1
|
Kozakai T, Nakajima A, Miyazawa K, Sasaki Y, Odamaki T, Katoh T, Fukuma T, Xiao JZ, Suzuki T, Katayama T, Sakanaka M. An improved temperature-sensitive shuttle vector system for scarless gene deletion in human-gut-associated Bifidobacterium species. iScience 2024; 27:111080. [PMID: 39502284 PMCID: PMC11536034 DOI: 10.1016/j.isci.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Bifidobacterium is a prevalent bacterial taxon in the human gut that comprises over 10 (sub)species. Previous studies suggest that these species use evolutionarily distinct strategies for symbiosis with their hosts. However, the underlying species-specific mechanisms remain unclear due to the lack of efficient gene knockout systems applicable across different species. Here, we developed improved temperature-sensitive shuttle vectors by introducing Ser139Trp into the replication protein RepB. We then used temperature-sensitive plasmids to construct a double-crossover-mediated scarless gene deletion system. The system was employed for targeted gene deletion in Bifidobacterium longum subsp. longum, B. longum subsp. infantis, Bifidobacterium breve, Bifidobacterium adolescentis, Bifidobacterium kashiwanohense, and Bifidobacterium pseudocatenulatum. Deletion of genes involved in capsular polysaccharide biosynthesis, aromatic lactic acid production, and sugar utilization resulted in the expected phenotypic changes in the respective (sub)species. The temperature-sensitive plasmids developed in this study will aid in deciphering the evolutionary traits of the human-gut-associated Bifidobacterium species.
Collapse
Affiliation(s)
- Tomoya Kozakai
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Aruto Nakajima
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Keisuke Miyazawa
- Faculty of Frontier Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Sasaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Fukuma
- Faculty of Frontier Engineering, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Jin-zhong Xiao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Innovative Research Institute, R&D Division, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Tohru Suzuki
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mikiyasu Sakanaka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Bosselaar S, Dhelin L, Dautel E, Titecat M, Duthoy S, Stelmaszczyk M, Delory N, De Sousa Violante M, Machuron F, Ait-Abderrahim H, Desreumaux P, Foligné B, Monnet C. Taxonomic and phenotypic analysis of bifidobacteria isolated from IBD patients as potential probiotic strains. BMC Microbiol 2024; 24:233. [PMID: 38951788 PMCID: PMC11218132 DOI: 10.1186/s12866-024-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.
Collapse
Affiliation(s)
- Sabine Bosselaar
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France.
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France.
| | - Lucile Dhelin
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Ellena Dautel
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Titecat
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Stéphanie Duthoy
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Stelmaszczyk
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Nathan Delory
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Madeleine De Sousa Violante
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - François Machuron
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Hassina Ait-Abderrahim
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Pierre Desreumaux
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037, Lille, France
| | - Benoit Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Céline Monnet
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| |
Collapse
|
3
|
Gao S, Jin W, Quan Y, Li Y, Shen Y, Yuan S, Yi L, Wang Y, Wang Y. Bacterial capsules: Occurrence, mechanism, and function. NPJ Biofilms Microbiomes 2024; 10:21. [PMID: 38480745 PMCID: PMC10937973 DOI: 10.1038/s41522-024-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/05/2024] [Indexed: 03/17/2024] Open
Abstract
In environments characterized by extended multi-stress conditions, pathogens develop a variety of immune escape mechanisms to enhance their ability to infect the host. The capsules, polymers that bacteria secrete near their cell wall, participates in numerous bacterial life processes and plays a crucial role in resisting host immune attacks and adapting to their niche. Here, we discuss the relationship between capsules and bacterial virulence, summarizing the molecular mechanisms of capsular regulation and pathogenesis to provide new insights into the research on the pathogenesis of pathogenic bacteria.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yue Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
4
|
Yang S, Cai J, Su Q, Li Q, Meng X. Human milk oligosaccharides combine with Bifidobacterium longum to form the "golden shield" of the infant intestine: metabolic strategies, health effects, and mechanisms of action. Gut Microbes 2024; 16:2430418. [PMID: 39572856 PMCID: PMC11587862 DOI: 10.1080/19490976.2024.2430418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/04/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most important nutrient in human milk and are the gold standard for infant nutrition. Due to the lack of an enzyme system capable of utilizing HMOs in the infant intestine, HMOs cannot be directly utilized. Instead, they function as natural prebiotics, participating in the establishment of the intestinal microbiota as a "bifidus factor." A crucial colonizer of the early intestine is Bifidobacterium longum (B. longum), particularly its subspecies B. longum subsp. infantis, which is the most active consumer of HMOs. However, due to the structural diversity of HMOs and the specificity of B. longum strains, studies on their synergy are limited. An in-depth investigation into the mechanisms of HMO utilization by B. longum is essential for applying both as synbiotics to promote early intestinal development in infants. This review describes the colonization advantages of B. longum in the infant intestinal tract and its metabolic strategies for HMOs. It also summarizes recent studies on the effect and mechanism of B. longum and HMOs in infant intestinal development directly or indirectly through the action of metabolites. In conclusion, further structural analysis of HMOs and a deeper understanding of the interactions between B. longum and HMOs, as well as clinical trials, are necessary to lay the foundation for future practical applications as synbiotics.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junwu Cai
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qian Su
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qiaohui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Kosmerl E, González-Orozco BD, García-Cano I, Ortega-Anaya J, Jiménez-Flores R. Milk phospholipids protect Bifidobacterium longum subsp. infantis during in vitro digestion and enhance polysaccharide production. Front Nutr 2023; 10:1194945. [PMID: 38024346 PMCID: PMC10657999 DOI: 10.3389/fnut.2023.1194945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Bifidobacterium longum subsp. infantis is associated with the gut microbiota of breast-fed infants. Bifidobacterium infantis promotes intestinal barrier and immune function through several proposed mechanisms, including interactions between their surface polysaccharides, the host, and other gut microorganisms. Dairy foods and ingredients are some of the most conspicuous food-based niches for this species and may provide benefits for their delivery and efficacy in the gut. Milk phospholipid (MPL)-rich ingredients have been increasingly recognized for their versatile benefits to health, including interactions with the gut microbiota and intestinal cells. Therefore, our objective was to investigate the capacity for MPL to promote survival of B. infantis during simulated digestion and to modulate bacterial polysaccharide production. To achieve these aims, B. infantis was incubated with or without 0.5% MPL in de Man, Rogosa, and Sharpe (MRS) media at 37°C under anaerobiosis. Survival across the oral, gastric, and intestinal phases using in vitro digestion was measured using plate count, along with adhesion to goblet-like intestinal cells. MPL increased B. infantis survival at the end of the intestinal phase by at least 7% and decreased adhesion to intestinal cells. The bacterial surface characteristics, which may contribute to these effects, were assessed by ζ-potential, changes in surface proteins using comparative proteomics, and production of bound polysaccharides. MPL decreased the surface charge of the bifidobacteria from -17 to -24 mV and increased a 50 kDa protein (3-fold) that appears to be involved in protection from stress. The production of bound polysaccharides was measured using FTIR, HPLC, and TEM imaging. These techniques all suggest an increase in bound polysaccharide production at least 1.7-fold in the presence of MPL. Our results show that MPL treatment increases B. infantis survival during simulated digestion, induces a stress resistance surface protein, and yields greater bound polysaccharide production, suggesting its use as a functional ingredient to enhance probiotic and postbiotic effects.
Collapse
Affiliation(s)
- Erica Kosmerl
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | | | - Israel García-Cano
- Department of Food Science and Technology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Liu A, Chai X, Zhu S, Chin PT, He M, Xu YJ, Liu Y. Effects of N-succinyl-chitosan coating on properties of astaxanthin-loaded PEG-liposomes: Environmental stability, antioxidant/antibacterial activities, and in vitro release. Int J Biol Macromol 2023:125311. [PMID: 37302627 DOI: 10.1016/j.ijbiomac.2023.125311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Astaxanthin (AST) has outstanding antioxidant and anti-inflammation bioactivities, but the low biocompatibility and stability limit its application in foods. In this study, N-succinyl-chitosan (NSC)-coated AST polyethylene glycol (PEG)-liposomes were constructed to enhance the biocompatibility, stability, and intestinal-targeted migration of AST. The AST NSC/PEG-liposomes were uniform in size, had larger particles, greater encapsulation efficiency, and better storage, pH, and temperature stability than the AST PEG-liposomes. AST NSC/PEG-liposomes exerted stronger antibacterial and antioxidant activities against Escherichia coli and Staphylococcus aureus than AST PEG-liposomes. The NSC coating not only protects AST PEG-liposomes from gastric acid but also prolongs the retention and sustained release of AST NSC/PEG-liposomes depending on the intestinal pH. Moreover, caco-2 cellular uptake studies showed that AST NSC/PEG-liposomes had higher cellular uptake efficiency than AST PEG-liposomes. And AST NSC/PEG-liposomes were taken up by caco-2 cells through clathrin mediated endocytic, macrophage pathways and paracellular transport pathway. These results further proved that AST NSC/PEG-liposomes delayed the release and promoted the intestinal absorption of AST. Hence, AST PEG-liposomes coated with NSC could potentially be used as an efficient delivery system for therapeutic AST.
Collapse
Affiliation(s)
- Aiyang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiuhang Chai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shuang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ping-Tan Chin
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Selangor 410500, Malaysia
| | - Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Esteban-Torres M, Ruiz L, Rossini V, Nally K, van Sinderen D. Intracellular glycogen accumulation by human gut commensals as a niche adaptation trait. Gut Microbes 2023; 15:2235067. [PMID: 37526383 PMCID: PMC10395257 DOI: 10.1080/19490976.2023.2235067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
The human gut microbiota is a key contributor to host metabolism and physiology, thereby impacting in various ways on host health. This complex microbial community has developed many metabolic strategies to colonize, persist and survive in the gastrointestinal environment. In this regard, intracellular glycogen accumulation has been associated with important physiological functions in several bacterial species, including gut commensals. However, the role of glycogen storage in shaping the composition and functionality of the gut microbiota offers a novel perspective in gut microbiome research. Here, we review what is known about the enzymatic machinery and regulation of glycogen metabolism in selected enteric bacteria, while we also discuss its potential impact on colonization and adaptation to the gastrointestinal tract. Furthermore, we survey the presence of such glycogen biosynthesis pathways in gut metagenomic data to highlight the relevance of this metabolic trait in enhancing survival in the highly competitive and dynamic gut ecosystem.
Collapse
Affiliation(s)
- Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, IPLA-CSIC, Villaviciosa, Spain
- Functionality and Ecology of Benefitial Microbes (MicroHealth Group), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Shazly AB, Khattab MSA, Fouad MT, Abd El Tawab AM, Saudi EM, El-Aziz MA. Probiotic Yoghurt Made from Milk of Ewes Fed a Diet Supplemented with Spirulina platensis or Fish Oil. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Yoghurt is a widely consumed dairy product around the world. It has healing properties and characteristics that are important for human health. Our goal was to see how using ewes' milk fed Spirulina platensis (SP) or fish oil (FO)-supplemented diets affected the chemical, physical, and nutritional properties of yoghurt, as well as the activity and survival of starter and probiotic bacteria during storage.
Methods
The collected milk from each ewe group was preheated to 65 °C and homogenized in a laboratory homogenizer, then heated to 90 °C for 5 min, cooled to 42 °C, and divided into two equal portions. The first portion was inoculated with 2.0% mixed starter culture (Lactobacillus bulgaricus and Streptococcus thermophilus, 1:1), whereas the second was inoculated with 2% mixed starter culture and 1% Bifidobacterium longum as a probiotic bacteria.
Results
SP yoghurt had the highest levels of short chain-FA, medium chain-FA, mostly C10:0, and long chain-FA, namely C16:0, C18:2 and the lowest levels of C18:0 and C18:1, followed by FO yoghurt. The addition of SP or FO to ewes' diets resulted in yoghurt with higher viable counts of L. bulgaricus and S. thermophilus, which were still >107 cfu/g at the end of storage, as well as a higher level of acetaldehyde content (P<0.05) as a flavor compound, than the control (C) yoghurt. The viscosity of SP yoghurt was higher than that of FO and C yoghurt; the difference was not significant. The addition of B. longum, a probiotic bacteria, to all yoghurt samples, improved antioxidant activities, particularly against ABTS• radicals, but reduced SP yoghurt viscosity. When B. longum was added, acetaldehyde content increased from 39.91, 90.47, and 129.31 μmol/100g in C, FA, and SP yoghurts to 46.67, 135.55, and 144.1 μmol/100g in probiotic C, FA, and SP yoghurts, respectively. There was no significant difference in sensory qualities among all the yoghurt samples during all storage periods.
Conclusions
Supplementing the ewes' diets with Spirulina platensis or fish oil can change the fatty acid composition of the resulting yoghurt. The starter culture's activity, flavor compounds, and some chemical, physical, and antioxidant properties of milk produced from these diets can all be improved, particularly in yoghurt treated with probiotic bacteria (B. longum).
Collapse
|
9
|
Xiao L, Yang Y, Han S, Rui X, Ma K, Zhang C, Wang G, Li W. Effects of genes required for exopolysaccharides biosynthesis in Lacticaseibacillus paracasei S-NB on cell surface characteristics and probiotic properties. Int J Biol Macromol 2022; 224:292-305. [DOI: 10.1016/j.ijbiomac.2022.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
10
|
Li J, Feng S, Yu L, Zhao J, Tian F, Chen W, Zhai Q. Capsular polysaccarides of probiotics and their immunomodulatory roles. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Harimoto T, Hahn J, Chen YY, Im J, Zhang J, Hou N, Li F, Coker C, Gray K, Harr N, Chowdhury S, Pu K, Nimura C, Arpaia N, Leong KW, Danino T. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat Biotechnol 2022; 40:1259-1269. [PMID: 35301496 PMCID: PMC9371971 DOI: 10.1038/s41587-022-01244-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/28/2022] [Indexed: 01/27/2023]
Abstract
Living bacteria therapies have been proposed as an alternative approach to treating a broad array of cancers. In this study, we developed a genetically encoded microbial encapsulation system with tunable and dynamic expression of surface capsular polysaccharides that enhances systemic delivery. Based on a small RNA screen of capsular biosynthesis pathways, we constructed inducible synthetic gene circuits that regulate bacterial encapsulation in Escherichia coli Nissle 1917. These bacteria are capable of temporarily evading immune attack, whereas subsequent loss of encapsulation results in effective clearance in vivo. This dynamic delivery strategy enabled a ten-fold increase in maximum tolerated dose of bacteria and improved anti-tumor efficacy in murine models of cancer. Furthermore, in situ encapsulation increased the fraction of microbial translocation among mouse tumors, leading to efficacy in distal tumors. The programmable encapsulation system promises to enhance the therapeutic utility of living engineered bacteria for cancer. Transient capsule induction allows engineered bacteria to evade initial immune surveillance in a colorectal cancer model.
Collapse
Affiliation(s)
- Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yu-Yu Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Joanna Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fangda Li
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Courtney Coker
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kelsey Gray
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicole Harr
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sreyan Chowdhury
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kelly Pu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Clare Nimura
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Department of Systems Biology, Columbia University Medical Center, New York, NY, USA.
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA. .,Data Science Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Nishiyama K, Yokoi T, Sugiyama M, Osawa R, Mukai T, Okada N. Roles of the Cell Surface Architecture of Bacteroides and Bifidobacterium in the Gut Colonization. Front Microbiol 2021; 12:754819. [PMID: 34721360 PMCID: PMC8551831 DOI: 10.3389/fmicb.2021.754819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
There are numerous bacteria reside within the mammalian gastrointestinal tract. Among the intestinal bacteria, Akkermansia, Bacteroides, Bifidobacterium, and Ruminococcus closely interact with the intestinal mucus layer and are, therefore, known as mucosal bacteria. Mucosal bacteria use host or dietary glycans for colonization via adhesion, allowing access to the carbon source that the host’s nutrients provide. Cell wall or membrane proteins, polysaccharides, and extracellular vesicles facilitate these mucosal bacteria-host interactions. Recent studies revealed that the physiological properties of Bacteroides and Bifidobacterium significantly change in the presence of co-existing symbiotic bacteria or markedly differ with the spatial distribution in the mucosal niche. These recently discovered strategic colonization processes are important for understanding the survival of bacteria in the gut. In this review, first, we introduce the experimental models used to study host-bacteria interactions, and then, we highlight the latest discoveries on the colonization properties of mucosal bacteria, focusing on the roles of the cell surface architecture regarding Bacteroides and Bifidobacterium.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsunari Yokoi
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ro Osawa
- Research Center for Food Safety and Security, Kobe University, Kobe, Japan
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
13
|
Chung The H, Nguyen Ngoc Minh C, Tran Thi Hong C, Nguyen Thi Nguyen T, Pike LJ, Zellmer C, Pham Duc T, Tran TA, Ha Thanh T, Van MP, Thwaites GE, Rabaa MA, Hall LJ, Baker S. Exploring the Genomic Diversity and Antimicrobial Susceptibility of Bifidobacterium pseudocatenulatum in a Vietnamese Population. Microbiol Spectr 2021; 9:e0052621. [PMID: 34523984 PMCID: PMC8557894 DOI: 10.1128/spectrum.00526-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 01/29/2023] Open
Abstract
Bifidobacterium pseudocatenulatum is a member of the human gut microbiota, and specific variants of B. pseudocatenulatum have been associated with health benefits such as improving gut integrity and reducing inflammatory responses. Here, we aimed to assess the genomic diversity and predicted metabolic profiles of B. pseudocatenulatum cells found colonizing the gut of healthy Vietnamese adults and children. We found that the population of B. pseudocatenulatum from each individual was distinct and highly diverse, with intraclonal variation attributed largely to a gain or loss of carbohydrate-utilizing enzymes. The B. pseudocatenulatum genomes were enriched with glycosyl hydrolases predicted to target plant-based nondigestible carbohydrates (GH13, GH43) but not host-derived glycans. Notably, the exopolysaccharide biosynthesis region from organisms isolated from healthy children showed extensive genetic diversity and was subject to a high degree of genetic modification. Antimicrobial susceptibility profiling revealed that the Vietnamese B. pseudocatenulatum cells were uniformly susceptible to beta-lactams but exhibited variable resistance to azithromycin, tetracycline, ciprofloxacin, and metronidazole. The genomic presence of ermX and tet variants conferred resistance against azithromycin and tetracycline, respectively; ciprofloxacin resistance was associated with a mutation(s) in the quinolone resistance-determining region (GyrA, S115, and/or D119). Our work provides the first detailed genomic and antimicrobial resistance characterization of B. pseudocatenulatum found in the Vietnamese population, which can be exploited for the rational design of probiotics. IMPORTANCE Bifidobacterium pseudocatenulatum is a beneficial member of the human gut microbiota. The organism can modulate inflammation and has probiotic potential, but its characteristics are largely strain dependent and associated with distinct genomic and biochemical features. Population-specific beneficial microbes represent a promising avenue for the development of potential probiotics, as they may exhibit a more suitable profile in the target population. This study investigates the underexplored diversity of B. pseudocatenulatum in Vietnam and provides more understanding of its genomic diversity, metabolic potential, and antimicrobial susceptibility. Such data from indigenous populations are essential for selecting probiotic candidates that can be accelerated into further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Lindsay J. Pike
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Caroline Zellmer
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Trung Pham Duc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuan-Anh Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Minh Pham Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Maia A. Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Lindsay J. Hall
- Quadram Institute Biosciences, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Stephen Baker
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
14
|
Hickey A, Stamou P, Udayan S, Ramón-Vázquez A, Esteban-Torres M, Bottacini F, Woznicki JA, Hughes O, Melgar S, Ventura M, Van Sinderen D, Rossini V, Nally K. Bifidobacterium breve Exopolysaccharide Blocks Dendritic Cell Maturation and Activation of CD4 + T Cells. Front Microbiol 2021; 12:653587. [PMID: 34220742 PMCID: PMC8242212 DOI: 10.3389/fmicb.2021.653587] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Exopolysaccharide (EPS) is a bacterial extracellular carbohydrate moiety which has been associated with immunomodulatory activity and host protective effects of several gut commensal bacteria. Bifidobacterium breve are early colonizers of the human gastrointestinal tract (GIT) but the role of EPS in mediating their effects on the host has not been investigated for many strains. Here, we characterized EPS production by a panel of human B. breve isolates and investigated the effect of EPS status on host immune responses using human and murine cell culture-based assay systems. We report that B. breve EPS production is heterogenous across strains and that immune responses in human THP-1 monocytes are strain-specific, but not EPS status-specific. Using wild type and isogenic EPS deficient mutants of B. breve strains UCC2003 and JCM7017 we show that EPS had strain-specific divergent effects on cytokine responses from murine bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs). The B. breve UCC2003 EPS negative (EPS–) strain increased expression of cytokine genes (Tnfa, Il6, Il12a, and Il23a) relative to untreated BMDCs and BMDCs treated with wild type strain. B. breve UCC2003 and JCM7017 EPS– strains increased expression of dendritic cell (DC) activation and maturation marker genes (Cd80, Cd83, and Cd86) relative to untreated BMDCs. Consistent with this, BMDCs co-cultured with B. breve UCC2003 and JCM7017 EPS– strains engineered to express OVA antigen activated OVA-specific OT-II CD4+ T-cells in a co-culture antigen-presentation assay while EPS proficient strains did not. Collectively, these data indicate that B. breve EPS proficient strains use EPS to prevent maturation of DCs and activation of antigen specific CD4+ T cells responses to B. breve. This study identifies a new immunomodulatory role for B. breve EPS and suggests it may be important for immune evasion of adaptive immunity by B. breve and contribute to host-microbe mutualism.
Collapse
Affiliation(s)
- Ana Hickey
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Sreeram Udayan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - Owen Hughes
- Luminex Corporation, Austin, TX, United States
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marco Ventura
- Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe Van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Han S, Lu Y, Xie J, Fei Y, Zheng G, Wang Z, Liu J, Lv L, Ling Z, Berglund B, Yao M, Li L. Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey. Front Cell Infect Microbiol 2021; 11:609722. [PMID: 33791234 PMCID: PMC8006270 DOI: 10.3389/fcimb.2021.609722] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Orally administered probiotics encounter various challenges on their journey through the mouth, stomach, intestine and colon. The health benefits of probiotics are diminished mainly due to the substantial reduction of viable probiotic bacteria under the harsh conditions in the gastrointestinal tract and the colonization resistance caused by commensal bacteria. In this review, we illustrate the factors affecting probiotic viability and their mucoadhesive properties through their journey in the gastrointestinal tract, including a discussion on various mucosadhesion-related proteins on the probiotic cell surface which facilitate colonization.
Collapse
Affiliation(s)
- Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Fei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Björn Berglund
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Tang B, Bojesen AM. Immune Suppression Induced by Gallibacterium anatis GtxA During Interaction with Chicken Macrophage-Like HD11 Cells. Toxins (Basel) 2020; 12:toxins12090536. [PMID: 32825511 PMCID: PMC7551249 DOI: 10.3390/toxins12090536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The RTX toxin GtxA expressed by Gallibacterium anatis biovar haemolytica has been proposed a major virulence factor during disease manifestations in the natural host, the chicken. To better understand the role of GtxA in the pathogenesis of G. anatis, we compared the GtxA expressing wildtype strain with its isogenic ∆gtxA mutant that was unable to express GtxA during exposure to chicken macrophage-like HD11 cells. From adhesion and invasion assays, we showed that GtxA appears to promote adhesion and invasion of HD11 cells. By using quantitative RT-PCR, we also demonstrated that the G. anatis expressing GtxA induced a mainly anti-inflammatory (IL-10) host cell response as opposed to the pro-inflammatory (IL-1β, IL-6 and TNF-α) response induced by the GtxA deletion mutant. Interestingly, these results, at least partly, resemble recent responses observed from spleen tissue of chickens infected with the same two bacterial strains. The effect of the GtxA toxin on the type of cell death was less clear. While GtxA clearly induced cell death, our efforts to characterize whether this was due to primarily necrosis or apoptosis through expression analysis of a broad range of apoptosis genes did not reveal clear answers.
Collapse
|
17
|
El-Sharkawy H, Tahoun A, Rizk AM, Suzuki T, Elmonir W, Nassef E, Shukry M, Germoush MO, Farrag F, Bin-Jumah M, Mahmoud AM. Evaluation of Bifidobacteria and Lactobacillus Probiotics as Alternative Therapy for Salmonella typhimurium Infection in Broiler Chickens. Animals (Basel) 2020; 10:ani10061023. [PMID: 32545606 PMCID: PMC7341506 DOI: 10.3390/ani10061023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Salmonella is an important foodborne pathogen that represents a very critical threat to poultry industry worldwide. This study concerns an important aspect of human food and health problem by treating a common zoonotic bacterial disease in poultry industry. Owing to the increased resistance to antibiotics among Salmonellaenterica serotypes, we aimed to explore the beneficial effects of different probiotics strains as alternative sources of protection against infection in broiler chickens. Three probiotic strains Lactobacillus (Lacticaseibacillus) casei ATTC334, Bifidobacterium breve JCM1192 and Bifidobacterium infantis BL2416) improved body weight gain and prevented the deleterious effects and mortality induced by Salmonella infection in chicks through different mechanisms, including competitive exclusion and the promotion of cytokines’ release. Abstract Chicken Salmonella enterica serovars are enteric bacteria associated with massive public health risks and economic losses. There is a widespread antimicrobial resistance among S.enterica serotypes, and innovative solutions to antibiotic resistance are needed. We aimed to use probiotics to reduce antibiotic resistance and identify the major probiotic players that modify the early interactions between S.enterica and host cells. One-day-old cobb broiler chicks were challenged with S. typhimurium after oral inoculation with different probiotic strains for 3 days. The adherence of different probiotic strains to Caco-2 intestinal epithelial cells was studied in vitro. Lactobacillus (Lacticaseibacillus) casei ATTC334 and Bifidobacterium breve JCM1192 strains attached to Caco-2 cells stronger than B. infantis BL2416. L. casei ATTC334 and B. breve JCM1192 reduced S. typhimurium recovery from the cecal tonsils by competitive exclusion mechanism. Although B. infantis BL2416 bound poorly to Caco-2 epithelial cells, it reduced S. typhimurium recovery and increased IFN-γ and TNF-α production. L. casei ATTC334, B. breve JCM1192 and B. infantis BL2416 improved body weight gain and the food conversion rate in S. typhimurium-infected broilers. B. longum Ncc2785 neither attached to epithelial cells nor induced IFN-γ and TNF-α release and consequently did not prevent S. typhimurium colonization in broiler chickens. In conclusion, probiotics prevented the intestinal colonization of S. typhimurium in infected chickens by competitive exclusion or cytokine production mechanisms.
Collapse
Affiliation(s)
- Hanem El-Sharkawy
- Department of Poultry and Rabbit Diseases, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Amin Tahoun
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
- Correspondence: (A.T.); (A.M.M.)
| | - Amira M. Rizk
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Benha University, Benha 13511, Egypt;
| | - Tohru Suzuki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Walid Elmonir
- Department of Hygiene and Preventive Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - Mousa O. Germoush
- Biology Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia;
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt;
| | - May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Ayman M. Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: (A.T.); (A.M.M.)
| |
Collapse
|
18
|
Hsieh SA, Allen PM. Immunomodulatory Roles of Polysaccharide Capsules in the Intestine. Front Immunol 2020; 11:690. [PMID: 32351514 PMCID: PMC7174666 DOI: 10.3389/fimmu.2020.00690] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
The interplay between the immune system and the microbiota in the human intestine dictates states of health vs. disease. Polysaccharide capsules are critical elements of bacteria that protect bacteria against environmental and host factors, including the host immune system. This review summarizes the mechanisms by which polysaccharide capsules from commensal and pathogenic bacteria in the gut microbiota modulate the innate and adaptive immune systems in the intestine. A deeper understanding of the roles of polysaccharide capsules in microbiota-immune interactions will provide a basis to harness their therapeutic potential to advance human health.
Collapse
Affiliation(s)
- Samantha A Hsieh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
19
|
Méheust R, Burstein D, Castelle CJ, Banfield JF. The distinction of CPR bacteria from other bacteria based on protein family content. Nat Commun 2019; 10:4173. [PMID: 31519891 PMCID: PMC6744442 DOI: 10.1038/s41467-019-12171-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/22/2019] [Indexed: 11/26/2022] Open
Abstract
Candidate phyla radiation (CPR) bacteria separate phylogenetically from other bacteria, but the organismal distribution of their protein families remains unclear. Here, we leveraged sequences from thousands of uncultivated organisms and identified protein families that co-occur in genomes, thus are likely foundational for lineage capacities. Protein family presence/absence patterns cluster CPR bacteria together, and away from all other bacteria and archaea, partly due to proteins without recognizable homology to proteins in other bacteria. Some are likely involved in cell-cell interactions and potentially important for episymbiotic lifestyles. The diversity of protein family combinations in CPR may exceed that of all other bacteria. Over the bacterial tree, protein family presence/absence patterns broadly recapitulate phylogenetic structure, suggesting persistence of core sets of proteins since lineage divergence. The CPR could have arisen in an episode of dramatic but heterogeneous genome reduction or from a protogenote community and co-evolved with other bacteria. Recent studies have identified a large, phylogenetically distinct clade of bacteria, the candidate phyla radiation (CPR). Here, Méheust and colleagues analyze almost 3600 genomes to characterize the protein family content of CPR versus other bacteria and archaea.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94704, USA
| | - David Burstein
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, 94720, USA.,School of Molecular and Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94704, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Innovative Genomics Institute, Berkeley, CA, 94704, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA. .,University of Melbourne, Melbourne, VIC, 3010, Australia. .,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
|
21
|
Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. Interactions of Surface Exopolysaccharides From Bifidobacterium and Lactobacillus Within the Intestinal Environment. Front Microbiol 2018; 9:2426. [PMID: 30364185 PMCID: PMC6193118 DOI: 10.3389/fmicb.2018.02426] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022] Open
Abstract
Exopolysaccharides (EPS) are surface carbohydrate polymers present in most bacteria acting as a protective surface layer but also interacting with the surrounding environment. This review discusses the roles of EPS synthesized by strains of Lactobacillus and Bifidobacterium, many of them with probiotic characteristics, in the intestinal environment. Current knowledge on genetics and biosynthesis pathways of EPS in lactic acid bacteria and bifidobacteria, as well as the development of genetic tools, has created possibilities to elucidate the interplay between EPS and host intestinal mucosa. These include the microbiota that inhabits this ecological niche and the host cells. Several carbohydrate recognition receptors located in the intestinal epithelium could be involved in the interaction with bacterial EPS and modulation of immune response; however, little is known about the receptors recognizing EPS from lactobacilli or bifidobacteria and the triggered response. On the contrary, it has been clearly demonstrated that EPS play a relevant role in the persistence of the producing bacteria in the intestinal tract. Indeed, some authors postulate that some of the beneficial actions of EPS-producing probiotics could be related to the formation of a biofilm layer protecting the host against injury, for example by pathogens or their toxins. Nevertheless, the in vivo formation of biofilms by probiotics has not been proved to date. Finally, EPS produced by probiotic strains are also able to interact with the intestinal microbiota that populates the gut. In fact, some of these polymers can be used as carbohydrate fermentable source by some gut commensals thus being putatively involved in the release of bacterial metabolites that exert positive benefits for the host. In spite of the increasing knowledge about the role that these surface molecules play in the interaction of probiotic bacteria with the gut mucosal actors, both intestinal receptors and microbiota, the challenging issue is to demonstrate the functionality of EPS in vivo, which will open an avenue of opportunities for the application of EPS-producing probiotics to improve health.
Collapse
Affiliation(s)
- Nuria Castro-Bravo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Abelardo Margolles
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
22
|
Sharma V, Mobeen F, Prakash T. Exploration of Survival Traits, Probiotic Determinants, Host Interactions, and Functional Evolution of Bifidobacterial Genomes Using Comparative Genomics. Genes (Basel) 2018; 9:genes9100477. [PMID: 30275399 PMCID: PMC6210967 DOI: 10.3390/genes9100477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the genus Bifidobacterium are found in a wide-range of habitats and are used as important probiotics. Thus, exploration of their functional traits at the genus level is of utmost significance. Besides, this genus has been demonstrated to exhibit an open pan-genome based on the limited number of genomes used in earlier studies. However, the number of genomes is a crucial factor for pan-genome calculations. We have analyzed the pan-genome of a comparatively larger dataset of 215 members of the genus Bifidobacterium belonging to different habitats, which revealed an open nature. The pan-genome for the 56 probiotic and human-gut strains of this genus, was also found to be open. The accessory- and unique-components of this pan-genome were found to be under the operation of Darwinian selection pressure. Further, their genome-size variation was predicted to be attributed to the abundance of certain functions carried by genomic islands, which are facilitated by insertion elements and prophages. In silico functional and host-microbe interaction analyses of their core-genome revealed significant genomic factors for niche-specific adaptations and probiotic traits. The core survival traits include stress tolerance, biofilm formation, nutrient transport, and Sec-secretion system, whereas the core probiotic traits are imparted by the factors involved in carbohydrate- and protein-metabolism and host-immunomodulations.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Fauzul Mobeen
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India.
| |
Collapse
|
23
|
Abundance and co-occurrence of extracellular capsules increase environmental breadth: Implications for the emergence of pathogens. PLoS Pathog 2017; 13:e1006525. [PMID: 28742161 PMCID: PMC5542703 DOI: 10.1371/journal.ppat.1006525] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/03/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Extracellular capsules constitute the outermost layer of many bacteria, are major virulence factors, and affect antimicrobial therapies. They have been used as epidemiological markers and recently became vaccination targets. Despite the efforts to biochemically serotype capsules in a few model pathogens, little is known of their taxonomic and environmental distribution. We developed, validated, and made available a computational tool, CapsuleFinder, to identify capsules in genomes. The analysis of over 2500 prokaryotic genomes, accessible in a database, revealed that ca. 50% of them—including Archaea—encode a capsule. The Wzx/Wzy-dependent capsular group was by far the most abundant. Surprisingly, a fifth of the genomes encode more than one capsule system—often from different groups—and their non-random co-occurrence suggests the existence of negative and positive epistatic interactions. To understand the role of multiple capsules, we queried more than 6700 metagenomes for the presence of species encoding capsules and showed that their distribution varied between environmental categories and, within the human microbiome, between body locations. Species encoding capsules, and especially those encoding multiple capsules, had larger environmental breadths than the other species. Accordingly, capsules were more frequent in environmental bacteria than in pathogens and, within the latter, they were more frequent among facultative pathogens. Nevertheless, capsules were frequent in clinical samples, and were usually associated with fast-growing bacteria with high infectious doses. Our results suggest that capsules increase the environmental range of bacteria and make them more resilient to environmental perturbations. Capsules might allow opportunistic pathogens to profit from empty ecological niches or environmental perturbations, such as those resulting from antibiotic therapy, to colonize the host. Capsule-associated virulence might thus be a by-product of environmental adaptation. Understanding the role of capsules in natural environments might enlighten their function in pathogenesis. Extracellular capsules protect bacterial cells from external aggressions such as antibiotics or desiccation, but can also be targeted by vaccines. Since little was known about their frequency across Prokaryotes, we created and made freely available a computational tool, CapsuleFinder, to identify them from genomic data. Surprisingly, its use showed that many bacterial strains, especially those with the largest genomes, encode several capsules. The frequencies of the different combinations of capsule groups depended strongly on the phyla and the groups themselves, suggesting the existence of epistatic interactions between capsules. Bacteria encoding capsule systems were found in many natural environments, and were frequent in the human microbiome. In contrast to their frequent association with virulence, we found many more capsules in non-pathogens or facultative pathogens than among obligatory pathogens. We suggest that capsules increase the environmental breadth of bacteria thereby facilitating host colonization by opportunistic pathogens.
Collapse
|