1
|
Shou F, Li G, Morshedi M. Long Non-coding RNA ANRIL and Its Role in the Development of Age-Related Diseases. Mol Neurobiol 2024; 61:7919-7929. [PMID: 38443729 DOI: 10.1007/s12035-024-04074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
ANRIL is known as a lncRNA that has many linear and circular isoforms and its polymorphisms are observed to be associated with the pathogenesis of many diseases including age-related diseases. Age-related diseases including atherosclerosis, ischemic heart disease, and Alzheimer's and Parkinson's disease are the most common cause of mortality in both developed and undeveloped countries and that is why a better understanding of their pathogenesis and underlying mechanisms is necessary for controlling their healthcare burden.In this review, we aim to gather the data of researches which have investigated the role of ANRIL in aging and its related diseases. The conclusions of this paper might give a new insight for decreasing the mortality rate of these diseases.
Collapse
Affiliation(s)
- Feiyan Shou
- Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Gang Li
- Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Hari Gopal S, Alenghat T, Pammi M. Early life epigenetics and childhood outcomes: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03585-7. [PMID: 39289593 DOI: 10.1038/s41390-024-03585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics is the study of changes in gene expression, without a change in the DNA sequence that are potentially heritable. Epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNA (sncRNA) changes have been studied in various childhood disorders. Causal links to maternal health and toxin exposures can introduce epigenetic modifications to the fetal DNA, which can be detected in the cord blood. Cord blood epigenetic modifications provide evidence of in-utero stressors and immediate postnatal changes, which can impact both short and long-term outcomes in children. The mechanisms of these epigenetic changes can be leveraged for prevention, early detection, and intervention, and to discover novel therapeutic modalities in childhood diseases. We report a scoping review of early life epigenetics, the influence of maternal health, maternal toxin, and drug exposures on the fetus, and its impact on perinatal, neonatal, and childhood outcomes. IMPACT STATEMENT: Epigenetic changes such as DNA methylation, histone modification, and non-coding RNA have been implicated in the pathophysiology of various disease processes. The fundamental changes to an offspring's epigenome can begin in utero, impacting the immediate postnatal period, childhood, adolescence, and adulthood. This scoping review summarizes current literature on the impact of early life epigenetics, especially DNA methylation on childhood health outcomes.
Collapse
Affiliation(s)
- Srirupa Hari Gopal
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohan Pammi
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Wang R, Yuan Q, Wen Y, Zhang Y, Hu Y, Wang S, Yuan C. ANRIL: A Long Noncoding RNA in Age-related Diseases. Mini Rev Med Chem 2024; 24:1930-1939. [PMID: 38716553 DOI: 10.2174/0113895575295976240415045602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 10/16/2024]
Abstract
The intensification of the aging population is often accompanied by an increase in agerelated diseases, which impair the quality of life of the elderly. The characteristic feature of aging is progressive physiological decline, which is the largest cause of human pathology and death worldwide. However, natural aging interacts in exceptionally complex ways within and between organs, but its underlying mechanisms are still poorly understood. Long non-coding RNA (lncRNA) is a type of noncoding RNA that exceeds 200 nucleotides in length and does not possess protein-coding ability. It plays a crucial role in the occurrence and development of diseases. ANRIL, also known as CDKN2B-AS1, is an antisense ncRNA located at the INK4 site. It can play a crucial role in agerelated disease progression by regulating single nucleotide polymorphism, histone modifications, or post-transcriptional modifications (such as RNA stability and microRNA), such as cardiovascular disease, diabetes, tumor, arthritis, and osteoporosis. Therefore, a deeper understanding of the molecular mechanisms of lncRNA ANRIL in age-related diseases will help provide new diagnostic and therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yuan Wen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
4
|
Song B, Dang H, Dong R. Differential Expression of LOXL1-AS1 in Coronary Heart Disease and its Regulatory Mechanism in ox-LDL-Induced Human Coronary Artery Endothelial Cell Pyroptosis. Cardiovasc Drugs Ther 2023; 37:75-87. [PMID: 34633594 DOI: 10.1007/s10557-021-07274-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Coronary heart disease (CHD) is a notable contributor to the burden of human health. Dysregulated long non-coding RNAs (lncRNAs) are implicated in the pathogenesis of CHD. This study investigated the expression pattern of lncRNA LOXL1-AS1 in CHD and its regulatory mechanism in oxidized low-density lipoprotein (ox-LDL)-induced human coronary artery endothelial cell (HCAEC) pyroptosis. METHODS Serum was collected from 62 CHD patients and 62 healthy volunteers for the detection of LOXL1-AS1 expression. The value of LOXL1-AS1 in CHD diagnosis and major cardiovascular adverse event (MACE) prediction was analyzed using the ROC curve. LOXL1-AS1, miR-16-5p, and SNX16 expressions in ox-LDL-treated HCAECs were determined using RT-qPCR. NLPR3, cleaved-caspase-1, and GSDMD-N protein levels were measured using Western blot. IL-1β and IL-18 concentrations were measured using ELISA. The binding relationships between LOXL1-AS1 and miR-16-5p and miR-16-5p and SNX16 were verified. Functional rescue experiment was performed to verify the role of miR-16-5p in HCAEC pyroptosis. RESULTS LOXL1-AS1 was highly expressed in CHD patients. LOXL1-AS1 had diagnostic value for CHD and predictive value for MACE occurrence. ox-LDL-treated HCAECs showed reduced viability, increased IL-1β and IL-18 concentrations, and elevated NLPR3, cleaved-caspase-1, and GSDMD-N levels. LOXL1-AS1 silencing promoted cell viability and reduced pyroptosis. LOXL1-AS1 bound to miR-16-5p and miR-16-5p targeted SNX16. Inhibition of miR-16-5p reversed the inhibitory effect of LOXL1-AS1 silencing on HCAEC pyroptosis. CONCLUSION LOXL1-AS1 was elevated in CHD patients with a good diagnostic value for CHD and predictive value for MACE. LOXL1-AS1 downregulated miR-16-5p expression by binding to miR-16-5p to enhance ox-LDL-induced HCAEC pyroptosis, which may be associated with upregulation of SNX16 transcription.
Collapse
Affiliation(s)
- Bangrong Song
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road, Chaoyang, Beijing, 100029, People's Republic of China
| | - Haiming Dang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road, Chaoyang, Beijing, 100029, People's Republic of China
| | - Ran Dong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road, Chaoyang, Beijing, 100029, People's Republic of China.
| |
Collapse
|
5
|
Svoboda LK, Wang K, Goodrich JM, Jones TR, Colacino JA, Peterson KE, Tellez-Rojo MM, Sartor MA, Dolinoy DC. Perinatal Lead Exposure Promotes Sex-Specific Epigenetic Programming of Disease-Relevant Pathways in Mouse Heart. TOXICS 2023; 11:85. [PMID: 36668811 PMCID: PMC9860846 DOI: 10.3390/toxics11010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Environmental contaminants such as the metal lead (Pb) are associated with cardiovascular disease, but the underlying molecular mechanisms are poorly understood. In particular, little is known about how exposure to Pb during early development impacts the cardiac epigenome at any point across the life course and potential differences between sexes. In a mouse model of human-relevant perinatal exposures, we utilized RNA-seq and Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) to investigate the effects of Pb exposure during gestation and lactation on gene expression and DNA methylation, respectively, in the hearts of male and female mice at weaning. For ERRBS, we identified differentially methylated CpGs (DMCs) or differentially methylated 1000 bp regions (DMRs) based on a minimum absolute change in methylation of 10% and an FDR < 0.05. For gene expression data, an FDR < 0.05 was considered significant. No individual genes met the FDR cutoff for gene expression; however, we found that Pb exposure leads to significant changes in the expression of gene pathways relevant to cardiovascular development and disease. We further found that Pb promotes sex-specific changes in DNA methylation at hundreds of gene loci (280 DMCs and 99 DMRs in males, 189 DMCs and 121 DMRs in females), and pathway analysis revealed that these CpGs and regions collectively function in embryonic development. In males, differential methylation also occurred at genes related to immune function and metabolism. We then investigated whether genes exhibiting differential methylation at weaning were also differentially methylated in hearts from a cohort of Pb-exposed mice at adulthood. We found that a single gene, Galnt2, showed differential methylation in both sexes and time points. In a human cohort investigating the influence of prenatal Pb exposure on the epigenome, we also observed an inverse association between first trimester Pb concentrations and adolescent blood leukocyte DNA methylation at a locus in GALNT2, suggesting that this gene may represent a biomarker of Pb exposure across species. Together, these data, across two time points in mice and in a human birth cohort study, collectively demonstrate that Pb exposure promotes sex-specific programming of the cardiac epigenome, and provide potential mechanistic insight into how Pb causes cardiovascular disease.
Collapse
Affiliation(s)
- Laurie K. Svoboda
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jaclyn M. Goodrich
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Tamara R. Jones
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Justin A. Colacino
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Karen E. Peterson
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Martha M. Tellez-Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Dana C. Dolinoy
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Dos Santos Oliveira NC, Serpeloni F, Gonçalves de Assis S. The interplay between DNA methylation and cardiac autonomic system functioning: a systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:54-70. [PMID: 34753378 DOI: 10.1080/09603123.2021.2000590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Epigenetic marks, particularly DNA methylation (DNAm), are emerging as an important biological marker of susceptibility to cardiac autonomic dysfunction. This review summarizes recent discoveries about the association between DNAm and cardiac autonomic activity. A systematic literature search was performed through the Embase, Web of Science, Cochrane Library, Pubmed, PsycINFO, and Pilots databases. Twenty-two studies met inclusion criteria, of which 18 were human studies including a total of 2,686 participants. DNAm differences in multiple genes, such as NR3C1, TLR2, GPR133, EPO, PHGDH, OXTR, and SLC7A11, linked environmental stressors to physiological responses. For instance, exposure to psychosocial stressors increased NR3C1 methylation, which was associated with both decreased blood pressure and increased parasympathetic activity. Additionally, GPR133 played a potential role in cardiac autonomic dysfunction in an occupational setting, affecting the heart rate's deceleration capacity in welders. This review's findings suggest that DNAm is involved in cardiac autonomic regulation under different stress-mediated responses.
Collapse
Affiliation(s)
- Nayara Cristina Dos Santos Oliveira
- National Institute of Woman, Child, and Adolescence Health Fernandes Figueira, PPGSCM/IFF/FIOCRUZ, Rio de Janeiro, Brazil
- Department of Violence and Health Studies Jorge Careli, National School of Public Health, Rio de Janeiro, Brazil
| | - Fernanda Serpeloni
- Department of Violence and Health Studies Jorge Careli, National School of Public Health, Rio de Janeiro, Brazil
| | - Simone Gonçalves de Assis
- National Institute of Woman, Child, and Adolescence Health Fernandes Figueira, PPGSCM/IFF/FIOCRUZ, Rio de Janeiro, Brazil
- Department of Violence and Health Studies Jorge Careli, National School of Public Health, Rio de Janeiro, Brazil
- Neurology Post-Gradate Program, Federal University of State of Rio de Janeiro, Unirio, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Titcombe P, Murray R, Hewitt M, Antoun E, Cooper C, Inskip HM, Holbrook JD, Godfrey KM, Lillycrop K, Hanson M, Barton SJ. Human non-CpG methylation patterns display both tissue-specific and inter-individual differences suggestive of underlying function. Epigenetics 2022; 17:653-664. [PMID: 34461806 PMCID: PMC9235887 DOI: 10.1080/15592294.2021.1950990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022] Open
Abstract
DNA methylation (DNAm) in mammals is mostly examined within the context of CpG dinucleotides. Non-CpG DNAm is also widespread across the human genome, but the functional relevance, tissue-specific disposition, and inter-individual variability has not been widely studied. Our aim was to examine non-CpG DNAm in the wider methylome across multiple tissues from the same individuals to better understand non-CpG DNAm distribution within different tissues and individuals and in relation to known genomic regulatory features.DNA methylation in umbilical cord and cord blood at birth, and peripheral venous blood at age 12-13 y from 20 individuals from the Southampton Women's Survey cohort was assessed by Agilent SureSelect methyl-seq. Hierarchical cluster analysis (HCA) was performed on CpG and non-CpG sites and stratified by specific cytosine environment. Analysis of tissue and inter-individual variation was then conducted in a second dataset of 12 samples: eight muscle tissues, and four aliquots of cord blood pooled from two individuals.HCA using methylated non-CpG sites showed different clustering patterns specific to the three base-pair triplicate (CNN) sequence. Analysis of CAC sites with non-zero methylation showed that samples clustered first by tissue type, then by individual (as observed for CpG methylation), while analysis using non-zero methylation at CAT sites showed samples grouped predominantly by individual. These clustering patterns were validated in an independent dataset using cord blood and muscle tissue.This research suggests that CAC methylation can have tissue-specific patterns, and that individual effects, either genetic or unmeasured environmental factors, can influence CAT methylation.
Collapse
Affiliation(s)
- Philip Titcombe
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Robert Murray
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Matthew Hewitt
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Elie Antoun
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Joanna D Holbrook
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Karen Lillycrop
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Mark Hanson
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sheila J Barton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| |
Collapse
|
8
|
Abstract
Osteoporosis, characterised by low bone mass, poor bone structure, and an increased risk of fracture, is a major public health problem. There is increasing evidence that the influence of the environment on gene expression, through epigenetic processes, contributes to variation in BMD and fracture risk across the lifecourse. Such epigenetic processes include DNA methylation, histone and chromatin modifications and non-coding RNAs. Examples of associations with phenotype include DNA methylation in utero linked to maternal vitamin D status, and to methylation of target genes such as OPG and RANKL being associated with osteoporosis in later life. Epigenome-wide association studies and multi-omics technologies have further revealed susceptibility loci, and histone acetyltransferases, deacetylases and methylases are being considered as therapeutic targets. This review encompasses recent advances in our understanding of epigenetic mechanisms in the regulation of bone mass and osteoporosis development, and outlines possible diagnostic and prognostic biomarker applications.
Collapse
Affiliation(s)
| | | | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
9
|
The Role of ANRIL in Atherosclerosis. DISEASE MARKERS 2022; 2022:8859677. [PMID: 35186169 PMCID: PMC8849964 DOI: 10.1155/2022/8859677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/10/2021] [Accepted: 01/19/2022] [Indexed: 12/25/2022]
Abstract
There is a huge number of noncoding RNA (ncRNA) transcripts in the cell with important roles in modulation of different mechanisms. ANRIL is a long ncRNA with 3.8 kb length that is transcribed in the opposite direction of the INK4/ARF locus in chromosome 9p21. It was shown that polymorphisms within this locus are associated with vascular disorders, notably coronary artery disease (CAD), which is considered as a risk factor for life-threatening events like myocardial infarction and stroke. ANRIL is subjected to a variety of splicing patterns producing multiple isoforms. Linear isoforms could be further transformed into circular ones by back-splicing. ANRIL regulates genes in atherogenic network in a positive or negative manner. This regulation is implemented both locally and remotely. While CAD is known as a proliferative disorder and cell proliferation plays a crucial role in the progression of atherosclerosis, the functions of ANRIL and CAD development are intertwined remarkably. This makes ANRIL a suitable target for diagnostic, prognostic, and even therapeutic aims. In this review, we tried to present a comprehensive appraisal on different aspects of ANRIL including its location, structure, isoforms, expression, and functions. In each step, the contribution of ANRIL to atherosclerosis is discussed.
Collapse
|
10
|
Serum Levels of lncRNA CCHE1 and TCF21 in Patients with Coronary Artery Disease and Their Clinical Significances. DISEASE MARKERS 2022; 2021:8526144. [PMID: 34970358 PMCID: PMC8714324 DOI: 10.1155/2021/8526144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Objective To detect serum level changes of CCHE1 and TCF21 in coronary artery disease (CAD) patients and to explore their clinical significances. Patients and Methods. A total of 150 CAD patients were divided into the mild lesion group (n = 52), moderate lesion group (n = 48), and severe lesion group (n = 50), respectively, according to the Gensini score. In addition, they were divided into single vessel lesion (n = 42), two vessel lesions (n = 49), and three vessel lesions group (n = 59), respectively. Serum levels of CCHE1 and TCF21 in CAD patients were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Spearman's rank correlation was conducted to assess the relationship between levels of CCHE1 and TCF21 and severity and numbers of vessel lesions in CAD. Pearson's correlation test was used for analyzing the correlation between CCHE1 and TCF21 levels. A multivariable logistic regression test was performed to evaluate the influences of CCHE1 and TCF21 levels on CAD severity and the occurrence of cardiovascular events within 3 years of follow-up. Results Significant differences in incidences of diabetes and hypertension were identified in CAD patients divided according to CAD severity. In addition, significant differences in incidences of drinking, diabetes, and hypertension were identified in CAD patients divided according to numbers of vessel lesions. The serum level of CCHE1 was positively related to CAD severity and numbers of vessel lesions, while TCF21 displayed a negative relationship. During the 3-year follow-up, the incidence of cardiovascular events was 39.3% (59/150). CAD severity, numbers of vessel lesions, and serum levels of CCHE1 and TCF21 were independent factors influencing the occurrence of cardiovascular events in CAD patients. Conclusions The increased serum level of CCHE1 and decreased TCF21 level are closely related to CAD severity, which are able to influence the prognosis in CAD patients.
Collapse
|
11
|
Inzulza-Tapia A, Alarcón M. Role of Non-Coding RNA of Human Platelet in Cardiovascular Disease. Curr Med Chem 2021; 29:3420-3444. [PMID: 34967288 DOI: 10.2174/0929867329666211230104955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/12/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVD) are the major cause of death in the world. Numerous genetic studies involving transcriptomic approaches aimed at the detailed understanding of the disease and the development of new therapeutic strategies have been conducted over recent years. There has been an increase in research on platelets, which are implicated in CVD due to their capacity to release regulatory molecules that affect various pathways. Platelets secrete over 500 various kinds of molecules to plasma including large amounts of non-coding (nc) RNA (miRNA, lncRNA or circRNA). These ncRNA correspond to 98% of transcripts that are not translated into proteins as they are important regulators in physiology and disease. Thus, miRNAs can direct protein complexes to mRNAs through base-pairing interactions, thus causing translation blockage or/and transcript degradation. The lncRNAs act via different mechanisms by binding to transcription factors. Finally, circRNAs act as regulators of miRNAs, interfering with their action. Alteration in the repertoire and/or the amount of the platelet-secreted ncRNA can trigger CVD as well as other diseases. NcRNAs can serve as effective biomarkers for the disease or as therapeutic targets due to their disease involvement. In this review, we will focus on the most important ncRNAs that are secreted by platelets (9 miRNA, 9 lncRNA and 5 circRNA), their association with CVD, and the contribution of these ncRNA to CVD risk to better understand the relation between ncRNA of human platelet and CVD.
Collapse
Affiliation(s)
- Inzulza-Tapia A
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| | - Alarcón M
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| |
Collapse
|
12
|
Epigenetics and DOHaD: how translation to predictive testing will require a better public understanding. J Dev Orig Health Dis 2021; 13:424-430. [PMID: 34658324 DOI: 10.1017/s2040174421000568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epigenetics is likely to play a role in the mediation of the effects of genes and environment in risk for many non-communicable diseases (NCDs). The Developmental Origins of Health and Disease (DOHaD) theory presents unique opportunities regarding the possibility of early life interventions to alter the epigenetic makeup of an individual, thereby modifying their risk for a variety of NCDs. While it is important to determine how we can lower the risk of these NCDs, it is equally important to understand how the public's knowledge and opinion of DOHaD and epigenetic concepts may influence their willingness to undertake such interventions for themselves and their children. In this review, we provide an overview of epigenetics, DOHaD, NCDs, and the links between them. We explore the issues surrounding using epigenetics to identify those at increased risk of NCDs, including the concept of predictive testing of children. We also outline what is currently understood about the public's understanding and opinion of epigenetics, DOHaD, and their relation to NCDs. In doing so, we demonstrate that it is essential that future research explores the public's awareness and understanding of epigenetics and epigenetic concepts. This will provide much-needed information which will prepare health professionals for the introduction of epigenetic testing into future healthcare.
Collapse
|
13
|
Xu B, Xu Z, Chen Y, Lu N, Shu Z, Tan X. Genetic and epigenetic associations of ANRIL with coronary artery disease and risk factors. BMC Med Genomics 2021; 14:240. [PMID: 34615528 PMCID: PMC8496081 DOI: 10.1186/s12920-021-01094-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Both DNA genotype and methylation of antisense non-coding RNA in the INK4 locus (ANRIL) have been robustly associated with coronary artery disease (CAD), but the interdependent mechanisms of genotype and methylation remain unclear. METHODS Eighteen tag single nucleotide polymorphisms (SNPs) of ANRIL were genotyped in a matched case-control study (cases 503 and controls 503). DNA methylation of ANRIL and the INK4/ARF locus (p14ARF, p15INK4b and p16INK4a) was measured using pyrosequencing in the same set of samples (cases 100 and controls 100). RESULTS Polymorphisms of ANRIL (rs1004638, rs1333048 and rs1333050) were significantly associated with CAD (p < 0.05). The incidence of CAD, multi-vessel disease, and modified Gensini scores demonstrated a strong, direct association with ANRIL gene dosage (p < 0.05). There was no significant association between ANRIL polymorphisms and myocardial infarction/acute coronary syndrome (MI/ACS) (p > 0.05). Methylation levels of ANRIL were similar between the two studied groups (p > 0.05), but were different in the rs1004638 genotype, with AA and AT genotype having a higher level of ANRIL methylation (pos4, p = 0.006; pos8, p = 0.019). Further Spearman analyses indicated that methylation levels of ANRIL were positively associated with systolic blood pressure (pos6, r = 0.248, p = 0.013), diastolic blood pressure (pos3, r = 0.213, p = 0.034; pos6, r = 0.220, p = 0.028), and triglyceride (pos4, r = 0.253, p = 0.013), and negatively associated with high-density lipoprotein cholesterol (pos2, r = - 0.243, p = 0.017). Additionally, we identified 12 transcription factor binding sites (TFBS) within the methylated ANRIL region, and functional annotation indicated these TFBS were associated with basal transcription. Methylation at the INK4/ARF locus was not associated with ANRIL genotype. CONCLUSIONS These results indicate that ANRIL genotype (tag SNPs rs1004638, rs1333048 and rs1333050) mainly affects coronary atherosclerosis, but not MI/ACS. There may be allele-related DNA methylation and allele-related binding of transcription factors within the ANRIL promoter.
Collapse
Affiliation(s)
- Bayi Xu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhixia Xu
- Department of Medical Service, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yequn Chen
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Nan Lu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhouwu Shu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xuerui Tan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
14
|
Childhood vascular phenotypes have differing associations with prenatal and postnatal growth. J Hypertens 2021; 39:1884-1892. [PMID: 33853103 PMCID: PMC8373454 DOI: 10.1097/hjh.0000000000002870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE In children aged 8--9 years, we examined the associations of linear and abdominal circumference growth during critical stages of prenatal and postnatal development with six vascular measurements commonly used as early markers of atherosclerosis and later cardiovascular disease (CVD) risk. METHODS In 724 children from the UK Southampton Women's Survey mother--offspring cohort, offspring length/height and abdominal circumference measurements were collected at 10 ages between 11 weeks' gestation and age 8--9 years. Using residual growth modelling and linear regression, we examined the independent associations between growth and detailed vascular measures made at 8--9 years. RESULTS Postnatal linear and abdominal circumference growth were associated with higher childhood SBP and carotid--femoral pulse wave velocity, whereas prenatal growth was not. For example, 1SD faster abdominal circumference gain between ages 3 and 6 years was associated with 2.27 [95% confidence interval (CI): 1.56--2.98] mmHg higher SBP. In contrast, faster abdominal circumference gain before 19 weeks' gestation was associated with greater carotid intima--media thickness [0.009 mm (0.004--0.015) per 1SD larger 19-week abdominal circumference), whereas later growth was not. We found no strong associations between prenatal or postnatal growth and DBP or measures of endothelial function. CONCLUSION Higher postnatal linear growth and adiposity gain are related to higher SBP and carotid--femoral pulse wave velocity in childhood. In contrast, faster growth in early gestation is associated with greater childhood carotid intima--media thickness, perhaps resulting from subtle changes in vascular structure that reflect physiological adaptations rather than subclinical atherosclerosis.
Collapse
|
15
|
Murray R, Kitaba N, Antoun E, Titcombe P, Barton S, Cooper C, Inskip HM, Burdge GC, Mahon PA, Deanfield J, Halcox JP, Ellins EA, Bryant J, Peebles C, Lillycrop K, Godfrey KM, Hanson MA. Influence of Maternal Lifestyle and Diet on Perinatal DNA Methylation Signatures Associated With Childhood Arterial Stiffness at 8 to 9 Years. Hypertension 2021; 78:787-800. [PMID: 34275334 PMCID: PMC8357051 DOI: 10.1161/hypertensionaha.121.17396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Increases in aortic pulse wave velocity, a measure of arterial stiffness, can lead to elevated systolic blood pressure and increased cardiac afterload in adulthood. These changes are detectable in childhood and potentially originate in utero, where an adverse early life environment can alter DNA methylation patterns detectable at birth. Here, analysis of epigenome-wide methylation patterns using umbilical cord blood DNA from 470 participants in the Southampton’s Women’s Survey identified differential methylation patterns associated with systolic blood pressure, pulse pressure, arterial distensibility, and descending aorta pulse wave velocity measured by magnetic resonance imaging at 8 to 9 years. Perinatal methylation levels at 16 CpG loci were associated with descending aorta pulse wave velocity, with identified CpG sites enriched in pathways involved in DNA repair (P=9.03×10−11). The most significant association was with cg20793626 methylation (within protein phosphatase, Mg2+/Mn2+ dependent 1D; β=−0.05 m/s/1% methylation change, [95% CI, −0.09 to −0.02]). Genetic variation was also examined but had a minor influence on these observations. Eight pulse wave velocity-linked dmCpGs were associated with prenatal modifiable risk factors, with cg08509237 methylation (within palmitoyl-protein thioesterase-2) associated with maternal oily fish consumption in early and late pregnancy. Lower oily fish consumption in early pregnancy modified the relationship between methylation and pulse wave velocity, with lower consumption strengthening the association between cg08509237 methylation and increased pulse wave velocity. In conclusion, measurement of perinatal DNA methylation signatures has utility in identifying infants who might benefit from preventive interventions to reduce risk of later cardiovascular disease, and modifiable maternal factors can reduce this risk in the child.
Collapse
Affiliation(s)
- Robert Murray
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom
| | - Negusse Kitaba
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom
| | - Elie Antoun
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom.,Centre for Biological Sciences, Faculty of Natural and Environmental Sciences (E.A., K.L.), University of Southampton, United Kingdom
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom
| | - Sheila Barton
- MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (H.M.I., K.L., K.M.G., M.A.H.)
| | - Graham C Burdge
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom
| | - Pamela A Mahon
- MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom
| | - John Deanfield
- Institute of Cardiovascular Sciences, University College London, United Kingdom (J.D.)
| | - Julian P Halcox
- Swansea University Medical School, Swansea University, United Kingdom (J.P.H., E.A.E.)
| | - Elizabeth A Ellins
- Swansea University Medical School, Swansea University, United Kingdom (J.P.H., E.A.E.)
| | - Jennifer Bryant
- Department of Cardiac Magnetic Resonance Imaging, National Heart Centre Singapore (J.B.)
| | - Charles Peebles
- Wessex Cardiothoracic Centre, Southampton University Hospitals NHS Trust, United Kingdom (C.P.)
| | - Karen Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences (E.A., K.L.), University of Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (H.M.I., K.L., K.M.G., M.A.H.)
| | - Keith M Godfrey
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom.,MRC Lifecourse Epidemiology Unit (P.T., S.B., C.C., H.M.I., P.A.M., K.M.G.), University of Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (H.M.I., K.L., K.M.G., M.A.H.)
| | - Mark A Hanson
- From the School of Human Development and Health, Institute of Developmental Sciences Building, Faculty of Medicine (R.M., N.K., E.A., G.C.B., K.M.G., M.A.H.), University of Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (H.M.I., K.L., K.M.G., M.A.H.)
| | | |
Collapse
|
16
|
Pérez-Mojica JE, Lillycrop KA, Cooper C, Calder PC, Burdge GC. Docosahexaenoic acid and oleic acid induce altered DNA methylation of individual CpG loci in Jurkat T cells. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102128. [PMID: 32464433 DOI: 10.1016/j.plefa.2020.102128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) and oleic acid (18:1n-9) can alter the DNA methylation of individual CpG loci in vivo and in vitro, although the targeting mechanism is unknown. We tested the hypothesis that the targeting of altered methylation is associated with putative transcription factor response elements (pTREs) proximal to modified loci. Jurkat cells were treated with 22:6n-3 or 18:1n-9 (both 15 μM) for eight days and DNA methylation measured using the MethylationEPIC 850K array. 1596 CpG loci were altered significantly (508 hypermethylated) by 22:6n-3 and 563 CpG loci (294 hypermethylated) by 18:1n-9. 78 loci were modified by both fatty acids. Induced differential methylation was not modified by the PPARα antagonist GW6471. DNA sequences proximal to differentially methylated CpG loci were enriched in zinc-finger pTREs. These findings suggest that zinc-finger-containing transcription factors may be involved in targeting altered DNA methylation modifying processes induced by fatty acids to individual CpG loci.
Collapse
Affiliation(s)
- J Eduardo Pérez-Mojica
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Karen A Lillycrop
- Centre for Biological Science, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
17
|
Zaiou M. The Emerging Role and Promise of Circular RNAs in Obesity and Related Metabolic Disorders. Cells 2020; 9:E1473. [PMID: 32560220 PMCID: PMC7349386 DOI: 10.3390/cells9061473] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are genome transcripts that are produced from back-splicing of specific regions of pre-mRNA. These single-stranded RNA molecules are widely expressed across diverse phyla and many of them are stable and evolutionary conserved between species. Growing evidence suggests that many circRNAs function as master regulators of gene expression by influencing both transcription and translation processes. Mechanistically, circRNAs are predicted to act as endogenous microRNA (miRNA) sponges, interact with functional RNA-binding proteins (RBPs), and associate with elements of the transcriptional machinery in the nucleus. Evidence is mounting that dysregulation of circRNAs is closely related to the occurrence of a range of diseases including cancer and metabolic diseases. Indeed, there are several reports implicating circRNAs in cardiovascular diseases (CVD), diabetes, hypertension, and atherosclerosis. However, there is very little research addressing the potential role of these RNA transcripts in the occurrence and development of obesity. Emerging data from in vitro and in vivo studies suggest that circRNAs are novel players in adipogenesis, white adipose browning, obesity, obesity-induced inflammation, and insulin resistance. This study explores the current state of knowledge on circRNAs regulating molecular processes associated with adipogenesis and obesity, highlights some of the challenges encountered while studying circRNAs and suggests some perspectives for future research directions in this exciting field of study.
Collapse
Affiliation(s)
- Mohamed Zaiou
- School of Pharmacy, The University of Lorraine, 7 Avenue de la Foret de Haye, CEDEX BP 90170, F-54500 Vandoeuvre-les-Nancy, France; ; Tel.: +3303-7277-90-15; Fax: +3303-8368-23-01
- Institut Jean Lamour, UMR 7198, CNRS, The University of Lorraine, 2 allée André Guinier, BP 50840, 54011 Nancy, France
| |
Collapse
|
18
|
Mechanisms linking exposure to preeclampsia in utero and the risk for cardiovascular disease. J Dev Orig Health Dis 2020; 11:235-242. [PMID: 32070456 DOI: 10.1017/s2040174420000094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preeclampsia (PE) is now recognised as a cardiovascular risk factor for women. Emerging evidence suggests that children exposed to PE in utero may also be at increased risk of cardiovascular disease (CVD) in later life. Individuals exposed to PE in utero have higher systolic and diastolic blood pressure and higher body mass index (BMI) compared to those not exposed to PE in utero. The aim of this review is to discuss the potential mechanisms driving the relationship between PE and offspring CVD. Exposure to an adverse intrauterine environment as a consequence of the pathophysiological changes that occur during a pregnancy complicated by PE is proposed as one mechanism that programs the fetus for future CVD risk. Consistent with this hypothesis, animal models of PE where progeny have been studied demonstrate causality for programming of offspring cardiovascular health by the preeclamptic environment. Shared alleles between mother and offspring, and shared lifestyle factors between mother and offspring provide alternate pathways explaining associations between PE and offspring CVD risk. In addition, adverse lifestyle habits can also act as second hits for those programmed for increased CVD risk. PE and CVD are both multifactorial diseases and, hence, identifying the relative contribution of PE to offspring risk for CVD is a very complex task. However, considering the emerging strong association between PE and CVD, those exposed to PE in utero may benefit from targeted primary CVD preventive strategies.
Collapse
|
19
|
Epigenetic Signaling and RNA Regulation in Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21020509. [PMID: 31941147 PMCID: PMC7014325 DOI: 10.3390/ijms21020509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
RNA epigenetics is perhaps the most recent field of interest for translational epigeneticists. RNA modifications create such an extensive network of epigenetically driven combinations whose role in physiology and pathophysiology is still far from being elucidated. Not surprisingly, some of the players determining changes in RNA structure are in common with those involved in DNA and chromatin structure regulation, while other molecules seem very specific to RNA. It is envisaged, then, that new small molecules, acting selectively on RNA epigenetic changes, will be reported soon, opening new therapeutic interventions based on the correction of the RNA epigenetic landscape. In this review, we shall summarize some aspects of RNA epigenetics limited to those in which the potential clinical translatability to cardiovascular disease is emerging.
Collapse
|
20
|
Zhao CH, Cao HT, Zhang J, Jia QW, An FH, Chen ZH, Li LH, Wang LS, Ma WZ, Yang ZJ, Jia EZ. DNA methylation of antisense noncoding RNA in the INK locus (ANRIL) is associated with coronary artery disease in a Chinese population. Sci Rep 2019; 9:15340. [PMID: 31653960 PMCID: PMC6814794 DOI: 10.1038/s41598-019-51921-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
To explore the association between methylation of antisense non-coding RNA in the INK4 locus (ANRIL) and coronary artery disease (CAD) development. Methylation levels of ANRIL in 100 subjects with CAD and 100 controls were quantitatively analyzed using Sequenom MassARRAY. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to identify novel pathways. Our analyses indicated that 7 to 8 CpG sites within the 2nd CpG island located upstream of ANRIL, also known as cyclin-dependent kinase inhibitor 2B - antisense 1 (CDKN2B-AS1), are hyper-methylated in CAD subjects compared to controls (p = 0.034). The 40th CpG site within the 2nd CpG island located upstream of CDKN2B-AS1 was methylated to a lesser extent in CAD subjects compared to controls (p = 0.045). Both Pearson and Spearman analyses indicated that methylation levels were significantly associated with total cholesterol (r = 0.204, p = 0.004), fasting high-density lipoprotein cholesterol (r = 0.165, p = 0.020), and fasting low-density lipoprotein cholesterol (r = 0.265, p = 0.000). KEGG pathway analysis revealed a significant enrichment of genes associated with the tumor necrosis factor (TNF) signaling pathway. Among them, CCAAT/enhancer binding protein (C/EBPβ) was identified as a key transcription factor that promotes expression of CDKN2B-AS1 through promotor interaction. DNA methylation of the ANRIL promoter was significantly associated with CAD development in our study. Our analyses suggest that C/EBPβ is a key transcription factor that promotes CDKN2B-AS1 expression by directly interacting with the gene promotor mediated by TNF signaling.
Collapse
Affiliation(s)
- Chen-Hui Zhao
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Hai-Tao Cao
- Department of Cardiovascular Medicine, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Jing Zhang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Qiao-Wei Jia
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Feng-Hui An
- Department of Cardiovascular Medicine, the Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining, 835000, Xinjiang, China
| | - Zhao-Hong Chen
- Department of Cardiovascular Medicine, the Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining, 835000, Xinjiang, China
| | - Li-Hua Li
- Department of Cardiovascular Medicine, the Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining, 835000, Xinjiang, China
| | - Lian-Sheng Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wen-Zhu Ma
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhi-Jian Yang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - En-Zhi Jia
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
21
|
Hanson M. The inheritance of cardiovascular disease risk. Acta Paediatr 2019; 108:1747-1756. [PMID: 30964948 DOI: 10.1111/apa.14813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) is foremost among the non-communicable diseases (NCDs) which account for 71% of deaths globally each year. CVD is also prominent among the pre-existing conditions still accounting for nearly 25% of maternal deaths and is linked to gestational diabetes and pre-eclampsia. Markers of CVD risk have been reported even in young children, related to prenatal factors such as mother's diet or body composition. The underlying mechanisms include epigenetic changes which can alter the trajectory of risk across the life course. Preventive interventions need to commence before conception, to reduce transmission of CVD risk by promoting healthy behaviours in prospective parents, as well as in pregnancy, and postpartum through breastfeeding and healthy complementary feeding. Surprisingly, these opportunities are not emphasised in the 2018 United Nations Political Declaration on NCDs. NCDs such as CVD have communicable risk components transmitted across generations by socio-economic as well as biological factors, although the former can also become embodied in the offspring by epigenetic mechanisms. The inheritance of CVD risk, and social inequalities in such risk, thus raises wider questions about responsibility for the health of future generations at societal as well as individual levels.
Collapse
Affiliation(s)
- Mark Hanson
- Institute of Developmental Sciences University of Southampton Southampton UK
- NIHR Southampton Biomedical Research Centre University Hospital Southampton Southampton UK
| |
Collapse
|
22
|
Barton SJ, Melton PE, Titcombe P, Murray R, Rauschert S, Lillycrop KA, Huang RC, Holbrook JD, Godfrey KM. In Epigenomic Studies, Including Cell-Type Adjustments in Regression Models Can Introduce Multicollinearity, Resulting in Apparent Reversal of Direction of Association. Front Genet 2019; 10:816. [PMID: 31552104 PMCID: PMC6746958 DOI: 10.3389/fgene.2019.00816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Association studies of epigenome-wide DNA methylation and disease can inform biological mechanisms. DNA methylation is often measured in peripheral blood, with heterogeneous cell types with different methylation profiles. Influences such as adiposity-associated inflammation can change cell-type proportions, altering measured blood methylation levels. To determine whether associations between loci-specific methylation and outcomes result from cellular heterogeneity, many studies adjust for estimated blood cell proportions, but high correlations between methylation and cell-type proportions could violate the statistical assumption of no multicollinearity. We examined these assumptions in a population-based study. Methods: CDKN2A promoter CpG methylation was measured in peripheral blood from 812 adolescents aged 17 years (Western Australian Pregnancy Cohort Study). Loge adolescent BMI was used as the outcome in a regression analysis with DNA methylation as predictor, adjusting for age/sex. Further regression analyses additionally adjusted for estimated cell-type proportions using the reference-based Houseman method, and simulations modeled the effects of varying levels of correlation between cell proportions and methylation. Correlations between estimated cell proportions and CpG methylation from Illumina 450K were measured. Results: Lower DNA methylation was associated with higher BMI when cell-type adjustment was not included; for CpG4, β = -0.004 logeBMI/%methylation (95% CI -0.0065, -0.001; p = 0.003). The direction of association reversed when adjustment for six cell types was made; for CpG4, β = 0.004 logeBMI/%methylation (-0.0002, 0.0089; p = 0.06). Correlations between CpG methylation and cell-type proportions were high, and variance inflation factors (VIFs) were extremely high (25 to 113.7). Granulocyte count was correlated with BMI, and removing granulocytes from the regression model reduced all VIFs to <3.1, with persistence of a positive association between methylation and BMI [CpG4 β = 0.004 logeBMI/%methylation (-0.0002, 0.0088; p = 0.06)]. Simulations supported major effects of multicollinearity on regression results. Conclusions: Where cell types are highly correlated with other covariates in regression models, the statistical assumption of no multicollinearity may be violated. This can result in reversal of direction of association, particularly when examining associations with phenotypes related to inflammation, as CpG methylation may associate with changes in cell-type proportions. Removing predictors with high correlations from regression models may remove the multicollinearity. However, this might hinder biological interpretability.
Collapse
Affiliation(s)
- Sheila J Barton
- MRC Lifecourse Epidemiology Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Phillip E Melton
- Curtin/UWA Centre for Genetic Origins of Heath and Disease, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Robert Murray
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sebastian Rauschert
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Karen A Lillycrop
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Joanna D Holbrook
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
23
|
Shu L, Zhang W, Huang C, Huang G, Su G, Xu J. lncRNA ANRIL protects H9c2 cells against hypoxia-induced injury through targeting the miR-7-5p/SIRT1 axis. J Cell Physiol 2019; 235:1175-1183. [PMID: 31264206 DOI: 10.1002/jcp.29031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) occurred in the heart, which underwent long-term ischemia, and was mainly caused by hypoxia. Recently, studies have uncovered the participation of long noncoding RNAs (lncRNAs) in the pathogenesis of heart disease. Here, we planned to probe the role and molecular basis of ANRIL in hypoxia-induced H9c2 cell injury. METHODS Trypan blue exclusion assay and Transwell and flow cytometry assays were conducted to assess hypoxia-induced injury by determining the viability, migration, invasion, and apoptosis of H9c2 cells in different conditions, respectively. Gene expressions were evaluated by quantitative real-time polymerase chain reaction or western blot analysis as needed. RNA immunoprecipitation and luciferase reporter assays were applied to confirm the associations among genes. RESULTS ANRIL expression was dramatically enhanced in hypoxia-injured H9c2 cells, and silencing ANRIL aggravated hypoxia-induced H9c2 cell injury. ANRIL positively regulated sirtuin 1 (SIRT1) expression via competitively binding with miR-7-5p. Moreover, inhibition of miR-7-5p counteracted ANRIL depletion-exacerbated injury in hypoxic H9c2 cells, meanwhile, forced SIRT1 expression attenuated the injury-promoting effect of miR-7-5p upregulation on hypoxic H9c2 cells. CONCLUSION Our findings disclosed that ANRIL plays a protective part in hypoxia-induced H9c2 cell injury via modulating the miR-7-5p/SIRT1 axis, suggesting the great potential of ANRIL as a protective target for AMI.
Collapse
Affiliation(s)
- Liliang Shu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanzhe Zhang
- Department of Nephrology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gongcheng Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Su
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int J Mol Sci 2019; 20:ijms20112837. [PMID: 31212604 PMCID: PMC6600551 DOI: 10.3390/ijms20112837] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we comprehensively present the function of epigenetic regulations in normal placental development as well as in a prominent disease of placental origin, preeclampsia (PE). We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally histone post-translational modifications, in the processes leading to normal and abnormal placental function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its severity. The correlation between epigenetic marks and impacts on gene expression is systematically evaluated for the different epigenetic marks analyzed.
Collapse
Affiliation(s)
- Clara Apicella
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Camino S M Ruano
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Céline Méhats
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Francisco Miralles
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| |
Collapse
|
25
|
Qian X, Shi S, Zhang G. Long non-coding RNA antisense non-coding RNA in the INK4 locus expression correlates with increased disease risk, severity, and inflammation of allergic rhinitis. Medicine (Baltimore) 2019; 98:e15247. [PMID: 31096432 PMCID: PMC6531218 DOI: 10.1097/md.0000000000015247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The aim of the current study was to investigate the expression of long non-coding RNA (lncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) in allergic rhinitis (AR) patients, and to further explore the association of lncRNA ANRIL expression with AR risk, severity, and inflammation.In this case-control study, 96 AR patients and 96 non-atopic obstructive snoring patients who underwent adenoid surgery were consecutively recruited. Disease severity of AR patients was assessed via individual nasal symptom score (INSS) and total nasal symptom score (TNSS). Nasal mucosa samples were collected from AR patients and controls, then lncRNA ANRIL and inflammatory cytokine levels were assessed via quantitative polymerase chain reaction.LncRNA ANRIL expression was increased in AR patients (3.605 [1.763-4.981]) compared with controls (1.183 [0.438-2.985]), and it well distinguished AR patients from controls with an area under curve of 0.746 (95% CI: 0.679-0.814). Correlation analyses revealed that lncRNA ANRIL expression was positively associated with itching score and congestion score, while it was not associated with nasal rhinorrhea score or sneezing score. Besides, lncRNA ANRIL was also positively correlated with TNSS, tumor necrosis factor α, interleukin (IL)-4, IL-6, IL-13, and IL-17, while negatively associated with IL-10 and interferon-γ. And no association of lncRNA ANRIL expression with IL-1β, IL-5, or IL-8 expression was discovered.LncRNA ANRIL expression correlates with increased AR risk, severity, and inflammation, implying that lncRNA ANRIL might be involved in the pathogenesis of AR.
Collapse
|
26
|
Tan P, Guo YH, Zhan JK, Long LM, Xu ML, Ye L, Ma XY, Cui XJ, Wang HQ. LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1. Biochem Cell Biol 2019; 97:571-580. [PMID: 30789795 DOI: 10.1139/bcb-2018-0126] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cardiovascular disease is one of the major threats to human life and health, and vascular aging is an important cause of its occurrence. Antisense non-coding RNA in the INK4 locus (ANRIL) is a kind of long non-coding RNA (lncRNA) that plays important roles in cell senescence. However, the role and mechanism of ANRIL in senescence of vascular smooth muscle cells (VSMCs) are unclear. METHODS Cell viability and cell cycle were evaluated using an MTT assay and flow cytometry analysis, respectively. Senescence-associated (SA)-β-galactosidase (gal) staining was used to determine cell senescence. Dual luciferase reporter assays were conducted to confirm the binding of ANRIL and miR-181a, as well as miR-181a and Sirt1. The expression of ANRIL, miR-181a, and Sirt1 was determined using qRT-PCR and protein levels of SA-β-gal and p53-p21 pathway-related proteins were evaluated by Western blotting. RESULTS ANRIL and Sirt1 were down-regulated, whereas miR-181a was up-regulated in aging VSMCs. In young and aging VSMCs, over-expression of ANRIL could down-regulate miR-181a and up-regulate Sirt1. MTT and SA-β-gal staining assays showed that over-expression of ANRIL and inhibition of miR-181a promoted cell viability and inhibited VSMC senescence. The dual-luciferase reporter assay determined that miR-181a directly targets ANRIL and the 3'-UTR of Sirt1. Furthermore, over-expression of ANRIL inhibited cell cycle arrest and the p53-p21 pathway. CONCLUSION ANRIL promotes cell viability and inhibits senescence in VSMCs, possibly by regulating miR-181a/Sirt1, and alleviating cell cycle arrest by inhibiting the p53-p21 pathway. This study provides novel insights for the role of ANRIL in the development of cell senescence.
Collapse
Affiliation(s)
- Pan Tan
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Yong-Hong Guo
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Jun-Kun Zhan
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Li-Min Long
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Mei-Li Xu
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Ling Ye
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Xin-Yu Ma
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Xing-Jun Cui
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Hai-Qin Wang
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| |
Collapse
|
27
|
Barman P, Reddy D, Bhaumik SR. Mechanisms of Antisense Transcription Initiation with Implications in Gene Expression, Genomic Integrity and Disease Pathogenesis. Noncoding RNA 2019; 5:ncrna5010011. [PMID: 30669611 PMCID: PMC6468509 DOI: 10.3390/ncrna5010011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Non-coding antisense transcripts arise from the strand opposite the sense strand. Over 70% of the human genome generates non-coding antisense transcripts while less than 2% of the genome codes for proteins. Antisense transcripts and/or the act of antisense transcription regulate gene expression and genome integrity by interfering with sense transcription and modulating histone modifications or DNA methylation. Hence, they have significant pathological and physiological relevance. Indeed, antisense transcripts were found to be associated with various diseases including cancer, diabetes, cardiac and neurodegenerative disorders, and, thus, have promising potentials for prognostic and diagnostic markers and therapeutic development. However, it is not clearly understood how antisense transcription is initiated and epigenetically regulated. Such knowledge would provide new insights into the regulation of antisense transcription, and hence disease pathogenesis with therapeutic development. The recent studies on antisense transcription initiation and its epigenetic regulation, which are limited, are discussed here. Furthermore, we concisely describe how antisense transcription/transcripts regulate gene expression and genome integrity with implications in disease pathogenesis and therapeutic development.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | - Divya Reddy
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
28
|
Langmia IM, Kräker K, Weiss SE, Haase N, Schütte T, Herse F, Dechend R. Cardiovascular Programming During and After Diabetic Pregnancy: Role of Placental Dysfunction and IUGR. Front Endocrinol (Lausanne) 2019; 10:215. [PMID: 31024453 PMCID: PMC6466995 DOI: 10.3389/fendo.2019.00215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a condition whereby a fetus is unable to achieve its genetically determined potential size. IUGR is a global health challenge due to high mortality and morbidity amongst affected neonates. It is a multifactorial condition caused by maternal, fetal, placental, and genetic confounders. Babies born of diabetic pregnancies are usually large for gestational age but under certain conditions whereby prolonged uncontrolled hyperglycemia leads to placental dysfunction, the outcome of the pregnancy is an intrauterine growth restricted fetus with clinical features of malnutrition. Placental dysfunction leads to undernutrition and hypoxia, which triggers gene modification in the developing fetus due to fetal adaptation to adverse utero environmental conditions. Thus, in utero gene modification results in future cardiovascular programming in postnatal and adult life. Ongoing research aims to broaden our understanding of the molecular mechanisms and pathological pathways involved in fetal programming due to IUGR. There is a need for the development of effective preventive and therapeutic strategies for the management of growth-restricted infants. Information on the mechanisms involved with in utero epigenetic modification leading to development of cardiovascular disease in adult life will increase our understanding and allow the identification of susceptible individuals as well as the design of targeted prevention strategies. This article aims to systematically review the latest molecular mechanisms involved in the pathogenesis of IUGR in cardiovascular programming. Animal models of IUGR that used nutrient restriction and hypoxia to mimic the clinical conditions in humans of reduced flow of nutrients and oxygen to the fetus will be discussed in terms of cardiac remodeling and epigenetic programming of cardiovascular disease. Experimental evidence of long-term fetal programming due to IUGR will also be included.
Collapse
Affiliation(s)
- Immaculate M. Langmia
- Experimental and Clinical Research Center, A Joint Cooperation Between the Max-Delbrueck Center for Molecular Medicine and the Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Alexander von Humboldt Foundation, Bonn, Germany
| | - Kristin Kräker
- Experimental and Clinical Research Center, A Joint Cooperation Between the Max-Delbrueck Center for Molecular Medicine and the Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sara E. Weiss
- Experimental and Clinical Research Center, A Joint Cooperation Between the Max-Delbrueck Center for Molecular Medicine and the Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nadine Haase
- Experimental and Clinical Research Center, A Joint Cooperation Between the Max-Delbrueck Center for Molecular Medicine and the Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Till Schütte
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Center for Cardiovascular Research, Institute of Pharmacology, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Max-Delbrueck Center for Molecular Medicine and the Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, A Joint Cooperation Between the Max-Delbrueck Center for Molecular Medicine and the Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- HELIOS-Klinikum, Berlin, Germany
- *Correspondence: Ralf Dechend
| |
Collapse
|
29
|
Circular RNAs as Potential Biomarkers and Therapeutic Targets for Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:177-191. [PMID: 30919338 DOI: 10.1007/978-3-030-12668-1_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidemiological studies provide evidence of a continuous rise in metabolic diseases throughout industrialized countries. Metabolic diseases are commonly associated with different abnormalities that hold a key role in the emergence and progression of frequent disorders including diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD), obesity, metabolic syndrome and cardiovascular diseases. The burden of metabolic diseases is believed to arise through complex interaction between genetic and epigenetic factors, lifestyle changes and environmental exposure to triggering stimuli. The diagnosis and treatment of metabolic disorders continue to be an overwhelming challenge. Thus, the development of novel biomarkers may enhance the accuracy of the diagnosis at an early stage of the disease and allow effective intervention. Over the past decade, progress has been made in exploring the potential role of noncoding RNAs (ncRNAs) in the regulation of gene networks involved in metabolic diseases. A growing body of evidence now suggests that aberrant expression of circular RNAs (circRNAs) is relevant to the occurrence and development of metabolic diseases. Accordingly, circRNAs are proposed as predictive biomarkers and potential therapeutic targets for these diseases. As the field of circRNAs is rapidly evolving and knowledge is increasing, the present paper provides current understanding of the regulatory roles of these RNA species mainly in the pathogenesis of DM, NAFLD and obesity. Furthermore, some of the limitations to the promise of circRNAs and perspectives on their future research are discussed.
Collapse
|
30
|
Yang X, Feng L, Zhang Y, Shi Y, Liang S, Zhao T, Sun B, Duan J, Sun Z. Integrative analysis of methylome and transcriptome variation of identified cardiac disease-specific genes in human cardiomyocytes after PM 2.5 exposure. CHEMOSPHERE 2018; 212:915-926. [PMID: 30286548 DOI: 10.1016/j.chemosphere.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/29/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
PM2.5 exposure is strongly linked to cardiac disease. Subtle epigenetic or transcriptional alterations induced by PM2.5 might contribute to pathogenesis and disease susceptibility of cardiac disease. It is still a major challenge to identify biological targets in human genetics. Human cardiomyocytes AC16 was chosen as cell model. Epigenetic effect of PM2.5 in AC16 was analyzed using Illumina HumanMethylation 450 K BeadChip. Meanwhile the transcriptomic profiling was performed by Affymetrix® microarray. PM2.5 induced genome wide variation of DNA methylation pattern, including differentially methylated CpGs in promoter region. Then gene ontology analysis demonstrated differentially methylated genes were significantly clustered in pathways in regulation of apoptotic process, cell death and metabolic pathways, or associated with ion binding and shuttling. Correlation of the methylome and transcriptome revealed a clear bias toward transcriptional suppression by hypermethylation or activation by hypomethylation. Identified 386 genes which exhibited both differential methylation and expression were functionally associated with pathways including cardiovascular system development, regulation of blood vessel size, vasculature development, p53 pathway, AC-modulating/inhibiting GPCRs pathway and cellular response to metal ion/inorganic substance. Disease ontology demonstrated their prominent role in cardiac diseases and identified 14 cardiac-specific genes (ANK2, AQP1 et al.). PPI network analysis revealed 6 novel genes (POLR2I, LEP, BRIX1, ADCY6, INSL3, RARS). Those genes were then verified by qRT-PCR. Thus, in AC16, PM2.5 alters the methylome and transcriptome of genes might be relevant for PM2.5-/heart-associated diseases. Result gives additional insight in PM2.5 relative cardiac diseases/associated genes and the potential mechanisms that contribute to PM2.5 related cardiac disease.
Collapse
Affiliation(s)
- Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
31
|
McIntyre D, Desoye G, Dunne F, Simeoni U, Visser GHA, Kapur A, Hod M. FIGO analysis of research priorities in hyperglycemia in pregnancy. Diabetes Res Clin Pract 2018; 145:5-14. [PMID: 29596947 DOI: 10.1016/j.diabres.2018.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 01/21/2023]
Abstract
Hyperglycemia in pregnancy (HIP) is recognized as a major underlying cause of pregnancy complications and a contributing cause to health risks throughout the subsequent life of both mothers and babies, with amplification of the global epidemic of non-communicable diseases. Although some aspects of these associations are well described, detailed understanding of basic pathophysiologic mechanisms is lacking. Improved fundamental scientific knowledge must be developed to allow logical strategies for prevention and treatment. During pregnancy, much work is required to replace current empirical approaches to diagnosis and treatment of HIP with evidence based protocols, pragmatically adapted to differing health care and health economic contexts. Further, a life cycle approach to HIP, the risk of immediate pregnancy complications and later health risks to mother and baby must be developed and implemented across a wide range of health care environments. This document aims to outline key focus areas for further basic, epidemiologic, clinical and implementation research in this important area.
Collapse
Affiliation(s)
- David McIntyre
- Endocrinology and Obstetric Medicine, Mater Health Services, Head of UQ Mater Clinical Unit, University of Queensland, Whitty Building Level 1, Raymond Terrace, South Brisbane, Qld 4101, Australia. http://www.mater.org.au
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria.
| | - Fidelma Dunne
- Clinical Sciences Institute, National University of Ireland Galway, Consultant Endocrinologist, Galway University Hospitals, Galway, Ireland.
| | - Umberto Simeoni
- Division of Pediatrics & DOHaD Lab, Department Woman-Mother-Child, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | - Gerard H A Visser
- Department Obstetrics, University Medical Center, Utrecht, The Netherlands.
| | - Anil Kapur
- World Diabetes Foundation, Krogshøjvej 30A, 2880 Bagsværd, Denmark
| | - Moshe Hod
- Rabin Medical Center, Tel-Aviv University, European Association of Perinatal Medicine (EAPM), FIGO Hyperglycemia in Pregnancy (HIP) Working Group, FIGO Maternal and Offspring Health and NCD Prevention Committee, Israel
| |
Collapse
|
32
|
Yau MYC, Xu L, Huang CL, Wong CM. Long Non-Coding RNAs in Obesity-Induced Cancer. Noncoding RNA 2018; 4:E19. [PMID: 30154386 PMCID: PMC6162378 DOI: 10.3390/ncrna4030019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023] Open
Abstract
Many mechanisms of obesity-induced cancers have been proposed. However, it remains unclear whether or not long non-coding RNAs (lncRNAs) play any role in obesity-induced cancers. In this article, we briefly discuss the generally accepted hypotheses explaining the mechanisms of obesity-induced cancers, summarize the latest evidence for the expression of a number of well-known cancer-associated lncRNAs in obese subjects, and propose the potential contribution of lncRNAs to obesity-induced cancers. We hope this review can serve as an inspiration to scientists to further explore the regulatory roles of lncRNAs in the development of obesity-induced cancers. Those findings will be fundamental in the development of effective therapeutics or interventions to combat this life-threatening adverse effect of obesity.
Collapse
Affiliation(s)
- Mabel Yin-Chun Yau
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China.
| | - Lu Xu
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
33
|
Kong Y, Hsieh CH, Alonso LC. ANRIL: A lncRNA at the CDKN2A/B Locus With Roles in Cancer and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:405. [PMID: 30087655 PMCID: PMC6066557 DOI: 10.3389/fendo.2018.00405] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
The CDKN2A/B genomic locus is associated with risk of human cancers and metabolic disease. Although the locus contains several important protein-coding genes, studies suggest disease roles for a lesser-known antisense lncRNA encoded at this locus, called ANRIL. ANRIL is a complex gene containing at least 21 exons in simians, with many reported linear and circular isoforms. Like other genes, abundance of ANRIL is regulated by epigenetics, classic transcription regulation, splicing, and post-transcriptional influences such as RNA stability and microRNAs. Known molecular functions of ANRIL include in cis and in trans gene regulation through chromatin modification complexes, and influence over microRNA signaling networks. Polymorphisms at the ANRIL gene are linked to risk for many different cancers, as well as risk of atherosclerotic cardiovascular disease, bone mass, obesity and type 2 diabetes. A broad array of variable reported impacts of polymorphisms on ANRIL abundance, splicing and function suggests that ANRIL has cell-type and context-dependent regulation and actions. In cancer cells, ANRIL gain of function increases proliferation, metastasis, cell survival and epithelial-mesenchymal transformation, whereas ANRIL loss of function decreases tumor size and growth, invasion and metastasis, and increases apoptosis and senescence. In metabolic disease, polymorphisms at the ANRIL gene are linked to risk of type 2 diabetes, coronary artery disease, coronary artery calcium score, myocardial infarction, and stroke. Intriguingly, with the exception of one polymorphism in exon 2 of ANRIL, the single nucleotide polymorphisms (SNPs) associated with atherosclerosis and diabetes are non-overlapping. Evidence suggests that ANRIL gain of function increases atherosclerosis; in diabetes, a risk-SNP reduced the pancreatic beta cell proliferation index. Studies are limited by the uncertain relevance of rodent models to ANRIL studies, since most ANRIL exons do not exist in mouse. Diverse cell-type-dependent results suggest it is necessary to perform studies in the relevant primary human tissue for each disease. Much remains to be learned about the biology of ANRIL in human health and disease; this research area may lead to insight into disease mechanisms and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Laura C. Alonso
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
34
|
Altered DNA Methylation of Long Noncoding RNA uc.167 Inhibits Cell Differentiation in Heart Development. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4658024. [PMID: 30003100 PMCID: PMC5998154 DOI: 10.1155/2018/4658024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
In previous studies, we have demonstrated the function of uc.167 in the heart development. DNA methylation plays a crucial role in regulating the expression of developmental genes during embryonic development. In this study, the methylomic landscape was investigated in order to identify the DNA methylation alterations. Methylated DNA immunoprecipitation (MeDIP) was performed to examine the differences in methylation status of overexpressed uc.167 in P19 cells. GO and KEGG pathway analyses of differentially methylated genes were also conducted. We found that the distribution of differentially methylated regions (DMRs) peaks in different components of genome was mainly located in intergenic regions and intron. The biological process associated with uc.167 was focal adhesion and Rap1 signaling pathway. MEF2C was significantly decreased in uc.167 overexpressed group, suggesting that uc.167 may influence the P19 differentiation through MEF2C reduction. Taken together, our findings revealed that the effect of uc.167 on P19 differentiation may be attributed to the altered methylation of specific genes.
Collapse
|
35
|
Curtis EM, Suderman M, Phillips CM, Relton C, Harvey NC. Early-life dietary and epigenetic influences on childhood musculoskeletal health: Update on the UK component of the ALPHABET project. NUTR BULL 2018. [DOI: 10.1111/nbu.12322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- E. M. Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton; Southampton UK
| | - M. Suderman
- MRC Integrative Epidemiology Unit, University of Bristol; Bristol UK
| | - C. M. Phillips
- HRB Centre for Diet and Health Research, University College Dublin; Dublin Ireland
| | - C. Relton
- MRC Integrative Epidemiology Unit, University of Bristol; Bristol UK
| | - N. C. Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton; Southampton UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust; Southampton UK
| |
Collapse
|
36
|
Moraru A, de Almeida MM, Degryse JM. PALTEM: What Parameters Should Be Collected in Disaster Settings to Assess the Long-Term Outcomes of Famine? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050857. [PMID: 29693637 PMCID: PMC5981896 DOI: 10.3390/ijerph15050857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/18/2022]
Abstract
Evidence suggests that nutritional status during fetal development and early life leaves an imprint on the genome, which leads to health outcomes not only on a person as an adult but also on his offspring. The purpose of this study is to bring forth an overview of the relevant parameters that need to be collected to assess the long-term and transgenerational health outcomes of famine. A literature search was conducted for the most pertinent articles on the epigenetic effects of famine. The results were compiled, synthesized and discussed with an expert in genetics for critical input and validation. Prenatal and early life exposure to famine was associated with metabolic, cardiovascular, respiratory, reproductive, neuropsychiatric and oncologic diseases. We propose a set of parameters to be collected in disaster settings to assess the long-term outcomes of famine: PALTEM (parameters to assess long-term effects of malnutrition).
Collapse
Affiliation(s)
- Alexandra Moraru
- Centre for Research on the Epidemiology of Disasters, Université Catholique de Louvain, Brussels 1200, Belgium.
| | - Maria Moitinho de Almeida
- Centre for Research on the Epidemiology of Disasters, Université Catholique de Louvain, Brussels 1200, Belgium.
| | - Jean-Marie Degryse
- Institute of Health and Society, Université Catholique de Louvain, Brussels 1200, Belgium.
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven, Leuven 3000, Belgium.
| |
Collapse
|
37
|
Pirini F, Rodriguez-Torres S, Ayandibu BG, Orera-Clemente M, Gonzalez-de la Vega A, Lawson F, Thorpe RJ, Sidransky D, Guerrero-Preston R. INSIG2 rs7566605 single nucleotide variant and global DNA methylation index levels are associated with weight loss in a personalized weight reduction program. Mol Med Rep 2017; 17:1699-1709. [PMID: 29138870 PMCID: PMC5780113 DOI: 10.3892/mmr.2017.8039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 12/27/2022] Open
Abstract
Single nucleotide polymorphisms associated with lipid metabolism and energy balance are implicated in the weight loss response caused by nutritional interventions. Diet-induced weight loss is also associated with differential global DNA methylation. DNA methylation has been proposed as a predictive biomarker for weight loss response. Personalized biomarkers for successful weight loss may inform clinical decisions when deciding between behavioral and surgical weight loss interventions. The aim of the present study was to investigate the association between global DNA methylation, genetic variants associated with energy balance and lipid metabolism, and weight loss following a non-surgical weight loss regimen. The present study included 105 obese participants that were enrolled in a personalized weight loss program based on their allelic composition of the following five energy balance and lipid metabolism-associated loci: Near insulin-induced gene 2 (INSIG2); melanocortin 4 receptor; adrenoceptor β2; apolipoprotein A5; and G-protein subunit β3. The present study investigated the association between a global DNA methylation index (GDMI), the allelic composition of the five energy balance and lipid metabolism-associated loci, and weight loss during a 12 month program, after controlling for age, sex and body mass index (BMI). The results demonstrated a significant association between the GDMI and near INSIG2 locus, after adjusting for BMI and weight loss, and significant trends were observed when stratifying by gender. In conclusion, a combination of genetic and epigenetic biomarkers may be used to design personalized weight loss interventions, enabling adherence and ensuring improved outcomes for obesity treatment programs. Precision weight loss programs designed based on molecular information may enable the creation of personalized interventions for patients, that use genomic biomarkers for treatment design and for treatment adherence monitoring, thus improving response to treatment.
Collapse
Affiliation(s)
- Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | | | - Bola Grace Ayandibu
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - María Orera-Clemente
- Genetic Laboratory, University General Hospital Gregorio Marañón, 28007 Madrid, Spain
| | | | - Fahcina Lawson
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Roland J Thorpe
- Johns Hopkins University Centre for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David Sidransky
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
38
|
Curtis EM, Murray R, Titcombe P, Cook E, Clarke-Harris R, Costello P, Garratt E, Holbrook JD, Barton S, Inskip H, Godfrey KM, Bell CG, Cooper C, Lillycrop KA, Harvey NC. Perinatal DNA Methylation at CDKN2A Is Associated With Offspring Bone Mass: Findings From the Southampton Women's Survey. J Bone Miner Res 2017; 32:2030-2040. [PMID: 28419547 PMCID: PMC5528139 DOI: 10.1002/jbmr.3153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
Abstract
Poor intrauterine and childhood growth has been linked with the risk of osteoporosis in later life, a relationship that may in part be mediated through altered epigenetic regulation of genes. We previously identified a region within the promoter of the long non-coding RNA ANRIL encoded by the CDKN2A locus, at which differential DNA methylation at birth showed correlations with offspring adiposity. Given the common lineage of adipocytes and osteoblasts, we investigated the relationship between perinatal CDKN2A methylation and bone mass at ages 4 and 6 years. Using sodium bisulfite pyrosequencing, we measured the methylation status of the 9 CpGs within this region in umbilical cord samples from discovery (n = 332) and replication (n = 337) cohorts of children from the Southampton Women's Survey, whose bone mass was assessed by dual-energy X-ray absorptiomietry (DXA; Hologic Discovery). Inverse associations were found between perinatal CDKN2A methylation and whole-body minus head bone area (BA), bone mineral content (BMC), and areal bone mineral density (BMD). This was confirmed in replication and combined data sets (all p < 0.01), with each 10% increase in methylation being associated with a decrease in BMC of 4 to 9 g at age 4 years (p ≤ 0.001). Relationships were similar with 6-year bone mass. Functional investigation of the differentially methylated region in the SaOS-2 osteosarcoma cell line showed that transcription factors bound to the identified CpGs in a methylation-specific manner and that CpG mutagenesis modulated ANRIL expression. In conclusion, perinatal methylation at CDKN2A is associated with childhood bone development and has significance for cell function. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Elizabeth M Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Robert Murray
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Eloïse Cook
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | | | - Paula Costello
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Emma Garratt
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Joanna D Holbrook
- Institute of Developmental Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Singapore Institute for Clinical Sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Sheila Barton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Hazel Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,Institute of Developmental Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher G Bell
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,Institute of Developmental Sciences, University of Southampton, Southampton, UK.,Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,NIHR Oxford Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Karen A Lillycrop
- Institute of Developmental Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.,Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
39
|
Affiliation(s)
- Gemma C Sharp
- MRC Integrative Epidemiology Unit, School of Oral & Dental Sciences, University of Bristol, Oakfield House, Bristol, BS8 2BN, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Oakfield House, Bristol, BS8 2BN, UK
| |
Collapse
|
40
|
Fernández-Sanlés A, Sayols-Baixeras S, Subirana I, Degano IR, Elosua R. Association between DNA methylation and coronary heart disease or other atherosclerotic events: A systematic review. Atherosclerosis 2017; 263:325-333. [PMID: 28577936 DOI: 10.1016/j.atherosclerosis.2017.05.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 05/17/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The aim of this study was to perform a systematic review of the association between DNA methylation and coronary heart disease (CHD) or related atherosclerotic traits. METHODS A systematic review was designed. The condition of interest was DNA methylation, and the outcome was CHD or other atherosclerosis-related traits. Three DNA methylation approaches were considered: global methylation, candidate-gene, and epigenome-wide association studies (EWAS). A functional analysis was undertaken using the Ingenuity Pathway Analysis software. RESULTS In total, 51 articles were included in the analysis: 12 global methylation, 34 candidate-gene and 11 EWAS, with six studies using more than one approach. The results of the global methylation studies were inconsistent. The candidate-gene results were consistent for some genes, suggesting that hypermethylation in ESRα, ABCG1 and FOXP3 and hypomethylation in IL-6 were associated with CHD. The EWAS identified 84 genes showing differential methylation associated with CHD in more than one study. The probability of these findings was <1.37·10-5. One third of these genes have been related to obesity in genome-wide association studies. The functional analysis identified several diseases and functions related to these set of genes: inflammatory, metabolic and cardiovascular disease. CONCLUSIONS Global DNA methylation seems to be not associated with CHD. The evidence from candidate-gene studies was limited. The EWAS identified a set of 84 genes highlighting the relevance of obesity, inflammation, lipid and carbohydrate metabolism in CHD. This set of genes could be prioritized in future studies assessing the role of DNA methylation in CHD.
Collapse
Affiliation(s)
- Alba Fernández-Sanlés
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain
| | - Isaac Subirana
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia, Spain
| | - Irene R Degano
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group, REGICOR Study Group, IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Catalonia, Spain; CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Catalonia, Spain.
| |
Collapse
|