1
|
Hu B, Yang Y, Yao J, Lin G, He Q, Bo Z, Zhang Z, Li A, Wang Y, Chen G, Shan Y. Gut Microbiota as Mediator and Moderator Between Hepatitis B Virus and Hepatocellular Carcinoma: A Prospective Study. Cancer Med 2024; 13:e70454. [PMID: 39702929 DOI: 10.1002/cam4.70454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/06/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The impact of gut microbiome on hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is unclear. We aimed to evaluate the potential correlation between gut microbiome and HBV-related HCC and introduced novel machine learning (ML) signatures based on gut microbe to predict the risk of HCC. MATERIALS AND METHODS A total of 640 patients with chronic liver diseases or HCC were prospectively recruited between 2019 and 2022. Fecal samples were collected and subjected to 16S rRNA gene sequencing. Univariate and multivariate logistic regression was applied to identify risk characteristics. Several ML methods were employed to construct gut microbe-based models and the predictive performance was evaluated. RESULTS A total of 571 patients were involved in the study, including 374 patients with HCC and 197 patients with chronic liver diseases. After the propensity score matching method, 147 pairs of participants were enrolled in the analysis. Bacteroidia and Bacteroidales were demonstrated to exert mediating effects between HBV and HCC, and the moderating effects varied across Bacilli, Lactobacillales, Erysipelotrichaceae, Actinomyces, and Roseburia. HBV, alpha-fetoprotein, alanine transaminase, triglyceride, and Child-Pugh were identified as independent risk factors for HCC occurrence. Seven ML-based HBV-gut microbe models were established to predict HCC, with AUCs ranging from 0.821 to 0.898 in the training set and 0.813-0.885 in the validation set. Furthermore, the merged clinical-HBV-gut microbe models exhibited a comparable performance to HBV-gut microbe models. CONCLUSIONS Gut microbes are important factors between HBV and HCC through its potential mediating and moderating effects, which can be used as valuable biomarkers for the pathogenesis of HBV-related HCC.
Collapse
Affiliation(s)
- Bingren Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Jiangqiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ganglian Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhewei Zhang
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Anlvna Li
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunfeng Shan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Luo M, Liang X, Zhou B, Hou J, Jiang DK. CXCR7 genetic variant predicts treatment response of pegylated-interferon α in HBeAg-positive chronic hepatitis B patients. Antiviral Res 2024; 231:106005. [PMID: 39265656 DOI: 10.1016/j.antiviral.2024.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVES CXC chemokine receptor 7 (CXCR7) plays pivotal roles in different virus infections. However, no research focused on the role of CXCR7 in hepatitis B virus (HBV)-infected patients. The primary aim of this study is to elucidate the role of CXCR7 in predicting the treatment response of chronic hepatitis B (CHB) patients undergoing pegylated interferon-alpha (PegIFNα) therapy. METHODS Two cohorts with a total of 945 Chinese CHB patients (Cohort 1, n = 238; Cohort 2, n = 707) were enrolled in this retrospective study, all the patients were positive for hepatitis B e antigen (HBeAg) and received PegIFNα treatment for 48 weeks and followed-up for 24 weeks post-treatment. Nineteen tag single-nucleotide polymorphisms (SNPs) were selected within and surrounding the CXCR7 gene region. The associations of CXCR7 SNPs and polygenic score (PGS) with PegIFNα treatment response were investigated in the two cohorts. RESULTS Among the 19 candidate SNPs of CXCR7, rs2952665 (A > G) was significantly associated with combined response (CR, defined as HBeAg seroconversion and HBV DNA level <3.3log10IU/mL, P = 0.002) and hepatitis B surface antigen (HBsAg) decline (P = 0.015) in the two cohorts at week 72. Furthermore, a PGS comprising CXCR7_rs2952665 and five additional SNPs, which were previously recognized as biomarkers of PegIFNα treatment response, demonstrated a robust correlation with both CR (P = 1.38 × 10-12) and HBsAg decline (P = 0.003) in all the patients. CONCLUSION This research illustrated that CXCR7_rs2952665 is a promising predictor of the PegIFNα therapy efficiency in Chinese HBeAg-positive CHB patients. A PGS consisting of CXCR7_rs2952665 and five previously reported SNPs predicts treatment response to PegIFNα better.
Collapse
Affiliation(s)
- Mengqi Luo
- State Key Laboratory of Organ Failure Research, MOE Key Laboratory of Infectious Diseases Research in South China, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China; The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China; Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinghe Liang
- State Key Laboratory of Organ Failure Research, MOE Key Laboratory of Infectious Diseases Research in South China, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, MOE Key Laboratory of Infectious Diseases Research in South China, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, MOE Key Laboratory of Infectious Diseases Research in South China, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, MOE Key Laboratory of Infectious Diseases Research in South China, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China; The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
| |
Collapse
|
3
|
Wang M, Zheng LW, Ma S, Zhao DH, Xu Y. The gut microbiota: emerging biomarkers and potential treatments for infertility-related diseases. Front Cell Infect Microbiol 2024; 14:1450310. [PMID: 39391885 PMCID: PMC11464459 DOI: 10.3389/fcimb.2024.1450310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infertility is a disease of impaired fertility. With socioeconomic development, changes in human lifestyles, and increased environmental pollution, the problem of low human fertility has become increasingly prominent. The incidence of global infertility is increasing every year. Many factors lead to infertility, and common female factors include tubal factors, ovulation disorders, endometriosis, and immune factors. The gut microbiota is involved in many physiological processes, such as nutrient absorption, intestinal mucosal growth, glycolipid metabolism, and immune system regulation. An altered gut flora is associated with female infertility disorders such as polycystic ovary syndrome (PCOS), endometriosis (EMs), and premature ovarian failure (POF). Dysbiosis of the gut microbiota directly or indirectly contributes to the development of female infertility disorders, which also affect the homeostasis of the gut microbiota. Identifying the etiology and pathogenesis of infertility in patients is the focus of reproductive medicine physicians. We studied the developmental mechanism between the gut microbiota and PCOS, EMs, and POF from a new perspective, providing new ideas for diagnosing and treating female infertility diseases and specific reference values for eugenics.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dong-Hai Zhao
- Department of Pathology, Jilin Medical University, Jilin, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Luo M, Dong C, Liang X, Na R, Zhou B, Hou J, Jiang DK. A genetic variant of CXCR4 predicts pegylated interferon-alpha treatment response in HBeAg-positive chronic hepatitis B patients. J Clin Microbiol 2024; 62:e0139623. [PMID: 38259071 PMCID: PMC10865838 DOI: 10.1128/jcm.01396-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Chemokine receptor 4 (CXCR4) plays a vital role in immunoregulation during hepatitis B virus (HBV) infection. This study aimed to screen single-nucleotide polymorphisms (SNPs) of CXCR4 for predicting pegylated interferon-alpha (PegIFNα) therapy response in chronic hepatitis B (CHB) patients. This retrospective cohort study enrolled a total of 945 CHB patients in two cohorts (Cohort 1, n = 238; Cohort 2, n = 707), and all the patients were hepatitis B e antigen (HBeAg)-positive and treated with PegIFNα for 48 weeks and followed up for 24 weeks. Twenty-two tag SNPs were selected in CXCR4 and its flanking region. A polygenic score (PGS) was utilized to evaluate the cumulative effect of multiple SNPs. The relationships between CXCR4 SNPs and PGS and PegIFNα treatment response were explored in the two cohorts. Among the 22 candidate SNPs of CXCR4, rs28367495 (T > C) was significantly linked to PegIFNα treatment response in both cohorts. In patients with more number of rs28367495 C allele, a higher rate of combined response (CR, defined as HBeAg seroconversion and HBV DNA level < 3.3 log10 IU/mL; P = 1.51 × 10-4), a lower mean hepatitis B surface antigen (HBsAg) level (P = 4.76 × 10-4), and a higher mean HBsAg decline (P = 3.88 × 10-4) at Week 72 were achieved. Moreover, a PGS integrating CXCR4_rs28367495 and five previously reported SNPs was strongly correlated with CR (P = 1.26 × 10-13), HBsAg level (P = 4.90 × 10-4), and HBsAg decline (P = 0.005) in all the patients of the two cohorts. CXCR4_rs28367495 is a promising indicator for predicting the responsiveness to PegIFNα treatment for HBeAg-positive CHB patients. The new PGS may further improve the prediction performance.
Collapse
Affiliation(s)
- Mengqi Luo
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chao Dong
- School of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Xinghe Liang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Na
- Division of Urology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Institutes of Liver Diseases Research of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
5
|
Fiordi B, Salvestrini V, Gugliotta G, Castagnetti F, Curti A, Speiser DE, Marcenaro E, Jandus C, Trabanelli S. IL-18 and VEGF-A trigger type 2 innate lymphoid cell accumulation and pro-tumoral function in chronic myeloid leukemia. Haematologica 2023; 108:2396-2409. [PMID: 37021528 PMCID: PMC10483352 DOI: 10.3324/haematol.2022.282140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematologic malignancy associated to an unregulated growth of myeloid cells in bone marrow (BM) and peripheral blood (PB), characterized by the BCR-ABL1 translocation. Given the known cytokine impairment in the leukemic niche of CML, we investigated the impact of this microenvironmental dysregulation on innate lymphoid cells (ILC), whose role in cancer has recently emerged. Three ILC subsets are identified based on transcriptional profiles and cytokine secretion. We observed that interleukin 18 (IL-18) and vascular endothelial growth factor A (VEGF-A) are increased in CML patients' sera and that ILC2 are enriched in CML PB and BM. We found that IL-18 drives ILC2 proliferation and that CML ILC2 highly express CXCR4 and CXCR7 BM-homing receptors, potentially explaining their enrichment in PB and BM, respectively. Next, we showed that ILC2 are hyper-activated through a tumor-derived VEGF-Adependent mechanism, which leads to higher IL-13 secretion. In response to IL-13, leukemic cells increase their clonogenic capacity. Finally, we discovered that the pro-tumoral axis involving VEGF-A, IL-18 and ILC2 was disrupted upon tyrosine kinase inhibitor treatment, normalizing the levels of all these players in CML patients responding to therapy. Overall, our study uncovers the involvement of ILC2 in CML progression, mediated by VEGF-A and IL-18.
Collapse
Affiliation(s)
- Benedetta Fiordi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Valentina Salvestrini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology « Seràgnoli », Bologna, Italy
| | - Gabriele Gugliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology « Seràgnoli », Bologna, Italy
| | - Fausto Castagnetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology « Seràgnoli », Bologna, Italy
| | - Antonio Curti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Institute of Hematology « Seràgnoli », Bologna, Italy
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
6
|
Wu H, Liu S, Wu D, Zhou H, Sui G, Wu G. Cell division cycle-associated 8 is a prognostic biomarker related to immune invasion in hepatocellular carcinoma. Cancer Med 2023; 12:10138-10155. [PMID: 36855818 PMCID: PMC10166956 DOI: 10.1002/cam4.5718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Cell division cycle-associated 8 (CDCA8) is involved in numerous signaling networks, and it serves a crucial modulatory function in multiple malignant tumors. However, its significance in prognosis and immune infiltration in hepatocellular carcinoma (HCC) remains unclear. MATERIALS AND METHODS Herein, we examined the CDCA8 levels in tumor tissues, as well as its associated signaling pathways and correlation with immune infiltration. Additionally, we further clarified the prognostic significance of CDCA8 among HCC patients. HCC patient information was recruited from The Cancer Genome Atlas (TCGA). Using bioinformatics, the following parameters were analyzed among HCC patients: CDCA8 expression, enrichment analysis, immune infiltration, and prognosis analysis. Moreover, we employed in vitro investigations, such as, qRT-PCR, immunohistochemistry (IHC), and cell functional experiments to validate our results. RESULTS Elevated CDCA8 expression in HCC patients was markedly associated with T stage, pathological status (PS), tumor status (TS), histologic grade (HG), and AFP. Elevated CDCA8 expression HCC patients exhibited reduced overall survival (OS) (p < 0.001), disease-specific survival (DSS) (p < 0.001), and progress free interval (PFI) H(p < 0.001). According to the ROC analysis, the area under the curve (AUC) was 0.997. Multivariate analysis revealed that CDCA8 was a stand-alone prognostic indicator of patient OS (p = 0.009) and DSS (p = 0.006). A nomogram was then generated based on the multivariate analysis, and the C-indexes and calibration chart revealed excellent predictive performance in determining HCC patient outcome. Based on the GSEA analysis, CDCA8 modulated the P53, Notch, PPAR, E2F networks. We observed a direct link between CDCA8 levels and Th2 and T helper cells, and a negative link between CDCA8 levels and dendritic cells (DC), neutrophils, cytotoxic cells, and CD8 T cells. Furthermore, CDCA8 deficiency inhibited liver cancer cell proliferation and invasion. CONCLUSION In conclusion, these findings indicate that CDCA8 is a new molecular bioindicator of HCC patient prognosis, and it is an excellent candidate for therapeutic target against HCC.
Collapse
Affiliation(s)
- Haomin Wu
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shiqi Liu
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Di Wu
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Haonan Zhou
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Guoxin Sui
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Gang Wu
- Department of General Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
8
|
Zhu L, Wu Z, Zhu C, Yin J, Huang Y, Feng J, Zhang Q. The Deletion of IL-17A Enhances Helicobacter hepaticus Colonization and Triggers Colitis. J Inflamm Res 2022; 15:2761-2773. [PMID: 35518840 PMCID: PMC9064063 DOI: 10.2147/jir.s359100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Objective IL-17 is a key regulator of the inflammatory response, and as such, it is involved in the constraint and clearance of pathogens. The mechanism of IL-17 in the pathogenesis of inflammatory bowel disease (IBD) caused by microbial infection is still unclear. Helicobacter hepaticus infection can induce colitis in many mouse strains, and thus, it has been widely used in the study of IBD pathogenesis. Methods In this study, male C57BL/6, BALB/c, Il-10−/−, and Il-17a−/− mice were infected with H. hepaticus for several weeks. Histopathology, H. hepaticus colonization and distribution, expression of inflammatory cytokines and lysozyme, and distribution of mucus in proximal colon were examined. Results The colonic colonization of H. hepaticus was abnormally high in Il-17a−/− mice. H. hepaticus infection caused only mild to moderate colitis symptoms in Il-17a−/− mice, including low levels of lymphocyte infiltration, epithelial cell defects, goblet cell reduction, and crypt atrophy without obvious hyperplasia in the later stage of infection. Furthermore, many inflammatory genes were significantly increased in the proximal colon of H. hepaticus-infected Il-17a−/− mice compared with C57BL/6 mice. In addition, the reduction of colonic mucus and the down-regulation of ZO-1, Claudin-1, and IL-22 were observed in Il-17a−/− mice compared with C57BL/6 mice post H. hepaticus infection. Conclusion These results demonstrated that the deletion of IL-17A impaired the integrity of the intestinal epithelium, weakened the secretion of mucus, attenuated colonic mucosal regeneration, reduced the ability to resist microbial infection, and finally led to colitis caused by H. hepaticus.
Collapse
Affiliation(s)
- Liqi Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Zhihao Wu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Chen Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jun Yin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Yuzheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, 214064, People's Republic of China.,Public Health Research Center, Jiangnan University, Wuxi, Jiangsu Province, 214122, People's Republic of China
| | - Jie Feng
- Shanghai Laboratory Animal Research Center, Shanghai Quality Monitoring Center of Laboratory Animals, Shanghai, 201203, People's Republic of China
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
9
|
Dean JW, Zhou L. Cell-intrinsic view of the aryl hydrocarbon receptor in tumor immunity. Trends Immunol 2022; 43:245-258. [PMID: 35131180 PMCID: PMC8882133 DOI: 10.1016/j.it.2022.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022]
Abstract
Emerging insights into aryl hydrocarbon receptor (Ahr) biology have revealed its key role in regulating mammalian host immunity and tissue homeostasis. Depending on the context, immune cells can play either a pro- or antitumor role in cancer. Ahr has classically been viewed as protumorigenic; however, given recent advances in our understanding of Ahr functions, especially in the immune system, this view requires reassessment. Moreover, given its cell type-specific activity, therapeutic exploitation of the Ahr pathway should be cautiously considered. We describe the function of Ahr in different immune cells, and connect with their roles in cancer immunology. In addition, we discuss clinical perspectives of how recent advances in our understanding of Ahr biology might be therapeutically applied to improve cancer outcomes.
Collapse
Affiliation(s)
- Joseph W. Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
10
|
Abstract
The innate lymphoid cell (ILC) family is composed of natural killer (NK) cells, ILC1, ILC2 and ILC3, which participate in immune responses to virus, bacteria, parasites and transformed cells. ILC1, ILC2 and ILC3 subsets are mostly tissue-resident, and are profoundly imprinted by their organ of residence. They exhibit pleiotropic effects, driving seemingly paradoxical responses such as tissue repair and, alternatively, immunopathology toward allergens and promotion of tumorigenesis. Despite this, a trickle of studies now suggests that non-NK ILCs may not be overwhelmingly tumorigenic and could potentially be harnessed to drive anti-tumor responses. Here, we examine the pleiotropic behavior of ILCs in cancer and begin to unravel the gap in our knowledge that exposes a new horizon for thinking about modifying ILCs and targeting them for immunotherapy.
Collapse
|
11
|
Cao S, Miao J, Qian M, Zhu C, Ding S, Yin J, Zhu L, Zhang Q. Helicobacter hepaticus Infection Promotes the Progression of Liver Preneoplasia in BALB/c Mice via the Activation and Accumulation of High-Mobility Group Box-1. Front Microbiol 2022; 12:789752. [PMID: 35046917 PMCID: PMC8763329 DOI: 10.3389/fmicb.2021.789752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
It has been documented that Helicobacter hepaticus (H. hepaticus) infection is linked to chronic hepatitis and fibrosis in male BALB/c mice. However, the mechanism underlying the mice model of H. hepaticus–induced hepatocellular carcinoma is not fully known. In this study, male BALB/c mice were infected with H. hepaticus for 3, 6, 12, and 18 months. H. hepaticus colonization, histopathology, expression of proinflammatory cytokines, key signaling pathways, and protein downstream high-mobility group box-1 (HMGB1) in the liver were examined. Our data suggested that the H. hepaticus colonization level in the colon and liver progressively increased over the duration of the infection. H. hepaticus–induced hepatic inflammation and fibrosis were aggravated during the infection, and hepatic preneoplasia developed in the liver of infected mice at 12 and 18 months post-inoculation (MPI). H. hepaticus infection increased the levels of alanine aminotransferase and aspartate aminotransferase in the infected mice. In addition, the mRNA levels of IL-6, Tnf-α, Tgf-β, and HMGB1 were significantly elevated in the liver of H. hepaticus–infected mice from 3 to 18 MPI as compared to the controls. In addition, Ki67 was increased throughout the duration of the infection. Furthermore, HMGB1 protein was activated and translocated from the nucleus to the cytoplasm in the hepatocytes and activated the proteins of signal transducers and activators of transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) [extracellular regulated protein kinases 1/2 (Erk1/2) and mitogen-activated protein kinase p38 (p38)] upon H. hepaticus infection. In conclusions, these data demonstrated that male BALB/c mice infected with H. hepaticus are prone to suffering hepatitis and developing into hepatic preneoplasia. To verify the effect of HMGB1 in the progression of liver preneoplasia, mice were infected by H. hepaticus for 2 months before additional HMGB1 recombinant adenovirus treatment. All mice were sacrificed at 4 MPI, and the sera and liver tissues from all of the mice were collected. Immunology and histopathology evaluation showed that HMGB1 knockdown attenuated the H. hepaticus–induced hepatic and fibrosis at 4 MPI. Therefore, we showed that H. hepaticus–induced liver preneoplasia is closely correlated with the activation and accumulation of HMGB1.
Collapse
Affiliation(s)
- Shuyang Cao
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiancheng Miao
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Miao Qian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chen Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shiping Ding
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Jun Yin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Liqi Zhu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Quan Zhang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Zong Y, Zhou Y, Liao B, Liao M, Shi Y, Wei Y, Huang Y, Zhou X, Cheng L, Ren B. The Interaction Between the Microbiome and Tumors. Front Cell Infect Microbiol 2021; 11:673724. [PMID: 34532297 PMCID: PMC8438519 DOI: 10.3389/fcimb.2021.673724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a significant global health problem and is characterized by a consistent increase in incidence and mortality rate. Deciphering the etiology and risk factors are essential parts of cancer research. Recently, the altered microbiome has been identified within the tumor microenvironment, tumor tissue, and even nonadjacent environments, which indicates a strong correlation between the microbiome and tumor development. However, the causation and mechanisms of this correlation remain unclear. Herein, we summarized and discussed the interaction between the microbiome and tumor progression. Firstly, the microbiome, which can be located in the tumor microenvironment, inside tumor tissues and in the nonadjacent environment, is different between cancer patients and healthy individuals. Secondly, the tumor can remodel microbial profiles by creating a more beneficial condition for the shifted microbiome. Third, the microbiome can promote tumorigenesis through a direct pathogenic process, including the establishment of an inflammatory environment and its effect on host immunity. The interactions between the microbiome and tumors can promote an understanding of the carcinogenesis and provide novel therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yawen Zong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Yuan X, Rasul F, Nashan B, Sun C. Innate lymphoid cells and cancer: Role in tumor progression and inhibition. Eur J Immunol 2021; 51:2188-2205. [PMID: 34189723 PMCID: PMC8457100 DOI: 10.1002/eji.202049033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/12/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILCs), a critical component of the immune system, have recently been nominated as emerging players associated with tumor progression and inhibition. ILCs are classified into five groups: natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTis) cells. NK cells and ILC1s are mainly involved in antitumor activities due to their cytotoxic and cytokine production capabilities, respectively. The current understanding of the heterogeneous behavior of ILC2s and ILC3s in tumors is limited and incomplete. Mostly, their dual roles are modulated by their resident tissues, released cytokines, cancer types, and plasticity. Based on overlap RORγt and cytokine expression, the LTi cells were previously considered part of the ILC3s ontogeny, which are essential for the formation of the secondary lymphoid organs during embryogenesis. Indeed, these facts highlight the urgency in understanding the respective mechanisms that shape the phenotypes and responses of ILCs, either on the repressive or proliferative side in the tumor microenvironment (TME). This review aims to provide an updated view of ILCs biology with respect to tumorigenesis, including a description of ILC plasticity, their interaction with other immune cells and communication with components of the TME. Taken together, targeting ILCs for cancer immunotherapy could be a promising approach against tumors that needs to be further study.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Faiz Rasul
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Björn Nashan
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Cheng Sun
- Transplant & Immunology Laboratory, Division of Life Sciences and Medicine, Department of Organ Transplantation Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China.,Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
14
|
Ochoa S, Collado L. Enterohepatic Helicobacter species - clinical importance, host range, and zoonotic potential. Crit Rev Microbiol 2021; 47:728-761. [PMID: 34153195 DOI: 10.1080/1040841x.2021.1924117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genus Helicobacter defined just over 30 years ago, is a highly diverse and fast-growing group of bacteria that are able to persistently colonize a wide range of animals. The members of this genus are subdivided into two groups with different ecological niches, associated pathologies, and phylogenetic relationships: the gastric Helicobacter (GH) and the enterohepatic Helicobacter (EHH) species. Although GH have been mostly studied, EHH species have become increasingly important as emerging human pathogens and potential zoonotic agents in the last years. This group of bacteria has been associated with the development of several diseases in humans from acute pathologies like gastroenteritis to chronic pathologies that include inflammatory bowel disease, and liver and gallbladder diseases. However, their reservoirs, as well as their routes of transmission, have not been well established yet. Therefore, this review summarizes the current knowledge of taxonomy, epidemiology, and clinical role of the EHH group.
Collapse
Affiliation(s)
- Sofia Ochoa
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Luis Collado
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
15
|
Yang M, Yang Y, He Q, Zhu P, Liu M, Xu J, Zhao M. Intestinal Microbiota-A Promising Target for Antiviral Therapy? Front Immunol 2021; 12:676232. [PMID: 34054866 PMCID: PMC8149780 DOI: 10.3389/fimmu.2021.676232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is thought to be an important biological barrier against enteric pathogens. Its depletion, however, also has curative effects against some viral infections, suggesting that different components of the intestinal microbiota can play both promoting and inhibitory roles depending on the type of viral infection. The two primary mechanisms by which the microbiota facilitates or inhibits viral invasion involve participation in the innate and adaptive immune responses and direct or indirect interaction with the virus, during which the abundance and composition of the intestinal microbiota might be changed by the virus. Oral administration of probiotics, faecal microbiota transplantation (FMT), and antibiotics are major therapeutic strategies for regulating intestinal microbiota balance. However, these three methods have shown limited curative effects in clinical trials. Therefore, the intestinal microbiota might represent a new and promising supplementary antiviral therapeutic target, and more efficient and safer methods for regulating the microbiota require deeper investigation. This review summarizes the latest research on the relationship among the intestinal microbiota, anti-viral immunity and viruses and the most commonly used methods for regulating the intestinal microbiota with the goal of providing new insight into the antiviral effects of the gut microbiota.
Collapse
Affiliation(s)
- Mengling Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengqi Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Xu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Hong GQ, Cai D, Gong JP, Lai X. Innate immune cells and their interaction with T cells in hepatocellular carcinoma. Oncol Lett 2021; 21:57. [PMID: 33281968 PMCID: PMC7709558 DOI: 10.3892/ol.2020.12319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor and is associated with necroinflammation driven by various immune cells, such as dendritic cells, macrophages and natural killer cells. Innate immune cells can directly affect HCC or regulate the T-cell responses that mediate HCC. In addition, innate immune cells and T cells are not isolated, which means the interaction between them is important in the HCC microenvironment. Considering the current unsatisfactory efficacy of immunotherapy in patients with HCC, understanding the relationship between innate immune cells and T cells is necessary. In the present review the roles and clinical value of innate immune cells that have been widely reported to be involved in HCC, including dendritic cells, macrophages (including kupffer cells), neutrophils, eosinophils, basophils and innate lymphoid cells and the crosstalk between the innate and adaptive immune responses in the antitumor process have been discussed. The present review will facilitate researchers in understanding the importance of innate immune cells in HCC and lead to innovative immunotherapy approaches for the treatment of HCC.
Collapse
Affiliation(s)
- Guo-Qing Hong
- Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital, Chongqing 402660, P.R. China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xing Lai
- Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital, Chongqing 402660, P.R. China
- Correspondence to: Dr Xing Lai, Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital, 271 Datong, Tongnan, Chongqing 402660, P.R. China, E-mail:
| |
Collapse
|
17
|
Abstract
This review covers the most important, accessible, and relevant literature published between April 2019 and April 2020 in the field of non-Helicobacter pylori Helicobacter species (NHPH). The initial part of the review covers new insights regarding the presence of gastric and enterohepatic NHPH in humans and animals, while the subsequent section focuses on the progress in our understanding of animal models, the pathogenicity and omics of these species. Over the last year, the clinical relevance of gastric NHPH infections in humans was highlighted. With regard to NHPH in animals, the ancestral source of Helicobacter suis was further established showing that Cynomolgus macaques are the common ancestor of the pig-associated H. suis population, and 3 novel Helicobacter species isolated from the gastric mucosa of red foxes were described. "Helicobacter burdigaliensis" sp nov. and "Helicobacter labetoulli" sp nov. were proposed as novel enterohepatic Helicobacter species associated with human digestive diseases. An analysis of Helicobacter cinaedi recurrent infections in humans proposed long-term antibiotic therapies. Several studies using rodent models further elucidated the mechanisms underlying the development of NHPH-related disease, as well as intestinal immunity in inflammatory bowel disease models. Omics approaches supported Helicobacteraceae taxonomy and unraveled the transcriptomic signatures of H. suis and Helicobacter heilmannii upon adherence to the human gastric epithelium. With regard to virulence, data showed that the nuclear remodeling promoted by cytolethal distending toxin of Helicobacters involves the MAFB oncoprotein and is associated with nucleoplasmic reticulum formation in surviving cells.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Armelle Menard
- Univ. Bordeaux, INSERM, Bordeaux Research in Translational Oncology, BaRITOn, UMR1053, Bordeaux, France.,CHU de Bordeaux, Laboratoire de Bactériologie, Centre National de Référence des Campylobacters et des Hélicobacters, Bordeaux, France
| |
Collapse
|
18
|
Wang S, Wu P, Chen Y, Chai Y. Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor. Oncol Lett 2020; 20:1513-1525. [PMID: 32724393 PMCID: PMC7377136 DOI: 10.3892/ol.2020.11736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Recent years have witnessed a significant development in the current understanding of innate lymphoid cells (ILCs) and their roles in the innate immune system, where they regulate tissue homeostasis, inflammation, as well as tumor surveillance and tumorigenesis. Based on the limited studies of ILCs in cancer, ILCs may be classified into three subgroups depending on their phenotypic and functional characteristics: Group 1 ILCs, which include natural killer cells and ILC1s; Group 2 ILCs, which only contain ILC2s and Group 3 ILCs, which comprise of LTi cells and ILC3s. Group 1 ILCs predominantly exert antitumor activities, while Group 2 ILCs and Group 3 ILCs are predominantly procarcinogenic in nature. In different types of tumor, each ILC subset behaves differently. Current research is focused on investigating how ILCs may be manipulated and employed as therapeutic strategies for the treatment of cancer. The present review aimed to summarize the characteristics and effects of ILCs in the context of tumor immunology, and provide novel insight into the pro- or anti-tumor activities of ILCs in different types of malignancy, including solid tumors, such as those in the gastrointestinal tract, lung, breast, bladder or prostate, as well as melanoma, further to hematological malignancies, with the aim to highlight potential therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
- Shijie Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Ying Chai
- Department of Thoracic Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|