strains for a WGS-based analysis. Apart from key virulence genes, these isolates harbored several additional virulence genes with arrays characteristic for the site of isolation. The most frequent insertion site of Shiga toxin (stx) encoding prophages was yehV for the Stx1 prophage and wrbA and sbcB for Stx2. For O157:H7 strains, the locus of enterocyte effacement pathogenicity island was present at the selC site, with integration at pheV for other serotypes, and pheU in the case of O26:H11 strains. Several LEE-negative STEC and aEPEC as well as commensal isolates carried additional prophages, with an average of ten prophage regions per isolate. Comparative phylogenomic analysis showed no clear separation between bovine and human lineages among the isolates characterized in the current study. Similarities in virulence gene arrays and close phylogenetic relations of bovine and human isolates underline the zoonotic potential of bovine aEPEC and STEC and emphasize the need for frequent monitoring of these pathogens in livestock.
Collapse
Affiliation(s)
- Domonkos Sváb
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Tünde Mag
- National Public Health Center, Budapest, Hungary
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - István Tóth
- Veterinary Medical Research Institute, Budapest, Hungary
| |
Collapse
|
11
|
Prevalence and Molecular Characterisation of Extended-Spectrum Beta-Lactamase-Producing Shiga Toxin-Producing Escherichia coli, from Cattle Farm to Aquatic Environments. Pathogens 2022; 11:pathogens11060674. [PMID: 35745529 PMCID: PMC9230396 DOI: 10.3390/pathogens11060674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 01/23/2023] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing bacteria are a major problem for public health worldwide because of limited treatment options. Currently, only limited information is available on ESBL-producing Shiga toxin-producing Escherichia coli (STEC) in cattle farms and the surrounding aquatic environment. This study sought to track and characterise ESBL-producing STEC disseminating from a cattle farm into the water environment. Animal husbandry soil (HS), animal manure (AM), animal drinking water (ADW), and nearby river water (NRW) samples were collected from the cattle farm. Presumptive ESBL-producing STEC were isolated and identified using chromogenic media and mass spectrophotometry methods (MALDI-TOF-MS), respectively. The isolates were subjected to molecular analysis, and all confirmed ESBL-producing STEC isolates were serotyped for their O serogroups and assessed for antibiotic resistance genes (ARGs) and for the presence of selected virulence factors (VFs). A phylogenetic tree based on the multilocus sequences was constructed to determine the relatedness among isolates of ESBL-producing STEC. The highest prevalence of ESBL-producing STEC of 83.33% was observed in HS, followed by ADW with 75%, NRW with 68.75%, and the lowest was observed in AM with 64.58%. Out of 40 randomly selected isolates, 88% (n = 35) belonged to the serogroup O45 and 13% (n = 5) to the serogroup O145. The multilocus sequence typing (MLST) analysis revealed four different sequence types (STs), namely ST10, ST23, ST165, and ST117, and the predominant ST was found to be ST10. All 40 isolates carried sul1 (100%), while blaOXA, blaCTX-M, sul2, blaTEM, and qnrS genes were found in 98%, 93%, 90%, 83%, and 23% of the 40 isolates, respectively. For VFs, only stx2 was detected in ESBL-producing STEC isolates. The results of the present study indicated that a cattle environment is a potential reservoir of ESBL-producing STEC, which may disseminate into the aquatic environment through agricultural runoff, thus polluting water sources. Therefore, continual surveillance of ESBL-producing STEC non-O157 would be beneficial for controlling and preventing STEC-related illnesses originating from livestock environments.
Collapse
|
12
|
Novel Aspects of the SubA Subunit of the Subtilase Cytotoxin. Toxins (Basel) 2022; 14:toxins14020156. [PMID: 35202183 PMCID: PMC8876466 DOI: 10.3390/toxins14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
The subtilase cytotoxin (SubAB) belongs to the family of AB5 toxins and is produced together with Shiga toxin (Stx) by certain Stx-producing E. coli strains (STEC). For most AB-type toxins, it is assumed that cytotoxic effects can only be induced by a complete holotoxin complex consisting of SubA and SubB. However, it has been shown for SubAB that the enzymatically active subunit SubA, without its transport and binding domain SubB, induces cell death in different eukaryotic cell lines. Interestingly, the molecular structure of SubA resembles that of the SubAB complex. SubA alone is capable of binding to cells and then being taken up autonomously. Once inside the host cell, SubA is transported, similar to the SubAB holotoxin, via a retrograde transport into the endoplasmatic reticulum (ER). In the ER, it exhibits its enzymatic activity by cleaving the chaperone BiP/GRP78 and thereby triggering cell death. Therefore, the existence of toxic single SubA subunits that have not found a B-pentamer for holotoxin assembly might improve the pathogenic potential of subtilase-producing strains. Moreover, from a pharmacological aspect, SubA might be an interesting molecule for the targeted transport of therapeutic molecules into the ER, in order to investigate and specifically modulate processes in the context of ER stress-associated diseases. Since recent studies on bacterial AB5 toxins contributed mainly to the understanding of the biology of AB-type holotoxins, this mini-review specifically focus on that recently observed single A-effect of the subtilase cytotoxin and addresses whether a fundamental shift of the traditional AB5 paradigm might be required.
Collapse
|
13
|
Development of Single Nucleotide Polymorphism (SNP)-Based Triplex PCR Marker for Serotype-Specific Escherichia coli Detection. Pathogens 2022; 11:pathogens11020115. [PMID: 35215059 PMCID: PMC8874422 DOI: 10.3390/pathogens11020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are one of the most common forms of genetic variation and as such are powerful tools for the identification of bacterial strains, their genetic diversity, phylogenetic analysis, and outbreak surveillance. In this study, we used 15 sets of SNP-containing primers to amplify and sequence the target Escherichia coli. Based on the combination of the 15-sequence primer sets, each SNP site encompassing forward and reverse primer sequences (620–919 bp) were aligned and an SNP-based marker was designed. Each SNP marker exists in at least two SNP sites at the 3′ end of each primer; one natural and the other artificially created by transition or transversion mutation. Thus, 12 sets of SNP primers (225–488 bp) were developed for validation by amplifying the target E. coli. Finally, a temperature gradient triplex PCR kit was designed to detect target E. coli strains. The selected primers were amplified in three genes (ileS, thrB, and polB), with fragment sizes of 401, 337, and 232 bp for E. coli O157:H7, E. coli, and E. coli O145:H28, respectively. This allele-specific SNP-based triplex primer assay provides serotype-specific detection of E. coli strains in one reaction tube. The developed marker would be used to diagnose, investigate, and control food-borne E. coli outbreaks.
Collapse
|
14
|
Elsayed MSAE, Eldsouky SM, Roshdy T, Bayoume AMA, Nasr GM, Salama ASA, Akl BA, Hasan AS, Shahat AK, Khashaba RA, Abdelhalim WA, Nasr HE, Mohammed LA, Salah A. Genetic and antimicrobial resistance profiles of non-O157 Shiga toxin-producing Escherichia coli from different sources in Egypt. BMC Microbiol 2021; 21:257. [PMID: 34556033 PMCID: PMC8461963 DOI: 10.1186/s12866-021-02308-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/28/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Shiga toxin-producing Escherichia coli (STEC) represented a great risk to public health. In this study, 60 STEC strains recovered from broiler and duck fecal samples, cow's milk, cattle beef, human urine, and ear discharge were screened for 12 virulence genes, phenotypic and genotypic antimicrobial resistance, and multiple-locus variable-number tandem-repeat analysis (MLVA). RESULTS The majority of strains harbored Shiga toxin 1 (stx1) and stx1d, stx2 and stx2e, and ehxA genes, while a minority harbored stx2c subtype and eaeA. We identified 10 stx gene combinations; most of strains 31/60 (51.7%) exhibited four copies of stx genes, namely the stx1, stx1d, stx2, and stx2e, and the strains exhibited a high range of multiple antimicrobial resistance indices. The resistance genes blaCTX-M-1 and blaTEM were detected. For the oxytetracycline resistance genes, most of strains contained tetA, tetB, tetE, and tetG while the tetC was present at low frequency. MLVA genotyping resolved 26 unique genotypes; genotype 21 was highly prevalent. The six highly discriminatory loci DI = 0.9138 are suitable for the preliminary genotyping of STEC from animals and humans. CONCLUSIONS The STEC isolated from animals are virulent, resistant to antimicrobials, and genetically diverse, thus demands greater attention for the potential risk to human.
Collapse
Affiliation(s)
- Mohamed Sabry Abd Elraheam Elsayed
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt.
| | - Samah Mahmoud Eldsouky
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, Benha University, Benha, Egypt
| | - Tamer Roshdy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Abeer Mohamed Ahmed Bayoume
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Ghada M Nasr
- Department of Molecular Diagnostics, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
| | - Ali S A Salama
- Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Behiry A Akl
- Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Al Shaimaa Hasan
- Department of Medical Pharmacology, Qena Faculty of Medicine, South Valley University, Qena, Egypt
| | - Amany Kasem Shahat
- Department of Medical Microbiology and Immunology, Benha University, Benha, Egypt
| | - Rana Atef Khashaba
- Department of Clinical Pathology and Chemistry, Benha Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Hend E Nasr
- Department of Medical Biochemistry and Molecular Biology, Benha University, Benha, Egypt
| | | | - Ahmed Salah
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt
| |
Collapse
|
15
|
Hu Y, Cui G, Fan Y, Liu Y, Zhou W, Huo S, Wu X, Song S, Cui X, Zhao L, Bai L, Cui S, He Z. Isolation and Characterization of Shiga Toxin-Producing Escherichia coli from Retail Beef Samples from Eight Provinces in China. Foodborne Pathog Dis 2021; 18:616-625. [PMID: 34403269 DOI: 10.1089/fpd.2021.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
While Shiga toxin-producing Escherichia coli (STEC) is a major foodborne pathogen worldwide, data on the molecular and phylogenetic properties of STEC isolates from retail beef samples in China remain scant. Fresh retail beef samples (n = 1062) were collected from eight provinces, and STEC isolates were recovered and characterized. PCR data showed that more than 50% of the samples were stx positive, and 82 STEC isolates were recovered from 14.8% (79/535) stx-positive enriched broths. In contrast, all ciprofloxacin resistant isolates (n = 19) and 13 cefotaxime (CTX) resistant isolates were eae positive and belonged to three serotypes: O111:H8, O26:H11, or O157:H7. Point mutations in quinolone resistance-determining regions and plasmid-mediated quinolone resistance determinants were identified in 16 and 20 isolates, respectively. BlaCTX-M and a point mutation (C-42T) in ampC promoter were detected in 15 and 8 of the CTX resistant isolates, respectively. In addition, macrolide resistance gene mphA was identified in eight azithromycin resistant O111:H8 isolates and one O26:H11 isolate. Single nucleotide polymorphism analysis demonstrated that the O26 and O157 isolates had multiple origins, but the O111 isolates were closely related. Taken together, our data demonstrated that several sequence types associated with hemolytic uremic syndrome from the retail beef samples in China had developed into dangerous multidrug resistant pathogens. The resistant phenotype can facilitate their transmission among the farm animals and human beings when there is an antimicrobial selective pressure.
Collapse
Affiliation(s)
- Ying Hu
- Department of Food Science, College of Food Science, Southwest University, Chongqing, China
| | - Guangqing Cui
- Department of Microbiology, Shanxi Provincial Institute for Food and Drug Control, Taiyuan, China
| | - Yiling Fan
- Department of Microbiology, NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Yan Liu
- Department of Microbiology, Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
| | - Wei Zhou
- Department of Microbiology, Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Zhengzhou, China
| | - Shengnan Huo
- Department of Microbiology, Shandong Institute for Food and Drug Control, Jinan, China
| | - Xin Wu
- Department of Microbiology, Jiang Xi Institute for Food Control, Nanchang, China
| | - Sheng Song
- Department of Microbiology, Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| | - Xuewen Cui
- Department of Microbiology, Microbiological Inspection Center, Sichuan Institute for Food and Drug Control, Chengdu, China
| | - Linna Zhao
- Department of Food Science, The National Institutes for Food and Drug Control, Beijing, China
| | - Li Bai
- Department of Microbiology, Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Shenghui Cui
- Department of Food Science, The National Institutes for Food and Drug Control, Beijing, China
| | - Zhifei He
- Department of Food Science, College of Food Science, Southwest University, Chongqing, China.,Department of Microbiology, Chongqing Engineering Research Center of Regional Food, Chongqing, China
| |
Collapse
|
16
|
Yun YS, Kim NO, Chun JH, Hwang KJ, Hong S. The prevalence and characteristics of Shiga toxin-producing Escherichia coli isolated by the enteric pathogens active surveillance network (Enter-Net) in the Republic of Korea, 2009-2018. Microb Pathog 2021; 158:105005. [PMID: 34044043 DOI: 10.1016/j.micpath.2021.105005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Shiga toxin-producing Escherichia coli (STEC) is a water- and food-borne pathogenic agent that causes diarrhea, hemorrhagic colitis, hemolytic uremic syndrome (HUS), and end-stage renal disease. As the annual incidence of STEC increases, disease control is also becoming important in Korea. In this study, we aimed to analyze the incidence trends and characteristics of STEC isolated from diarrheal patients over 10 years. METHODS From 2009 to 2018, STECs were collected by the Enteric Pathogens Active Surveillance Network (Enter-Net) and analyzed according to clinical epidemiological information (month of isolation, age, and sex of patient), O serogroup, and shiga toxin type. Shiga toxin genes (stx1 and stx2) and O serogroups of isolates were determined using multiplex PCR and an agglutination method with the available O antisera, respectively. RESULTS A total of 418 strains were isolated over 10 years. The isolation rate according to age group and season was highest in children ≤4 years old (38.1%) and in the summer season (June to August). Among the 418 isolates, the major serogroups were divided O157 (20.3%), O103 (13.6%), O26 (7.7%), O111 (5.5%), O91 (4.3%), O108 (2.4%), and O8 (2.2%). The most frequently isolated O157 showed a lower isolation rate compared to that isolated from other developed countries. The profiles of stx genes were distinct among serogroups. In O157 and O91, stx1+stx2 was detected more frequently than either stx1 or stx2 alone. Particularly, most of the O157 (98%) isolates harbored the stx2 gene, which is an important factor in severe diseases, including HUS. In O103, O26, O111, and O108, stx1-only was more frequently present than stx2-only or stx1+stx2. CONCLUSIONS As a result of analyzing domestic STECs collected through Enter-Net, it was confirmed that patients ≤4 years of age and in the summer months require attention, and that STEC with a serogroup of O157 is highly likely to cause diseases such as HUS. Therefore, the pathogen active surveillance network for characterization and provision of STEC isolates must be operated continuously.
Collapse
Affiliation(s)
- Young-Sun Yun
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Osongsaengmyeong 2-Ro, Cheongju-si, 28159, Republic of Korea; Division of Bacterial Disease Research, National Institute of Health, Korea Disease Control and Prevention Agency, Osongsaengmyeong 2-Ro, Cheongju-si, 28159, Republic of Korea
| | - Nan-Ok Kim
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Osongsaengmyeong 2-Ro, Cheongju-si, 28159, Republic of Korea
| | - Jeong-Hoon Chun
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Osongsaengmyeong 2-Ro, Cheongju-si, 28159, Republic of Korea
| | - Kyu Jam Hwang
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Osongsaengmyeong 2-Ro, Cheongju-si, 28159, Republic of Korea
| | - Sahyun Hong
- Division of Bacterial Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Osongsaengmyeong 2-Ro, Cheongju-si, 28159, Republic of Korea.
| |
Collapse
|
17
|
Genetic and Phenotypic Factors Associated with Persistent Shedding of Shiga Toxin-Producing Escherichia coli by Beef Cattle. Appl Environ Microbiol 2020; 86:AEM.01292-20. [PMID: 32769184 DOI: 10.1128/aem.01292-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a leading cause of foodborne infections. Cattle are an important STEC reservoir, although little is known about specific pathogen traits that impact persistence in the farm environment. Hence, we sought to evaluate STEC isolates recovered from beef cattle in a single herd in Michigan. To do this, we collected fecal grabs from 26 cattle and resampled 13 of these animals at 3 additional visits over a 3-month period. In all, 66 STEC isolates were recovered for genomics and biofilm quantification using crystal violet assays. The STEC population was diverse, representing seven serotypes, including O157:H7, O26:H11, and O103:H2, which are commonly associated with human infections. Although a core genome analysis of 2,933 genes grouped isolates into clusters based on serogroups, some isolates within each cluster had variable biofilm levels and virulence gene profiles. Most (77.8%; n = 49) isolates harbored stx 2a, while 38 (57.5%) isolates formed strong biofilms. Isolates belonging to the predominant serogroup O6 (n = 36; 54.5%) were more likely to form strong biofilms, persistently colonize multiple cattle, and be acquired over time. A high-quality single nucleotide polymorphism (SNP) analysis of 33 O6 isolates detected between 0 and 13 single nucleotide polymorphism (SNP) differences between strains, indicating that highly similar strain types were persisting in this herd. Similar findings were observed for other persistent serogroups, although key genes were found to differ among strong and weak biofilm producers. Together, these data highlight the diversity and persistent nature of some STEC types in this important food animal reservoir.IMPORTANCE Food animal reservoirs contribute to Shiga toxin-producing Escherichia coli (STEC) evolution via the acquisition of horizontally acquired elements like Shiga toxin bacteriophages that enhance pathogenicity. In cattle, persistent fecal shedding of STEC contributes to contamination of beef and dairy products and to crops being exposed to contaminated water systems. Hence, identifying factors important for STEC persistence is critical. This longitudinal study enhances our understanding of the genetic diversity of STEC types circulating in a cattle herd and identifies genotypic and phenotypic traits associated with persistence. Key findings demonstrate that multiple STEC types readily persist in and are transmitted across cattle in a shared environment. These dynamics also enhance the persistence of virulence genes that can be transferred between bacterial hosts, resulting in the emergence of novel STEC strain types. Understanding how pathogens persist and diversify in reservoirs is important for guiding new preharvest prevention strategies aimed at reducing foodborne transmission to humans.
Collapse
|
18
|
Pakbin B, Akhondzadeh Basti A, Khanjari A, Azimi L, Karimi A. Differentiation of stx1A gene for detection of Escherichia coli serotype O157: H7 and Shigella dysenteriae type 1 in food samples using high resolution melting curve analysis. Food Sci Nutr 2020; 8:3665-3672. [PMID: 32724629 PMCID: PMC7382201 DOI: 10.1002/fsn3.1649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/25/2023] Open
Abstract
Escherichia coli serotype O157: H7 and Shigella dysenteriae type 1 as the Shiga toxin-producing bacteria cause some acute gastrointestinal and extraintestinal diseases such as hemorrhagic uremic syndrome and bloody diarrhea in human. Stx genes are the key virulence factors in these pathogens. The aim of this study was to develop HRMA assay to differentiate stx1A gene for detection of E. coli serotype O157: H7 and Sh. dysenteriae type 1 and determine the prevalence of these pathogens in food samples using this method. PCR-HRMA assay and gold standard methods have been carried out for identification of pathogens among 135 different food samples. We found HRMA method a sensitive and specific assay (100 and 100%, respectively) for differentiation of stx1A gene, consequently, detection of these pathogens in food samples. Also, the highest prevalence of E. coli serotype O157: H7 and Sh. dysenteriae type 1 harboring stx1A gene was observed in raw milk and vegetable salad samples, respectively. HRMA as a rapid, inexpensive, sensitive and specific method is suggested to be used for differentiation of stx1A gene to detect E. coli serotype O157: H7 and Sh. dysenteriae type 1 as the key pathogens for safety evaluation of food samples.
Collapse
Affiliation(s)
- Babak Pakbin
- Department of Food Hygiene and Quality of ControlFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Afshin Akhondzadeh Basti
- Department of Food Hygiene and Quality of ControlFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Ali Khanjari
- Department of Food Hygiene and Quality of ControlFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Leila Azimi
- Pediatric Infections Research CenterResearch Institute of children’s HealthShahid Beheshti University of Medical SciencesTehranIran
| | - Abdollah Karimi
- Pediatric Infections Research CenterResearch Institute of children’s HealthShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
19
|
Manga I, Hasman H, Smidkova J, Medvecky M, Dolejska M, Cizek A. Fecal Carriage and Whole-Genome Sequencing-Assisted Characterization of CMY-2 Beta-Lactamase-Producing Escherichia coli in Calves at Czech Dairy Cow Farm. Foodborne Pathog Dis 2019; 16:42-53. [PMID: 30673354 DOI: 10.1089/fpd.2018.2531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The study aimed to monitor the fecal shedding of cefotaxime-resistant Escherichia coli (CREC) in a cohort of healthy calves on a dairy farm with documented antimicrobial usage and to characterize selected AmpC beta-lactamase-producing E. coli isolates. Fecal samples from 13 suckling calves (1-63 d of age; 113 samples in total) were repeatedly collected and cultivated on MacConkey agar with cefotaxime (2 mg/L). Resistant colonies were counted, and one colony obtained from the highest dilution of each fecal sample was identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Susceptibility to antimicrobials and production of AmpC and extended-spectrum beta-lactamase (ESBL) were tested. No ESBL-producing E. coli was found, but representative AmpC-positive E. coli isolates were subjected to further typing and whole-genome sequencing (WGS) for the analysis of clonal relationships, resistance genes, virulence factors, and plasmid replicons. High amounts of CREC were detected in the feces of all 13 calves during the study. The number of CREC colonies varied from 1.0 log10 to 8.0 log10 colony-forming unit per gram. Drops in CREC density or its discontinued shedding were recorded at the end of the study period. A total of 82 (94%, n = 87) CREC isolates were confirmed as AmpC producers and all but one showed resistance to multiple antimicrobials. Twenty-nine selected AmpC-positive E. coli isolates belonged to 12 and 13 unique rep-PCR fingerprints and pulsed-field gel electrophoresis types, respectively, highlighting the variation in E. coli genotypes in individual calves. WGS of 10 selected isolates showed diverse antimicrobial resistance and virulence gene content and the presence of a blaCMY-2 gene carried by an IncK2 plasmid. Clinically important multiresistant E. coli isolates belonging to emerging extraintestinal pathogenic E. coli ST69 and ST648 lineages were found. Our findings reinforce the urgency of efforts to prevent the spread of ESBL-/AmpC-producing bacteria in dairy cow farms.
Collapse
Affiliation(s)
- Ivan Manga
- 1 Faculty of Veterinary Medicine, Institute of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,2 CEITEC VFU Brno, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Henrik Hasman
- 3 Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jana Smidkova
- 1 Faculty of Veterinary Medicine, Institute of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,4 Faculty of Veterinary Medicine, Ruminant and Swine Clinic, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Matej Medvecky
- 2 CEITEC VFU Brno, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Monika Dolejska
- 2 CEITEC VFU Brno, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Alois Cizek
- 1 Faculty of Veterinary Medicine, Institute of Infectious Diseases and Microbiology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,2 CEITEC VFU Brno, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
20
|
Galarce N, Escobar B, Sánchez F, Paredes-Osses E, Alegría-Morán R, Borie C. Virulence Genes, Shiga Toxin Subtypes, Serogroups, and Clonal Relationship of Shiga Toxin-Producing Escherichia Coli Strains Isolated from Livestock and Companion Animals. Animals (Basel) 2019; 9:E733. [PMID: 31569618 PMCID: PMC6826562 DOI: 10.3390/ani9100733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes severe illness in humans and is an important cause of foodborne disease. In Chile, there is limited information on the virulence characteristics of this pathogen in livestock, and none in companion animals. The aim of this study was to characterize STEC strains isolated from cattle, swine, dogs, and cats, in Chile, in terms of the presence of Shiga toxin types and subtypes, virulence genes, serogroups, and clonality. One-thousand two-hundred samples were collected, isolating 54 strains (4.5%), where stx1a (68.5%) and ehxA (74.1%) were the most frequently detected virulence genes. Only one strain belonging to the most clinically relevant serogroups was identified. Pulsed field gel electrophoresis analysis showed high clonal diversity among strains isolated from cattle, while those from swine showed the same pattern. This study provides further evidence regarding cattle and swine in Chile as a potential source of a wide variety of STEC strains that could potentially cause severe illness in humans, and that companion animals do not seem to represent a relevant reservoir. It also argues that preventive and control strategies should not be focused on detecting serogroups, but instead, on detecting their determinants of virulence.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile.
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile.
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile.
| | - Esteban Paredes-Osses
- Instituto de Salud Pública de Chile, Departamento de Salud Ambiental, 7780050 Santiago, Chile.
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile.
- Facultad de Ciencias Agropecuarias, Universidad Pedro de Valdivia, 7500908 Santiago, Chile.
| | - Consuelo Borie
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile.
| |
Collapse
|
21
|
Fan R, Shao K, Yang X, Bai X, Fu S, Sun H, Xu Y, Wang H, Li Q, Hu B, Zhang J, Xiong Y. High prevalence of non-O157 Shiga toxin-producing Escherichia coli in beef cattle detected by combining four selective agars. BMC Microbiol 2019; 19:213. [PMID: 31488047 PMCID: PMC6728992 DOI: 10.1186/s12866-019-1582-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) are emerging foodborne pathogens that are public health concern. Cattle have been identified as the major STEC reservoir. In the present study, we investigated the prevalence and characteristics of STEC strains in beef cattle from a commercial farm in Sichuan province, China. Results Among 120 beef cattle fecal samples, stx genes were positive in 90% of samples, as assessed using TaqMan real-time PCR, and 87 (72.5%) samples were confirmed to yield at least one STEC isolate by culture using four selective agars, MacConkey, CHROMagar™ ECC, modified Rainbow® Agar O157, and CHROMagar™ STEC, from which 31, 32, 91, and 73 STEC strains were recovered, respectively. A total of 126 STEC isolates were selected and further characterized. Seventeen different O:H serotypes were identified, all of which belonged to the non-O157 serotypes. One stx1 subtype (stx1a) and three stx2 subtypes (stx2a, stx2c, and stx2d) were present among these isolates. The intimin encoding gene eae, and other adherence-associated genes (iha, saa, and paa) were present in 37, 125, 74, and 30 STEC isolates, respectively. Twenty-three isolates carried the virulence gene subA, and only one harbored both cnf1 and cnf2 genes. Three plasmid-origin virulence genes (ehxA, espP, and katP) were present in 111, 111, and 7 isolates, respectively. The 126 STEC isolates were divided into 49 pulsed-field gel electrophoresis (PFGE) patterns. Conclusions Our study showed that the joint use of the selective MacConkey and modified Rainbow® Agar O157 agars increased the recovery frequency of non-O157 STEC strains in animal feces, which could be applied to other samples and in regular STEC surveillance. Moreover, the results revealed high genetic diversity of non-O157 STEC strains in beef cattle, some of which might have the potential to cause human diseases. Electronic supplementary material The online version of this article (10.1186/s12866-019-1582-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruyue Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Kun Shao
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Shanshan Fu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yanmei Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Ji Zhang
- mEpiLab, New Zealand Food Safety Science & Research Center, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
| |
Collapse
|
22
|
Triplett OA, Xuan J, Foley S, Nayak R, Tolleson WH. Immunomagnetic Capture of Big Six Shiga Toxin-Producing Escherichia coli Strains in Apple Juice with Detection by Multiplex Real-Time PCR Eliminates Interference from the Food Matrix. J Food Prot 2019; 82:1512-1523. [PMID: 31414899 DOI: 10.4315/0362-028x.jfp-19-134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Having reliable methods for detecting Shiga toxin-producing Escherichia coli (STEC) in foods is an important food safety goal. The majority of STEC outbreaks have involved either the O157:H7 serotype or one of six non-O157 serogroups, O26, O45, O103, O111, O121, and O145, termed "The Big Six." We have compared detection by PCR of the Shiga toxin genes stx1a and stx2a from STEC bacteria isolated from unclarified apple juice by simple centrifugation with the use of an immunocapture technique to minimize contaminants (such as pectin and polyphenols that may copurify with DNA) that may interfere with DNA amplification efficiencies and limit sensitivity. An internal control for successful immunocapture, DNA extraction, and PCR amplification was generated by introducing the pmRaspberry plasmid into an stx null strain, yielding an E. coli O45 pmRaspberry derivative that can be added to food samples directly. Using serial dilutions of a representative Big Six STEC in apple juice, our immunocapture method resulted in a 50% probability of detection value of 3.34, 2.25, and 4.25 CFU for detection by multiplex real-time PCR, growth on solid agar, and multiplex endpoint PCR, respectively. The time to result was 6.5 h, 9.5 h, and 1.5 days for immunocapture of Big Six STECs and detection by multiplex real-time PCR, endpoint PCR, and growth on solid agar, respectively. A set of 52 Big Six STEC isolates and 30 non-Big Six STEC strains was used to establish the inclusivity and exclusivity of the method. Finally, the ability to detect Big Six STEC contamination reliably was confirmed at 4.5 and 45 CFU/25-mL portions of refrigerated apple juice.
Collapse
Affiliation(s)
- Odbert A Triplett
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| | - Jiekun Xuan
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| | - Steven Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| | - Rajesh Nayak
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| | - William H Tolleson
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, USA
| |
Collapse
|
23
|
Karama M, Mainga AO, Cenci-Goga BT, Malahlela M, El-Ashram S, Kalake A. Molecular profiling and antimicrobial resistance of Shiga toxin-producing Escherichia coli O26, O45, O103, O121, O145 and O157 isolates from cattle on cow-calf operations in South Africa. Sci Rep 2019; 9:11930. [PMID: 31417098 PMCID: PMC6695430 DOI: 10.1038/s41598-019-47948-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/26/2019] [Indexed: 01/16/2023] Open
Abstract
In this study, 140 cattle STEC isolates belonging to serogroups O157, O26, O145, O121, O103 and O45 were characterized for 38 virulence-associated genes, antimicrobial resistance profiles and genotyped by PFGE. The majority of isolates carried both stx1 and stx2 concurrently, stx2c, and stx2d; plasmid-encoded genes ehxA, espP, subA and saa but lacked katP and etpD and eaeA. Possession of eaeA was significantly associated with the presence of nle genes, katP, etpD, ureC and terC. However, saa and subA, stx1c and stx1d were only detected in eaeA negative isolates. A complete OI-122 and most non-LEE effector genes were detected in only two eaeA positive serotypes, including STEC O157:H7 and O103:H2. The eaeA gene was detected in STEC serotypes that are commonly implicated in severe humans disease and outbreaks including STEC O157:H7, STEC O145:H28 and O103:H2. PFGE revealed that the isolates were highly diverse with very low rates of antimicrobial resistance. In conclusion, only a small number of cattle STEC serotypes that possessed eaeA, had the highest number of virulence-associated genes, indicative of their high virulence. Further characterization of STEC O157:H7, STEC O145:H28 and O103:H2 using whole genome sequencing will be needed to fully understand their virulence potential for humans.
Collapse
Affiliation(s)
- Musafiri Karama
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| | - Alfred O Mainga
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Beniamino T Cenci-Goga
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Dipartimento di Scienze Biopatologiche, Laboratorio di Ispezione degli Alimenti di Origine Animale, Facoltà di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Mogaugedi Malahlela
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Saeed El-Ashram
- School of Life Science and Engineering, Foshan University, Foshan, China.,Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Alan Kalake
- Gauteng Department of Agriculture and Rural Development (GDARD), Johannesburg, South Africa
| |
Collapse
|
24
|
Molecular detection of Shiga toxin-producing and antibiotic-resistant Escherichia coli isolates from buffaloes in southwest of Iran. Trop Anim Health Prod 2019; 51:1725-1736. [PMID: 30915604 DOI: 10.1007/s11250-019-01869-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Abstract
Three hundred fifteen bacteriological samples were obtained from feces and both external and visceral cavity surfaces of carcasses of 105 healthy buffalo slaughtered in southwest of Iran. Confirmed Escherichia coli isolates were examined for antimicrobial resistance phenotypically and were screened for stx1, stx2, and eae genes and their subtypes and assessment of antimicrobial resistance genes by regular PCR and RFLP techniques. One hundred forty-five E. coli were isolated from feces (96 isolates) and external (37) and internal (12) surfaces of carcasses. Results showed that the prevalence of STEC, EPEC, and EHEC pathotypes was 2.8%, 0.7%, and 0.7% respectively. Among 6 (4.13%) positive isolates for examined genes, 4 (2.8%) isolates were positive for stx1, 3 (2.1%) for stx2, and 2 (1.4%) for eae gene. The detected genes were classified into stx1a (4 isolates), stx2a, stx2b, stx2c, eae-β, and unknown subtypes. The most prevalent antibiotic resistance gene was sulII (11.03%). The tetB, qnrB, floR, blaTEM, blaSHV, and aadA genes were found to a lesser extent, and all isolates were negative for blaCTX-15, blaOXA, aac(3)-I, tetA, cat1, qnrA, sulI, dhfrI, and dhfrV genes. Twelve combination patterns of antibiotic-resistant genes were observed. Maximum phenotypically resistance rate was against doxycycline (91.83%), and the minimum was against ceftazidime and florfenicol (2.75%). E. coli isolates from feces and carcasses of slaughtered buffalo can be considered a mild reservoir for stx and eae genes. However, healthy buffaloes could be considered a potential reservoir of multiple antibiotic resistance genes in E. coli isolates.
Collapse
|
25
|
Raeispour M, Ranjbar R. Antibiotic resistance, virulence factors and genotyping of Uropathogenic Escherichia coli strains. Antimicrob Resist Infect Control 2018; 7:118. [PMID: 30305891 PMCID: PMC6171155 DOI: 10.1186/s13756-018-0411-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/18/2018] [Indexed: 11/23/2022] Open
Abstract
Background The way of treating different types of infectious diseases is really important. Using genotyping method, we can determine the genetic relatedness between the organisms with different resistance profile from different sources. The aim of this study was to determine antibiotic resistance and genotyping of uropathogenic Escherichia coli (UPEC) strains using pulsed field gel electrophoresis (PFGE). Method Escherichia coli (E. coli) strains were recovered from the patients with urinary tract infections (UTI) whom admitted in several major hospitals in Tehran. Antibiotic susceptibility testing was done according to CLSI guideline. The present of some virulence factor have been detected using PCR assay. Genotyping of the strains was performed by PFGE and all PFGE profiles were subjected to data processing. Result In total, 60 E. coli strains were subjected to the study. Most of E. coli isolates were resistant to cefepime (100%) and cephalothin (74%) and susceptible to imipenem (100%), vancomycin (100%) and doxycycline (100%). Among the UPEC isolates the prevalence of fimbriae type I (fimH), hemolysin (hlyA) and aerobactin (aer) genes were 89%, 60% and 90%, respectively. The PFGE differentiated E. coli strains into 33 different genetic clusters. Majority (30%) of them including PFGE type 11 generated 15 bands, while PFGE type 2 was the lowest (2%) prevalent group with 9 bands. Conclusion The result showed that the antibiotic resistance is escalating rapidly. UPEC strains causing infections are more likely to harbor certain virulence genes. Our finding also showed E. coli strains isolated under the study were belonged to the diverse clones.
Collapse
Affiliation(s)
- Maryam Raeispour
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Mainga AO, Cenci-Goga BT, Malahlela MN, Tshuma T, Kalake A, Karama M. Occurrence and characterization of seven major Shiga toxin-producing Escherichia coli serotypes from healthy cattle on cow-calf operations in South Africa. Zoonoses Public Health 2018; 65:777-789. [PMID: 29984530 DOI: 10.1111/zph.12491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/18/2018] [Accepted: 06/02/2018] [Indexed: 11/28/2022]
Abstract
Cattle are a major reservoir of Shiga toxin-producing Escherichia coli. This study investigated the occurrence of seven major STEC serogroups including O157, O145, O103, O121, O111, O45 and O26 among 578 STEC isolates previously recovered from 559 cattle. The isolates were characterized for serotype and major virulence genes. Polymerase chain reaction revealed that 41.7% (241/578) of isolates belonged to STEC O157, O145, O103, O121, O45 and O26, and 33 distinct serotypes. The 241 isolates corresponded to 16.5% (92/559) of cattle that were STEC positive. The prevalence of cattle that tested positive for at least one of the six serogroups across the five farms was variable ranging from 2.9% to 43.4%. Occurrence rates for individual serogroups were as follows: STEC O26 was found in 10.2% (57/559); O45 in 2.9% (16/559); O145 in 2.5% (14/559); O157 in 1.4% (8/559); O121 in 1.1% (6/559); and O103 in 0.4% (2/559). The following proportions of virulence genes were observed: stx1, 69.3% (167/241); stx2, 96.3% (232/241); eaeA, 7.1% (17/241); ehxA, 92.5% (223/241); and both stx1 and stx2, 62.2% (150/241) of isolates. These findings are evidence that cattle in South Africa carry STEC that belong to six major STEC serogroups commonly incriminated in human disease. However, only a subset of serotypes associated with these serogroups were clinically relevant in human disease. Most STEC isolates carried stx1, stx2 and ehxA but lacked eaeA, a major STEC virulence factor in human disease.
Collapse
Affiliation(s)
- Alfred O Mainga
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Beniamino T Cenci-Goga
- Dipartimento di Scienze Biopatologiche, Laboratorio di Ispezione degli Alimenti di Origine Animale, Facoltà di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Mogaugedi N Malahlela
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Takula Tshuma
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Alan Kalake
- Gauteng Department of Agriculture and Rural Development (GDARD), Johannesburg, South Africa
| | - Musafiri Karama
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
27
|
Krause M, Barth H, Schmidt H. Toxins of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli. Toxins (Basel) 2018; 10:toxins10060241. [PMID: 29903982 PMCID: PMC6024878 DOI: 10.3390/toxins10060241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Studies on Shiga toxin-producing Escherichia coli (STEC) typically examine and classify the virulence gene profiles based on genomic analyses. Among the screened strains, a subgroup of STEC which lacks the locus of enterocyte effacement (LEE) has frequently been identified. This raises the question about the level of pathogenicity of such strains. This review focuses on the advantages and disadvantages of the standard screening procedures in virulence profiling and summarizes the current knowledge concerning the function and regulation of toxins encoded by LEE-negative STEC. Although LEE-negative STEC usually come across as food isolates, which rarely cause infections in humans, some serotypes have been implicated in human diseases. In particular, the LEE-negative E. coli O104:H7 German outbreak strain from 2011 and the Australian O113:H21 strain isolated from a HUS patient attracted attention. Moreover, the LEE-negative STEC O113:H21 strain TS18/08 that was isolated from minced meat is remarkable in that it not only encodes multiple toxins, but in fact expresses three different toxins simultaneously. Their characterization contributes to understanding the virulence of the LEE-negative STEC.
Collapse
Affiliation(s)
- Maike Krause
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
28
|
Paquette SJ, Stanford K, Thomas J, Reuter T. Quantitative surveillance of shiga toxins 1 and 2, Escherichia coli O178 and O157 in feces of western-Canadian slaughter cattle enumerated by droplet digital PCR with a focus on seasonality and slaughterhouse location. PLoS One 2018; 13:e0195880. [PMID: 29649278 PMCID: PMC5897018 DOI: 10.1371/journal.pone.0195880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 01/06/2023] Open
Abstract
Often Escherichia coli are harmless and/or beneficial bacteria inhabiting the gastrointestinal tract of livestock and humans. However, Shiga toxin-producing E. coli (STEC) have been linked to human disease. Cattle are the primary reservoir for STEC and STEC “super-shedders” are considered to be a major contributor in animal to animal transmission. Among STEC, O157:H7 is the most recognized serotype, but in recent years, non-O157 STEC have been increasingly linked to human disease. In Argentina and Germany, O178 is considered an emerging pathogen. Our objective was to compare populations of E. coli O178, O157, shiga toxin 1 and 2 in western Canadian cattle feces from a sampling pool of ~80,000 beef cattle collected at two slaughterhouses. Conventional PCR was utilized to screen 1,773 samples for presence/absence of E. coli O178. A subset of samples (n = 168) was enumerated using droplet digital PCR (ddPCR) and proportions of O178, O157 and shiga toxins 1 & 2 specific-fragments were calculated as a proportion of generic E. coli (GEC) specific-fragments. Distribution of stx1 and stx2 was determined by comparing stx1, stx2 and O157 enumerations. Conventional PCR detected the presence of O178 in 873 of 1,773 samples and ddPCR found the average proportion of O178, O157, stx1 and stx2 in the samples 2.8%, 0.6%, 1.4% and 0.5%, respectively. Quantification of stx1 and stx2 revealed more virulence genes than could be exclusively attributed to O157. Our results confirmed the presence of E. coli O178 in western Canadian cattle and ddPCR revealed O178 as a greater proportion of GEC than was O157. Our results suggests: I) O178 may be an emerging subgroup in Canada and II) monitoring virulence genes may be a more relevant target for food-safety STEC surveillance compared to current serogroup screening.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| | - James Thomas
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Tim Reuter
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
29
|
Jajarmi M, Askari Badouei M, Imani Fooladi AA, Ghanbarpour R, Ahmadi A. Pathogenic potential of Shiga toxin-producing Escherichia coli strains of caprine origin: virulence genes, Shiga toxin subtypes, phylogenetic background and clonal relatedness. BMC Vet Res 2018; 14:97. [PMID: 29548291 PMCID: PMC5857098 DOI: 10.1186/s12917-018-1407-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/02/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND All over the world, Shiga toxin-producing Escherichia coli (STEC) are considered as important zoonotic pathogens. Eight serogroups have the greatest role in the outbreaks and diseases caused by STEC which include O26, O45, O103, O111, O113, O121, O145 and O157. Ruminants, especially cattle are the main reservoirs but the role of small ruminants in the epidemiology of human infections has not been thoroughly assessed in many countries. The objective of this research was to investigate the pathogenic potential of the STEC strains isolated from slaughtered goats. In this study, a total of 57 STEC strains were recovered from 450 goats and characterized by subtyping of stx genes, O-serogrouping, phylo-typing and DNA fingerprinting. RESULTS Amongst 57 STEC strains isolated from goats, the prevalence of stx1 was significantly more than stx2 (98.2% vs. 24.5%; P ≤ 0.05), and 22.8% of strains harbored both stx1 and stx2 genes. Three (5.2%) isolates were characterized as EHEC, which carried both eae and stx genes. A total of five stx-subtypes were recognized namely: stx1c (94.7%), stx1a (53.7%), stx2d (21%), stx2c (17.5%), and stx2a (15.7%). In some parts of the world, these subtypes have been reported in relation with severe human infections. The stx subtypes predominantly occurred in four combinations, including stx1a/stx1c (35%), stx1c (31.5%), stx1c/stx2a/stx2c/stx2d (5.2%) and stx1c/stx2c/stx2d (%5.2%). In serogrouping, the majority of STECs from goats did not belong to the top 8 serogroups but two strains belonged to O113, which has been recognized as an important pathogenic STEC in Australia. Interestingly, none of stx + eae + isolates belonged to the tested serogroups. In phylo-typing the isolates mostly belonged to phylo-group B1 (82.4%), followed by phylo-group A (12.3%). STEC strains showed a substantial diversity in DNA fingerprinting; there were 24 unique ERIC-types (with a ≥95% similarity) among the isolates. CONCLUSIONS Despite the fact that the top 8 STEC serogroups were uncommon in caprine strains, the presence of highly pathogenic stx subtypes indicates that small ruminants and their products can be considered as an overlooked public health risk for humans, especially in developing countries which consume traditional products.
Collapse
Affiliation(s)
- Maziar Jajarmi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ghanbarpour
- Molecular Microbiology Research Group, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Bako E, Kagambèga A, Traore KA, Bagre TS, Ibrahim HB, Bouda SC, Bonkoungou IJO, Kaboré S, Zongo C, Traore AS, Barro N. Characterization of Diarrheagenic Escherichia coli Isolated in Organic Waste Products (Cattle Fecal Matter, Manure and, Slurry) from Cattle's Markets in Ouagadougou, Burkina Faso. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101100. [PMID: 28937656 PMCID: PMC5664601 DOI: 10.3390/ijerph14101100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/16/2022]
Abstract
Cattle farming can promote diarrheal disease transmission through waste, effluents or cattle fecal matter. The study aims to characterize the diarrheagenic Escherichia coli (DEC) isolated from cattle feces, manure in the composting process and slurry, collected from four cattle markets in Ouagadougou. A total of 585 samples (340 cattle feces, 200 slurries and 45 manures in the composting process) were collected from the four cattle markets between May 2015 and May 2016. A multiplex Polymerase Chain Reaction (PCR), namely 16-plex PCR, was used to screen simultaneously the virulence genes specific for shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC) and enteroaggregative E. coli (EAEC). DEC was detected in 10.76% of samples. ETEC was the most prevalent (9.91%). STEC and EAEC have been observed with the same rate (0.51%). ETEC were detected in 12.64% of cattle feces, in 6.66% of manure in the composting process and in 5% of slurry. STEC were detected in 0.58% of cattle feces and in 2.22% of manure in the composting process. EAEC was detected only in 1% of slurry and in 2.22% of manure in the composting process. ETEC strains were identified based on estIa gene and/or estIb gene and/or elt gene amplification. Of the 58 ETEC, 10.34% contained astA, 17.24% contained elt, 3.44% contained estIa and 79.31% contained estIb. The two positive EAEC strains contained only the aggR gene, and the third was positive only for the pic gene. The results show that effluent from cattle markets could contribute to the spreading of DEC in the environment in Burkina Faso.
Collapse
Affiliation(s)
- Evariste Bako
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA), Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Prof Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Assèta Kagambèga
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA), Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Prof Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
- Institut de Sciences, 01 BP 1757 Ouagadougou 01, Burkina Faso.
| | - Kuan Abdoulaye Traore
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA), Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Prof Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Touwendsida Serge Bagre
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA), Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Prof Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Hadiza Bawa Ibrahim
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA), Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Prof Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Soutongnooma Caroline Bouda
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA), Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Prof Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Isidore Juste Ouindgueta Bonkoungou
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA), Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Prof Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| | - Saidou Kaboré
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA), Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Prof Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
- Direction de la Nutrition, Ministère de la Santé, 03 BP 7068 Ouagadougou 03, Burkina Faso.
| | - Cheikna Zongo
- Laboratoire de Biochimie et d'Immunologie Appliquée (LABIA), Centre de Recherche en Sciences Biologiques Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Professeur Joseph KI-ZERBO, 03 BP 7131 Ouagadougou 03, Burkina Faso.
| | - Alfred Sababenejo Traore
- Centre de Recherche en Sciences Biologiques Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Professeur Joseph KI-ZERBO, 03 BP 7131 Ouagadougou 03, Burkina Faso.
| | - Nicolas Barro
- Laboratoire de Biologie Moléculaire d'Epidémiologie et de Surveillance des Bactéries et Virus Transmis par les Aliments (LaBESTA), Centre de Recherche en Sciences Biologiques, Alimentaires et Nutritionnelles (CRSBAN), Université Ouaga I Prof Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
| |
Collapse
|