1
|
Marks WD, Paris JJ, Barbour AJ, Moon J, Carpenter VJ, McLane VD, Lark ARS, Nass SR, Zhang J, Yarotskyy V, McQuiston AR, Knapp PE, Hauser KF. HIV-1 Tat and Morphine Differentially Disrupt Pyramidal Cell Structure and Function and Spatial Learning in Hippocampal Area CA1: Continuous versus Interrupted Morphine Exposure. eNeuro 2021; 8:ENEURO.0547-20.2021. [PMID: 33782102 PMCID: PMC8146490 DOI: 10.1523/eneuro.0547-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
About half the people infected with human immunodeficiency virus (HIV) have neurocognitive deficits that often include memory impairment and hippocampal deficits, which can be exacerbated by opioid abuse. To explore the effects of opioids and HIV on hippocampal CA1 pyramidal neuron structure and function, we induced HIV-1 transactivator of transcription (Tat) expression in transgenic mice for 14 d and co-administered time-release morphine or vehicle subcutaneous implants during the final 5 d (days 9-14) to establish steady-state morphine levels. Morphine was withheld from some ex vivo slices during recordings to begin to assess the initial pharmacokinetic consequences of opioid withdrawal. Tat expression reduced hippocampal CA1 pyramidal neuronal excitability at lower stimulating currents. Pyramidal cell firing rates were unaffected by continuous morphine exposure. Behaviorally, exposure to Tat or high dosages of morphine impaired spatial memory Exposure to Tat and steady-state levels of morphine appeared to have largely independent effects on pyramidal neuron structure and function, a response that is distinct from other vulnerable brain regions such as the striatum. By contrast, acutely withholding morphine (from morphine-tolerant ex vivo slices) revealed unique and selective neuroadaptive shifts in CA1 pyramidal neuronal excitability and dendritic plasticity, including some interactions with Tat. Collectively, the results show that opioid-HIV interactions in hippocampal area CA1 are more nuanced than previously assumed, and appear to vary depending on the outcome assessed and on the pharmacokinetics of morphine exposure.
Collapse
Affiliation(s)
- William D Marks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Jason J Paris
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848
| | - Aaron J Barbour
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Jean Moon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Valerie J Carpenter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Virginia D McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Arianna R S Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Sara R Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Jingli Zhang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
| | - A Rory McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0709
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0613
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298-0709
| |
Collapse
|
2
|
Strauss M, O'Donovan B, Ma Y, Xiao Z, Lin S, Bardo MT, Ortinski PI, McLaughlin JP, Zhu J. [ 3H]Dopamine Uptake through the Dopamine and Norepinephrine Transporters is Decreased in the Prefrontal Cortex of Transgenic Mice Expressing HIV-1 Transactivator of Transcription Protein. J Pharmacol Exp Ther 2020; 374:241-251. [PMID: 32461322 DOI: 10.1124/jpet.120.266023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/21/2020] [Indexed: 01/16/2023] Open
Abstract
Dysregulation of dopamine neurotransmission has been linked to the development of human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND). To investigate the mechanisms underlying this phenomenon, this study used an inducible HIV-1 transactivator of transcription (Tat) transgenic (iTat-tg) mouse model, which demonstrates brain-specific Tat expression induced by administration of doxycycline. We found that induction of Tat expression in the iTat-tg mice for either 7 or 14 days resulted in a decrease (∼30%) in the V max of [3H]dopamine uptake via both the dopamine transporter (DAT) and norepinephrine transporter (NET) in the prefrontal cortex (PFC), which was comparable to the magnitude (∼35%) of the decrease in B max for [3H]WIN 35,428 and [3H]nisoxetine binding to DAT and NET, respectively. The decreased V max was not accompanied by a reduction of total or plasma membrane expression of DAT and NET. Consistent with the decreased V max for DAT and NET in the PFC, the current study also found an increase in the tissue content of DA and dihydroxyphenylacetic acid in the PFC of iTat-tg mice after 7 days' administration of doxycycline. Electrophysiological recordings in layer V pyramidal neurons of the prelimbic cortex from iTat-tg mice found a significant reduction in action potential firing, which was not sensitive to selective inhibitors for DAT and NET, respectively. These findings provide a molecular basis for using the iTat-tg mouse model in the studies of NeuroHIV. Determining the mechanistic basis underlying the interaction between Tat and DAT/NET may reveal novel therapeutic possibilities for preventing the increase in comorbid conditions as well as HAND. SIGNIFICANCE STATEMENT: Human immunodeficiency virus (HIV)-1 infection disrupts dopaminergic neurotransmission, leading to HIV-associated neurocognitive disorders (HANDs). Based on our in vitro and in vivo studies, dopamine uptake via both dopamine and norepinephrine transporters is decreased in the prefrontal cortex of HIV-1 Tat transgenic mice, which is consistent with the increased dopamine and dihydroxyphenylacetic acid contents in this brain region. Thus, these plasma membrane transporters are an important potential target for therapeutic intervention for patients with HAND.
Collapse
Affiliation(s)
- Matthew Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Bernadette O'Donovan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Yizhi Ma
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Ziyu Xiao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Steven Lin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Michael T Bardo
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Pavel I Ortinski
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Jay P McLaughlin
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (M.S., Y.M., Z.X., S.L., J.Z.) and Department of Physiology, Pharmacology and Neuroscience, School of Medicine (B.O.), University of South Carolina, Columbia, South Carolina; Departments of Psychology (M.B.) and Neuroscience (P.O.), University of Kentucky, Lexington, Kentucky; and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.)
| |
Collapse
|
3
|
Systems Biology Analysis of the Antagonizing Effects of HIV-1 Tat Expression in the Brain over Transcriptional Changes Caused by Methamphetamine Sensitization. Viruses 2020; 12:v12040426. [PMID: 32283831 PMCID: PMC7232389 DOI: 10.3390/v12040426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (Meth) abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein, trans-activator of transcription (Tat), has been described to induce changes in brain gene transcription that can result in impaired reward circuitry, as well as in inflammatory processes. In transgenic mice with doxycycline-induced Tat protein expression in the brain, i.e., a mouse model of neuroHIV, we tested global gene expression patterns induced by Meth sensitization. Meth-induced locomotor sensitization included repeated daily Meth or saline injections for seven days and Meth challenge after a seven-day abstinence period. Brain samples were collected 30 min after the Meth challenge. We investigated global gene expression changes in the caudate putamen, an area with relevance in behavior and HIV pathogenesis, and performed pathway and transcriptional factor usage predictions using systems biology strategies. We found that Tat expression alone had a very limited impact in gene transcription after the Meth challenge. In contrast, Meth-induced sensitization in the absence of Tat induced a global suppression of gene transcription. Interestingly, the interaction between Tat and Meth broadly prevented the Meth-induced global transcriptional suppression, by maintaining regulation pathways, and resulting in gene expression profiles that were more similar to the controls. Pathways associated with mitochondrial health, initiation of transcription and translation, as well as with epigenetic control, were heavily affected by Meth, and by its interaction with Tat in anti-directional ways. A series of systems strategies have predicted several components impacted by these interactions, including mitochondrial pathways, mTOR/RICTOR, AP-1 transcription factor, and eukaryotic initiation factors involved in transcription and translation. In spite of the antagonizing effects of Tat, a few genes identified in relevant gene networks remained downregulated, such as sirtuin 1, and the amyloid precursor protein (APP). In conclusion, Tat expression in the brain had a low acute transcriptional impact but strongly interacted with Meth sensitization, to modify effects in the global transcriptome.
Collapse
|