1
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
2
|
Rudzinska-Radecka M, Bańcerowski B, Marczyński R, Mukherjee D, Sikora T, Morawska K, Mielczarek A, Moździerski M, Hajduk B, Kotowicz B. Evaluation of Salivary Biomarkers and Spirometry for Diagnosing COPD in Non-Smokers and Smokers of Polish Origin. Biomedicines 2024; 12:1206. [PMID: 38927413 PMCID: PMC11200520 DOI: 10.3390/biomedicines12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory condition with global implications. Accurate and timely diagnosis is critical; however, traditional diagnostic methods (based on spirometry) show limitations, prompting the search for predictive biomarkers and modern diagnostic techniques. This study explored the validation of COPD-related biomarkers (C-reactive protein, procalcitonin, neutrophil elastase, and alpha-1 antitrypsin) in saliva. A diverse cohort, including healthy non-smokers, healthy smokers, and COPD patients of Polish origin, underwent spirometry and marker analysis. The data correlated with clinical factors, revealing noteworthy relations. Firstly, salivary biomarker levels were compared with serum concentrations, demonstrating notable positive or negative correlations, depending on the factor. Further analysis within healthy individuals revealed associations between biomarker levels, spirometry, and clinical characteristics such as age, sex, and BMI. Next, COPD patients exhibited an enhanced concentration of biomarkers compared to healthy groups. Finally, the study introduced a breathing assessment survey, unveiling significant associations between self-perceived breathing and spirometric and tested parameters. Outcomes emphasized the relevance of subjective experiences in COPD research. In conclusion, this research underscored the potential of salivary biomarkers as diagnostic tools for COPD, offering a non-invasive and accessible alternative to traditional methods. The findings paved the way for improved modern diagnostic approaches.
Collapse
Affiliation(s)
- Magdalena Rudzinska-Radecka
- Recumed Ltd., 05-092 Łomianki, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland
| | | | | | - Debjita Mukherjee
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland
| | - Tomasz Sikora
- Military Institute of Chemistry and Radiometry, 00-910 Warsaw, Poland (K.M.)
| | - Karolina Morawska
- Military Institute of Chemistry and Radiometry, 00-910 Warsaw, Poland (K.M.)
| | - Agnieszka Mielczarek
- Department of Conservative Dentistry and Endodontics, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | | | - Bogdan Hajduk
- TS Out-Patients Clinic for Cardiovascular and Pulmonary Diseases, 01-460 Warsaw, Poland;
| | - Beata Kotowicz
- Cancer Biomarker and Cytokines Laboratory Unit, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
3
|
Vaziri Y. The genomic landscape of chronic obstructive pulmonary disease: Insights from nutrigenomics. Clin Nutr ESPEN 2024; 59:29-36. [PMID: 38220389 DOI: 10.1016/j.clnesp.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024]
Abstract
Chronic obstructivе pulmonary disеasе (COPD), a rеspiratory disеasе, is influenced by a combination of gеnеtic and еnvironmеntal factors. Thе fiеld of nutrigеnomics, which studiеs thе intеrplay bеtwееn diеt and gеnеs, provides valuable insights into thе gеnomic landscapе of COPD and its implications for production and managеmеnt. This rеviеw providеs a comprеhеnsivе ovеrviеw of thе gеnеtic aspеcts of COPD and thе rolе of nutrigеnomics in advancing our undеrstanding of thе undеrlying mеchanisms. Through studies of gеnomе-widе associations, researchers have identified gеnеtic factors that contribute to suscеptibility to COPD. Thеsе gеnеs arе associatеd with oxidativе strеss, inflammation, and antioxidant dеfеnsе mеchanisms. Nutrigеnomics rеsеarch is currеntly invеstigating how diеtary componеnts interact with gеnеtic variations to modulatе thе dеvеlopmеnt of COPD. Antioxidants, omеga-3 fatty acids and vitamin D havе dеmonstratеd potеntial bеnеfits in rеducing inflammation, improving lung function, and minimizing еxacеrbations in patients with COPD. Therefore, there are sеvеral challеngеs that must be added to the nutrigеnomic rеsеarch. The challenges include thе nееd for largеr clinical trials, adding hеtеrogеnеity and validating biomarkеrs. In the tеrms of futurе dirеctions, prеcision nutrition, gеnе-basеd thеrapiеs, biomarkеr dеvеlopmеnt, intеgration of multi-omics data, systеms biology analysis, longitudinal studiеs, and public hеalth implications arе important arеas to еxplorе. Pеrsonalizеd nutritional intеrvеntions based on an individual's gеnеtic profilе hold grеat promisе for optimizing COPD managеmеnt. In conclusion, nutrigеnomics provides valuable insights into the gеnomic landscapе of COPD and its intеraction with the disease. This knowlеdgе can guidе thе dеvеlopmеnt of pеrsonalizеd diеtary stratеgiеs and gеnе-basеd thеrapiеs for thе prеvеntion and managеmеnt of COPD. Howеvеr, morе rеsеarch is nееdеd to validatе thеsе findings, dеvеlop еffеctivе intеrvеntions, and implеmеnt thеm еffеctivеly in clinical practicе to improvе thе quality of lifе for pеoplе with COPD.
Collapse
Affiliation(s)
- Yashar Vaziri
- Department of Nutrition and Dietetics, Sarab Branch, Islamic Azad University, Sarab, Iran.
| |
Collapse
|
4
|
Yang C, Deng L, Bao F, Jiang H, Zhang L. Sevoflurane with Low Concentration Decrease DNA Methylation on Chronic Obstructive Pulmonary Disease (COPD)-Related Gene Promoter in COPD Rat. COPD 2023; 20:348-356. [PMID: 38010369 DOI: 10.1080/15412555.2023.2278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a difficult-to-cure disease that mainly affects the respiratory system. Inhaled anesthetic drug such as sevoflurane plays a controversial role in COPD by different concentration, but the underlying epigenetic mechanism remains unclear. Here, we prepared lipopolysaccharide (LPS)-induced COPD rat model, and isolated Alveolar type II (ATII) cells. We mainly focused DNA methylation on the promoter of COPD-related genes including Sftpa1, Napsa, Ca2, Sfta2, Lamp3, Wif1, Pgc, and Etv5. We observed COPD rat treated by sevoflurane with low (0.5%) and high (2%) concentrations displayed an opposite DNA methylation pattern. These six genes' promoter were all hypomethylated by 0.5% sevoflurane whereas hypermethylated by 2% sevoflurane, accompanied with the opposite transcriptional activity. We further verified that the DNMT1 binding ability contributed to DNA methylation these six genes' promoter. Moreover, we also captured DNMT1 and identified REC8 meiotic recombination protein (REC8) as the specific binding protein only existed in ATII cells treated with 0.5% sevoflurane rather than 2% and control. The binding ability of REC8 on these target genes' promoter showed highly positive correlation with DNMT1. In summary, we uncovered a potential epigenetic role of sevoflurane with low concentration in ATII cells of COPD that may help us deeply understand the pathogenesis and treatment mechanism of inhaled anesthesia drugs in COPD via a dose-dependent manner.
Collapse
Affiliation(s)
- Chuanxin Yang
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Libing Deng
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Fang Bao
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Hui Jiang
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| | - Long Zhang
- Department of Anesthesiology, Qingpu Branch of Zhongshan, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Variations in BCO2 Coding Sequence Causing a Difference in Carotenoid Concentration in the Skin of Chinese Indigenous Chicken. Genes (Basel) 2023; 14:genes14030671. [PMID: 36980942 PMCID: PMC10048632 DOI: 10.3390/genes14030671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Carotenoid consumption decreases the risk of cancer, osteoporosis, or neurodegenerative diseases through interrupting the formation of free radicals. The deposition of carotenoids in chicken skin makes the skin color turn from white into yellow. The enzyme β-carotene oxygenase 2 (BCO2) plays a key role during the degradation process of carotenoids in skin. How the BCO2 affects the skin color of the chicken and whether it is the key factor that results in the phenotypic difference between yellow- and white-skin chickens are still unclear. In this research, the measurement of the concentration of carotenoids in chicken skin by HPLC showed that the carotenoid concentration in chickens with a yellow skin was significantly higher than that in white-skin chickens. Moreover, there were significant differences in BCO2 gene expression in the back skin between yellow- and white-skin chickens. Scanning the SNPs in BCO2 gene revealed a G/A mutation in exon 6 of the BCO2 gene in white and yellow skin chicken. Generally, one SNP c.890A>G was found to be associated with the chicken skin color and may be used as a genetic marker in breeding for yellow skin in Chinese indigenous chickens.
Collapse
|
6
|
Biological and Genetic Mechanisms of COPD, Its Diagnosis, Treatment, and Relationship with Lung Cancer. Biomedicines 2023; 11:biomedicines11020448. [PMID: 36830984 PMCID: PMC9953173 DOI: 10.3390/biomedicines11020448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most prevalent chronic adult diseases, with significant worldwide morbidity and mortality. Although long-term tobacco smoking is a critical risk factor for this global health problem, its molecular mechanisms remain unclear. Several phenomena are thought to be involved in the evolution of emphysema, including airway inflammation, proteinase/anti-proteinase imbalance, oxidative stress, and genetic/epigenetic modifications. Furthermore, COPD is one main risk for lung cancer (LC), the deadliest form of human tumor; formation and chronic inflammation accompanying COPD can be a potential driver of malignancy maturation (0.8-1.7% of COPD cases develop cancer/per year). Recently, the development of more research based on COPD and lung cancer molecular analysis has provided new light for understanding their pathogenesis, improving the diagnosis and treatments, and elucidating many connections between these diseases. Our review emphasizes the biological factors involved in COPD and lung cancer, the advances in their molecular mechanisms' research, and the state of the art of diagnosis and treatments. This work combines many biological and genetic elements into a single whole and strongly links COPD with lung tumor features.
Collapse
|
7
|
Phillips RV, Wei L, Cardenas A, Hubbard AE, McHale CM, Vermeulen R, Wei H, Smith MT, Zhang L, Lan Q, Rothman N. Epigenome-wide association studies of occupational exposure to benzene and formaldehyde. Epigenetics 2022; 17:2259-2277. [PMID: 36017556 PMCID: PMC9665125 DOI: 10.1080/15592294.2022.2115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Sufficient evidence supports a relationship between certain myeloid neoplasms and exposure to benzene or formaldehyde. DNA methylation could underlie benzene- and formaldehyde-induced health outcomes, but data in exposed human populations are limited. We conducted two cross-sectional epigenome-wide association studies (EWAS), one in workers exposed to benzene and another in workers exposed to formaldehyde. Using HumanMethylation450 BeadChips, we investigated differences in blood cell DNA methylation among 50 benzene-exposed subjects and 48 controls, and among 31 formaldehyde-exposed subjects and 40 controls. We performed CpG-level and regional-level analyses. In the benzene EWAS, we found genome-wide significant alterations, i.e., FWER-controlled P-values <0.05, in the mean and variance of methylation at 22 and 318 CpG sites, respectively, and in mean methylation of a large genomic region. Pathway analysis of genes corresponding to benzene-associated differential methylation sites revealed an impact on the AMPK signalling pathway. In formaldehyde-exposed subjects compared to controls, 9 CpGs in the DUSP22 gene promoter had genome-wide significant decreased methylation variability and a large region of the HOXA5 promoter with 44 CpGs was hypomethylated. Our findings suggest that DNA methylation may contribute to the pathogenesis of diseases related to benzene and formaldehyde exposure. Aberrant expression and methylation of HOXA5 previously has been shown to be clinically significant in myeloid leukaemias. The tumour suppressor gene DUSP22 is a potential biomarker of exposure to formaldehyde, and irregularities have been associated with multiple exposures and diseases.
Collapse
Affiliation(s)
- Rachael V. Phillips
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Linqing Wei
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Alan E. Hubbard
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Cliona M. McHale
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Roel Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Universiteit Utrecht (UU), Utrecht, The Netherlands
| | - Hu Wei
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| | - Martyn T. Smith
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Luoping Zhang
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
8
|
Rathod R, Zhang H, Karmaus W, Ewart S, Mzayek F, Arshad SH, Holloway JW. Association of childhood BMI trajectory with post-adolescent and adult lung function is mediated by pre-adolescent DNA methylation. Respir Res 2022; 23:194. [PMID: 35906571 PMCID: PMC9335987 DOI: 10.1186/s12931-022-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Body mass index (BMI) has been shown to be associated with lung function. Recent findings showed that DNA methylation (DNAm) variation is likely to be a consequence of changes in BMI. However, whether DNAm mediates the association of BMI with lung function is unknown. We examined the mediating role of DNAm on the association of pre-adolescent BMI trajectories with post-adolescent and adulthood lung function (forced expiratory volume (FEV1), forced vital capacity (FVC), and FEV1/FVC). METHODS Analyses were undertaken in the Isle of Wight birth cohort (IOWBC). Group-based trajectory modelling was applied to infer latent BMI trajectories from age 1 to 10 years. An R package, ttscreening, was applied to identify CpGs at 10 years potentially associated with BMI trajectories for each sex. Linear regressions were implemented to further screen CpGs for their association with lung function at 18 years. Path analysis, stratified by sex, was applied to each screened CpG to assess its role of mediation. Internal validation was applied to further examine the mediation consistency of the detected CpGs based on lung function at 26 years. Mendelian randomization (MR-base) was used to test possible causal effects of the identified CpGs. RESULTS Two BMI trajectories (high vs. low) were identified. Of the 442,475 CpG sites, 18 CpGs in males and 33 in females passed screening. Eight CpGs in males and 16 CpGs in females (none overlapping) were identified as mediators. For subjects with high BMI trajectory, high DNAm at all CpGs in males were associated with decreased lung function, while 8 CpGs in females were associated with increased lung function at 18 years. At 26 years, 6 CpGs in males and 14 CpGs in females showed the same direction of indirect effects as those at 18 years. DNAm at CpGs cg19088553 (GRIK2) and cg00612625 (HPSE2) showed a potential causal effect on FEV1. CONCLUSIONS The effects of BMI trajectory in early childhood on post-adolescence lung function were likely to be mediated by pre-adolescence DNAm in both males and females, but such mediation effects were likely to diminish over time.
Collapse
Affiliation(s)
- Rutu Rathod
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA.
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, 38152-0001, USA
| | - S Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - John W Holloway
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
9
|
Sun Y, Yang J, Cai H, Liu J, Liu Y, Luo J, Zhou H. Differential OAT methylation correlates with cell infiltration in tumor microenvironment and overall survival post-radiotherapy in oral squamous cell carcinoma patient. J Oral Pathol Med 2022; 51:611-619. [PMID: 35708285 DOI: 10.1111/jop.13328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Given that DNA methylation and tumor microenvironment (TME) are susceptible to radiotherapy, we aimed to figure out specific differential DNA methylation to reflect oral squamous cell carcinoma (OSCC) prognosis and associated effect on TME changes post-radiotherapy, performing as an efficient biomarker. MATERIALS AND METHODS Differentially methylation analysis was performed using data from TCGA. Curves of Kaplan Meier (K-M) survival, cumulative hazard and events, Cox proportional hazards and Linear regression model were conducted to screen and validate differential methylation genes, while multiple regression equation to analyze if ornithine aminotransferase (OAT) methylation correlates with radiotherapy. For correlation between OAT methylation and immune infiltrates, CIBERSORT and ESTIMATE algorithms were performed, following GSEA and ssGSEA analysis to evaluate biological process. RESULTS Compared to normal tissues, only OAT in OSCC was differential significantly by K-M analysis (p = 0.0364). OAT hypermethylation was associated with increased overall survival (HR: 0.65, p = 0.0358). Radiotherapy correlated with OAT methylation (β = -0.01, p = 0.0061); most patients with OAT hypermethylation were radiation-sensitive. Hypomethylated OAT correlated with higher cell infiltrations in TME. Neuroactive ligand-receptor interaction was most significantly related to OAT methylation (p = 9.2e-10). Sulfur metabolism was the most significantly in OAT hypermethylation group (p = 0.0041) and RIG-I-like receptor in OAT hypomethylation group (p = 0.0094). CONCLUSION OAT methylation can serve as a predictor of OSCC prognosis post-radiotherapy with potential mechanism by changing cell infiltrations in TME, but further experimental study deserves to carry out confirming the role and mechanism of OAT methylation in OSCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - He Cai
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yangfan Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Tian M, Xia P, Yan L, Gou X, Giesy JP, Dai J, Yu H, Zhang X. Toxicological Mechanism of Individual Susceptibility to Formaldehyde-Induced Respiratory Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6511-6524. [PMID: 35438505 DOI: 10.1021/acs.est.1c07945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the mechanisms of individual susceptibility to exposure to environmental pollutants has been a challenge in health risk assessment. Here, an integrated approach combining a CRISPR screen in human cells and epidemiological analysis was developed to identify the individual susceptibility to the adverse health effects of air pollutants by taking formaldehyde (FA) and the associated chronic obstructive pulmonary disease (COPD) as a case study. Among the primary hits of CRISPR screening of FA in human A549 cells, HTR4 was the only gene genetically associated with COPD susceptibility in global populations. However, the association between HTR4 and FA-induced respiratory toxicity is unknown in the literature. Adverse outcome pathway (AOP) network analysis of CRISPR screen hits provided a potential mechanistic link between activation of HTR4 (molecular initiating event) and FA-induced lung injury (adverse outcome). Systematic toxicology tests (in vitro and animal experiments) were conducted to reveal the HTR4-involved biological mechanisms underlying the susceptibility to adverse health effects of FA. Functionality and enhanced expression of HTR4 were required for susceptibility to FA-induced lung injury, and FA-induced epigenetic changes could result in enhanced expression of HTR4. Specific epigenetic and genetic characteristics of HTR4 were associated with the progression and prevalence of COPD, respectively, and these genetic risk factors for COPD could be potential biomarkers of individual susceptibility to adverse respiratory effects of FA. These biomarkers could be of great significance for defining subpopulations susceptible to exposure to FA and reducing uncertainty in the next-generation health risk assessment of air pollutants. Our study delineated a novel toxicological pathway mediated by HTR4 in FA-induced lung injury, which could provide a mechanistic understanding of the potential biomarkers of individual susceptibility to adverse respiratory effects of FA.
Collapse
Affiliation(s)
- Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan Saskatoon, Saskatoon SK S7N 5B3, Canada
- Zoology Department, Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, Michigan 48824, United States
- Department of Environmental Science, Baylor University, Waco, Texas 76798, United States
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
11
|
Avci E, Sarvari P, Savai R, Seeger W, Pullamsetti SS. Epigenetic Mechanisms in Parenchymal Lung Diseases: Bystanders or Therapeutic Targets? Int J Mol Sci 2022; 23:ijms23010546. [PMID: 35008971 PMCID: PMC8745712 DOI: 10.3390/ijms23010546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Epigenetic responses due to environmental changes alter chromatin structure, which in turn modifies the phenotype, gene expression profile, and activity of each cell type that has a role in the pathophysiology of a disease. Pulmonary diseases are one of the major causes of death in the world, including lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung tuberculosis, pulmonary embolism, and asthma. Several lines of evidence indicate that epigenetic modifications may be one of the main factors to explain the increasing incidence and prevalence of lung diseases including IPF and COPD. Interestingly, isolated fibroblasts and smooth muscle cells from patients with pulmonary diseases such as IPF and PH that were cultured ex vivo maintained the disease phenotype. The cells often show a hyper-proliferative, apoptosis-resistant phenotype with increased expression of extracellular matrix (ECM) and activated focal adhesions suggesting the presence of an epigenetically imprinted phenotype. Moreover, many abnormalities observed in molecular processes in IPF patients are shown to be epigenetically regulated, such as innate immunity, cellular senescence, and apoptotic cell death. DNA methylation, histone modification, and microRNA regulation constitute the most common epigenetic modification mechanisms.
Collapse
MESH Headings
- Animals
- Biomarkers
- Combined Modality Therapy
- DNA Methylation
- Diagnosis, Differential
- Disease Management
- Disease Susceptibility
- Epigenesis, Genetic
- Gene Expression Regulation
- Histones/metabolism
- Humans
- Idiopathic Pulmonary Fibrosis/diagnosis
- Idiopathic Pulmonary Fibrosis/etiology
- Idiopathic Pulmonary Fibrosis/metabolism
- Idiopathic Pulmonary Fibrosis/therapy
- Lung Diseases, Interstitial/diagnosis
- Lung Diseases, Interstitial/etiology
- Lung Diseases, Interstitial/metabolism
- Lung Diseases, Interstitial/therapy
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/therapy
- Treatment Outcome
Collapse
Affiliation(s)
- Edibe Avci
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Pouya Sarvari
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Soni S. Pullamsetti
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany; (E.A.); (P.S.); (R.S.); (W.S.)
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-603-270-5380; Fax: +49-603-270-5385
| |
Collapse
|
12
|
Konwar C, Asiimwe R, Inkster AM, Merrill SM, Negri GL, Aristizabal MJ, Rider CF, MacIsaac JL, Carlsten C, Kobor MS. Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression. Epigenetics Chromatin 2021; 14:54. [PMID: 34895312 PMCID: PMC8665859 DOI: 10.1186/s13072-021-00428-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). METHODS We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. RESULTS First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR < 0.05, magnitude of DNA methylation difference Δβ > 0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR < 0.05, Δβ > 0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR < 0.1, Δβ > 0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR < 0.1, Δβ > 0.05). CONCLUSION Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect-a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Rebecca Asiimwe
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Amy M Inkster
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sarah M Merrill
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Gian L Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Maria J Aristizabal
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
- The Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Biology, Queen' University, Kingston, ON, K7L 3N6, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Christopher F Rider
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Julie L MacIsaac
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Christopher Carlsten
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada.
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
13
|
Rajasekar P, Patel J, Clifford RL. DNA Methylation of Fibroblast Phenotypes and Contributions to Lung Fibrosis. Cells 2021; 10:cells10081977. [PMID: 34440746 PMCID: PMC8391838 DOI: 10.3390/cells10081977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
Fibroblasts are an integral part of connective tissue and play a crucial role in developing and modulating the structural framework of tissues by acting as the primary source of extracellular matrix (ECM). A precise definition of the fibroblast remains elusive. Lung fibroblasts orchestrate the assembly and turnover of ECM to facilitate gas exchange alongside performing immune functions including the secretion of bioactive molecules and antigen presentation. DNA methylation is the covalent attachment of a methyl group to primarily cytosines within DNA. DNA methylation contributes to diverse cellular phenotypes from the same underlying genetic sequence, with DNA methylation profiles providing a memory of cellular origin. The lung fibroblast population is increasingly viewed as heterogeneous with between 6 and 11 mesenchymal populations identified across health and lung disease to date. DNA methylation has been associated with different lung fibroblast populations in health and with alterations in lung disease, but to varying extents. In this review, we will discuss lung fibroblast heterogeneity and the evidence for a contribution from DNA methylation to defining cell populations and alterations in disease.
Collapse
|
14
|
Huo X, Jin S, Wang Y, Ma L. DNA methylation in chronic obstructive pulmonary disease. Epigenomics 2021; 13:1145-1155. [PMID: 34142873 DOI: 10.2217/epi-2021-0111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a complex disease with polygenetic tendency, is one of the most important health problems in the world. Recently, in the study of the pathogenesis of the COPD, epigenetic changes caused by environmental factors, such as DNA methylation, started to attract more attention than genetic factors. In this review, we discuss the main features of DNA methylation, such as DNA methyltransferases and the methylation sites that modulate the DNA methylation level, and their roles in COPD progression. Finally, to promote new ideas for the prevention and treatment of COPD, we focus on the potential of DNA methylation as a COPD therapeutic target.
Collapse
Affiliation(s)
- XinXin Huo
- School of Public Health, Lanzhou University, Lanzhou, China
| | - SiHui Jin
- School of Public Health, Lanzhou University, Lanzhou, China
| | - YiGe Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A, Fernández-Rubio L, Morente P, Fernández-Hinojal G, Echaide M, Garnica M, Ramos P, Vera R, Kochan G, Escors D. Understanding LAG-3 Signaling. Int J Mol Sci 2021; 22:ijms22105282. [PMID: 34067904 PMCID: PMC8156499 DOI: 10.3390/ijms22105282] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Lymphocyte activation gene 3 (LAG-3) is a cell surface inhibitory receptor with multiple biological activities over T cell activation and effector functions. LAG-3 plays a regulatory role in immunity and emerged some time ago as an inhibitory immune checkpoint molecule comparable to PD-1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. LAG-3 is the third inhibitory receptor to be exploited in human anti-cancer immunotherapies, and it is considered a potential next-generation cancer immunotherapy target in human therapy, right next to PD-1 and CTLA-4. Unlike PD-1 and CTLA-4, the exact mechanisms of action of LAG-3 and its relationship with other immune checkpoint molecules remain poorly understood. This is partly caused by the presence of non-conventional signaling motifs in its intracellular domain that are different from other conventional immunoregulatory signaling motifs but with similar inhibitory activities. Here we summarize the current understanding of LAG-3 signaling and its role in LAG-3 functions, from its mechanisms of action to clinical applications.
Collapse
Affiliation(s)
- Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Miren Zuazo
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Leticia Fernández-Rubio
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Pilar Morente
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Gonzalo Fernández-Hinojal
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Maider Garnica
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Ruth Vera
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Correspondence: (G.K.); (D.E.)
| | - David Escors
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Correspondence: (G.K.); (D.E.)
| |
Collapse
|
16
|
Schmidt M, Maié T, Dahl E, Costa IG, Wagner W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol 2020; 18:178. [PMID: 33234153 PMCID: PMC7687708 DOI: 10.1186/s12915-020-00910-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background The complex composition of different cell types within a tissue can be estimated by deconvolution of bulk gene expression profiles or with various single-cell sequencing approaches. Alternatively, DNA methylation (DNAm) profiles have been used to establish an atlas for multiple human tissues and cell types. DNAm is particularly suitable for deconvolution of cell types because each CG dinucleotide (CpG site) has only two states per DNA strand—methylated or non-methylated—and these epigenetic modifications are very consistent during cellular differentiation. So far, deconvolution of DNAm profiles implies complex signatures of many CpGs that are often measured by genome-wide analysis with Illumina BeadChip microarrays. In this study, we investigated if the characterization of cell types in tissue is also feasible with individual cell type-specific CpG sites, which can be addressed by targeted analysis, such as pyrosequencing. Results We compiled and curated 579 Illumina 450k BeadChip DNAm profiles of 14 different non-malignant human cell types. A training and validation strategy was applied to identify and test for cell type-specific CpGs. We initially focused on estimating the relative amount of fibroblasts using two CpGs that were either hypermethylated or hypomethylated in fibroblasts. The combination of these two DNAm levels into a “FibroScore” correlated with the state of fibrosis and was associated with overall survival in various types of cancer. Furthermore, we identified hypomethylated CpGs for leukocytes, endothelial cells, epithelial cells, hepatocytes, glia, neurons, fibroblasts, and induced pluripotent stem cells. The accuracy of this eight CpG signature was tested in additional BeadChip datasets of defined cell mixtures and the results were comparable to previously published signatures based on several thousand CpGs. Finally, we established and validated pyrosequencing assays for the relevant CpGs that can be utilized for classification and deconvolution of cell types. Conclusion This proof of concept study demonstrates that DNAm analysis at individual CpGs reflects the cellular composition of cellular mixtures and different tissues. Targeted analysis of these genomic regions facilitates robust methods for application in basic research and clinical settings.
Collapse
Affiliation(s)
- Marco Schmidt
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, 52074, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Edgar Dahl
- RWTH centralized Biomaterial Bank (RWTH cBMB), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, 52074, Aachen, Germany.
| |
Collapse
|
17
|
He LX, Tang ZH, Huang QS, Li WH. DNA Methylation: A Potential Biomarker of Chronic Obstructive Pulmonary Disease. Front Cell Dev Biol 2020; 8:585. [PMID: 32733890 PMCID: PMC7358425 DOI: 10.3389/fcell.2020.00585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious public health concern worldwide. By 2040, 4.41 million people are estimated to expire annually due to COPD. However, till date, it has remained difficult to alter the activity or progress of the disease through treatment. In order to address this issue, the best way would be to find biomarkers and new therapeutic targets for COPD. DNA methylation (DNAm) may be a potential biomarker for disease prevention, diagnosis, and prognosis, and its reversibility further makes it a potential drug design target in COPD. In this review, we aimed to explore the role of DNAm as biomarkers and disease mediators in different tissue samples from patients with COPD.
Collapse
Affiliation(s)
- Lin-Xi He
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao-Hui Tang
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Song Huang
- Department of Respiratory, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Hong Li
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Zhang L, Valizadeh H, Alipourfard I, Bidares R, Aghebati-Maleki L, Ahmadi M. Epigenetic Modifications and Therapy in Chronic Obstructive Pulmonary Disease (COPD): An Update Review. COPD 2020; 17:333-342. [PMID: 32558592 DOI: 10.1080/15412555.2020.1780576] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) that is one of the most prevalent chronic adult diseases and the third leading cause of fatality until 2020. Elastase/anti-elastase hypothesis, chronic inflammation, apoptosis, oxidant-antioxidant balance and infective repair cause pathogenesis of COPD are among the factors at play. Epigenetic changes are post-translational modifications in histone proteins and DNA such as methylation and acetylation as well as dysregulation of miRNAs expression. In this update review, we have examined recent studies on the upregulation or downregulation of methylation in different genes associated with COPD. Dysregulation of HDAC activity which is caused by some factors and miRNAs plays a key role in the suppression and reduction of COPD development. Also, some therapeutic approaches are proposed against COPD by targeting HDAC2 and miRNAs, which have therapeutic effects.
Collapse
Affiliation(s)
- Lingzhi Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hamed Valizadeh
- Department of Internal Medicine and Pulmonology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iraj Alipourfard
- Faculty of Life Sciences, Center of pharmaceutical sciences, University of Vienna, Vienna, Austria.,Faculty of Sciences, School of Pharmacy, University of Rome Tor Vergata, Roma, Italy
| | - Ramtin Bidares
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Ali MK, Kim RY, Brown AC, Donovan C, Vanka KS, Mayall JR, Liu G, Pillar AL, Jones-Freeman B, Xenaki D, Borghuis T, Karim R, Pinkerton JW, Aryal R, Heidari M, Martin KL, Burgess JK, Oliver BG, Trinder D, Johnstone DM, Milward EA, Hansbro PM, Horvat JC. Critical role for iron accumulation in the pathogenesis of fibrotic lung disease. J Pathol 2020; 251:49-62. [PMID: 32083318 DOI: 10.1002/path.5401] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/19/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Increased iron levels and dysregulated iron homeostasis, or both, occur in several lung diseases. Here, the effects of iron accumulation on the pathogenesis of pulmonary fibrosis and associated lung function decline was investigated using a combination of murine models of iron overload and bleomycin-induced pulmonary fibrosis, primary human lung fibroblasts treated with iron, and histological samples from patients with or without idiopathic pulmonary fibrosis (IPF). Iron levels are significantly increased in iron overloaded transferrin receptor 2 (Tfr2) mutant mice and homeostatic iron regulator (Hfe) gene-deficient mice and this is associated with increases in airway fibrosis and reduced lung function. Furthermore, fibrosis and lung function decline are associated with pulmonary iron accumulation in bleomycin-induced pulmonary fibrosis. In addition, we show that iron accumulation is increased in lung sections from patients with IPF and that human lung fibroblasts show greater proliferation and cytokine and extracellular matrix responses when exposed to increased iron levels. Significantly, we show that intranasal treatment with the iron chelator, deferoxamine (DFO), from the time when pulmonary iron levels accumulate, prevents airway fibrosis and decline in lung function in experimental pulmonary fibrosis. Pulmonary fibrosis is associated with an increase in Tfr1+ macrophages that display altered phenotype in disease, and DFO treatment modified the abundance of these cells. These experimental and clinical data demonstrate that increased accumulation of pulmonary iron plays a key role in the pathogenesis of pulmonary fibrosis and lung function decline. Furthermore, these data highlight the potential for the therapeutic targeting of increased pulmonary iron in the treatment of fibrotic lung diseases such as IPF. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Md Khadem Ali
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Stanford University, Stanford, CA, USA.,Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Kanth S Vanka
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Amber L Pillar
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Bernadette Jones-Freeman
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Dikaia Xenaki
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Theo Borghuis
- Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Rafia Karim
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - James W Pinkerton
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Respiratory Pharmacology & Toxicology Group, National Heart & Lung Institute, Imperial College London, London, UK
| | - Ritambhara Aryal
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Priority Research Centre for Brain and Mental Health and School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | - Moones Heidari
- Priority Research Centre for Brain and Mental Health and School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | - Kristy L Martin
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Priority Research Centre for Brain and Mental Health and School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, Australia.,Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Debbie Trinder
- Medical School and, Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Australia
| | - Daniel M Johnstone
- Discipline of Physiology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Elizabeth A Milward
- Priority Research Centre for Brain and Mental Health and School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs and School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| |
Collapse
|
20
|
LeBleu VS, Neilson EG. Origin and functional heterogeneity of fibroblasts. FASEB J 2020; 34:3519-3536. [PMID: 32037627 DOI: 10.1096/fj.201903188r] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
The inherent plasticity and resiliency of fibroblasts make this cell type a conventional tool for basic research. But where do they come from, are all fibroblasts the same, and how do they function in disease? The first fibroblast lineages in mammalian development emerge from the ooze of primary mesenchyme during gastrulation. They are cells that efficiently create and negotiate the extracellular matrix of the mesoderm in order to migrate and meet their developmental fate. Mature fibroblasts in epithelial tissues live in the interstitial spaces between basement membranes that spatially delimit complex organ structures. While the function of resident fibroblasts in healthy tissues is largely conjecture, the accumulation of fibroblasts in pathologic lesions offers insight into biologic mechanisms that control their function; fibroblasts are poised to coordinate fibrogenesis in tissue injury, neoplasia, and aging. Here, we examine the developmental origin and plasticity of fibroblasts, their molecular and functional definitions, the epigenetic control underlying their identity and activation, and the evolution of their immune regulatory functions. These topics are reviewed through the lens of fate mapping using genetically engineered mouse models and from the perspective of single-cell RNA sequencing. Recent observations suggest dynamic and heterogeneous functions for fibroblasts that underscore their complex molecular signatures and utility in injured tissues.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Departments of Medicine and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric G Neilson
- Departments of Medicine and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
21
|
Beetch M, Harandi-Zadeh S, Shen K, Lubecka K, Kitts DD, O'Hagan HM, Stefanska B. Dietary antioxidants remodel DNA methylation patterns in chronic disease. Br J Pharmacol 2019; 177:1382-1408. [PMID: 31626338 DOI: 10.1111/bph.14888] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic diseases account for over 60% of all deaths worldwide according to the World Health Organization reports. Majority of cases are triggered by environmental exposures that lead to aberrant changes in the epigenome, specifically, the DNA methylation patterns. These changes result in altered expression of gene networks and activity of signalling pathways. Dietary antioxidants, including catechins, flavonoids, anthocyanins, stilbenes and carotenoids, demonstrate benefits in the prevention and/or support of therapy in chronic diseases. This review provides a comprehensive discussion of potential epigenetic mechanisms of antioxidant compounds in reversing altered patterns of DNA methylation in chronic disease. Antioxidants remodel the DNA methylation patterns through multiple mechanisms, including regulation of epigenetic enzymes and chromatin remodelling complexes. These effects can further contribute to antioxidant properties of the compounds. On the other hand, decrease in oxidative stress itself can impact DNA methylation delivering additional link between antioxidant mechanisms and epigenetic effects of the compounds. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Megan Beetch
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Sadaf Harandi-Zadeh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Kate Shen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, Poland
| | - David D Kitts
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Heather M O'Hagan
- Cell, Molecular and Cancer Biology, Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Wu X, Huang Q, Javed R, Zhong J, Gao H, Liang H. Effect of tobacco smoking on the epigenetic age of human respiratory organs. Clin Epigenetics 2019; 11:183. [PMID: 31801625 PMCID: PMC6894291 DOI: 10.1186/s13148-019-0777-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Smoking leads to the aging of organs. However, no studies have been conducted to quantify the effect of smoking on the aging of respiratory organs and the aging-reversing ability of smoking cessation. RESULTS We collected genome-wide methylation datasets of buccal cells, airway cells, esophagus tissue, and lung tissue from non-smokers, smokers, and ex-smokers. We used the "epigenetic clock" method to quantify the epigenetic age acceleration in the four organs. The statistical analyses showed the following: (1) Smoking increased the epigenetic age of airway cells by an average of 4.9 years and lung tissue by 4.3 years. (2) After smoking ceased, the epigenetic age acceleration in airway cells (but not in lung tissue) slowed to a level that non-smokers had. (3) The epigenetic age acceleration in airway cells and lung tissue showed no gender difference. CONCLUSIONS Smoking can accelerate the epigenetic age of human respiratory organs, but the effect varies among organs and can be reversed by smoking cessation. Our study provides a powerful incentive to reduce tobacco consumption autonomously.
Collapse
Affiliation(s)
- Xiaohui Wu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.,Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Technology and Engineering Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong, China
| | - Qingsheng Huang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Ruheena Javed
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jiayong Zhong
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huan Gao
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiying Liang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
23
|
Whole-genome methylation profiling from PBMCs in acute-exacerbation COPD patients with good and poor responses to corticosteroid treatment. Genomics 2019; 111:1381-1386. [DOI: 10.1016/j.ygeno.2018.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/09/2023]
|
24
|
Armstrong DA, Chen Y, Dessaint JA, Aridgides DS, Channon JY, Mellinger DL, Christensen BC, Ashare A. DNA Methylation Changes in Regional Lung Macrophages Are Associated with Metabolic Differences. Immunohorizons 2019; 3:274-281. [PMID: 31356157 PMCID: PMC6686200 DOI: 10.4049/immunohorizons.1900042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
A number of pulmonary diseases occur with upper lobe predominance, including cystic fibrosis and smoking-related chronic obstructive pulmonary disease. In the healthy lung, several physiologic and metabolic factors exhibit disparity when comparing the upper lobe of the lung to lower lobe, including differences in oxygenation, ventilation, lymphatic flow, pH, and blood flow. In this study, we asked whether these regional differences in the lung are associated with DNA methylation changes in lung macrophages that could potentially lead to altered cell responsiveness upon subsequent environmental challenge. All analyses were performed using primary lung macrophages collected via bronchoalveolar lavage from healthy human subjects with normal pulmonary function. Epigenome-wide DNA methylation was examined via Infinium MethylationEPIC (850K) array and validated by targeted next-generation bisulfite sequencing. We observed 95 CpG loci with significant differential methylation in lung macrophages, comparing upper lobe to lower lobe (all false discovery rate < 0.05). Several of these genes, including CLIP4, HSH2D, NR4A1, SNX10, and TYK2, have been implicated as participants in inflammatory/immune-related biological processes. Functionally, we identified phenotypic differences in oxygen use, comparing upper versus lower lung macrophages. Our results support a hypothesis that epigenetic changes, specifically DNA methylation, at a multitude of gene loci in lung macrophages are associated with metabolic differences regionally in lung.
Collapse
Affiliation(s)
- David A Armstrong
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756;
| | - Youdinghuan Chen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - John A Dessaint
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Daniel S Aridgides
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Jacqueline Y Channon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| | - Diane L Mellinger
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Alix Ashare
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756; .,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756; and
| |
Collapse
|
25
|
Freudenheim JL, Shields PG, Song MA, Smiraglia D. DNA Methylation and Smoking: Implications for Understanding Effects of Electronic Cigarettes. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Bermingham ML, Walker RM, Marioni RE, Morris SW, Rawlik K, Zeng Y, Campbell A, Redmond P, Whalley HC, Adams MJ, Hayward C, Deary IJ, Porteous DJ, McIntosh AM, Evans KL. Identification of novel differentially methylated sites with potential as clinical predictors of impaired respiratory function and COPD. EBioMedicine 2019; 43:576-586. [PMID: 30935889 PMCID: PMC6557748 DOI: 10.1016/j.ebiom.2019.03.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background The causes of poor respiratory function and COPD are incompletely understood, but it is clear that genes and the environment play a role. As DNA methylation is under both genetic and environmental control, we hypothesised that investigation of differential methylation associated with these phenotypes would permit mechanistic insights, and improve prediction of COPD. We investigated genome-wide differential DNA methylation patterns using the recently released 850 K Illumina EPIC array. This is the largest single population, whole-genome epigenetic study to date. Methods Epigenome-wide association studies (EWASs) of respiratory function and COPD were performed in peripheral blood samples from the Generation Scotland: Scottish Family Health Study (GS:SFHS) cohort (n = 3781; 274 COPD cases and 2919 controls). In independent COPD incidence data (n = 149), significantly differentially methylated sites (DMSs; p < 3.6 × 10−8) were evaluated for their added predictive power when added to a model including clinical variables, age, sex, height and smoking history using receiver operating characteristic analysis. The Lothian Birth Cohort 1936 (LBC1936) was used to replicate association (n = 895) and prediction (n = 178) results. Findings We identified 28 respiratory function and/or COPD associated DMSs, which mapped to genes involved in alternative splicing, JAK-STAT signalling, and axon guidance. In prediction analyses, we observed significant improvement in discrimination between COPD cases and controls (p < .05) in independent GS:SFHS (p = .016) and LBC1936 (p = .010) datasets by adding DMSs to a clinical model. Interpretation Identification of novel DMSs has provided insight into the molecular mechanisms regulating respiratory function and aided prediction of COPD risk. Further studies are needed to assess the causality and clinical utility of identified associations. Fund Wellcome Trust Strategic Award 10436/Z/14/Z.
Collapse
Affiliation(s)
- Mairead L Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Konrad Rawlik
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, UK
| | - Yanni Zeng
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Abstract
Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis are regarded as a diseases of accelerated lung ageing and show all of the hallmarks of ageing, including telomere shortening, cellular senescence, activation of PI3 kinase-mTOR signaling, impaired autophagy, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, abnormal microRNA profiles, immunosenescence and a low grade chronic inflammation due to senescence-associated secretory phenotype (SASP). Many of these ageing mechanisms are driven by exogenous and endogenous oxidative stress. There is also a reduction in anti-ageing molecules, such as sirtuins and Klotho, which further accelerate the ageing process. Understanding these molecular mechanisms has identified several novel therapeutic targets and several drugs and dietary interventions are now in development to treat chronic lung disease.
Collapse
Affiliation(s)
- Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|