1
|
Sun JR, Kong CF, Ye YX, Wang Q, Qu XK, Jia LQ, Wu S. Integrated analysis of single-cell and bulk RNA-sequencing reveals a novel signature based on NK cell marker genes to predict prognosis and immunotherapy response in gastric cancer. Sci Rep 2024; 14:7648. [PMID: 38561388 PMCID: PMC10985121 DOI: 10.1038/s41598-024-57714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Natural killer (NK) cells play essential roles in the tumor development, diagnosis, and prognosis of tumors. In this study, we aimed to establish a reliable signature based on marker genes in NK cells, thus providing a new perspective for assessing immunotherapy and the prognosis of patients with gastric cancer (GC). We analyzed a total of 1560 samples retrieved from the public database. We performed a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of gastric cancer and identified 377 marker genes for NK cells. By performing Cox regression analysis, we established a 12-gene NK cell-associated signature (NKCAS) for the Cancer Genome Atlas (TCGA) cohort, that assigned GC patients into a low-risk group (LRG) or a high-risk group (HRG). In the TCGA cohort, the areas under curve (AUC) value were 0.73, 0.81, and 0.80 at 1, 3, and 5 years. External validation of the predictive ability for the signature was then validated in the Gene Expression Omnibus (GEO) cohorts (GSE84437). The expression levels of signature genes were measured and validated in GC cell lines by real-time PCR. Moreover, NKCAS was identified as an independent prognostic factor by multivariate analysis. We combined this with a variety of clinicopathological characteristics (age, M stage, and tumor grade) to construct a nomogram to predict the survival outcomes of patients. Moreover, the LRG showed higher immune cell infiltration, especially CD8+ T cells and NK cells. The risk score was negatively associated with inflammatory activities. Importantly, analysis of the independent immunotherapy cohort showed that the LRG had a better prognosis and immunotherapy response when compared with the HRG. The identification of NK cell marker genes in this study suggests potential therapeutic targets. Additionally, the developed predictive signatures and nomograms may aid in the clinical management of GC.
Collapse
Affiliation(s)
- Jian-Rong Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Chen-Fan Kong
- Department of Urology, The affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Liantangxiantong Road, Shenzhen, 518009, Luohu, People's Republic of China
| | - Yi-Xiang Ye
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Qin Wang
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Xiang-Ke Qu
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China
| | - Li-Qun Jia
- School of Clinical Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd East Road, Beijing, 100029, Chaoyang, People's Republic of China.
| | - Song Wu
- Department of Urology, The affiliated Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, No. 16, Liantangxiantong Road, Shenzhen, 518009, Luohu, People's Republic of China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
2
|
Bu Q, Luo X, He L, Ma J, He S, Lei W, Zhou W, Deng H, Lin Y, Zhang L, Hong X. Septin9 DNA methylation as a promising biomarker for cervical cancer. J OBSTET GYNAECOL 2023; 43:2151356. [PMID: 36476308 DOI: 10.1080/01443615.2022.2151356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aberrant Septin9 methylation in cervical cancer has been rarely studied. We aimed to identify its diagnostic value in cervical cancer using cervical scrapings, and its predictive potential in plasma for pelvic nodal metastasis of cervical cancer. The statuses of methylated Septin9 in fresh cervical lesions and cervical scrapings were first evaluated by using quantitative methylation-specific PCR. Subsequently, the relationship between Septin9 methylation in 113 plasma samples and pelvic nodal metastasis of cervical cancer was evaluated. Methylated Septin9 was detected in all cancerous tissues, but not in cervicitis. The degrees of Septin9 methylation increased with growing severity of cervical lesions in cervical scrapings. The sensitivity of methylated Septin9 was lower than that of cytology, while it yielded a high specificity and area under the curve in detecting high-grade squamous intraepithelial lesion or cervical cancer; and when Septin9 methylation combined with HPV16/18 genotyping, the sensitivity would increase from 70.42% to 82.39%. Plasma-based Septin9 methylation had a high discriminatory power in predicting pelvic nodal metastasis of cervical cancer, with an optimal specificity of 81.48%. In conclusion, we demonstrated methylated Septin9 to be an innovative diagnostic biomarker for cervical cancer and its non-invasive predictive potential in plasma for pelvic nodal metastasis of cervical cancer.Impact statementWhat is already known on this subject? The occurrence of cervical cancer is related to Septin9 methylation. In fresh specimens and cervical scrapings, we found the degrees of methylated Septin9 increased with growing severity of cervical lesions. Compared with HPV16/18 genotyping and cytological detection, Septin9 methylation had a better specificity and AUC in detecting ≥ HSIL. Furthermore, plasma-based Septin9 methylation also had a high specificity for pelvic lymphatic metastasis prediction.What the results of this study add? Methylation analysis of Septin9 indicated a similar sensitivity, specificity and AUC in detecting ≥ HSIL, relative to HPV16/18 genotyping. Compared with cytological method, Septin9 methylation also yielded a higher specificity and AUC in detecting ≥ HSIL. And we also found plasma-based Septin9 methylation had a high discriminatory power in predicting pelvic nodal metastasis of cervical cancer, with an optimal specificity of 81.48%; additionally an increasing sensitivity from 50% to nearly 80% was found when combined with SCCAg.What the implications are of these findings for clinical practice and/or further research? This study aimed to evaluate the relationship between Septin9 methylation and cervical cancer, and to explore the value of methylated Septin9 in the detection of cervical (pre)cancerous lesions. Moreover, we would explore plasma-based ctDNA biomarkers for pelvic lymphatic metastasis prediction of cervical cancer, to improve non-invasive predictive accuracy of pelvic nodal metastasis and reduce the complications caused by pelvic lymphadenectomy.
Collapse
Affiliation(s)
- Qiaowen Bu
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiping Luo
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Lulu He
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jian Ma
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shaoyi He
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wen Lei
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Weiping Zhou
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hua Deng
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yu Lin
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Zhang
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiaoshan Hong
- Department of Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
3
|
Li Y, Li B, Jiang R, Liao L, Zheng C, Yuan J, Zeng L, Hu K, Zhang Y, Mei W, Hong Z, Xiao B, Kong L, Han K, Tang J, Jiang W, Pan Z, Zhang S, Ding P. A novel screening method of DNA methylation biomarkers helps to improve the detection of colorectal cancer and precancerous lesions. Cancer Med 2023; 12:20626-20638. [PMID: 37881109 PMCID: PMC10660402 DOI: 10.1002/cam4.6511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies, and early detection plays a crucial role in enhancing curative outcomes. While colonoscopy is considered the gold standard for CRC diagnosis, noninvasive screening methods of DNA methylation biomarkers can improve the early detection of CRC and precancerous lesions. METHODS Bioinformatics and machine learning methods were used to evaluate CRC-related genes within the TCGA database. By identifying the overlapped genes, potential biomarkers were selected for further validation. Methylation-specific PCR (MSP) was utilized to identify the associated genes as biomarkers. Subsequently, a real-time PCR assay for detecting the presence of neoplasia or cancer of the colon or rectum was established. This screening approach involved the recruitment of 978 participants from five cohorts. RESULTS The genes with the highest specificity and sensitivity were Septin9, AXL4, and SDC2. A total of 940 participants were involved in the establishment of the final PCR system and the subsequent performance evaluation test. A multiplex TaqMan real-time PCR system has been illustrated to greatly enhance the ability to detect precancerous lesions and achieved an accuracy of 87.8% (95% CI 82.9-91.5), a sensitivity of 82.7% (95% CI 71.8-90.1), and a specificity of 90.1% (95% CI 84.3-93.9). Moreover, the detection rate of precancerous lesions of this assay reached 55.0% (95% CI 38.7-70.4). CONCLUSION The combined detection of the methylation status of SEPT9, SDC2, and ALX4 in plasma holds the potential to further enhance the sensitivity of CRC detection.
Collapse
Affiliation(s)
- Yuan Li
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Bin Li
- Beijing BGI‐GBI Biotech Co., LtdBeijingChina
| | - Rou Jiang
- Department of Cancer Prevention CenterSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Leen Liao
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | | | - Jie Yuan
- Department of General SurgeryThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | | | - Kunling Hu
- Beijing BGI‐GBI Biotech Co., LtdBeijingChina
| | | | - Weijian Mei
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Zhigang Hong
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Binyi Xiao
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Lingheng Kong
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Kai Han
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Jinghua Tang
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wu Jiang
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Zhizhong Pan
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | | | - Peirong Ding
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| |
Collapse
|
4
|
Catanzaro E, Gringeri E, Burra P, Gambato M. Primary Sclerosing Cholangitis-Associated Cholangiocarcinoma: From Pathogenesis to Diagnostic and Surveillance Strategies. Cancers (Basel) 2023; 15:4947. [PMID: 37894314 PMCID: PMC10604939 DOI: 10.3390/cancers15204947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the most common malignancy in patients with primary sclerosing cholangitis (PSC), accounting for 2-8% of cases and being the leading cause of death in these patients. The majority of PSC-associated CCAs (PSC-CCA) develop within the first few years after PSC diagnosis. Older age and male sex, as well as concomitant inflammatory bowel disease (IBD) or high-grade biliary stenosis, are some of the most relevant risk factors. A complex combination of molecular mechanisms involving inflammatory pathways, direct cytopathic damage, and epigenetic and genetic alterations are involved in cholangiocytes carcinogenesis. The insidious clinical presentation makes early detection difficult, and the integration of biochemical, radiological, and histological features does not always lead to a definitive diagnosis of PSC-CCA. Surveillance is mandatory, but current guideline strategies failed to improve early detection and consequently a higher patient survival rate. MicroRNAs (miRNAs), gene methylation, proteomic and metabolomic profile, and extracellular vesicle components are some of the novel biomarkers recently applied in PSC-CCA detection with promising results. The integration of these new molecular approaches in PSC diagnosis and monitoring could contribute to new diagnostic and surveillance strategies.
Collapse
Affiliation(s)
- Elisa Catanzaro
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Center, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Patrizia Burra
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Martina Gambato
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
5
|
Zhong B, Liao Q, Wang X, Wang X, Zhang J. The roles of epigenetic regulation in cholangiocarcinogenesis. Biomed Pharmacother 2023; 166:115290. [PMID: 37557012 DOI: 10.1016/j.biopha.2023.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Cholangiocarcinoma (CCA), a heterogeneous malignancy of bile duct epithelial cells, is characterized by aggressiveness, difficult diagnosis, and poor prognosis due to limited understanding and lack of effective therapeutic strategies. Genetic and epigenetic alterations accumulated in CCA cells can cause the aberrant regulation of oncogenes and tumor suppressors. Epigenetic alterations with histone modification, DNA methylation, and noncoding RNA modulation are associated with the carcinogenesis of CCA. Mutation or silencing of genes by various mechanisms can be a frequent event during CCA development. Alterations in histone acetylation/deacetylation at the posttranslational level, DNA methylation at promoters, and noncoding RNA regulation contribute to the heterogeneity of CCA and drive tumor development. In this review article, we mainly focus on the roles of epigenetic regulation in cholangiocarcinogenesis. Alterations in epigenetic modification can be potential targets for the therapeutic management of CCA, and epigenetic targets may become diagnostic biomarkers of CCA.
Collapse
Affiliation(s)
- Baiyin Zhong
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qicheng Liao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiaonong Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Jianhong Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China; Ganzhou Key Laboratory of Hepatocellular Carcinoma, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
6
|
Yang W, Chen H, Ma L, Dong J, Wei M, Xue X, Li Y, Jin Z, Xu W, Ji Z. SHOX2 promotes prostate cancer proliferation and metastasis through disruption of the Hippo-YAP pathway. iScience 2023; 26:107617. [PMID: 37664594 PMCID: PMC10470409 DOI: 10.1016/j.isci.2023.107617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
The transcription factor SHOX2 gene is critical in regulating gene expression and the development of tumors, but its biological role in prostate cancer (PCa) remains unclear. In this study, we found that SHOX2 expression was significantly raised in PCa tissues and was associated with clinicopathological features as well as disease-free survival (DFS) of PCa patients. Phenotypic tests showed that the absence of SHOX2 inhibited PCa growth and invasion, while SHOX2 overexpression promoted these effects. Mechanistically, SHOX2 was found to activate the transcription of nephronophthisis type 4 (NPHP4), a gene located downstream of SHOX2. Further analysis revealed that SHOX2 could potentially interfere with the Hippo-YAP signaling pathway through NPHP4 activation, facilitating the oncogenic behavior of PCa cells. These findings highlight SHOX2 as an oncogene in PCa and provide a basis for developing potential therapeutic approaches against this disease.
Collapse
Affiliation(s)
- Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Lin Ma
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Jie Dong
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Mengchao Wei
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Xiaoqiang Xue
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Zhaoheng Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Weifeng Xu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| |
Collapse
|
7
|
Circulating Tumor DNA Methylation Biomarkers for Characterization and Determination of the Cancer Origin in Malignant Liver Tumors. Cancers (Basel) 2023; 15:cancers15030859. [PMID: 36765815 PMCID: PMC9913861 DOI: 10.3390/cancers15030859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Malignant liver tumors include primary malignant liver tumors and liver metastases. They are among the most common malignancies worldwide. The disease has a poor prognosis and poor overall survival, especially with liver metastases. Therefore, early detection and differentiation between malignant liver tumors are critical for patient treatment selection. The detection of cancer and the prediction of its origin is possible with a DNA methylation profile of the tumor DNA compared to that of normal cells, which reflects tissue differentiation and malignant transformation. New technologies enable the characterization of the tumor methylome in circulating tumor DNA (ctDNA), providing a variety of new ctDNA methylation biomarkers, which can provide additional information to clinical decision-making. Our review of the literature provides insight into methylation changes in ctDNA from patients with common malignant liver tumors and can serve as a starting point for further research.
Collapse
|
8
|
DNA Methylation Analysis of the SHOX2 and RASSF1A Panel Using Cell-Free DNA in the Diagnosis of Malignant Pleural Effusion. JOURNAL OF ONCOLOGY 2023; 2023:5888844. [PMID: 36691467 PMCID: PMC9867579 DOI: 10.1155/2023/5888844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/16/2023]
Abstract
Objectives The differential diagnosis of pleural effusion (PE) is a common but major challenge in clinical practice. This study aimed to establish a strategy based on a PE-cell-free DNA (cfDNA) methylation detection system for the differential diagnosis of malignant pleural effusion (MPE) and benign pleural effusion (BPE). Methods A total of 104 patients with PE were enrolled in this study, among which 50 patients had MPE, 9 malignant tumor patients had PE of indefinite causes, and the other 45 patients were classified as benign controls. The methylation status of short stature homeobox 2 (SHOX2) and RAS association domain family 1, isoform A (RASSF1A) was detected using PE-cfDNA specimens by real-time fluorescence quantitative PCR. Total methylation (TM) was defined as the combination of the methylation levels of SHOX2 and RASSF1A. The electrochemiluminescence immunoassay was applied to evaluate the levels of multiple serum tumor markers. Results The PE-cfDNA methylation status of either SHOX2 or RASSF1A was much higher in MPE samples than in benign controls. The combination of SHOX2 and RASSF1A methylation in PE yielded a diagnostic sensitivity of 96% and a specificity of 100%, respectively. When compared with the corresponding serum tumor marker detection results, TM showed the highest diagnostic efficiency (AUC = 0.985). Furthermore, the combination of the SHOX2 and RASSF1A methylation panels using PE-cfDNA could apparently improve the differential diagnostic efficacy of BPE and MPE and could help compensate for the deficiency of cytology. Conclusions Our results indicated that SHOX2 and RASSF1A methylation panel detection could accurately classify BPE and MPE diseases and showed better diagnostic performance than traditional serum parameters. The SHOX2 and RASSF1A methylation detection of PE-cfDNA could be a potentially effective complementary tool for cytology in the process of differential diagnosis. In summary, PE-cfDNA could be used as a promising non-invasive analyte for the auxiliary diagnosis of MPE.
Collapse
|
9
|
Wu H, Guo S, Liu X, Li Y, Su Z, He Q, Liu X, Zhang Z, Yu L, Shi X, Gao S, Wang H, Pan Y, Ma C, Liu R, Dai M, Jin G, Liang Z. Noninvasive detection of pancreatic ductal adenocarcinoma using the methylation signature of circulating tumour DNA. BMC Med 2022; 20:458. [PMID: 36434648 PMCID: PMC9701032 DOI: 10.1186/s12916-022-02647-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has the lowest overall survival rate primarily due to the late onset of symptoms and rapid progression. Reliable and accurate tests for early detection are lacking. We aimed to develop a noninvasive test for early PDAC detection by capturing the circulating tumour DNA (ctDNA) methylation signature in blood. METHODS Genome-wide methylation profiles were generated from PDAC and nonmalignant tissues and plasma. Methylation haplotype blocks (MHBs) were examined to discover de novo PDAC markers. They were combined with multiple cancer markers and screened for PDAC classification accuracy. The most accurate markers were used to develop PDACatch, a targeted methylation sequencing assay. PDACatch was applied to additional PDAC and healthy plasma cohorts to train, validate and independently test a PDAC-discriminating classifier. Finally, the classifier was compared and integrated with carbohydrate antigen 19-9 (CA19-9) to evaluate and maximize its accuracy and utility. RESULTS In total, 90 tissues and 546 plasma samples were collected from 232 PDAC patients, 25 chronic pancreatitis (CP) patients and 323 healthy controls. Among 223 PDAC cases with known stage information, 43/119/38/23 cases were of Stage I/II/III/IV. A total of 171 de novo PDAC-specific markers and 595 multicancer markers were screened for PDAC classification accuracy. The top 185 markers were included in PDACatch, from which a 56-marker classifier for PDAC plasma was trained, validated and independently tested. It achieved an area under the curve (AUC) of 0.91 in both the validation (31 PDAC, 26 healthy; sensitivity = 84%, specificity = 89%) and independent tests (74 PDAC, 65 healthy; sensitivity = 82%, specificity = 88%). Importantly, the PDACatch classifier detected CA19-9-negative PDAC plasma at sensitivities of 75 and 100% during the validation and independent tests, respectively. It was more sensitive than CA19-9 in detecting Stage I (sensitivity = 80 and 68%, respectively) and early-stage (Stage I-IIa) PDAC (sensitivity = 76 and 70%, respectively). A combinatorial classifier integrating PDACatch and CA19-9 outperformed (AUC=0.94) either PDACatch (0.91) or CA19-9 (0.89) alone (p < 0.001). CONCLUSIONS The PDACatch assay demonstrated high sensitivity for early PDAC plasma, providing potential utility for noninvasive detection of early PDAC and indicating the effectiveness of methylation haplotype analyses in discovering robust cancer markers.
Collapse
Affiliation(s)
- Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Xiaoding Liu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Yatong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China
| | - Qiye He
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China
| | - Xiaoqian Liu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Zhiwen Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Lianyuan Yu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Yaqi Pan
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Chengcheng Ma
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China
| | - Rui Liu
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China.
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
10
|
Nayak C, Singh SK. Integrated Transcriptome Profiling Identifies Prognostic Hub Genes as Therapeutic Targets of Glioblastoma: Evidenced by Bioinformatics Analysis. ACS OMEGA 2022; 7:22531-22550. [PMID: 35811900 PMCID: PMC9260928 DOI: 10.1021/acsomega.2c01820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) is the most devastating and frequent type of primary brain tumor with high morbidity and mortality. Despite the use of surgical resection followed by radio- and chemotherapy as standard therapy, the progression of GBM remains dismal with a median overall survival of <15 months. GBM embodies a populace of cancer stem cells (GSCs) that is associated with tumor initiation, invasion, therapeutic resistance, and post-treatment reoccurrence. However, understanding the potential mechanisms of stemness and their candidate biomarkers remains limited. Hence in this investigation, we aimed to illuminate potential candidate hub genes and key pathways associated with the pathogenesis of GSC in the development of GBM. The integrated analysis discovered differentially expressed genes (DEGs) between the brain cancer tissues (GBM and GSC) and normal brain tissues. Multiple approaches, including gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were employed to functionally annotate the DEGs and visualize them through the R program. The significant hub genes were identified through the protein-protein interaction network, Venn diagram analysis, and survival analysis. We observed that the upregulated DEGs were prominently involved in the ECM-receptor interaction pathway. The downregulated genes were mainly associated with the axon guidance pathway. Five significant hub genes (CTNNB1, ITGB1, TNC, EGFR, and SHOX2) were screened out through multiple analyses. GO and KEGG analyses of hub genes uncovered that these genes were primarily enriched in disease-associated pathways such as the inhibition of apoptosis and the DNA damage repair mechanism, activation of the cell cycle, EMT (epithelial-mesenchymal transition), hormone AR (androgen receptor), hormone ER (estrogen receptor), PI3K/AKT (phosphatidylinositol 3-kinase and AKT), RTK (receptor tyrosine kinase), and TSC/mTOR (tuberous sclerosis complex and mammalian target of rapamycin). Consequently, the epigenetic regulatory network disclosed that hub genes played a vital role in the progression of GBM. Finally, candidate drugs were predicted that can be used as possible drugs to treat GBM patients. Overall, our investigation offered five hub genes (CTNNB1, ITGB1, TNC, EGFR, and SHOX2) that could be used as precise diagnostic and prognostic candidate biomarkers of GBM and might be used as personalized therapeutic targets to obstruct gliomagenesis.
Collapse
|
11
|
HOXD8 hypermethylation as a fully sensitive and specific biomarker for biliary tract cancer detectable in tissue and bile samples. Br J Cancer 2022; 126:1783-1794. [PMID: 35177798 PMCID: PMC9174245 DOI: 10.1038/s41416-022-01738-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Background Biliary tract cancers (BTC) are rare but highly aggressive tumours with poor prognosis, usually detected at advanced stages. Herein, we aimed at identifying BTC-specific DNA methylation alterations. Methods Study design included statistical power and sample size estimation. A genome-wide methylation study of an explorative cohort (50 BTC and ten matched non-tumoral tissue samples) has been performed. BTC-specific altered CpG islands were validated in over 180 samples (174 BTCs and 13 non-tumoral controls). The final biomarkers, selected by a machine-learning approach, were validated in independent tissue (18 BTCs, 14 matched non-tumoral samples) and bile (24 BTCs, five non-tumoral samples) replication series, using droplet digital PCR. Results We identified and successfully validated BTC-specific DNA methylation alterations in over 200 BTC samples. The two-biomarker panel, selected by an in-house algorithm, showed an AUC > 0.97. The best-performing biomarker (chr2:176993479-176995557), associated with HOXD8, a pivotal gene in cancer-related pathways, achieved 100% sensitivity and specificity in a new series of tissue and bile samples. Conclusions We identified a novel fully efficient BTC biomarker, associated with HOXD8 gene, detectable both in tissue and bile by a standardised assay ready-to-use in clinical trials also including samples from non-invasive matrices.
Collapse
|
12
|
Loomans-Kropp HA, Song Y, Gala M, Parikh AR, Van Seventer EE, Alvarez R, Hitchins MP, Shoemaker RH, Umar A. Methylated Septin9 (m SEPT9): A promising blood-based biomarker for the detection and screening of early-onset colorectal cancer. CANCER RESEARCH COMMUNICATIONS 2022; 2:90-98. [PMID: 35992328 PMCID: PMC9387652 DOI: 10.1158/2767-9764.crc-21-0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 02/01/2022] [Indexed: 06/15/2023]
Abstract
Early-onset colorectal cancer (EOCRC), defined as a diagnosis under age 50, is an emerging public health burden. As many of these individuals fall outside of screening guidelines, the development of a minimally invasive, accurate screening modality for this population is warranted. We evaluated the FDA-approved blood-based biomarker methylated Septin9 (mSEPT9) test as screening tool for EOCRC. EOCRC plasma, healthy plasma, and serum-free conditioned media from cancer cell lines was collected. Cell-free DNA (cfDNA) was isolated and bisulfite converted for use in the assay. mSEPT9 and ACTB measured using Epi proColon® V2.0. EOCRC plasma was collected at Massachusetts General Hospital (2005-2019) and controls were collected at the National Institutes of Health and by ZenBio Inc. (prior to 2019). Twenty-seven EOCRC cases, 48 healthy controls <50 years old, and 39 healthy controls ≥50 years old were included in this study. mSEPT9 was detected more frequently in EOCRC cases (88.9%) compared to healthy controls age <50 (4.2%) and ≥50 (15.4%), respectively (p<0.001). The sensitivity, specificity, positive predictive value, and negative predictive values of the mSEPT9 assay to detect EOCRC was 90.8% (95% CI: 84.7-96.9%), 88.9% (95% CI: 77.0-100.0%), 96.3% (95% CI: 92.3-100.0%), and 75.0% (95% CI 60.0-90.0%), respectively, compared to all healthy controls. mSEPT9 cfDNA level was an independent predictor of survival (p=0.02). mSEPT9 is a sensitive and specific biomarker for EOCRC detection. These results suggest that mSEPT9 may be useful in the detection of EOCRC, providing a minimally invasive method for screening in this growing population of CRC patients.
Collapse
Affiliation(s)
- Holli A. Loomans-Kropp
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, NCI, NIH, Rockville, Maryland
- Gastrointestinal and Other Cancers Research Group, Division of Cancer Prevention, NCI, NIH, Rockville, Maryland
| | - Yurong Song
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Manish Gala
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aparna R. Parikh
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emily E. Van Seventer
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rocio Alvarez
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Megan P. Hitchins
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, NCI, NIH, Rockville, Maryland
| | - Asad Umar
- Gastrointestinal and Other Cancers Research Group, Division of Cancer Prevention, NCI, NIH, Rockville, Maryland
| |
Collapse
|
13
|
Vedeld HM, Grimsrud MM, Andresen K, Pharo HD, von Seth E, Karlsen TH, Honne H, Paulsen V, Färkkilä MA, Bergquist A, Jeanmougin M, Aabakken L, Boberg KM, Folseraas T, Lind GE. Early and accurate detection of cholangiocarcinoma in patients with primary sclerosing cholangitis by methylation markers in bile. Hepatology 2022; 75:59-73. [PMID: 34435693 PMCID: PMC9300181 DOI: 10.1002/hep.32125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is associated with increased risk of cholangiocarcinoma (CCA). Early and accurate CCA detection represents an unmet clinical need as the majority of patients with PSC are diagnosed at an advanced stage of malignancy. In the present study, we aimed at establishing robust DNA methylation biomarkers in bile for early and accurate diagnosis of CCA in PSC. APPROACH AND RESULTS Droplet digital PCR (ddPCR) was used to analyze 344 bile samples from 273 patients with sporadic and PSC-associated CCA, PSC, and other nonmalignant liver diseases for promoter methylation of cysteine dioxygenase type 1, cannabinoid receptor interacting protein 1, septin 9, and vimentin. Receiver operating characteristic (ROC) curve analyses revealed high AUCs for all four markers (0.77-0.87) for CCA detection among patients with PSC. Including only samples from patients with PSC diagnosed with CCA ≤ 12 months following bile collection increased the accuracy for cancer detection, with a combined sensitivity of 100% (28/28) and a specificity of 90% (20/203). The specificity increased to 93% when only including patients with PSC with longtime follow-up (> 36 months) as controls, and remained high (83%) when only including patients with PSC and dysplasia as controls (n = 23). Importantly, the bile samples from the CCA-PSC ≤ 12 patients, all positive for the biomarkers, included both early-stage and late-stage CCA, different tumor growth patterns, anatomical locations, and carbohydrate antigen 19-9 levels. CONCLUSIONS Using highly sensitive ddPCR to analyze robust epigenetic biomarkers, CCA in PSC was accurately detected in bile, irrespective of clinical and molecular features, up to 12 months before CCA diagnosis. The findings suggest a potential for these biomarkers to complement current detection and screening methods for CCA in patients with PSC.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular OncologyInstitute for Cancer ResearchOslo University Hospital–Norwegian Radium HospitalOsloNorway,K. G. Jebsen Colorectal Cancer Research CentreOslo University HospitalOsloNorway
| | - Marit M. Grimsrud
- Norwegian PSC Research Center, Department of Transplantation MedicineOslo University HospitalOsloNorway,Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Kim Andresen
- Department of Molecular OncologyInstitute for Cancer ResearchOslo University Hospital–Norwegian Radium HospitalOsloNorway,K. G. Jebsen Colorectal Cancer Research CentreOslo University HospitalOsloNorway
| | - Heidi D. Pharo
- Department of Molecular OncologyInstitute for Cancer ResearchOslo University Hospital–Norwegian Radium HospitalOsloNorway,K. G. Jebsen Colorectal Cancer Research CentreOslo University HospitalOsloNorway
| | - Erik von Seth
- Department of Medicine HuddingeUnit of Gastroenterology and RheumatologyKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Tom H. Karlsen
- Norwegian PSC Research Center, Department of Transplantation MedicineOslo University HospitalOsloNorway,Institute of Clinical MedicineUniversity of OsloOsloNorway,Section of GastroenterologyDepartment of Transplantation MedicineDivision of Surgery, Inflammatory Medicine and TransplantationOslo University Hospital–RikshospitaletOsloNorway
| | - Hilde Honne
- Department of Molecular OncologyInstitute for Cancer ResearchOslo University Hospital–Norwegian Radium HospitalOsloNorway,K. G. Jebsen Colorectal Cancer Research CentreOslo University HospitalOsloNorway
| | - Vemund Paulsen
- Section of GastroenterologyDepartment of Transplantation MedicineDivision of Surgery, Inflammatory Medicine and TransplantationOslo University Hospital–RikshospitaletOsloNorway
| | - Martti A. Färkkilä
- Department of MedicineDivision of GastroenterologyHelsinki University Hospital and Helsinki UniversityHelsinkiFinland
| | - Annika Bergquist
- Department of Medicine HuddingeUnit of Gastroenterology and RheumatologyKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Marine Jeanmougin
- Department of Molecular OncologyInstitute for Cancer ResearchOslo University Hospital–Norwegian Radium HospitalOsloNorway,K. G. Jebsen Colorectal Cancer Research CentreOslo University HospitalOsloNorway
| | - Lars Aabakken
- Institute of Clinical MedicineUniversity of OsloOsloNorway,Section of GastroenterologyDepartment of Transplantation MedicineDivision of Surgery, Inflammatory Medicine and TransplantationOslo University Hospital–RikshospitaletOsloNorway
| | - Kirsten M. Boberg
- Norwegian PSC Research Center, Department of Transplantation MedicineOslo University HospitalOsloNorway,Institute of Clinical MedicineUniversity of OsloOsloNorway,Section of GastroenterologyDepartment of Transplantation MedicineDivision of Surgery, Inflammatory Medicine and TransplantationOslo University Hospital–RikshospitaletOsloNorway
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation MedicineOslo University HospitalOsloNorway,Section of GastroenterologyDepartment of Transplantation MedicineDivision of Surgery, Inflammatory Medicine and TransplantationOslo University Hospital–RikshospitaletOsloNorway
| | - Guro E. Lind
- Department of Molecular OncologyInstitute for Cancer ResearchOslo University Hospital–Norwegian Radium HospitalOsloNorway,K. G. Jebsen Colorectal Cancer Research CentreOslo University HospitalOsloNorway
| |
Collapse
|
14
|
Rimini M, Puzzoni M, Pedica F, Silvestris N, Fornaro L, Aprile G, Loi E, Brunetti O, Vivaldi C, Simionato F, Zavattari P, Scartozzi M, Burgio V, Ratti F, Aldrighetti L, Cascinu S, Casadei-Gardini A. Cholangiocarcinoma: new perspectives for new horizons. Expert Rev Gastroenterol Hepatol 2021; 15:1367-1383. [PMID: 34669536 DOI: 10.1080/17474124.2021.1991313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Biliary tract cancer represents a heterogeneous group of malignancies characterized by dismal prognosis and scarce therapeutic options. AREA COVERED In the last years, a growing interest in BTC pathology has emerged, thus highlighting a significant heterogeneity of the pathways underlying the carcinogenesis process, from both a molecular and genomic point of view. A better understanding of these differences is mandatory to deepen the behavior of this complex disease, as well as to identify new targetable target mutations, with the aim to improve the survival outcomes. The authors decided to provide a comprehensive overview of the recent highlights on BTCs, with a special focus on the genetic, epigenetic and molecular alterations, which may have an interesting clinical application in the next future. EXPERT OPINION In the last years, the efforts resulted from international collaborations have led to the identification of new promising targets for precision medicine approaches in the BTC setting. Further investigations and prospective trials are needed, but the hope is that these new knowledge in cooperation with the new technologies and procedures, including bio-molecular and genomic analysis as well radiomic studies, will enrich the therapeutic armamentarium thus improving the survival outcomes in a such lethal and complex disease.
Collapse
Affiliation(s)
- Margherita Rimini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Puzzoni
- Medical Oncology, University and University Hospital of Cagliari, Italy
| | - Federica Pedica
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Silvestris
- Department of oncology, Instituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Lorenzo Fornaro
- Department of medical oncology, U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| | - Oronzo Brunetti
- Department of oncology, Instituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo Ii" of Bari, Bari, Italy
| | - Caterina Vivaldi
- Department of medical oncology, U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Francesca Simionato
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology, University and University Hospital of Cagliari, Italy
| | - Valentina Burgio
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Francesca Ratti
- Hepatobiliary Surgery Division, IRCCS San Raffaele and Vita-Salute University, Italy
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, IRCCS San Raffaele and Vita-Salute University, Italy
| | - Stefano Cascinu
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | | |
Collapse
|
15
|
Huang W, Huang H, Zhang S, Wang X, Ouyang J, Lin Z, Chen P. A Novel Diagnosis Method Based on Methylation Analysis of SHOX2 and Serum Biomarker for Early Stage Lung Cancer. Cancer Control 2021; 27:1073274820969703. [PMID: 33167712 PMCID: PMC7791477 DOI: 10.1177/1073274820969703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives: Lung cancer (LC) is often accompanied by significant methylation
abnormalities. This study aimed to develop a decision tree (DT) accompanied
the stature homeobox 2 gene (SHOX2) / prostaglandin E receptor 4 (PTGER4)
gene DNA methylation with traditional tumor marker in the differential
diagnosis of benign and malignant lung nodule. Methods: We performed a study with 104 patients enrolled in the LC group and 36
patients in the benign lung diseases group. All the clinical data of these
patients were collected through electronic medical record. Total Methylation
(TM) status of both SHOX2 and PTGER4 was defined as methylation levels of
SHOX2 plus methylation levels of PTGER4. One-way analysis was used to
compare the concentrations of serum samples and t-test was used to compare
pairwise mean values between groups. Receiver operating curve (ROC) was used
to evaluate the diagnostic value. Furthermore, the strategy was validated in
19 LC patients and 11 patients with benign lung diseases. Results: There were significant differences between the concentration of
neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), cytokeratin
19 fragments (CYFRA21 -1) and the methylation levels of SHOX2, PTGER4 and TM
in lung benign diseases and cancer group. The AUCs of NSE, CEA, CYFRA21 -1,
Methylation SHOX2, Methylation PTGER4 and TM were 0.721 (95% CI:
0.627–0.816), 0.753 (95% CI: 0.673–0.833) and 0.778(95% CI: 0.700–0.856),
0.851(0.786-0.916), 0.847(0.780-0.913) and 0.861(0.800-0.922) respectively.
We developed a DT model with TM and CYFRA21 -1 used in this study, and the
area under the curve (AUC) of DT was 0.921 and the sensitivity up to 0.856.
In the validation cohort, the AUC of SHOX2, PTGER4 and TM was also much
higher than traditional serum markers. Conclusions: Our results indicated that the DT model calculated from the TM and CYFRA21 -1
can accurately classify LC and benign diseases, which showed better
diagnostic performance than traditional serum parameter.
Collapse
Affiliation(s)
- Wenhai Huang
- Department of Thoracic Surgery, Jiangmen Centre Hospital, Jiangmen, Guangdong, China
| | - Hao Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuishen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xueping Wang
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Juan Ouyang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhichao Lin
- Department of Thoracic Surgery, Jiangmen Centre Hospital, Jiangmen, Guangdong, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Vedeld HM, Folseraas T, Lind GE. Detecting cholangiocarcinoma in patients with primary sclerosing cholangitis - The promise of DNA methylation and molecular biomarkers. JHEP Rep 2020; 2:100143. [PMID: 32939446 PMCID: PMC7479288 DOI: 10.1016/j.jhepr.2020.100143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy of the bile ducts that arises in up to 20% of patients with primary sclerosing cholangitis (PSC). Current detection methods for CCA display suboptimal sensitivity and/or specificity, and there is no evidence-based screening strategy for CCA in patients with PSC. Consequently, CCA is often detected too late for surgical resection, contributing to the high mortality associated with this malignancy. Recently, biomarkers have emerged with potential to complement current detection methods, and/or be used for cancer surveillance in high-risk patient groups, including patients with PSC. Aberrant DNA methylation patterns represent promising biomarkers with great potential for CCA detection. Such aberrations are frequent in CCA, often occur early, and can be detected in liquid biopsies, including blood, bile and urine. This review summarises and highlights the most promising DNA methylation biomarkers identified for CCA detection so far, focusing on patients with PSC. Other promising molecular biomarkers for detection of PSC-associated CCA in liquid biopsies will also be briefly covered.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Trine Folseraas
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway.,K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
de Vos L, Jung M, Koerber RM, Bawden EG, Holderried TAW, Dietrich J, Bootz F, Brossart P, Kristiansen G, Dietrich D. Treatment Response Monitoring in Patients with Advanced Malignancies Using Cell-Free SHOX2 and SEPT9 DNA Methylation in Blood: An Observational Prospective Study. J Mol Diagn 2020; 22:920-933. [PMID: 32361006 DOI: 10.1016/j.jmoldx.2020.04.205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/14/2019] [Accepted: 04/04/2020] [Indexed: 12/30/2022] Open
Abstract
Patients with incurable cancer usually receive palliative treatment with significant toxicity and limited efficacy. Methylation analysis of circulating cell-free DNA (ccfDNA) in blood from cancer patients represents a promising approach for minimally invasive, real-time monitoring of treatment response. Short stature homeobox 2 (SHOX2) and septin 9 (SEPT9) methylation was analyzed in N = 8865 malignant and N = 746 normal adjacent tissues across 33 different malignancies from The Cancer Genome Atlas. Furthermore, we performed quantitative SHOX2 and SEPT9 ccfDNA methylation analysis in plasma obtained before and consecutively during treatment from prospectively enrolled N = 115 patients with various advanced cancers. SHOX2 and/or SEPT9 hypermethylation in malignant tissues is present in various carcinomas, sarcoma, melanoma, brain tumors, mesothelioma, and hematopoietic malignancies. Among the prospectively enrolled cancer patients, 61% (70/115) of patients had a baseline-positive blood cumulative ccfDNA methylation score (CMS) and were eligible for response monitoring. Dynamic changes of CMS during treatment were strongly associated with treatment response. A CMS increase indicated response up to 80 days before conventional monitoring. SHOX2 and SEPT9 ccfDNA methylation represents a pan-cancer biomarker and has the potential to be a powerful tool for monitoring treatment response in patients with solid tumors and lymphomas. The early identification of nonresponders might allow for a timely change of treatment regimen.
Collapse
Affiliation(s)
- Luka de Vos
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Maria Jung
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Ruth-Miriam Koerber
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Emma G Bawden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tobias A W Holderried
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jörn Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
18
|
Intuyod K, Armartmuntree N, Jusakul A, Sakonsinsiri C, Thanan R, Pinlaor S. Current omics-based biomarkers for cholangiocarcinoma. Expert Rev Mol Diagn 2019; 19:997-1005. [PMID: 31566016 DOI: 10.1080/14737159.2019.1673162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a malignancy of the biliary tract. CCA generally has a low incidence worldwide but incidence is typically high in Southeast Asian countries, particularly in northeastern Thailand, where small liver-fluke (Opisthorchis viverrini) infection is endemic. CCA has a poor prognosis as most CCA patients present with advanced stages. Poor prognosis and worse outcomes are due to the lack of specific and early-stage CCA biomarkers. Areas covered: In this review, we discuss the use of CCA tissues, serum and bile samples as sources of diagnostic and prognostic markers by using -omics approaches, including genomics, epigenomics, transcriptomics and proteomics. The current state of the discovery of molecular candidates and their potential to be used as diagnostic and prognostic biomarkers for CCA are summarized and discussed. Expert opinion: Various potential molecules have been discovered, some of which have been verified as diagnostic biomarkers for CCA. However, most identified molecules require much further evaluation to help us find markers with high specificity, low cost and ease-of-use in routine diagnostic laboratories.
Collapse
Affiliation(s)
- Kitti Intuyod
- Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Napat Armartmuntree
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University , Khon Kaen , Thailand
| | - Chadamas Sakonsinsiri
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Raynoo Thanan
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand.,Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
19
|
Shen N, Wang T, Li D, Zhu Y, Xie H, Lu Y. Hypermethylation of the SEPT9 Gene Suggests Significantly Poor Prognosis in Cancer Patients: A Systematic Review and Meta-Analysis. Front Genet 2019; 10:887. [PMID: 31608117 PMCID: PMC6761278 DOI: 10.3389/fgene.2019.00887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Aberrant hypermethylation of the Septin 9 (SEPT9) is an early event in several human cancers, and increasing studies have reported good performance of methylated SEPT9 (mSEPT9) in cancer diagnosis. Recent studies further focused on its value in cancer prognosis, but results are not clearly elucidated. Methods: A comprehensive search to identify relevant studies about the association between mSEPT9 and cancer prognosis was conducted through the EMBASE, PubMed, and Web of Science databases (up to January 2019). The main outcomes were overall survival (OS) and disease-free survival (DFS). The hazard ratio (HR) and 95% confidence interval (CI) for OS and DFS were extracted from each included study and pooled using a random-effects model. Results: Ten eligible studies comprising 1,266 cancer patients were included. Results demonstrated that mSEPT9 was associated with poor OS (HR = 2.07, 95% CI = 1.40–3.06). Specially, mSEPT9 detected in preoperative plasma predicted worse OS in cancer patients (HR = 3.25, 95% CI = 1.93–5.48). In addition, we also identified a significant association of mSEPT9 with decreased DFS of cancer (HR = 3.24, 95% CI = 1.81–5.79). Conclusion: Our meta-analysis supports that mSEPT9 is associated with reduced OS and DFS in cancer patients. Moreover, detection of mSEPT9 using plasma appears to be a convenient and promising way to predict long-term survival of cancer patients.
Collapse
Affiliation(s)
- Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Delei Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Xie
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
O'Rourke CJ, Lafuente-Barquero J, Andersen JB. Epigenome Remodeling in Cholangiocarcinoma. Trends Cancer 2019; 5:335-350. [PMID: 31208696 DOI: 10.1016/j.trecan.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Cholangiocarcinoma (CCA) comprises a heterogeneous collection of malignancies arising within the biliary tract, characterized by late diagnosis, innate chemoresistance, and abysmal prognosis. Sequencing data have uncovered recurrent mutations in diverse epigenetic regulators, implicating epigenetic destabilization at the root of these tumors. However, few studies have characterized biliary tumor epigenomes. In this Opinion article, we argue that an epigenome-oriented approach to CCA could establish diverse interconnections between many key aspects of research on this disease, including molecular heterogeneity, diverse cells of origin, and prominent tumor microenvironments. Moreover, we discuss plausible causes of epigenome dysregulation in biliary tumors, including genetic, epigenetic, metabolic, microenvironmental, and physiological factors. Lastly, we assess the translational potential of epigenomics in CCA to uncover robust biomarkers and therapeutic opportunities for this growing group of patients with limited treatment options.
Collapse
Affiliation(s)
- Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Juan Lafuente-Barquero
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
21
|
Molnár B, Galamb O, Kalmár A, Barták BK, Nagy ZB, Tóth K, Tulassay Z, Igaz P, Dank M. Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis - an update. Expert Rev Mol Diagn 2019; 19:477-498. [PMID: 31046485 DOI: 10.1080/14737159.2019.1613891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Screening methods for one of the most frequently diagnosed malignancy, colorectal cancer (CRC), have limitations. Circulating cell-free nucleic acids (cfNA) hold clinical relevance as screening, prognostic and therapy monitoring markers. Area covered: In this review, we summarize potential CRC-specific cfNA biomarkers, the recently developed sample preparation techniques, their applications, and pitfalls. Expert opinion: Automated extraction of cfDNA is highly reproducible, however, cfDNA yield is less compared to manual isolation. Quantitative and highly sensitive detection techniques (e.g. digital PCR, NGS) can be applied to analyze genetic and epigenetic changes. Detection of DNA mutations or methylation in cfDNA and related altered levels of mRNA, miRNA, and lncRNA may improve early cancer recognition, based on specific, CRC-related patterns. Detection of cfDNA mutations (e.g. TP53, KRAS, APC) has limited diagnostic sensitivity (40-60%), however, methylated DNA including SEPT9, SFRP1, SDC2 can be applied with higher sensitivity (up to 90%) for CRC. Circulating miRNAs (e.g. miR-21, miR-92, miR-141) provide comparably high sensitivity for CRC as the circulating tumor cell mRNA markers (e.g. EGFR, CK19, CK20, CEA). Automation of cfNA isolation coupled with quantitative analysis of CRC-related, highly sensitive biomarkers may enhance CRC screening and early detection in the future.
Collapse
Affiliation(s)
- Béla Molnár
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Orsolya Galamb
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Alexandra Kalmár
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Barbara Kinga Barták
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Zsófia Brigitta Nagy
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Kinga Tóth
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Zsolt Tulassay
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Péter Igaz
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Magdolna Dank
- c Department of Oncology , Semmelweis University , Budapest , Hungary
| |
Collapse
|
22
|
Jung M, Ellinger J, Gevensleben H, Syring I, Lüders C, de Vos L, Pützer S, Bootz F, Landsberg J, Kristiansen G, Dietrich D. Cell-Free SHOX2 DNA Methylation in Blood as a Molecular Staging Parameter for Risk Stratification in Renal Cell Carcinoma Patients: A Prospective Observational Cohort Study. Clin Chem 2019; 65:559-568. [DOI: 10.1373/clinchem.2018.297549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/19/2018] [Indexed: 01/27/2023]
Abstract
Abstract
BACKGROUND
Novel targeted treatments and immunotherapies have substantially changed therapeutic options for advanced and metastatic renal cell carcinomas (RCCs). However, accurate diagnostic tests for the identification of high-risk patients are urgently needed. Here, we analyzed SHOX2 mRNA expression in RCC tissues and SHOX2 gene body methylation quantitatively in circulating cell-free DNA (ccfDNA) and RCC tissues with regard to risk stratification.
METHODS
The clinical performance of SHOX2 methylation was tested retrospectively and prospectively in a training and testing cohort of RCC tissue samples (n = 760 in total). SHOX2 mRNA expression analysis was included in the training cohort. In matched blood plasma samples from the testing cohort (n = 100), we prospectively examined the capability of pretherapeutic quantitative SHOX2 ccfDNA methylation to assess disease stage and identify patients at high risk of death.
RESULTS
SHOX2 gene body methylation was positively correlated with mRNA expression in RCC tissues (training cohort: Spearman ρ = 0.23, P < 0.001). SHOX2 methylation in tissue and plasma strongly correlated with an advanced disease stage (training cohort: ρ = 0.28, P < 0.001; testing cohort/tissue: ρ = 0.40, P < 0.001; testing cohort/plasma: ρ = 0.34, P = 0.001) and risk of death after initial partial or radical nephrectomy [training cohort: hazard ratio (HR) = 1.40 (95% CI, 1.24–1.57), P < 0.001; testing cohort/tissue: HR = 1.16 (95% CI, 1.07–1.27), P = 0.001; testing cohort/plasma: HR = 1.50 (95% CI, 1.29–1.74), P < 0.001].
CONCLUSIONS
Pretherapeutic SHOX2 ccfDNA methylation testing allows for the identification of RCC patients at high risk of death after nephrectomy. These patients might benefit from an adjuvant treatment or early initiation of a palliative treatment.
Collapse
Affiliation(s)
- Maria Jung
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | | | - Isabella Syring
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | | | - Luka de Vos
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Svenja Pützer
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | | | | | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
23
|
Li L, Fu K, Zhou W, Snyder M. Applying circulating tumor DNA methylation in the diagnosis of lung cancer. PRECISION CLINICAL MEDICINE 2019; 2:45-56. [PMID: 35694699 PMCID: PMC8985769 DOI: 10.1093/pcmedi/pbz003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/17/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Low dose computed tomography (LDCT) is commonly used for disease screening, with identified candidate cancerous regions further diagnosed using tissue biopsy. However, existing techniques are all invasive and unavoidably cause multiple complications. In contrast, liquid biopsy is a noninvasive, ideal surrogate for tissue biopsy that can identify circulating tumor DNA (ctDNA) containing tumorigenic signatures. It has been successfully implemented to assist treatment decisions and disease outcome prediction. ctDNA methylation, a type of lipid biopsy that profiles critical epigenetic alterations occurring during carcinogenesis, has gained increasing attention. Indeed, aberrant ctDNA methylation occurs at early stages in lung malignancy and therefore can be used as an alternative for the early diagnosis of lung cancer. In this review, we give a brief synopsis of the biological basis and detecting techniques of ctDNA methylation. We then summarize the latest progress in use of ctDNA methylation as a diagnosis biomarker. Lastly, we discuss the major issues that limit application of ctDNA methylation in the clinic, and propose possible solutions to enhance its usage.
Collapse
Affiliation(s)
- Lei Li
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, China
| | - Kai Fu
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, USA
| |
Collapse
|
24
|
Lozano MD, Echeveste JI, Abengozar M, Mejías LD, Idoate MA, Calvo A, de Andrea CE. Cytology Smears in the Era of Molecular Biomarkers in Non-Small Cell Lung Cancer: Doing More With Less. Arch Pathol Lab Med 2019; 142:291-298. [PMID: 29494220 DOI: 10.5858/arpa.2017-0208-ra] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - The rapid advances in targeted therapies in non-small cell lung cancer (NSCLC) make the optimization and implementation of cytology specimens for molecular testing a priority. Up to 70% of patients with NSCLC are diagnosed at advanced stages and tissue biopsies often cannot be taken. Although cytology samples provide high-quality material for molecular testing, molecular cytopathology is not yet well known or widely used. OBJECTIVE - To report the many advances in molecular cytopathology and the suitability and utility of cytology samples in molecular and genetic testing of NSCLC. DATA SOURCES - Data sources comprised published peer-reviewed literature and personal experience of the authors. CONCLUSIONS - Molecular testing can be performed on cytologic specimens, especially on direct smears. Rapid on-site evaluation by cytopathologists has improved the adequacy and the management of cytology samples for molecular testing. Mutational profiling of NSCLC using next-generation sequencing can be performed on cytology samples from very small amounts of DNA. Fluorescence in situ hybridization assays on cytology specimens, including stained direct smear, offer some distinct advantages over their histologic counterpart, and are used to detect ALK and ROS1 rearrangements in NSCLC. Cytology specimens allow assessment of the entire tumor cell nucleus, avoiding signal loss from truncation artifacts. The use of cytology samples for assessing programmed death ligand-1 protein expression is currently being developed. Protocols for bisulfite conversion and DNA droplet digital polymerase chain reaction assays have been optimized for cytology smear to investigate aberrant DNA methylation of several NSCLC-related genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlos E de Andrea
- From the Department of Pathology, Clínica Universidad de Navarra, (Drs Lozano, Echeveste, Abengozar, Mejías, Idoate, and de Andrea), IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA) (Dr Calvo), and the Department of Histology and Pathology (Drs Calvo and de Andrea), University of Navarra, Pamplona, Spain
| |
Collapse
|
25
|
Yamashita K, Hosoda K, Nishizawa N, Katoh H, Watanabe M. Epigenetic biomarkers of promoter DNA methylation in the new era of cancer treatment. Cancer Sci 2018; 109:3695-3706. [PMID: 30264476 PMCID: PMC6272087 DOI: 10.1111/cas.13812] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 12/21/2022] Open
Abstract
Promoter DNA methylation, which occurs on cytosine nucleotides across CpG islands, results in gene silencing and represents a major epigenetic alteration in human cancer. Methylation-specific PCR can amplify these modifications as markers in cancer cells. In the present work, we rigorously review the published literatures describing DNA methylation in the promoters of critical tumor suppressor genes; detection of promoter DNA methylation in various body fluids permits early detection of cancer cells during perioperative courses of clinical treatment. The latest whole-genome comprehensive explorations identified excellent epigenetic biomarkers that could be detected at high frequency with high specificity; these biomarkers, which are designated highly relevant methylation genes (HRMG), permit the discrimination of tumor tissues from the corresponding normal tissues; these markers are also associated with unique cancer phenotypes, including dismal prognosis. In humans, HRMG include the CDO1, GSHR, RASSF1 and SFRP1 genes, with these markers permitting discrimination depending on the organs tested. The combination of several HRMG increased the early detection of cancer and exhibited reliable surveillance potential in human body fluids. Cancer clinics using such epigenetic biomarkers are entering a new era of enhanced decision-making with the potential for improved cancer prognosis.
Collapse
Affiliation(s)
- Keishi Yamashita
- SurgeryKitasato University School of MedicineSagamiharaKanagawaJapan
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical FrontiersKitasato University School of MedicineSagamiharaKanagawaJapan
| | - Kei Hosoda
- SurgeryKitasato University School of MedicineSagamiharaKanagawaJapan
| | | | - Hiroshi Katoh
- SurgeryKitasato University School of MedicineSagamiharaKanagawaJapan
| | - Masahiko Watanabe
- SurgeryKitasato University School of MedicineSagamiharaKanagawaJapan
| |
Collapse
|
26
|
Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: The current state and clinical perspectives. Semin Cancer Biol 2018; 51:36-49. [PMID: 29253542 PMCID: PMC7286571 DOI: 10.1016/j.semcancer.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Each year, almost 4.1 million people are diagnosed with gastrointestinal (GI) cancers. Due to late detection of this disease, the mortality is high, causing approximately 3 million cancer-related deaths annually, worldwide. Although the incidence and survival differs according to organ site, earlier detection and improved prognostication have the potential to reduce overall mortality burden from these cancers. Epigenetic changes, including aberrant promoter DNA methylation, are common events in both cancer initiation and progression. Furthermore, such changes may be identified non-invasively with the use of PCR based methods, in bodily fluids of cancer patients. These features make aberrant DNA methylation a promising substrate for the development of disease biomarkers for early detection, prognosis and for predicting response to therapy. In this article, we will provide an update and current clinical perspectives for DNA methylation alterations in patients with colorectal, gastric, pancreatic, liver and esophageal cancers, and discuss their potential role as cancer biomarkers.
Collapse
Affiliation(s)
- Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ajay Goel
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA.
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Potential of quantitative SEPT9 and SHOX2 methylation in plasmatic circulating cell-free DNA as auxiliary staging parameter in colorectal cancer: a prospective observational cohort study. Br J Cancer 2018; 118:1217-1228. [PMID: 29610456 PMCID: PMC5943265 DOI: 10.1038/s41416-018-0035-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background Septin 9 (SEPT9) and short stature homeobox 2 (SHOX2) methylation in circulating cell-free DNA (ccfDNA) are powerful biomarkers for colorectal cancer (CRC) screening, as well as head and neck squamous cell carcinoma staging and monitoring. In the present study, we investigated SEPT9 and SHOX2 ccfDNA methylation as auxiliary pre and post-therapeutic staging parameters in CRC patients. Methods ccfDNA methylation was quantified in 184 prospectively enrolled patients prior to and 3–10 days after surgery, and biomarker levels were associated with clinico-pathological parameters. Results Pre-therapeutic levels of SHOX2 and SEPT9 ccfDNA methylation were strongly associated with Union for International Cancer Control (UICC) stages, tumour (T), nodal (N), and metastasis (M) categories, and histological grade (all P ≤ 0.001), as well as lymphatic invasion and extracapsular lymph node extension (all P< 0.05). Post-therapeutic SHOX2 and SEPT9 ccfDNA methylation levels correlated with UICC stage (all P <0.01). SEPT9 ccfDNA methylation further allowed for an accurate pre- and post-therapeutic detection of distant metastases (AUCpre-therapeutic = 0.79 (95%CI 0.69–0.89), AUCpost-therapeutic = 0.93 (95% CI 0.79–1.0)). Conclusions DNA methylation analysis in plasma is a powerful pre and post-therapeutic diagnostic tool for CRC and may add valuable information to current TNM staging, thereby holding the potential to assist in the development of individually tailored treatment protocols.
Collapse
|
28
|
O'Rourke CJ, Munoz-Garrido P, Aguayo EL, Andersen JB. Epigenome dysregulation in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2018. [DOI: 10.1016/j.bbadis.2017.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Keane MG, Shah A, Pereira SP, Joshi D. Novel biomarkers and endoscopic techniques for diagnosing pancreaticobiliary malignancy. F1000Res 2017; 6:1643. [PMID: 28944047 PMCID: PMC5585877 DOI: 10.12688/f1000research.11371.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The UK incidence of pancreatic ductal adenocarcinoma is 9 per 100,000 population, and biliary tract cancer occurs at a rate of 1–2 per 100,000. The incidence of both cancers is increasing annually and these tumours continue to be diagnosed late and at an advanced stage, limiting options for curative treatment. Population-based screening programmes do not exist for these cancers, and diagnosis currently is dependent on symptom recognition, but often symptoms are not present until the disease is advanced. Recently, a number of promising blood and urine biomarkers have been described for pancreaticobiliary malignancy and are summarised in this review. Novel endoscopic techniques such as single-operator cholangioscopy and confocal endomicroscopy have been used in some centres to enhance standard endoscopic diagnostic techniques and are also evaluated in this review.
Collapse
Affiliation(s)
| | - Amar Shah
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Stephen P Pereira
- UCL Institute for Liver and Digestive Health, Royal Free Campus, London, UK
| | - Deepak Joshi
- Institute of Liver Studies, King's College Hospital, London, UK
| |
Collapse
|
30
|
Ee Uli J, Yong CSY, Yeap SK, Rovie-Ryan JJ, Mat Isa N, Tan SG, Alitheen NB. RNA sequencing (RNA-Seq) of lymph node, spleen, and thymus transcriptome from wild Peninsular Malaysian cynomolgus macaque ( Macaca fascicularis). PeerJ 2017; 5:e3566. [PMID: 28828235 PMCID: PMC5563440 DOI: 10.7717/peerj.3566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022] Open
Abstract
The cynomolgus macaque (Macaca fascicularis) is an extensively utilised nonhuman primate model for biomedical research due to its biological, behavioural, and genetic similarities to humans. Genomic information of cynomolgus macaque is vital for research in various fields; however, there is presently a shortage of genomic information on the Malaysian cynomolgus macaque. This study aimed to sequence, assemble, annotate, and profile the Peninsular Malaysian cynomolgus macaque transcriptome derived from three tissues (lymph node, spleen, and thymus) using RNA sequencing (RNA-Seq) technology. A total of 174,208,078 paired end 70 base pair sequencing reads were obtained from the Illumina Hi-Seq 2500 sequencer. The overall mapping percentage of the sequencing reads to the M. fascicularis reference genome ranged from 53–63%. Categorisation of expressed genes to Gene Ontology (GO) and KEGG pathway categories revealed that GO terms with the highest number of associated expressed genes include Cellular process, Catalytic activity, and Cell part, while for pathway categorisation, the majority of expressed genes in lymph node, spleen, and thymus fall under the Global overview and maps pathway category, while 266, 221, and 138 genes from lymph node, spleen, and thymus were respectively enriched in the Immune system category. Enriched Immune system pathways include Platelet activation pathway, Antigen processing and presentation, B cell receptor signalling pathway, and Intestinal immune network for IgA production. Differential gene expression analysis among the three tissues revealed 574 differentially expressed genes (DEG) between lymph and spleen, 5402 DEGs between lymph and thymus, and 7008 DEGs between spleen and thymus. Venn diagram analysis of expressed genes revealed a total of 2,630, 253, and 279 tissue-specific genes respectively for lymph node, spleen, and thymus tissues. This is the first time the lymph node, spleen, and thymus transcriptome of the Peninsular Malaysian cynomolgus macaque have been sequenced via RNA-Seq. Novel transcriptomic data will further enrich the present M. fascicularis genomic database and provide future research potentials, including novel transcript discovery, comparative studies, and molecular markers development.
Collapse
Affiliation(s)
- Joey Ee Uli
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University, Sepang, Selangor, Malaysia
| | - Jeffrine J Rovie-Ryan
- Department of Wildlife and National Parks (DWNP), Ex-Situ Conservation Division, Department of Wildlife and National Parks, Kuala Lumpur, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Soon Guan Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Song L, Li Y. Progress on the clinical application of the SEPT9 gene methylation assay in the past 5 years. Biomark Med 2017; 11:415-418. [PMID: 28617104 DOI: 10.2217/bmm-2017-0091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Lele Song
- Department of Radiotherapy, The Chinese PLA 309th Hospital, Beijing, PR China.,BioChain (Beijing) Science & Technology, Inc., Beijing, PR China
| | - Yuemin Li
- Department of Radiotherapy, The Chinese PLA 309th Hospital, Beijing, PR China
| |
Collapse
|
32
|
Schröck A, Leisse A, de Vos L, Gevensleben H, Dröge F, Franzen A, Wachendörfer M, Schröck F, Ellinger J, Teschke M, Wilhelm-Buchstab T, Landsberg J, Holdenrieder S, Hartmann G, Field JK, Bootz F, Kristiansen G, Dietrich D. Free-Circulating Methylated DNA in Blood for Diagnosis, Staging, Prognosis, and Monitoring of Head and Neck Squamous Cell Carcinoma Patients: An Observational Prospective Cohort Study. Clin Chem 2017; 63:1288-1296. [PMID: 28515105 DOI: 10.1373/clinchem.2016.270207] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/21/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Circulating cell-free DNA methylation testing in blood has recently received regulatory approval for screening of colorectal cancer. Its application in other clinical settings, including staging, prognosis, prediction, and recurrence monitoring is highly promising, and of particular interest in head and neck squamous cell carcinomas (HNSCCs) that represent a heterogeneous group of cancers with unsatisfactory treatment guidelines. METHODS Short stature homeobox 2 (SHOX2) and septin 9 (SEPT9) DNA methylation in plasma from 649 prospectively enrolled patients (training study: 284 HNSCC/122 control patients; testing study: 141 HNSCC/102 control patients) was quantified before treatment and longitudinally during surveillance. RESULTS In the training study, 59% of HNSCC patients were methylation-positive at 96% specificity. Methylation levels correlated with tumor and nodal category (P < 0.001). Initially increased methylation levels were associated with a higher risk of death [SEPT9: hazard ratio (HR) = 5.27, P = 0.001; SHOX2: HR = 2.32, P = 0.024]. Disease recurrence/metastases were detected in 47% of patients up to 377 days earlier compared to current clinical practice. The onset of second cancers was detected up to 343 days earlier. In the testing study, sensitivity (52%), specificity (95%), prediction of overall survival (SEPT9: HR = 2.78, P = 0.022; SHOX2: HR = 2.50, P = 0.026), and correlation with tumor and nodal category (P <0.001) were successfully validated. CONCLUSIONS Methylation testing in plasma is a powerful diagnostic tool for molecular disease staging, risk stratification, and disease monitoring. Patients with initially high biomarker levels might benefit from intensified treatment and posttherapeutic surveillance. The early detection of a recurrent/metastatic disease or a second malignancy could lead to an earlier consecutive treatment, thereby improving patients' outcomes.
Collapse
Affiliation(s)
- Andreas Schröck
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Annette Leisse
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany.,Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Luka de Vos
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Freya Dröge
- Ear, Nose and Throat Clinic, University Hospital Essen, Essen, Germany
| | - Alina Franzen
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Malin Wachendörfer
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany.,Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Friederike Schröck
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Joerg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Marcus Teschke
- Department of Oral and Maxillofacial Surgery, University Hospital Bonn, Bonn, Germany
| | | | | | | | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - John K Field
- University of Liverpool Cancer Research Center, Liverpool, UK
| | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany;
| |
Collapse
|