1
|
Hofstetter J, Arfken A, Kahler A, Qvarnstrom Y, Rodrigues C, Mattioli M. Evaluation of coccidia DNA in irrigation pond water and wastewater sludge associated with Cyclospora cayetanensis 18S rRNA gene qPCR detections. Microbiol Spectr 2024; 12:e0090624. [PMID: 38916361 PMCID: PMC11302338 DOI: 10.1128/spectrum.00906-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
The coccidian parasite Cyclospora cayetanensis is the causative agent for foodborne outbreaks of cyclosporiasis disease and multiple annual fresh produce recalls. The aim of this study was to identify potential cross-reacting species for the C. cayetanensis 18S rRNA and MIT1C gene target real-time quantitative polymerase chain reaction (qPCR) assays. The environmental samples evaluated were irrigation pond water, produce wash water, and wastewater treatment sludge from a previous study with qPCR detections of C. cayetanensis by the 18S rRNA gene target qPCR. From these samples, longer regions of the 18S rRNA gene and the mitochondrial cytochrome c oxidase subunit III gene (cox3) were sequenced. Of 65 irrigation pond water samples with positive test results using the C. cayetanensis 18S rRNA gene qPCR assay, none had MIT1C qPCR assay detections or sequences that clustered with C. cayetanensis based on sequencing of the cox3 and 18S rRNA gene. Sequences from these samples clustered around coccidia sequences found in bird, fish, reptile, and amphibian hosts. Of 26 sludge samples showing detections by either qPCR assay, 14 (54%) could be confirmed as containing C. cayetanensis by sequencing of cox3 and 18S rRNA gene regions. In three of the remaining sludge samples, sequenced reads clustered with coccidia from rodents. This study demonstrated that caution should be taken when interpreting qPCR C. cayetanensis detection data in environmental samples and sequencing steps will likely be needed for confirmation. IMPORTANCE Fresh produce is a leading transmission source in cyclosporiasis outbreaks. It is therefore essential to understand the role that produce-growing environments play in the spread of this disease. To accomplish this, sensitive and specific tests for environmental and irrigation waters must be developed. Potential cross-reactions of Cyclospora cayetanensis real-time quantitative polymerase chain reaction (qPCR) assays have been identified, hindering the ability to accurately identify this parasite in the environment. Amplicon sequencing of the cox3 and 18S rRNA genes revealed that all irrigation pond water and two sludge samples that initially detected C. cayetanensis by qPCR were most likely cross-reactions with related coccidian organisms shed from birds, fish, reptiles, amphibians, and rodents. These results support that a single testing method for environmental samples is likely not adequate for sensitive and specific detection of C. cayetanensis.
Collapse
Affiliation(s)
- Jessica Hofstetter
- Centers for Disease Control and Prevention (CDC), Division of Foodborne, Waterborne, and Environmental Diseases, Atlanta, Georgia, USA
- Chenega Enterprise Systems & Solutions, LLC, Chesapeake, Virginia, USA
- Department of Horticulture, Auburn University, Auburn, Alabama, USA
| | - Ann Arfken
- Centers for Disease Control and Prevention (CDC), Division of Foodborne, Waterborne, and Environmental Diseases, Atlanta, Georgia, USA
- Applied Science Research and Technology (ASRT) INC, Smyrna, Georgia, USA
| | - Amy Kahler
- Centers for Disease Control and Prevention (CDC), Division of Foodborne, Waterborne, and Environmental Diseases, Atlanta, Georgia, USA
| | - Yvonne Qvarnstrom
- Centers for Disease Control and Prevention (CDC), Division of Parasitic Diseases and Malaria, Atlanta, Georgia, USA
| | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, Alabama, USA
| | - Mia Mattioli
- Centers for Disease Control and Prevention (CDC), Division of Foodborne, Waterborne, and Environmental Diseases, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Leonard SR, Mammel MK, Almeria S, Gebru ST, Jacobson DK, Peterson AC, Barratt JLN, Musser SM. Evaluation of the Increased Genetic Resolution and Utility for Source Tracking of a Recently Developed Method for Genotyping Cyclospora cayetanensis. Microorganisms 2024; 12:848. [PMID: 38792677 PMCID: PMC11124223 DOI: 10.3390/microorganisms12050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Cyclospora cayetanensis is a foodborne parasite that causes cyclosporiasis, an enteric illness in humans. Genotyping methods are used to genetically discriminate between specimens from cyclosporiasis cases and can complement source attribution investigations if the method is sufficiently sensitive for application to food items. A very sensitive targeted amplicon sequencing (TAS) assay for genotyping C. cayetanensis encompassing 52 loci was recently designed. In this study, we analyzed 66 genetically diverse clinical specimens to assess the change in phylogenetic resolution between the TAS assay and a currently employed eight-marker scheme. Of the 52 markers, ≥50 were successfully haplotyped for all specimens, and these results were used to generate a hierarchical cluster dendrogram. Using a previously described statistical approach to dissect hierarchical trees, the 66 specimens resolved into 24 and 27 distinct genetic clusters for the TAS and an 8-loci scheme, respectively. Although the specimen composition of 15 clusters was identical, there were substantial differences between the two dendrograms, highlighting the importance of both inclusion of additional genome coverage and choice of loci to target for genotyping. To evaluate the ability to genetically link contaminated food samples with clinical specimens, C. cayetanensis was genotyped from DNA extracted from raspberries inoculated with fecal specimens. The contaminated raspberry samples were assigned to clusters with the corresponding clinical specimen, demonstrating the utility of the TAS assay for traceback efforts.
Collapse
Affiliation(s)
- Susan R. Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - Mark K. Mammel
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - Sonia Almeria
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - Solomon T. Gebru
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA; (M.K.M.); (S.A.); (S.T.G.)
| | - David K. Jacobson
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.K.J.); (A.C.P.); (J.L.N.B.)
| | - Anna C. Peterson
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.K.J.); (A.C.P.); (J.L.N.B.)
| | - Joel L. N. Barratt
- Division of Parasitic Diseases and Malaria, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (D.K.J.); (A.C.P.); (J.L.N.B.)
| | - Steven M. Musser
- Office of the Center Director, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA;
| |
Collapse
|
3
|
González-Gómez JP, Lozano-Aguirre LF, Medrano-Félix JA, Chaidez C, Gerba CP, Betancourt WQ, Castro-Del Campo N. Evaluation of nuclear and mitochondrial phylogenetics for the subtyping of Cyclospora cayetanensis. Parasitol Res 2023; 122:2641-2650. [PMID: 37676306 DOI: 10.1007/s00436-023-07963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Cyclospora cayetanensis is an enteric coccidian parasite responsible for gastrointestinal disease transmitted through contaminated food and water. It has been documented in several countries, mostly with low-socioeconomic levels, although major outbreaks have hit developed countries. Detection methods based on oocyst morphology, staining, and molecular testing have been developed. However, the current MLST panel offers an opportunity for enhancement, as amplification of all molecular markers remains unfeasible in the majority of samples. This study aims to address this challenge by evaluating two approaches for analyzing the genetic diversity of C. cayetanensis and identifying reliable markers for subtyping: core homologous genes and mitochondrial genome analysis. A pangenome was constructed using 36 complete genomes of C. cayetanensis, and a haplotype network and phylogenetic analysis were conducted using 33 mitochondrial genomes. Through the analysis of the pangenome, 47 potential markers were identified, emphasizing the need for more sequence data to achieve comprehensive characterization. Additionally, the analysis of mitochondrial genomes revealed 19 single-nucleotide variations that can serve as characteristic markers for subtyping this parasite. These findings not only contribute to the selection of molecular markers for C. cayetanensis subtyping, but they also drive the knowledge toward the potential development of a comprehensive genotyping method for this parasite.
Collapse
Affiliation(s)
- Jean P González-Gómez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, México
| | - Luis F Lozano-Aguirre
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, AP565-A, 62210, Cuernavaca, Morelos, México
| | - José A Medrano-Félix
- Investigadoras e Investigadores por México-Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Laboratorio Nacional Para la Investigación en Inocuidad Alimentaria (LANIIA), Carretera a El dorado km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, Mexico
| | - Cristobal Chaidez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, México
| | - Charles P Gerba
- Department of Environmental Science, Water & Energy Sustainable Technology (WEST) Center, University of Arizona, 2959 W, Calle Agua Nueva, Tucson, AZ, 85745, USA
| | - Walter Q Betancourt
- Department of Environmental Science, Water & Energy Sustainable Technology (WEST) Center, University of Arizona, 2959 W, Calle Agua Nueva, Tucson, AZ, 85745, USA
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Eldorado km 5.5, Campo El Diez, 80110, Culiacán, Sinaloa, México.
| |
Collapse
|
4
|
Abstract
The apicomplexan parasite Cyclospora cayetanensis causes seasonal foodborne outbreaks of the gastrointestinal illness cyclosporiasis. Prior to the coronavirus disease-2019 pandemic, annually reported cases were increasing in the USA, leading the US Centers for Disease Control and Prevention to develop a genotyping tool to complement cyclosporiasis outbreak investigations. Thousands of US isolates and 1 from China (strain CHN_HEN01) were genotyped by Illumina amplicon sequencing, revealing 2 lineages (A and B). The allelic composition of isolates was examined at each locus. Two nuclear loci (CDS3 and 360i2) distinguished lineages A and B. CDS3 had 2 major alleles: 1 almost exclusive to lineage A and the other to lineage B. Six 360i2 alleles were observed – 2 exclusive to lineage A (alleles A1 and A2), 2 to lineage B (B1 and B2) and 1 (B4) was exclusive to CHN_HEN01 which shared allele B3 with lineage B. Examination of heterozygous genotypes revealed that mixtures of A- and B-type 360i2 alleles occurred rarely, suggesting a lack of gene flow between lineages. Phylogenetic analysis of loci from whole-genome shotgun sequences, mitochondrial and apicoplast genomes, revealed that CHN_HEN01 represents a distinct lineage (C). Retrospective examination of epidemiologic data revealed associations between lineage and the geographical distribution of US infections plus strong temporal associations. Given the multiple lines of evidence for speciation within human-infecting Cyclospora, we provide an updated taxonomic description of C. cayetanensis, and describe 2 novel species as aetiological agents of human cyclosporiasis: Cyclospora ashfordi sp. nov. and Cyclospora henanensis sp. nov. (Apicomplexa: Eimeriidae).
Collapse
|
5
|
Targeted next generation sequencing of Cyclospora cayetanensis mitochondrial genomes from seeded fresh produce and other seeded food samples. Heliyon 2022; 8:e11575. [DOI: 10.1016/j.heliyon.2022.e11575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/17/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022] Open
|
6
|
Tucker MS, Khan A, Jenkins MC, Dubey JP, Rosenthal BM. Hastening Progress in Cyclospora Requires Studying Eimeria Surrogates. Microorganisms 2022; 10:1977. [PMID: 36296256 PMCID: PMC9608778 DOI: 10.3390/microorganisms10101977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclospora cayetanensis is an enigmatic human parasite that sickens thousands of people worldwide. The scarcity of research material and lack of any animal model or cell culture system slows research, denying the produce industry, epidemiologists, and regulatory agencies of tools that might aid diagnosis, risk assessment, and risk abatement. Fortunately, related species offer a strong foundation when used as surrogates to study parasites of this type. Species of Eimeria lend themselves especially well as surrogates for C. cayetanensis. Those Eimeria that infect poultry can be produced in abundance, share many biological features with Cyclospora, pose no risk to the health of researchers, and can be studied in their natural hosts. Here, we overview the actual and potential uses of such surrogates to advance understanding of C. cayetanensis biology, diagnostics, control, and genomics, focusing on opportunities to improve prevention, surveillance, risk assessment, and risk reduction. Studying Eimeria surrogates accelerates progress, closing important research gaps and refining promising tools for producers and food safety regulators to monitor and ameliorate the food safety risks imposed by this emerging, enigmatic parasite.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
7
|
Genotyping Canadian Cyclospora cayetanensis Isolates to Supplement Cyclosporiasis Outbreak Investigations. Microorganisms 2022; 10:microorganisms10020447. [PMID: 35208901 PMCID: PMC8879297 DOI: 10.3390/microorganisms10020447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclospora cayetanensis is an emerging foodborne parasite that causes cyclosporiasis, an enteric disease of humans. Domestically acquired outbreaks have been reported in Canada every spring or summer since 2013. To date, investigations into the potential sources of infection have relied solely on epidemiological data. To supplement the epidemiological data with genetic information, we genotyped 169 Canadian cyclosporiasis cases from stool specimens collected from 2010 to 2021 using an existing eight-marker targeted amplicon deep (TADS) scheme specific to C. cayetanensis as previously described by the US Centers for Disease Control and Prevention (CDC). This is the first study to genotype Canadian Cyclospora cayetanensis isolates, and it focuses on evaluating the genotyping performance and genetic clustering. Genotyping information was successfully collected with at least part of one of the markers in the TADS assay for 97.9% of specimens, and 81.1% of cyclosporiasis cases met the minimum requirements to genetically cluster into 20 groups. The performance of the scheme suggests that examining cyclosporiasis cases genetically will be a valuable tool for supplementing epidemiological outbreak investigations and to minimize further infections. Further research is required to expand the number of discriminatory markers to improve genetic clustering.
Collapse
|
8
|
Draft Hybrid Genome Assembly of a Canadian Cyclospora cayetanensis Isolate. Microbiol Resour Announc 2022; 11:e0107221. [PMID: 35112896 PMCID: PMC8812300 DOI: 10.1128/mra.01072-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apicomplexan parasite Cyclospora cayetanensis causes foodborne gastrointestinal disease in humans. Here, we report the first hybrid assembly for C. cayetanensis, which uses both Illumina MiSeq and Oxford Nanopore Technologies MinION platforms to generate genomic sequence data. The final genome assembly consists of 44,586,677 bases represented in 313 contigs.
Collapse
|
9
|
Tucker MS, O’Brien CN, Jenkins MC, Rosenthal BM. Dynamically expressed genes provide candidate viability biomarkers in a model coccidian. PLoS One 2021; 16:e0258157. [PMID: 34597342 PMCID: PMC8486141 DOI: 10.1371/journal.pone.0258157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
Eimeria parasites cause enteric disease in livestock and the closely related Cyclosporacayetanensis causes human disease. Oocysts of these coccidian parasites undergo maturation (sporulation) before becoming infectious. Here, we assessed transcription in maturing oocysts of Eimeria acervulina, a widespread chicken parasite, predicted gene functions, and determined which of these genes also occur in C. cayetanensis. RNA-Sequencing yielded ~2 billion paired-end reads, 92% of which mapped to the E. acervulina genome. The ~6,900 annotated genes underwent temporally-coordinated patterns of gene expression. Fifty-three genes each contributed >1,000 transcripts per million (TPM) throughout the study interval, including cation-transporting ATPases, an oocyst wall protein, a palmitoyltransferase, membrane proteins, and hypothetical proteins. These genes were enriched for 285 gene ontology (GO) terms and 13 genes were ascribed to 17 KEGG pathways, defining housekeeping processes and functions important throughout sporulation. Expression differed in mature and immature oocysts for 40% (2,928) of all genes; of these, nearly two-thirds (1,843) increased their expression over time. Eight genes expressed most in immature oocysts, encoding proteins promoting oocyst maturation and development, were assigned to 37 GO terms and 5 KEGG pathways. Fifty-six genes underwent significant upregulation in mature oocysts, each contributing at least 1,000 TPM. Of these, 40 were annotated by 215 GO assignments and 9 were associated with 18 KEGG pathways, encoding products involved in respiration, carbon fixation, energy utilization, invasion, motility, and stress and detoxification responses. Sporulation orchestrates coordinated changes in the expression of many genes, most especially those governing metabolic activity. Establishing the long-term fate of these transcripts in sporulated oocysts and in senescent and deceased oocysts will further elucidate the biology of coccidian development, and may provide tools to assay infectiousness of parasite cohorts. Moreover, because many of these genes have homologues in C. cayetanensis, they may prove useful as biomarkers for risk.
Collapse
Affiliation(s)
- Matthew S. Tucker
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Celia N. O’Brien
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Mark C. Jenkins
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Benjamin M. Rosenthal
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
10
|
Kahler AM, Mattioli MC, da Silva AJ, Hill V. Detection of Cyclospora cayetanensis in produce irrigation and wash water using large-volume sampling techniques. Food Waterborne Parasitol 2021; 22:e00110. [PMID: 33681488 PMCID: PMC7930117 DOI: 10.1016/j.fawpar.2021.e00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/02/2022] Open
Abstract
The recent increase of reported cyclosporiasis outbreaks associated with fresh produce has highlighted the need for understanding environmental transmission of Cyclospora cayetanensis in agricultural settings and facilities. Conducting such environmental investigations necessitates robust sample collection and analytical methods to detect C. cayetanensis in water samples. This study evaluated three sample collection methods for recovery of C. cayetanensis oocysts from water samples during seeded recovery experiments. Two filtration-based methods, dead-end ultrafiltration (DEUF) and USEPA Method 1623.1, were evaluated for oocyst recovery from irrigation water. A non-filter-based method, continuous flow centrifugation (CFC), was evaluated separately for recovery from creek water and spent produce wash water. Median C. cayetanensis recovery efficiencies were 17% for DEUF and 16-22% for Method 1623.1. The DEUF method proved to be more robust than Method 1623.1, as the recovery efficiencies were less variable and the DEUF ultrafilters were capable of filtering larger volumes of high-turbidity water without clogging. Median C. cayetanensis recovery efficiencies for CFC were 28% for wash water and 63% for creek water, making it a viable option for processing water with high turbidity or organic matter. The data from this study demonstrate the capability of DEUF and CFC as filter-based and non-filter-based options, respectively, for the recovery of C. cayetanensis oocysts from environmental and agricultural waters.
Collapse
Affiliation(s)
- Amy M Kahler
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mia C Mattioli
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Alexandre J da Silva
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Division of Food and Environmental Microbiology, Laurel, MD 20708, USA
| | - Vincent Hill
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
11
|
Abstract
Cyclospora is an intracellular, gastrointestinal parasite found in birds and mammals worldwide. Limited accessibility of the protozoan for experimental use, scarcity, genome heterogeneity of the isolates and narrow panel of molecular markers hamper zoonotic investigations. One of the significant limitation in zoonotic studies is the lack of precise molecular tools that would be useful in linking animal vectors as a source of human infection. Strong and convincing evidence of zoonotic features will be achieved through proper typing of Cyclospora spp. taxonomic units (e.g. species or genotypes) in animal reservoirs. The most promising method that can be employ for zoonotic surveys is next-generation sequencing.
Collapse
|
12
|
Assurian A, Murphy H, Ewing L, Cinar HN, da Silva A, Almeria S. Evaluation of the U.S. Food and Drug Administration validated molecular method for detection of Cyclospora cayetanensis oocysts on fresh and frozen berries. Food Microbiol 2020; 87:103397. [DOI: 10.1016/j.fm.2019.103397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/12/2019] [Accepted: 12/01/2019] [Indexed: 12/17/2022]
|
13
|
Houghton KA, Lomsadze A, Park S, Nascimento FS, Barratt J, Arrowood MJ, VanRoey E, Talundzic E, Borodovsky M, Qvarnstrom Y. Development of a workflow for identification of nuclear genotyping markers for Cyclospora cayetanensis. ACTA ACUST UNITED AC 2020; 27:24. [PMID: 32275020 PMCID: PMC7147239 DOI: 10.1051/parasite/2020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/02/2020] [Indexed: 01/29/2023]
Abstract
Cyclospora cayetanensis is an intestinal parasite responsible for the diarrheal illness, cyclosporiasis. Molecular genotyping, using targeted amplicon sequencing, provides a complementary tool for outbreak investigations, especially when epidemiological data are insufficient for linking cases and identifying clusters. The goal of this study was to identify candidate genotyping markers using a novel workflow for detection of segregating single nucleotide polymorphisms (SNPs) in C. cayetanensis genomes. Four whole C. cayetanensis genomes were compared using this workflow and four candidate markers were selected for evaluation of their genotyping utility by PCR and Sanger sequencing. These four markers covered 13 SNPs and resolved parasites from 57 stool specimens, differentiating C. cayetanensis into 19 new unique genotypes.
Collapse
Affiliation(s)
- Katelyn A Houghton
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Alexandre Lomsadze
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Subin Park
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Fernanda S Nascimento
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joel Barratt
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael J Arrowood
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Erik VanRoey
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mark Borodovsky
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yvonne Qvarnstrom
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
14
|
Cinar HN, Gopinath G, Murphy HR, Almeria S, Durigan M, Choi D, Jang A, Kim E, Kim R, Choi S, Lee J, Shin Y, Lee J, Qvarnstrom Y, Benedict TK, Bishop HS, da Silva A. Molecular typing of Cyclospora cayetanensis in produce and clinical samples using targeted enrichment of complete mitochondrial genomes and next-generation sequencing. Parasit Vectors 2020; 13:122. [PMID: 32143704 PMCID: PMC7060604 DOI: 10.1186/s13071-020-3997-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/26/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Outbreaks of cyclosporiasis, a diarrheal illness caused by Cyclospora cayetanensis, have been a public health issue in the USA since the mid 1990's. In 2018, 2299 domestically acquired cases of cyclosporiasis were reported in the USA as a result of multiple large outbreaks linked to different fresh produce commodities. Outbreak investigations are hindered by the absence of standardized molecular epidemiological tools for C. cayetanensis. For other apicomplexan coccidian parasites, multicopy organellar DNA such as mitochondrial genomes have been used for detection and molecular typing. METHODS We developed a workflow to obtain complete mitochondrial genome sequences from cilantro samples and clinical samples for typing of C. cayetanensis isolates. The 6.3 kb long C. cayetanensis mitochondrial genome was amplified by PCR in four overlapping amplicons from genomic DNA extracted from cilantro, seeded with oocysts, and from stool samples positive for C. cayetanensis by diagnostic methods. DNA sequence libraries of pooled amplicons were prepared and sequenced via next-generation sequencing (NGS). Sequence reads were assembled using a custom bioinformatics pipeline. RESULTS This approach allowed us to sequence complete mitochondrial genomes from the samples studied. Sequence alterations, such as single nucleotide polymorphism (SNP) profiles and insertion and deletions (InDels), in mitochondrial genomes of 24 stool samples from patients with cyclosporiasis diagnosed in 2014, exhibited discriminatory power. The cluster dendrogram that was created based on distance matrices of the complete mitochondrial genome sequences, indicated distinct strain-level diversity among the 2014 C. cayetanensis outbreak isolates analyzed in this study. CONCLUSIONS Our results suggest that genomic analyses of mitochondrial genome sequences may help to link outbreak cases to the source.
Collapse
Affiliation(s)
- Hediye Nese Cinar
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Gopal Gopinath
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Helen R. Murphy
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Sonia Almeria
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Mauricio Durigan
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Dajung Choi
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - AhYoung Jang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Eunje Kim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - RaeYoung Kim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Seonju Choi
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Jeongu Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Yurim Shin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Jieon Lee
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| | - Yvonne Qvarnstrom
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Theresa K. Benedict
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Henry S. Bishop
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Alexandre da Silva
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD USA
| |
Collapse
|
15
|
Li J, Cui Z, Qi M, Zhang L. Advances in Cyclosporiasis Diagnosis and Therapeutic Intervention. Front Cell Infect Microbiol 2020; 10:43. [PMID: 32117814 PMCID: PMC7026454 DOI: 10.3389/fcimb.2020.00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cyclosporiasis is caused by the coccidian parasite Cyclospora cayetanensis and is associated with large and complex food-borne outbreaks worldwide. Associated symptoms include severe watery diarrhea, particularly in infants, and immune dysfunction. With the globalization of human food supply, the occurrence of cyclosporiasis has been increasing in both food growing and importing countries. As well as being a burden on the health of individual humans, cyclosporiasis is a global public health concern. Currently, no vaccine is available but early detection and treatment could result in a favorable clinical outcome. Clinical diagnosis is based on cardinal clinical symptoms and conventional laboratory methods, which usually involve microscopic examination of wet smears, staining tests, fluorescence microscopy, serological testing, or DNA testing for oocysts in the stool. Detection in the vehicle of infection, which can be fresh produce, water, or soil is helpful for case-linkage and source-tracking during cyclosporiasis outbreaks. Treatment with trimethoprim-sulfamethoxazole (TMP-SMX) can evidently cure C. cayetanensis infection. However, TMP-SMX is not suitable for patients having sulfonamide intolerance. In such case ciprofloxacin, although less effective than TMP-SMX, is a good option. Another drug of choice is nitazoxanide that can be used in the cases of sulfonamide intolerance and ciprofloxacin resistance. More epidemiological research investigating cyclosporiasis in humans should be conducted worldwide, to achieve a better understanding of its characteristics in this regard. It is also necessary to establish in vitro and/or in vivo protocols for cultivating C. cayetanensis, to facilitate the development of rapid, convenient, precise, and economical detection methods for diagnosis, as well as more effective tracing methods. This review focuses on the advances in clinical features, diagnosis, and therapeutic intervention of cyclosporiasis.
Collapse
Affiliation(s)
- Junqiang Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhaohui Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
16
|
Armstrong GL, MacCannell DR, Taylor J, Carleton HA, Neuhaus EB, Bradbury RS, Posey JE, Gwinn M. Pathogen Genomics in Public Health. N Engl J Med 2019; 381:2569-2580. [PMID: 31881145 PMCID: PMC7008580 DOI: 10.1056/nejmsr1813907] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rapid advances in DNA sequencing technology ("next-generation sequencing") have inspired optimism about the potential of human genomics for "precision medicine." Meanwhile, pathogen genomics is already delivering "precision public health" through more effective investigations of outbreaks of foodborne illnesses, better-targeted tuberculosis control, and more timely and granular influenza surveillance to inform the selection of vaccine strains. In this article, we describe how public health agencies have been adopting pathogen genomics to improve their effectiveness in almost all domains of infectious disease. This momentum is likely to continue, given the ongoing development in sequencing and sequencing-related technologies.
Collapse
Affiliation(s)
- Gregory L Armstrong
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Duncan R MacCannell
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Jill Taylor
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Heather A Carleton
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Elizabeth B Neuhaus
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Richard S Bradbury
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - James E Posey
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| | - Marta Gwinn
- From the National Center for Emerging and Zoonotic Infectious Diseases (G.L.A., D.R.M., H.A.C.), the National Center for Immunization and Respiratory Diseases (E.B.N.), the Center for Global Health (R.S.B.), and the National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (J.E.P.), Centers for Disease Control and Prevention, and CFOL International (M.G.) - all in Atlanta; and the Wadsworth Center, New York State Department of Health, Albany (J.T.)
| |
Collapse
|
17
|
Almeria S, Cinar HN, Dubey JP. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019; 7:E317. [PMID: 31487898 PMCID: PMC6780905 DOI: 10.3390/microorganisms7090317] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal-oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients. Trimetoprim-sulfamethoxazole is the antibiotic of choice for the treatment of cyclosporiasis, but relapses may occur. Further research is needed to understand many unknown epidemiological aspects of this parasitic disease. Here, we summarize the biology, epidemiology, outbreaks, clinical symptoms, diagnosis, treatment, control and prevention of C. cayetanensis; additionally, we outline future research needs for this parasite.
Collapse
Affiliation(s)
- Sonia Almeria
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Hediye N Cinar
- Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA
| | - Jitender P Dubey
- Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
18
|
Genotyping genetically heterogeneous Cyclospora cayetanensis infections to complement epidemiological case linkage. Parasitology 2019; 146:1275-1283. [PMID: 31148531 PMCID: PMC6699905 DOI: 10.1017/s0031182019000581] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sexually reproducing pathogens such as Cyclospora cayetanensis often produce genetically heterogeneous infections where the number of unique sequence types detected at any given locus varies depending on which locus is sequenced. The genotypes assigned to these infections quickly become complex when additional loci are analysed. This genetic heterogeneity confounds the utility of traditional sequence-typing and phylogenetic approaches for aiding epidemiological trace-back, and requires new methods to address this complexity. Here, we describe an ensemble of two similarity-based classification algorithms, including a Bayesian and heuristic component that infer the relatedness of C. cayetanensis infections. The ensemble requires a set of haplotypes as input and assigns arbitrary distances to specimen pairs reflecting their most likely relationships. The approach was applied to data generated from a test cohort of 88 human fecal specimens containing C. cayetanensis, including 30 from patients whose infections were associated with epidemiologically defined outbreak clusters of cyclosporiasis. The ensemble assigned specimens to plausible clusters of genetically related infections despite their complex haplotype composition. These relationships were corroborated by a significant number of epidemiological linkages (P < 0.0001) suggesting the ensemble's utility for aiding epidemiological trace-back investigations of cyclosporiasis.
Collapse
|