1
|
Huo X, Xu X, Wang Q, Zhang J, Hylkema MN, Zeng Z. Associations of co-exposure to polycyclic aromatic hydrocarbons and lead (Pb) with IGF1 methylation in peripheral blood of preschool children from an e-waste recycling area. ENVIRONMENT INTERNATIONAL 2024; 190:108833. [PMID: 38908275 DOI: 10.1016/j.envint.2024.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Childhood exposure to polycyclic aromatic hydrocarbons (PAHs) or lead (Pb) is associated with epigenetic modifications. However, the effects of their co-exposures on IGF1 (Insulin-like growth factor 1) methylation and the potential role in child physical growth are unclear. METHODS From our previous children study (N = 238, ages of 3-6), 75 children with higher total concentrations of urinary ten hydroxyl PAH metabolites (∑10OH-PAHs) from an e-waste recycling area, Guiyu, and 75 with lower ∑10OH-PAHs from Haojiang (reference area) were included. Pb and IGF1 P2 promoter methylation in peripheral blood were also measured. Multivariable linear regression analyses were performed to estimate individual associations, overall effects and interactions of co-exposure to OH-PAHs and Pb on IGF1 methylation were further explored using Bayesian kernel machine regression. RESULTS Methylation of IGF1 (CG-232) was lower (38.00 vs. 39.74 %, P < 0.001), but of CG-207 and CG-137 were higher (59.94 vs. 58.41 %; 57.60 vs. 56.28 %, both P < 0.05) in exposed children than the reference. The elevated urinary 2-OHPhe was associated with reduced methylation of CG-232 (B = -0.051, 95 % CI: -0.096, -0.005, P < 0.05), whereas blood Pb was positively associated with methylation of CG-108 (B = 0.106, 95 %CI: 0.013, 0.199, P < 0.05), even after full adjustment. Methylations of CG-224 and 218 significantly decreased when all OH-PAHs and Pb mixtures were set at 35th - 40th and 45th - 55th percentile compared to when all fixed at 50th percentile. There were bivariate interactions of co-exposure to the mixtures on methylations of CG-232, 224, 218, and 108. Methylations correlated with height, weight, were observed in the exposed children. CONCLUSIONS Childhood co-exposure to high PAHs and Pb from the e-waste may be associated with IGF1 promoter methylation alterations in peripheral blood. This, in turn, may interrupt the physical growth of preschool children.
Collapse
Affiliation(s)
- Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Jian Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Zhijun Zeng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, Chongqing, China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, Chongqing, China.
| |
Collapse
|
2
|
Wang Z, Fu G, Ma G, Wang C, Wang Q, Lu C, Fu L, Zhang X, Cong B, Li S. The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction. Hum Genet 2024; 143:401-421. [PMID: 38507014 DOI: 10.1007/s00439-024-02659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
As a vital anthropometric characteristic, human height information not only helps to understand overall developmental status and genetic risk factors, but is also important for forensic DNA phenotyping. We utilized linear regression analysis to test the association between each CpG probe and the height phenotype. Next, we designed a methylation sequencing panel targeting 959 CpGs and subsequent height inference models were constructed for the Chinese population. A total of 11,730 height-associated sites were identified. By employing KPCA and deep neural networks, a prediction model was developed, of which the cross-validation RMSE, MAE and R2 were 5.62 cm, 4.45 cm and 0.64, respectively. Genetic factors could explain 39.4% of the methylation level variance of sites used in the height inference models. Collectively, we demonstrated an association between height and DNA methylation status through an EWAS analysis. Targeted methylation sequencing of only 959 CpGs combined with deep learning techniques could provide a model to estimate human height with higher accuracy than SNP-based prediction models.
Collapse
Affiliation(s)
- Zhonghua Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Guangping Fu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Guanju Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Chunyan Wang
- Physical Examination Center of Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Chaolong Lu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China
| | - Shujin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Hebei Medical University, Chinese Academy of Medical Sciences, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
3
|
M N N, J K, S R S, Raavi V. Methylation Status of IGF-Axis Genes in the Placenta of South Indian Neonates with Appropriate and Small for Gestational Age. Fetal Pediatr Pathol 2024; 43:5-20. [PMID: 37975569 DOI: 10.1080/15513815.2023.2280660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Altered methylation patterns of insulin-like growth factor (IGF)-axis genes in small for gestational age (SGA) have been reported in different populations. In the present study, we analyzed the methylation status of IGF-axis genes in the placenta of appropriate for gestational age (AGA) and SGA neonates of South Indian women. METHODS Placental samples were collected from AGA (n = 40) and SAG (n = 40) neonates. The methylation of IGF-axis genes promoter was analyzed using MS-PCR. RESULTS IGF2, H19, IGF1, and IGFR1 genes promoter methylation was 2.5, 1.5, 5, and 7.5% lower in SGA compared to AGA, respectively. Co-methylation of IGF-axis genes promoter was 40% and 20% in AGA and SGA, respectively. IGF-axis gene promoter methylation significantly (p < 0.05) influenced the levels of IGFBP3 protein, birth weight, mitotic index, gestational weeks, and IGFR1 and IGFR2 gene expression. CONCLUSION IGF-axis genes methylation was lower in SGA than in AGA, and the methylation significantly influenced the IGF-axis components.
Collapse
Affiliation(s)
- Nithya M N
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, India
| | - Krishnappa J
- Department of Paediatrics, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, India
| | - Sheela S R
- Department of Obstetrics and Gynaecology, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, India
| |
Collapse
|
4
|
Melnik BC, John SM, Carrera-Bastos P, Cordain L, Leitzmann C, Weiskirchen R, Schmitz G. The Role of Cow's Milk Consumption in Breast Cancer Initiation and Progression. Curr Nutr Rep 2023; 12:122-140. [PMID: 36729355 PMCID: PMC9974716 DOI: 10.1007/s13668-023-00457-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW This review evaluates cow milk's impact on breast carcinogenesis by linking recent epidemiological evidence and new insights into the molecular signaling of milk and its constituents in breast cancer (BCa) pathogenesis. RECENT FINDINGS Recent prospective cohort studies support the association between cow's milk consumption and the risk of estrogen receptor-α-positive (ER+) BCa. Milk is a complex biological fluid that increases systemic insulin-like growth factor 1 (IGF-1), insulin and estrogen signaling, and interacting hormonal promoters of BCa. Further potential oncogenic components of commercial milk include exosomal microRNAs (miR-148a-3p, miR-21-5p), bovine meat and milk factors, aflatoxin M1, bisphenol A, pesticides, and micro- and nanoplastics. Individuals with BRCA1 loss-of-function mutations and FTO and IGF1 gain-of-function polymorphisms enhancing IGF-1/mTORC1 signaling may be at increased risk for milk-induced ER+ BCa. Recent prospective epidemiological and pathobiochemical studies identify commercial milk consumption as a critical risk factor of ER+ BCa. Large meta-analyses gathering individuals of different ethnic origins with milk derived from dairy cows of varying genetic backgrounds and diverse feeding procedures as well as missing data on thermal processing of milk (pasteurization versus ultra-heat treatment) make multi-national meta-analyses unsuitable for BCa risk estimations in susceptible populations. Future studies are required that consider all vulnerable periods of breast carcinogenesis to cow's milk exposure, beginning during the perinatal period and puberty, since these are the most critical periods of mammary gland morphogenesis. Notwithstanding the need for better studies including detailed information on milk processing and vulnerable periods of human breast carcinogenesis, the available evidence suggests that dietary guidelines on milk consumption may have to be reconsidered.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076, Osnabrück, Germany.
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076, Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm) at the University of Osnabrück, Lower-Saxonian Institute of Occupational Dermatology (NIB), Osnabrück, Germany
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, 205 02, Malmö, Sweden
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670, Madrid, Spain
- Centro de Estudios Avanzados en Nutrición (CEAN), 11007, Cádiz, Spain
| | | | - Claus Leitzmann
- Institute of Nutrition, University of Giessen, 35390, Giessen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074, Aachen, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
5
|
Zheng Y, Luo L, Lambertz IU, Conti CJ, Fuchs-Young R. Early Dietary Exposures Epigenetically Program Mammary Cancer Susceptibility through Igf1-Mediated Expansion of the Mammary Stem Cell Compartment. Cells 2022; 11:2558. [PMID: 36010633 PMCID: PMC9406400 DOI: 10.3390/cells11162558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Diet is a critical environmental factor affecting breast cancer risk, and recent evidence shows that dietary exposures during early development can affect lifetime mammary cancer susceptibility. To elucidate the underlying mechanisms, we used our established crossover feeding mouse model, where exposure to a high-fat and high-sugar (HFHS) diet during defined developmental windows determines mammary tumor incidence and latency in carcinogen-treated mice. Mammary tumor incidence is significantly increased in mice receiving a HFHS post-weaning diet (high-tumor mice, HT) compared to those receiving a HFHS diet during gestation (low-tumor mice, LT). The current study revealed that the mammary stem cell (MaSC) population was significantly increased in mammary glands from HT compared to LT mice. Igf1 expression was increased in mammary stromal cells from HT mice, where it promoted MaSC self-renewal. The increased Igf1 expression was induced by DNA hypomethylation of the Igf1 Pr1 promoter, mediated by a decrease in Dnmt3b levels. Mammary tissues from HT mice also had reduced levels of Igfbp5, leading to increased bioavailability of tissue Igf1. This study provides novel insights into how early dietary exposures program mammary cancer risk, demonstrating that effective dietary intervention can reduce mammary cancer incidence.
Collapse
Affiliation(s)
- Yuanning Zheng
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Linjie Luo
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Isabel U. Lambertz
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Claudio J. Conti
- Department of Bioengineering, Tissue Engineering and Regenerative Medicine Group (TERMeG), Universidad Carlos III de Madrid, 28903 Madrid, Spain
| | - Robin Fuchs-Young
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
6
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
7
|
Shao X, Le Stunff C, Cheung W, Kwan T, Lathrop M, Pastinen T, Bougnères P. Differentially methylated CpGs in response to growth hormone administration in children with idiopathic short stature. Clin Epigenetics 2022; 14:65. [PMID: 35585611 PMCID: PMC9118695 DOI: 10.1186/s13148-022-01281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recombinant human growth hormone (rhGH) has shown a great growth-promoting potential in children with idiopathic short stature (ISS). However, the response to rhGH differs across individuals, largely due to genetic and epigenetic heterogeneity. Since epigenetic marks on the methylome can be dynamically influenced by GH, we performed a comprehensive pharmacoepigenomics analysis of DNA methylation changes associated with long-term rhGH administration in children with ISS.
Results We measured DNA methylation profiles before and after GH treatment (with a duration of ~ 18 months in average) on 47 healthy children using customized methylC-seq capture sequencing. Their changes were compared and associated with changes in plasma IGF1 by adjusting sex, age, treatment duration and estimated blood proportions. We observed a considerable inter-individual heterogeneity of DNA methylation changes responding to GH treatment. We identified 267 response-associated differentially methylated cytosines (DMCs) that were enriched in promoter regions, CpG islands and blood cell-type-specific regulatory elements. Furthermore, the genes associated with these DMCs were enriched in the biology process of “cell development,” “neuron differentiation” and “developmental growth,” and in the TGF-beta signaling pathway, PPAR Alpha pathway, endoderm differentiation pathway, adipocytokine signaling pathway as well as PI3K-Akt signaling pathway, and cAMP signaling pathway. Conclusion Our study provides a first insight in DNA methylation changes associated with rhGH administration, which may help understand mechanisms of epigenetic regulation on GH-responsive genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01281-z.
Collapse
Affiliation(s)
- Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
| | - Catherine Le Stunff
- UMR INSERM 1195 and Université Paris Saclay, Endocrinologie Pédiatrique, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Warren Cheung
- Genomic Medicine Center, Children's Mercy - Kansas City and Children's Mercy Research Institute, Kansas City, MO, 64108, USA
| | - Tony Kwan
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy - Kansas City and Children's Mercy Research Institute, Kansas City, MO, 64108, USA.
| | - Pierre Bougnères
- UMR INSERM 1195 and Université Paris Saclay, Endocrinologie Pédiatrique, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
| |
Collapse
|
8
|
Apel A, Iliev DI, Urban C, Weber K, Schweizer R, Blumenstock G, Pasche S, Nieratschker V, Binder G. GH Responsiveness Is not Correlated to IGF1 P2 Promoter Methylation in Children With Turner Syndrome, GHD and SGA Short Stature. Front Endocrinol (Lausanne) 2022; 13:897897. [PMID: 35769084 PMCID: PMC9235359 DOI: 10.3389/fendo.2022.897897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The methylation of IGF1 promoter P2 was reported to negatively correlate with serum IGF-1 concentration and rhGH treatment response in children with idiopathic short stature. These findings have not yet been confirmed. OBJECTIVE This study aimed to determine IGF1 promoter P2 methylation in short children treated with rhGH and correlate clinical parameters with the methylation status. In addition, long-term stability of methylation during rhGH treatment was studied. DESIGN This was a single tertiary center study analyzing clinical GH response and IGF-1 serum concentration changes in patients with GHD (n=40), SGA short stature (n=36), and Turner syndrome (n=16) treated with rhGH. Data were correlated to the methylation of two cytosine residues (-137, +97) of the P2 promoter of IGF1 in blood cells measured by pyrosequencing in 443 patient samples. RESULTS Basal and stimulated IGF-1 concentrations, first year increment in height velocity and studentized residuals of a prediction model did not correlate to the methylation of -137 und +97 in IGF1 P2 promoter. The methylation of these two sites was relatively stable during treatment. CONCLUSIONS This study did not confirm IGF1 P2 promotor being a major epigenetic locus for GH responsiveness in patients treated with a normal dose of rhGH. Additional studies are warranted.
Collapse
Affiliation(s)
- Anja Apel
- Pediatric Endocrinology, University Children`s Hospital Tübingen, Tübingen, Germany
| | - Daniel I. Iliev
- Pediatric Endocrinology, University Children`s Hospital Tübingen, Tübingen, Germany
| | - Christina Urban
- Pediatric Endocrinology, University Children`s Hospital Tübingen, Tübingen, Germany
| | - Karin Weber
- Pediatric Endocrinology, University Children`s Hospital Tübingen, Tübingen, Germany
| | - Roland Schweizer
- Pediatric Endocrinology, University Children`s Hospital Tübingen, Tübingen, Germany
| | - Gunnar Blumenstock
- Department of Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Sarah Pasche
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University Hospital Tübingen, Tübingen, Germany
| | - Vanessa Nieratschker
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University Hospital Tübingen, Tübingen, Germany
| | - Gerhard Binder
- Pediatric Endocrinology, University Children`s Hospital Tübingen, Tübingen, Germany
- *Correspondence: Gerhard Binder,
| |
Collapse
|
9
|
Cao C, Jia Z, Shao M, Li R, Sun Q, Liu D. Prenatal exposure to polycyclic aromatic hydrocarbons could increase the risk of low birth weight by affecting the DNA methylation states in a Chinese cohort. Reprod Biol 2021; 21:100574. [PMID: 34794034 DOI: 10.1016/j.repbio.2021.100574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), as a kind of endocrine disruptors, can enter the fetus body cross the placental barrier from prenatal PAHs exposure to cause adverse birth outcomes. However, it is controversial association between prenatal PAHs exposure and low birth weight (LBW) of their infants. So the present study aimed to estimate the effects of prenatal PAHs exposure during the pregnancy on the risk of LBW in a Chinese cohort through modifying the DNA methylation states. A longitudinal prospective study with 407 pregnant women was established from May to October 2019. The prenatal PAHs exposure during the pregnancy was assessed using the internal dose such as the PAHs metabolites and PAH-DNA adducts in the umbilical cord blood. The methylation levels of genomic DNA and growth-related genes (IGF1 and IGF2) were assessed, while the expressions of these genes were both determined by RT-PCR and Elisa methods. The growth outcomes and relevant Z-scores were recorded at birth. The correlations between the DNA methylation status and concentrations of PAHs, expression levels of growth-related genes and body weight/WAZ were investigated as the measures. According to the PAH-DNA adducts, the subjects were divided into two groups: PAHs-exposed group (PAH-DNA adducts>0, n = 55) and non-exposed group (PAH-DNA adducts = 0, n = 352). Compared with the non-exposed group, it displayed marked decreased birth weight, and increased concentrations of PAHs and DNA methylation levels of the global genomic, IGF1 and IGF2 with their lower expressions in the PAHs-exposed group. These hypermethylation (global genomic, CpG14 and CpG15 of IGF1, and CpG14 of IGF2) were positively correlated with the contents of PAHs in the umbilical cord blood, and negatively correlated with the growth outcomes and their expressions. Totally, prenatal PAHs exposures may contribute to an increased risk of LBW of their infants by modulating the DNA methylation states of genomic DNA and growth-related genes (IGF1 and IGF2) in the umbilical cord blood, which could provide the prenatal prevention of PAHs exposure from possible environmental media except from the occupation and tobacco usage to ensure the health of their infants.
Collapse
Affiliation(s)
- Chunxia Cao
- Department of Pediatrics, Zibo Central Hospital, Shandong Province, 255000, China
| | - Zhiyi Jia
- Department of Pediatrics, Zibo Central Hospital, Shandong Province, 255000, China
| | - Mingyu Shao
- Department of Pediatrics, Zibo Central Hospital, Shandong Province, 255000, China
| | - Rongmiao Li
- Department of Thoracic Surgery, Huantai Country People's Hospital, Shandong Province, 255000, China
| | - Qi Sun
- Scientific Education and Communication Cooperation Office, Zibo Central Hospital, Shandong Province, 255000, China
| | - Dong Liu
- Department of Pediatrics, Zibo Central Hospital, Shandong Province, 255000, China.
| |
Collapse
|
10
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
11
|
Epigenetic mapping of the somatotropic axis in Nile tilapia reveals differential DNA hydroxymethylation marks associated with growth. Genomics 2021; 113:2953-2964. [PMID: 34214627 PMCID: PMC7611323 DOI: 10.1016/j.ygeno.2021.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
In vertebrates, the somatotropic axis comprising the pituitary gland, liver and muscle plays a major role in myogenesis. Its output in terms of muscle growth is highly affected by nutritional and environmental cues, and thus likely epigenetically regulated. Hydroxymethylation is emerging as a DNA modification that modulates gene expression but a holistic characterization of the hydroxymethylome of the somatotropic axis has not been investigated to date. Using reduced representation 5-hydroxymethylcytosine profiling we demonstrate tissue-specific localization of 5-hydroxymethylcytosines at single nucleotide resolution. Their abundance within gene bodies and promoters of several growth-related genes supports their pertinent role in gene regulation. We propose that cytosine hydroxymethylation may contribute to the phenotypic plasticity of growth through epigenetic regulation of the somatotropic axis.
Collapse
|
12
|
Llobat L. Pluripotency and Growth Factors in Early Embryonic Development of Mammals: A Comparative Approach. Vet Sci 2021; 8:vetsci8050078. [PMID: 34064445 PMCID: PMC8147802 DOI: 10.3390/vetsci8050078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/24/2022] Open
Abstract
The regulation of early events in mammalian embryonic development is a complex process. In the early stages, pluripotency, cellular differentiation, and growth should occur at specific times and these events are regulated by different genes that are expressed at specific times and locations. The genes related to pluripotency and cellular differentiation, and growth factors that determine successful embryonic development are different (or differentially expressed) among mammalian species. Some genes are fundamental for controlling pluripotency in some species but less fundamental in others, for example, Oct4 is particularly relevant in bovine early embryonic development, whereas Oct4 inhibition does not affect ovine early embryonic development. In addition, some mechanisms that regulate cellular differentiation do not seem to be clear or evolutionarily conserved. After cellular differentiation, growth factors are relevant in early development, and their effects also differ among species, for example, insulin-like growth factor improves the blastocyst development rate in some species but does not have the same effect in mice. Some growth factors influence genes related to pluripotency, and therefore, their role in early embryo development is not limited to cell growth but could also involve the earliest stages of development. In this review, we summarize the differences among mammalian species regarding the regulation of pluripotency, cellular differentiation, and growth factors in the early stages of embryonic development.
Collapse
Affiliation(s)
- Lola Llobat
- Research Group Microbiological Agents Associated with Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
| |
Collapse
|
13
|
Melnik BC, Schmitz G. Pasteurized non-fermented cow's milk but not fermented milk is a promoter of mTORC1-driven aging and increased mortality. Ageing Res Rev 2021; 67:101270. [PMID: 33571703 DOI: 10.1016/j.arr.2021.101270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/16/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Recent epidemiological studies in Sweden, a country with traditionally high milk consumption, revealed that the intake of non-fermented pasteurized milk increased all-cause mortality in a dose-dependent manner. In contrast, the majority of epidemiological and clinical studies report beneficial health effects of fermented milk products, especially of yogurt. It is the intention of this review to delineate potential molecular aging mechanisms related to the intake of non-fermented milk versus yogurt on the basis of mechanistic target of rapamycin complex 1 (mTORC1) signaling. Non-fermented pasteurized milk via its high bioavailability of insulinotropic branched-chain amino acids (BCAAs), abundance of lactose (glucosyl-galactose) and bioactive exosomal microRNAs (miRs) enhances mTORC1 signaling, which shortens lifespan and increases all-cause mortality. In contrast, fermentation-associated lactic acid bacteria metabolize BCAAs and degrade galactose and milk exosomes including their mTORC1-activating microRNAs. The Industrial Revolution, with the introduction of pasteurization and refrigeration of milk, restricted the action of beneficial milk-fermenting bacteria, which degrade milk's BCAAs, galactose and bioactive miRs that synergistically activate mTORC1. This unrecognized behavior change in humans after the Neolithic revolution increased aging-related over-activation of mTORC1 signaling in humans, who persistently consume large quantities of non-fermented pasteurized cow's milk, a potential risk factor for aging and all-cause mortality.
Collapse
|
14
|
Castillo-Castrejon M, Yang IV, Davidson EJ, Borengasser SJ, Jambal P, Westcott J, Kemp JF, Garces A, Ali SA, Saleem S, Goldenberg RL, Figueroa L, Hambidge KM, Krebs NF, Powell TL. Preconceptional Lipid-Based Nutrient Supplementation in 2 Low-Resource Countries Results in Distinctly Different IGF-1/mTOR Placental Responses. J Nutr 2021; 151:556-569. [PMID: 33382407 PMCID: PMC7948206 DOI: 10.1093/jn/nxaa354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/27/2020] [Accepted: 10/14/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Preconceptional maternal small-quantity lipid-based nutrient supplementation (SQLNS) improved intrauterine linear growth in low-resource countries as demonstrated by the Women First Preconception Maternal Nutrition Trial (WF). Fetal growth is dependent on nutrient availability and regulated by insulin-like growth factor 1 (IGF-1) through changes in placental transfer capacity, mediated by the mechanistic target of rapamycin (mTOR) pathway. OBJECTIVES Our objective was to evaluate the role of placental mTOR and IGF-1 signaling on fetal growth in women from 2 low-resource countries with high rates of stunting after they received preconceptional SQLNS. METHODS We studied 48 women from preconception through delivery who were from Guatemala and Pakistan and received SQLNS or not, as part of the WF study. Placental samples were obtained at delivery (control, n = 24; SQLNS, n = 24). Placental protein or mRNA expression of eukaryotic translation initiation factor binding protein-1 (4E-BP1), ribosomal protein S6 (rpS6), AMP-activated protein kinase α (AMPKA), IGF-1, insulin-like growth factor receptor (IGF-1R), and pregnancy associated plasma protein (PAPP)-A, and DNA methylation of the IGF1 promoter were determined. Maternal serum IGF-1, insulin-like growth factor binding protein (IGFBP)-3, IGFBP-4, IGFBP-5, PAPP-A, PAPP-A2, and zinc were measured. RESULTS Mean ± SEM maternal prepregnancy BMI differed between participants in Guatemala (26.5 ± 1.3) and Pakistan (19.8 ± 0.7) (P < 0.001). In Pakistani participants, SQLNS increased the placental rpS6(T37/46):rpS6 ratio (1.5-fold) and decreased the AMPKA(T172):AMPKA ratio. Placental IGF1 mRNA expression was positively correlated with birth length and birth weight z-scores. Placental PAPP-A (30-fold) and maternal serum zinc (1.2-fold) increased with SQLNS. In Guatemalan participants SQLNS did not influence placental mTOR signaling. Placental IGF-1R protein expression was positively associated with birth length and birth weight z-scores. SQLNS increased placental PAPP-A (40-fold) and maternal serum IGFBP-4 (1.6-fold). CONCLUSIONS In Pakistani pregnant women with poor nutritional status, preconceptional SQLNS activated placental mTOR and IGF-1 signaling and was associated with improved fetal growth. In contrast, in Guatemalan women SQLNS did not activate placental nutrient-sensing pathways. In populations experiencing childhood stunting, preconceptional SQLNS improves placental function and fetal growth only in the context of poor maternal nutrition. This trial was registered at clinicaltrials.gov as NCT01883193.
Collapse
Affiliation(s)
- Marisol Castillo-Castrejon
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ivana V Yang
- Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth J Davidson
- Biomedical Informatics & Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J Borengasser
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Purevsuren Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jamie Westcott
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer F Kemp
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ana Garces
- Maternal and Infant Health Center, Institute of Nutrition of Central America and Panama (INCAP), Guatemala City, Guatemala
| | - Sumera A Ali
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Sarah Saleem
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Robert L Goldenberg
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Lester Figueroa
- Maternal and Infant Health Center, Institute of Nutrition of Central America and Panama (INCAP), Guatemala City, Guatemala
| | - K Michael Hambidge
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nancy F Krebs
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa L Powell
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
15
|
Melnik BC. Lifetime Impact of Cow's Milk on Overactivation of mTORC1: From Fetal to Childhood Overgrowth, Acne, Diabetes, Cancers, and Neurodegeneration. Biomolecules 2021; 11:404. [PMID: 33803410 PMCID: PMC8000710 DOI: 10.3390/biom11030404] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
The consumption of cow's milk is a part of the basic nutritional habits of Western industrialized countries. Recent epidemiological studies associate the intake of cow's milk with an increased risk of diseases, which are associated with overactivated mechanistic target of rapamycin complex 1 (mTORC1) signaling. This review presents current epidemiological and translational evidence linking milk consumption to the regulation of mTORC1, the master-switch for eukaryotic cell growth. Epidemiological studies confirm a correlation between cow's milk consumption and birthweight, body mass index, onset of menarche, linear growth during childhood, acne vulgaris, type 2 diabetes mellitus, prostate cancer, breast cancer, hepatocellular carcinoma, diffuse large B-cell lymphoma, neurodegenerative diseases, and all-cause mortality. Thus, long-term persistent consumption of cow's milk increases the risk of mTORC1-driven diseases of civilization. Milk is a highly conserved, lactation genome-controlled signaling system that functions as a maternal-neonatal relay for optimized species-specific activation of mTORC1, the nexus for regulation of eukaryotic cell growth, and control of autophagy. A deeper understanding of milk´s impact on mTORC1 signaling is of critical importance for the prevention of common diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|
16
|
Melnik BC. Synergistic Effects of Milk-Derived Exosomes and Galactose on α-Synuclein Pathology in Parkinson's Disease and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:1059. [PMID: 33494388 PMCID: PMC7865729 DOI: 10.3390/ijms22031059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies associate milk consumption with an increased risk of Parkinson's disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic β-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic β-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic β-cells linking the pathogenesis of PD and T2D.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
17
|
Kantake M, Ikeda N, Nakaoka H, Ohkawa N, Tanaka T, Miyabayashi K, Shoji H, Shimizu T. IGF1 gene is epigenetically activated in preterm infants with intrauterine growth restriction. Clin Epigenetics 2020; 12:108. [PMID: 32678007 PMCID: PMC7364555 DOI: 10.1186/s13148-020-00901-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background IGF1 is a key molecule in the regulation of growth and metabolism. Low IGF1 secretion is known to cause growth restriction in childhood, as well as deregulated lipid metabolism, cardiovascular disease, and diabetes in adulthood. The IGF1 gene P2 promoter is highly methylated, resulting in low secretion of IGF1 in small infants and children. However, it is unknown when this methylation occurs. The aim of study was to clarify the point when this epigenetic program occurs during intrauterine development. We analyzed 56 preterm infants born before 32 weeks of gestation, including 19 intrauterine growth restriction (IUGR) infants whose birth weights were lower than − 2SD calculated by the Japanese datasets. We extracted genomic DNA from whole blood at birth; methylation of the six CpG sites in the IGF1 P2 promoter was analyzed by the bisulfite amplicon method using the MiSeq platform. Results In contrast to term infants and children, the methylation of all six CpG sites positively correlated with body weight and body length at birth. IGF1 P2 promoter methylation levels were significantly reduced in all six CpG sites in infants with IUGR. Conclusions These findings indicated that the IGF1 gene is epigenetically activated before 32 weeks of gestation in infants with IUGR and that the activated gene may become suppressed after this time point. This study may provide new insights to prevent the onset of adult diseases and to aid in nutritional management for preterm birth infants in neonatal intensive care units.
Collapse
Affiliation(s)
- Masato Kantake
- Neonatal Medical Center, Juntendo University Shizuoka Hospital, 1192 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan.
| | - Naho Ikeda
- Neonatal Medical Center, Juntendo University Shizuoka Hospital, 1192 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan
| | - Hirofumi Nakaoka
- Human Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, 2-2 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Natsuki Ohkawa
- Neonatal Medical Center, Juntendo University Shizuoka Hospital, 1192 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan
| | - Toshitaka Tanaka
- Perinatal Medical Center, Juntendo University Shizuoka Hospital, 1192 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan
| | - Kazuki Miyabayashi
- Neonatal Medical Center, Juntendo University Shizuoka Hospital, 1192 Nagaoka, Izunokuni, Shizuoka, 410-2295, Japan
| | - Hiromichi Shoji
- Department of Pediatrics and Adolescent Medicine, Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University, 3-1-3 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
| |
Collapse
|
18
|
Ma Y, Yao Y, Zhong N, Angwa LM, Pei J. The dose-time effects of fluoride on the expression and DNA methylation level of the promoter region of BMP-2 and BMP-7 in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103331. [PMID: 32004919 DOI: 10.1016/j.etap.2020.103331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/21/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Skeletal fluorosis is a chronic metabolic bone disease caused by excessive exposed to fluoride. Recent studies have shown that fluoride causes abnormal bone metabolism through disrupting the expression of Bone Morphogenetic Proteins (BMPs). However, the relationship between fluoride and BMPs is not fully understood, and the mechanism of fluoride on BMPs expression is still unclear. This study investigated the dose-time effects of fluoride on BMP-2 and BMP-7 levels and DNA methylation status of the promoter regions of these two genes in peripheral blood of rats. Eighty Wistar male rats were randomly divided into four groups and treated for 1 month and 3 months with distilled water (control), 25 mg/L, 50 mg/L or 100 mg/L of sodium fluoride (NaF). Rats exposed to fluoride had higher protein expression of BMP-2 and BMP-7 in plasma at 1 month and 3 months. An increase in BMP-2 expression was also observed with an increase of fluoride exposure time. Significant hypomethylation was observed in 2 CpG sites (CpGs) of BMP-2 and 1 CpG site of BMP-7 promoter regions in the fluoride treatment groups. It concludes that fluoride has a dose-response effect on BMP-2 in fluorosis rats, and fluoride-induced hypomethylation of specific CpGs may play an essential role in the regulation of BMP-2 and BMP-7 expression in rats.
Collapse
Affiliation(s)
- Yongzheng Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yingjie Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Nan Zhong
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Linet Musungu Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China
| | - Junrui Pei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, People's Republic of China.
| |
Collapse
|
19
|
Wittenbecher C, Ouni M, Kuxhaus O, Jähnert M, Gottmann P, Teichmann A, Meidtner K, Kriebel J, Grallert H, Pischon T, Boeing H, Schulze MB, Schürmann A. Insulin-Like Growth Factor Binding Protein 2 (IGFBP-2) and the Risk of Developing Type 2 Diabetes. Diabetes 2019; 68:188-197. [PMID: 30396904 DOI: 10.2337/db18-0620] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/29/2018] [Indexed: 11/13/2022]
Abstract
Recent studies suggest that insulin-like growth factor binding protein 2 (IGFBP-2) may protect against type 2 diabetes, but population-based human studies are scarce. We aimed to investigate the prospective association of circulating IGFBP-2 concentrations and of differential methylation in the IGFBP-2 gene with type 2 diabetes risk.
Collapse
Affiliation(s)
- Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Meriem Ouni
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Olga Kuxhaus
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Markus Jähnert
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Pascal Gottmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Andrea Teichmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Jennifer Kriebel
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Harald Grallert
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislaufforschung e.V., partner site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Berlin Institute of Health Biobank, Berlin, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| |
Collapse
|
20
|
Maddock J, Wulaningsih W, Fernandez JC, Ploubidis GB, Goodman A, Bell J, Kuh D, Hardy R. Associations between body size, nutrition and socioeconomic position in early life and the epigenome: A systematic review. PLoS One 2018; 13:e0201672. [PMID: 30096154 PMCID: PMC6086410 DOI: 10.1371/journal.pone.0201672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background Body size, nutrition and socioeconomic position (SEP) in early life have been associated with a wide range of long-term health effects. Epigenetics is one possible mechanism through which these early life exposures can impact later life health. We conducted a systematic review examining the observational evidence for the impact of body size, nutrition and SEP in early life on the epigenome in humans. Methods This systematic review is registered with the PROSPERO database (registration number: CRD42016050193). Three datasets were simultaneously searched using Ovid and the resulting studies were evaluated by at least two independent reviewers. Studies measuring epigenetic markers either at the same time as, or after, the early life exposure and have a measure of body size, nutrition or SEP in early life (up to 12 years), written in English and from a community-dwelling participants were included. Results We identified 90 eligible studies. Seventeen of these papers examined more than one early life exposure of interest. Fifty six papers examined body size, 37 nutrition and 17 SEP. All of the included papers examined DNA methylation (DNAm) as the epigenetic marker. Overall there was no strong evidence for a consistent association between these early life variables in DNAm which may be due to the heterogeneous study designs, data collection methods and statistical analyses. Conclusions Despite these inconclusive results, the hypothesis that the early life environment can impact DNAm, potentially persisting into adult life, was supported by some studies and warrants further investigation. We provide recommendations for future studies.
Collapse
Affiliation(s)
- Jane Maddock
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
- * E-mail:
| | - Wahyu Wulaningsih
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Juan Castillo Fernandez
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - George B. Ploubidis
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, London, United Kingdom
| | - Alissa Goodman
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, London, United Kingdom
| | - Jordana Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
21
|
Gliga AR, Engström K, Kippler M, Skröder H, Ahmed S, Vahter M, Raqib R, Broberg K. Prenatal arsenic exposure is associated with increased plasma IGFBP3 concentrations in 9-year-old children partly via changes in DNA methylation. Arch Toxicol 2018; 92:2487-2500. [PMID: 29947889 PMCID: PMC6063321 DOI: 10.1007/s00204-018-2239-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/04/2018] [Indexed: 01/20/2023]
Abstract
Exposure to inorganic arsenic (As), a carcinogen and epigenetic toxicant, has been associated with lower circulating levels of insulin-like growth factor 1 (IGF1) and impaired growth in children of pre-school age. The aim of this study was to assess the potential impact of exposure to As on IGF1 and insulin-like growth factor-binding protein 3 (IGFBP3) as well as DNA methylation changes in 9-year-old children. To this end, we studied 9-year-old children from a longitudinal mother-child cohort in rural Bangladesh (n = 551). Prenatal and concurrent exposure to As was assessed via concentrations in maternal urine at gestational week 8 and in child urine at 9 years, measured by HPLC-HG-ICPMS. Plasma IGF1 and IGFBP3 concentrations were quantified with immunoassays. DNA methylation was measured in blood mononuclear cells at 9 years in a sub-sample (n = 113) using the Infinium HumanMethylation450K BeadChip. In multivariable-adjusted linear regression models, prenatal As (natural log-transformed), but not children's concurrent urinary As, was positively associated with IGFBP3 concentrations (β = 76, 95% CI 19, 133). As concentrations were not associated with IGF1. DNA methylation analysis revealed CpGs associated with both prenatal As and IGFBP3. Mediation analysis suggested that methylation of 12 CpG sites for all children was mediator of effect for the association between prenatal As and IGFBP3. We also found differentially methylated regions, generally hypermethylated, that were associated with both prenatal As and IGFBP3. In all, our study revealed that prenatal exposure to As was positively associated with IGFBP3 concentrations in children at 9 years, independent of IGF1, and this association may, at least in part, be epigenetically mediated.
Collapse
Affiliation(s)
- Anda R Gliga
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Helena Skröder
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sultan Ahmed
- Division of Infectious Diseases, icddr,b, Dhaka, Bangladesh
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Rubhana Raqib
- Division of Infectious Diseases, icddr,b, Dhaka, Bangladesh
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
22
|
Ghanipoor-Samami M, Javadmanesh A, Burns BM, Thomsen DA, Nattrass GS, Estrella CAS, Kind KL, Hiendleder S. Atlas of tissue- and developmental stage specific gene expression for the bovine insulin-like growth factor (IGF) system. PLoS One 2018; 13:e0200466. [PMID: 30001361 PMCID: PMC6042742 DOI: 10.1371/journal.pone.0200466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
The insulin-like growth factor (IGF) axis is fundamental for mammalian growth and development. However, no comprehensive reference data on gene expression across tissues and pre- and postnatal developmental stages are available for any given species. Here we provide systematic promoter- and splice variant specific information on expression of IGF system components in embryonic (Day 48), fetal (Day 153), term (Day 277, placenta) and juvenile (Day 365–396) tissues of domestic cow, a major agricultural species and biomedical model. Analysis of spatiotemporal changes in expression of IGF1, IGF2, IGF1R, IGF2R, IGFBP1-8 and IR genes, as well as lncRNAs H19 and AIRN, by qPCR, indicated an overall increase in expression from embryo to fetal stage, and decrease in expression from fetal to juvenile stage. The stronger decrease in expression of lncRNAs (average ―16-fold) and ligands (average ―12.1-fold) compared to receptors (average ―5.7-fold) and binding proteins (average ―4.3-fold) is consistent with known functions of IGF peptides and supports important roles of lncRNAs in prenatal development. Pronounced overall reduction in postnatal expression of IGF system components in lung (―12.9-fold) and kidney (―13.2-fold) are signatures of major changes in organ function while more similar hepatic expression levels (―2.2-fold) are evidence of the endocrine rather than autocrine/paracrine role of IGFs in postnatal growth regulation. Despite its rapid growth, placenta displayed a more stable expression pattern than other organs during prenatal development. Quantitative analyses of contributions of promoters P0-P4 to global IGF2 transcript in fetal tissues revealed that P4 accounted for the bulk of transcript in all tissues but skeletal muscle. Demonstration of IGF2 expression in fetal muscle and postnatal liver from a promoter orthologous to mouse and human promoter P0 provides further evidence for an evolutionary and developmental shift from placenta-specific P0-expression in rodents and suggests that some aspects of bovine IGF expression may be closer to human than mouse.
Collapse
Affiliation(s)
- Mani Ghanipoor-Samami
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- JS Davies Epigenetics and Genetics Group, Davies Research Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Ali Javadmanesh
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- JS Davies Epigenetics and Genetics Group, Davies Research Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Brian M. Burns
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Rockhampton, Queensland, Australia
| | - Dana A. Thomsen
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- JS Davies Epigenetics and Genetics Group, Davies Research Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Greg S. Nattrass
- Livestock Systems, South Australian Research and Development Institute (SARDI), Roseworthy, South Australia, Australia
| | - Consuelo Amor S. Estrella
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- JS Davies Epigenetics and Genetics Group, Davies Research Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Karen L. Kind
- JS Davies Epigenetics and Genetics Group, Davies Research Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Stefan Hiendleder
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- JS Davies Epigenetics and Genetics Group, Davies Research Centre, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia, Australia
- * E-mail:
| |
Collapse
|
23
|
Le Stunff C, Castell AL, Todd N, Mille C, Belot MP, Frament N, Brailly-Tabard S, Benachi A, Fradin D, Bougnères P. Fetal growth is associated with CpG methylation in the P2 promoter of the IGF1 gene. Clin Epigenetics 2018; 10:57. [PMID: 29713392 PMCID: PMC5909239 DOI: 10.1186/s13148-018-0489-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background There are many reasons to think that epigenetics is a key determinant of fetal growth variability across the normal population. Since IGF1 and INS genes are major determinants of intrauterine growth, we examined the methylation of selected CpGs located in the regulatory region of these two genes. Methods Cord blood was sampled in 159 newborns born to mothers prospectively followed during their pregnancy. A 142-item questionnaire was filled by mothers at inclusion, during the last trimester of the pregnancy and at the delivery. The methylation of selected CpGs located in the promoters of the IGF1 and INS genes was measured in cord blood mononuclear cells collected at birth using bisulfite-PCR-pyrosequencing. Results Methylation at IGF1 CpG-137 correlated negatively with birth length (r = 0.27, P = 3.5 × 10−4). The same effect size was found after adjustment for maternal age, parity, and smoking: a 10% increase in CpG-137 methylation was associated with a decrease of length by 0.23 SDS. Conclusion The current results suggest that the methylation of IGF1 CpG-137 contributes to the individual variation of fetal growth by regulating IGF1 expression in fetal tissues. Electronic supplementary material The online version of this article (10.1186/s13148-018-0489-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine Le Stunff
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Anne-Laure Castell
- 2Service de Médecine des Adolescents, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Nicolas Todd
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Clémence Mille
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Marie-Pierre Belot
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Nathalie Frament
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Sylvie Brailly-Tabard
- 3Service de BiologieMoléculaire et Hormonologie, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Alexandra Benachi
- 4Service de Gynécologie-Obstétrique, Antoine Béclère Hospital, Paris Sud University, Clamart, France
| | | | - Pierre Bougnères
- 1Institut National de la Santé et de la Recherche Médicale U1169, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| |
Collapse
|
24
|
|
25
|
Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil. J Nutr Biochem 2017; 52:18-26. [PMID: 29121593 DOI: 10.1016/j.jnutbio.2017.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/14/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Abstract
Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone.
Collapse
|
26
|
Associations between maternal prenatal stress, methylation changes in IGF1 and IGF2, and birth weight. J Dev Orig Health Dis 2017; 9:215-222. [PMID: 29017633 DOI: 10.1017/s2040174417000800] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Maternal stress has been linked to low birth weight in newborns. One potential pathway involves epigenetic changes at candidate genes that may mediate the effects of prenatal maternal stress on birth weight. This relationship has been documented in stress-related genes, such as NR3C1. There is less literature exploring the effect of stress on growth-related genes. IGF1 and IGF2 have been implicated in fetal growth and development, though via different mechanisms as IGF2 is under imprinting control. In this study, we tested for associations between prenatal stress, methylation of IGF1 and IGF2, and birth weight. A total of 24 mother-newborn dyads in the Democratic Republic of Congo were enrolled. Ethnographic interviews were conducted with mothers at delivery to gather culturally relevant war-related and chronic stressors. DNA methylation data were generated from maternal venous, cord blood and placental tissue samples. Multivariate regressions were used to test for associations between stress measures, DNA methylation and birth weight in each of the three tissue types. We found an association between IGF2 methylation in maternal blood and birth weight. Previous literature on the relationship between IGF2 methylation and birth weight has focused on methylation at known differentially methylated regions in cord blood or placental samples. Our findings indicate there may be links between the maternal epigenome and low birth weight that rely on mechanisms outside known imprinting pathways. It thus may be important to consider the effect of maternal exposures and epigenetic profiles on birth weight even in the setting of maternally imprinted genes such as IGF2.
Collapse
|
27
|
Reynolds CM, Perry JK, Vickers MH. Manipulation of the Growth Hormone-Insulin-Like Growth Factor (GH-IGF) Axis: A Treatment Strategy to Reverse the Effects of Early Life Developmental Programming. Int J Mol Sci 2017; 18:ijms18081729. [PMID: 28786951 PMCID: PMC5578119 DOI: 10.3390/ijms18081729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Evidence from human clinical, epidemiological, and experimental animal models has clearly highlighted a link between the early life environment and an increased risk for a range of cardiometabolic disorders in later life. In particular, altered maternal nutrition, including both undernutrition and overnutrition, spanning exposure windows that cover the period from preconception through to early infancy, clearly highlight an increased risk for a range of disorders in offspring in later life. This process, preferentially termed “developmental programming” as part of the developmental origins of health and disease (DOHaD) framework, leads to phenotypic outcomes in offspring that closely resemble those of individuals with untreated growth hormone (GH) deficiency, including increased adiposity and cardiovascular disorders. As such, the use of GH as a potential intervention strategy to mitigate the effects of developmental malprogramming has received some attention in the DOHaD field. In particular, experimental animal models have shown that early GH treatment in the setting of poor maternal nutrition can partially rescue the programmed phenotype, albeit in a sex-specific manner. Although the mechanisms remain poorly defined, they include changes to endothelial function, an altered inflammasome, changes in adipogenesis and cardiovascular function, neuroendocrine effects, and changes in the epigenetic regulation of gene expression. Similarly, GH treatment to adult offspring, where an adverse metabolic phenotype is already manifest, has shown efficacy in reversing some of the metabolic disorders arising from a poor early life environment. Components of the GH-insulin-like growth factor (IGF)-IGF binding protein (GH-IGF-IGFBP) system, including insulin-like growth factor 1 (IGF-1), have also shown promise in ameliorating programmed metabolic disorders, potentially acting via epigenetic processes including changes in miRNA profiles and altered DNA methylation. However, as with the use of GH in the clinical setting of short stature and GH-deficiency, the benefits of treatment are also, in some cases, associated with potential unwanted side effects that need to be taken into account before effective translation as an intervention modality in the DOHaD context can be undertaken.
Collapse
Affiliation(s)
- Clare M Reynolds
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
28
|
Abstract
Our perception of milk has changed from a "simple food" to a highly sophisticated maternal-neonatal nutrient and communication system orchestrating early programming of the infant. Milk miRNAs delivered by exosomes and milk fat globules derived from mammary gland epithelial cells play a key role in this process. Exosomes resist the harsh intestinal environment, are taken up by intestinal cells via endocytosis, and reach the systemic circulation of the milk recipient. The most abundant miRNA found in exosomes and milk fat globules of human and cow's milk, miRNA-148a, attenuates the expression of DNA methyltransferase 1, which is critically involved in epigenetic regulation. Another important miRNA of milk, miRNA-125b, targets p53, the guardian of the genome, and its diverse transcriptional network. The deficiency of exosomal miRNAs in infant formula and the persistent uptake of milk miRNAs after the nursing period via consumption of cow's milk are two epigenetic aberrations that may induce adverse long-term effects on human health.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine, and Health Theory, University of Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
De Leonibus C, De Marco S, Stevens A, Clayton P, Chiarelli F, Mohn A. Growth Hormone Deficiency in Prepubertal Children: Predictive Markers of Cardiovascular Disease. Horm Res Paediatr 2017; 85:363-71. [PMID: 26960169 DOI: 10.1159/000444143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiovascular (CV) risk factors have been identified in adults with untreated growth hormone deficiency (GHD). Existing evidence suggests that the development of the atheromatous plaque begins early in childhood. Previous reports have shown that GHD children are prone to increased CV risks including impaired cardiac function, dyslipidemia and abnormalities in body composition. Recent studies in epigenetics and metabolomics have defined specific fingerprints that might be associated with an increased risk of CV disease. AIM The aim of this review is to point out the most significant biochemical and clinical predictive markers of CV disease in prepubertal children and to evaluate the effect of recombinant human growth hormone therapy on most of these alterations. The novel findings in epigenetics and metabolomics are also reviewed, with a particular focus on translating them into clinical practice.
Collapse
|
30
|
Jung S, Boie G, Doerr HG, Trollmann R. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development. Am J Physiol Regul Integr Comp Physiol 2017; 312:R539-R548. [DOI: 10.1152/ajpregu.00477.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O2, 6 h; postnatal day 7, P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain.
Collapse
Affiliation(s)
- Susan Jung
- Division of Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; and
| | - Gudrun Boie
- Division of Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; and
| | - Helmuth-Guenther Doerr
- Division of Pediatric Endocrinology, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Trollmann
- Division of Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; and
| |
Collapse
|
31
|
Meyer KF, Krauss-Etschmann S, Kooistra W, Reinders-Luinge M, Timens W, Kobzik L, Plösch T, Hylkema MN. Prenatal exposure to tobacco smoke sex dependently influences methylation and mRNA levels of the Igf axis in lungs of mouse offspring. Am J Physiol Lung Cell Mol Physiol 2017; 312:L542-L555. [PMID: 28130259 DOI: 10.1152/ajplung.00271.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Prenatal smoke exposure is a risk factor for abnormal lung development and increased sex-dependent susceptibility for asthma and chronic obstructive pulmonary disease (COPD). Birth cohort studies show genome-wide DNA methylation changes in children from smoking mothers, but evidence for sex-dependent smoke-induced effects is limited. The insulin-like growth factor (IGF) system plays an important role in lung development. We hypothesized that prenatal exposure to smoke induces lasting changes in promoter methylation patterns of Igf1 and Igf1r, thus influencing transcriptional activity and contributing to abnormal lung development. We measured and compared mRNA levels along with promoter methylation of Igf1 and Igf1r and their protein concentrations in lung tissue of 30-day-old mice that had been prenatally exposed to cigarette smoke (PSE) or filtered air (control). Body weight at 30 days after birth was measured as global indicator of normal development. Female PSE mice showed lower mRNA levels of Igf1 and its receptor (Igf1: P = 0.05; Igf1r: P = 0.03). Furthermore, CpG-site-specific methylation changes were detected in Igf1r in a sex-dependent manner and the body weight of female offspring was reduced after prenatal exposure to smoke, while protein concentrations were unaffected. Prenatal exposure to smoke induces a CpG-site-specific loss of Igf1r promoter methylation, which can be associated with body weight. These findings highlight the sex-dependent and potentially detrimental effects of in utero smoke exposure on DNA methylation and Igf1 and Igf1r mRNA levels. The observations support a role for Igf1 and Igf1r in abnormal development.
Collapse
Affiliation(s)
- K F Meyer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, The Netherlands
| | - S Krauss-Etschmann
- Priority Area Asthma and Allergy, Leibnitz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel, Germany
| | - W Kooistra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, The Netherlands
| | - M Reinders-Luinge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, The Netherlands
| | - W Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, The Netherlands
| | - L Kobzik
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; and
| | - T Plösch
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands;
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
32
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
33
|
Perinatal high methyl donor alters gene expression in IGF system in male offspring without altering DNA methylation. Future Sci OA 2016; 3:FSO164. [PMID: 28344827 PMCID: PMC5351714 DOI: 10.4155/fsoa-2016-0077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023] Open
Abstract
Aim: To investigate the effect of a protein restriction and a supplementation with methyl donor nutrients during fetal and early postnatal life on the expression and epigenetic state of imprinted genes from the IGF system. Materials & methods: Pregnant female rats were fed a protein-restricted diet supplemented or not with methyl donor. Results: Gene expression of the Igf2, H19, Igf1, Igf2r and Plagl1 genes in the liver of male offspring at birth and weaning was strongly influenced by maternal diet. Whereas the methylation profiles of the Igf2, H19 and Igf2r genes were remarkably stable, DNA methylation of Plagl1 promoter was slightly modified. Conclusion: DNA methylation of most, but not all, imprinted gene regulatory regions was resistant to methyl group nutritional supply. Fetal environment influences fetal growth and may confer a risk to develop metabolic diseases, possibly through alterations in the epigenetic state of the genome. Imprinted genes constitute a special class of genes that are crucial for the control of fetal and postnatal growth and are closely associated with energy metabolism. In addition, these genes are finely regulated by epigenetic mechanisms that are themselves influenced by environmental factors. This study showed that methyl donor nutrients in maternal diet strongly influenced the expression level of imprinted genes in the liver of rat offspring, despite a mild effect on epigenetic regulation.
Collapse
|
34
|
Wit JM, Oostdijk W, Losekoot M, van Duyvenvoorde HA, Ruivenkamp CAL, Kant SG. MECHANISMS IN ENDOCRINOLOGY: Novel genetic causes of short stature. Eur J Endocrinol 2016; 174:R145-73. [PMID: 26578640 DOI: 10.1530/eje-15-0937] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022]
Abstract
The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFκB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. Heterozygous NPR2 or SHOX defects may be found in ∼3% of short children, and also rasopathies (e.g., Noonan syndrome) can be found in children without clear syndromic appearance. Numerous other syndromes associated with short stature are caused by genetic defects in fundamental cellular processes, chromosomal abnormalities, CNVs, and imprinting disorders.
Collapse
Affiliation(s)
- Jan M Wit
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilma Oostdijk
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Monique Losekoot
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Hermine A van Duyvenvoorde
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Claudia A L Ruivenkamp
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sarina G Kant
- Departments of PaediatricsClinical GeneticsLeiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
35
|
Ouni M, Castell AL, Rothenbuhler A, Linglart A, Bougnères P. Higher methylation of the IGF1 P2 promoter is associated with idiopathic short stature. Clin Endocrinol (Oxf) 2016. [PMID: 26218795 DOI: 10.1111/cen.12867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Idiopathic short stature (ISS) has a strong familial component, but genetics explains only part of it. Indeed, environmental factors act on human growth either directly or through epigenetic factors that remain to be determined. Given the importance of the GH/IGF1 axis for child growth, we suspected that such epigenetic factors could involve the CG methylation at the IGF1 gene P2 promoter, which was recently shown to be a transcriptional regulator for IGF1 gene and a major contributor to GH sensitivity. OBJECTIVE Explore whether the methylation of the two IGF1 low-CG-rich promoters (P1 and P2) is associated with ISS. SUBJECTS AND METHODS A total of 94 children with ISS were compared with 119 age-matched children of normal height for the methylation of CGs located within the IGF1 promoters measured with bisulphite PCR pyrosequencing. RESULTS The methylation of 5 CGs of the P2 promoter was higher in ISS children, notably CG-137 (49 ± 4% in ISS vs 46 ± 4 % in control children, P = 9 × 10-5 ). This was also true for CG-611 of the P1 promoter (93 ± 3% vs 91 ± 3% P = 10-4 ). The CG methylation of the IGF1 promoters thus takes place among the multifactorial factors that are associated with ISS.
Collapse
Affiliation(s)
- Meriem Ouni
- Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Anne-Laure Castell
- Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Anya Rothenbuhler
- Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Agnès Linglart
- Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- Institut National de la Santé et de la Recherche Médicale U986, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
- Department of Pediatric Endocrinology and Diabetes, I3E Pole, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| |
Collapse
|