1
|
Hari Gopal S, Alenghat T, Pammi M. Early life epigenetics and childhood outcomes: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03585-7. [PMID: 39289593 DOI: 10.1038/s41390-024-03585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Epigenetics is the study of changes in gene expression, without a change in the DNA sequence that are potentially heritable. Epigenetic mechanisms such as DNA methylation, histone modifications, and small non-coding RNA (sncRNA) changes have been studied in various childhood disorders. Causal links to maternal health and toxin exposures can introduce epigenetic modifications to the fetal DNA, which can be detected in the cord blood. Cord blood epigenetic modifications provide evidence of in-utero stressors and immediate postnatal changes, which can impact both short and long-term outcomes in children. The mechanisms of these epigenetic changes can be leveraged for prevention, early detection, and intervention, and to discover novel therapeutic modalities in childhood diseases. We report a scoping review of early life epigenetics, the influence of maternal health, maternal toxin, and drug exposures on the fetus, and its impact on perinatal, neonatal, and childhood outcomes. IMPACT STATEMENT: Epigenetic changes such as DNA methylation, histone modification, and non-coding RNA have been implicated in the pathophysiology of various disease processes. The fundamental changes to an offspring's epigenome can begin in utero, impacting the immediate postnatal period, childhood, adolescence, and adulthood. This scoping review summarizes current literature on the impact of early life epigenetics, especially DNA methylation on childhood health outcomes.
Collapse
Affiliation(s)
- Srirupa Hari Gopal
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohan Pammi
- Dept. of Pediatrics, Division of Neonatology, Baylor College of Medicine & Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
2
|
Zhu Y, Zhao T, Wu Y, Xie S, Sun W, Wu J. ZNF862 induces cytostasis and apoptosis via the p21-RB1 and Bcl-xL-Caspase 3 signaling pathways in human gingival fibroblasts. J Periodontal Res 2024; 59:599-610. [PMID: 38482719 DOI: 10.1111/jre.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/06/2023] [Accepted: 02/15/2024] [Indexed: 05/24/2024]
Abstract
OBJECTIVE This study investigates the effects of ZNF862 on the proliferation and apoptosis of human gingival fibroblasts and their related mechanisms. BACKGROUND As a major transcription factor family, zinc finger proteins (ZFPs) regulate cell differentiation, growth, and apoptosis through their conserved zinc finger motifs, which allow high flexibility and specificity in gene regulation. In our previous study, ZNF862 mutation was associated with hereditary gingival fibromatosis. Nevertheless, little is known about the biological function of ZNF862. Therefore, this study was aimed to reveal intracellular localization of ZNF862, the influence of ZNF862 on the growth and apoptosis of human gingival fibroblasts (HGFs) and its potential related mechanisms. METHODS Immunohistochemistry, immunofluorescence staining, and western blotting were performed to determine the intracellular localization of ZNF862 in HGFs. HGFs were divided into three groups: ZNF862 overexpression group, ZNF862 interference group, and the empty vector control group. Then, the effects of ZNF862 on cell proliferation, migration, cell cycle, and apoptosis were evaluated. qRT-PCR and western blotting were performed to further explore the mechanism related to the proliferation and apoptosis of HGFs. RESULTS ZNF862 was found to be localized in the cytoplasm of HGFs. In vitro experiments revealed that ZNF862 overexpression inhibited HGFs proliferation and migration, induced cell cycle arrest at the G0/G1-phase and apoptosis. Whereas, ZNF862 knockdown promoted HGFs proliferation and migration, accelerated the transition from the G0/G1 phase into the S and G2/M phase and inhibited cell apoptosis. Mechanistically, the effects of ZNF862 on HGFs proliferation and apoptosis were noted to be dependent on inhibiting the cyclin-dependent kinase inhibitor 1A (p21)-retinoblastoma 1 (RB1) signaling pathway and enhancing the B-cell lymphoma-extra-large (Bcl-xL)-Caspase 3 signaling pathway. CONCLUSION Our results for the first time reveal that ZNF862 is localized in the cytoplasm of HGFs. ZNF862 can inhibit the proliferation of HGFs by inhibiting the p21-RB1 signaling pathway, and it also promotes the apoptosis of HGFs by enhancing the Bcl-xL-Caspase 3 signaling pathway.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Tian Zhao
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yongkang Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Sijing Xie
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Juan Wu
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Nassikas NJ, Luttmann-Gibson H, Rifas-Shiman SL, Oken E, Gold DR, Rice MB. Acute exposure to pollen and airway inflammation in adolescents. Pediatr Pulmonol 2024; 59:1313-1320. [PMID: 38353177 PMCID: PMC11058013 DOI: 10.1002/ppul.26908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Pollen exposure is known to exacerbate allergic asthma and allergic rhinitis symptoms, yet few studies have investigated if exposure to pollen affects lung function or airway inflammation in healthy children. METHODS We evaluated the extent to which higher pollen exposure was associated with differences in airway inflammation and lung function among 490 early adolescent participants (mean age of 12.9 years) in Project Viva, a prebirth cohort based in Massachusetts. We obtained regional daily total pollen counts, including tree, grass, and weed pollen, from a Rotorod pollen counter. We evaluated associations of 3- and 7-day moving averages of pollen with fractional exhaled nitric oxide (FeNO) and lung function using linear regression models and evaluated the linearity of associations with penalized splines. We tested if associations of pollen with FeNO and lung function were modified by current asthma diagnosis, history of allergic rhinitis, aeroallergen sensitivity, temperature, precipitation, and air pollution. RESULTS Three- and 7-day median pollen concentrations were 19.0 grains/m3 (IQR: 73.4) and 20.9 grains/m3 (IQR: 89.7). In main models, higher concentrations of total pollen over the preceding 3 and 7 days were associated with a 4.6% (95% CI: 0.1,9.2) and 7.4% (95% CI: 0.9,14.3) higher FeNO per IQR of pollen, respectively. We did not find associations of pollen with lung function in main models. Asthma, allergic rhinitis, precipitation, and air pollution (nitrogen dioxide and ozone) modified associations of pollen with lung function (Pinteraction < 0.1), while temperature, sex, and aeroallergen sensitization did not. CONCLUSION Short-term exposure to pollen was associated with higher FeNO in early adolescents, even in the absence of allergic sensitization and asthma.
Collapse
Affiliation(s)
- Nicholas J. Nassikas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
4
|
Wang Y, Wang J, Yan Z, Liu S, Xu W. Potential drug targets for asthma identified in the plasma and brain through Mendelian randomization analysis. Front Immunol 2023; 14:1240517. [PMID: 37809092 PMCID: PMC10551444 DOI: 10.3389/fimmu.2023.1240517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Background Asthma is a heterogeneous disease, and the involvement of neurogenic inflammation is crucial in its development. The standardized treatments focus on alleviating symptoms. Despite the availability of medications for asthma, they have proven to be inadequate in controlling relapses and halting the progression of the disease. Therefore, there is a need for novel drug targets to prevent asthma. Methods We utilized Mendelian randomization to investigate potential drug targets for asthma. We analyzed summary statistics from the UK Biobank and then replicated our findings in GWAS data by Demenais et al. and the FinnGen cohort. We obtained genetic instruments for 734 plasma and 73 brain proteins from recently reported GWAS. Next, we utilized reverse causal relationship analysis, Bayesian co-localization, and phenotype scanning as part of our sensitivity analysis. Furthermore, we performed a comparison and protein-protein interaction analysis to identify causal proteins. We also analyzed the possible consequences of our discoveries by the given existing asthma drugs and their targets. Results Using Mendelian randomization analysis, we identified five protein-asthma pairs that were significant at the Bonferroni level (P < 6.35 × 10-5). Specifically, in plasma, we found that an increase of one standard deviation in IL1R1 and ECM1 was associated with an increased risk of asthma, while an increase in ADAM19 was found to be protective. The corresponding odds ratios were 1.03 (95% CI, 1.02-1.04), 1.00 (95% CI, 1.00-1.01), and 0.99 (95% CI, 0.98-0.99), respectively. In the brain, per 10-fold increase in ECM1 (OR, 1.05; 95% CI, 1.03-1.08) and PDLIM4 (OR, 1.05; 95% CI, 1.04-1.07) increased the risk of asthma. Bayesian co-localization found that ECM1 in the plasma (coloc.abf-PPH4 = 0.965) and in the brain (coloc.abf-PPH4 = 0.931) shared the same mutation with asthma. The target proteins of current asthma medications were found to interact with IL1R1. IL1R1 and PDLIM4 were validated in two replication cohorts. Conclusion Our integrative analysis revealed that asthma risk is causally affected by the levels of IL1R1, ECM1, and PDLIM4. The results suggest that these three proteins have the potential to be used as drug targets for asthma, and further investigation through clinical trials is needed.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Otorhinolaryngology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxi Wang
- Department of Otorhinolaryngology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhanfeng Yan
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Siming Liu
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Xu
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Recto K, Kachroo P, Huan T, Van Den Berg D, Lee GY, Bui H, Lee DH, Gereige J, Yao C, Hwang SJ, Joehanes R, Weiss ST, O'Connor GT, Levy D, DeMeo DL. Epigenome-wide DNA methylation association study of circulating IgE levels identifies novel targets for asthma. EBioMedicine 2023; 95:104758. [PMID: 37598461 PMCID: PMC10462855 DOI: 10.1016/j.ebiom.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Identifying novel epigenetic signatures associated with serum immunoglobulin E (IgE) may improve our understanding of molecular mechanisms underlying asthma and IgE-mediated diseases. METHODS We performed an epigenome-wide association study using whole blood from Framingham Heart Study (FHS; n = 3,471, 46% females) participants and validated results using the Childhood Asthma Management Program (CAMP; n = 674, 39% females) and the Genetic Epidemiology of Asthma in Costa Rica Study (CRA; n = 787, 41% females). Using the closest gene to each IgE-associated CpG, we highlighted biologically plausible pathways underlying IgE regulation and analyzed the transcription patterns linked to IgE-associated CpGs (expression quantitative trait methylation loci; eQTMs). Using prior UK Biobank summary data from genome-wide association studies of asthma and allergy, we performed Mendelian randomization (MR) for causal inference testing using the IgE-associated CpGs from FHS with methylation quantitative trait loci (mQTLs) as instrumental variables. FINDINGS We identified 490 statistically significant differentially methylated CpGs associated with IgE in FHS, of which 193 (39.3%) replicated in CAMP and CRA (FDR < 0.05). Gene ontology analysis revealed enrichment in pathways related to transcription factor binding, asthma, and other immunological processes. eQTM analysis identified 124 cis-eQTMs for 106 expressed genes (FDR < 0.05). MR in combination with drug-target analysis revealed CTSB and USP20 as putatively causal regulators of IgE levels (Bonferroni adjusted P < 7.94E-04) that can be explored as potential therapeutic targets. INTERPRETATION By integrating eQTM and MR analyses in general and clinical asthma populations, our findings provide a deeper understanding of the multidimensional inter-relations of DNA methylation, gene expression, and IgE levels. FUNDING US NIH/NHLBI grants: P01HL132825, K99HL159234. N01-HC-25195 and HHSN268201500001I.
Collapse
Affiliation(s)
- Kathryn Recto
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Priyadarshini Kachroo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - David Van Den Berg
- University of Southern California Methylation Characterization Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Gha Young Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Helena Bui
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Dong Heon Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Jessica Gereige
- Boston University School of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | - Chen Yao
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Shih-Jen Hwang
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Roby Joehanes
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Scott T Weiss
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA
| | - George T O'Connor
- The Framingham Heart Study, Framingham, MA 01702, USA; Boston University School of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA.
| | - Dawn L DeMeo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Powell WT, Reeves SR. From small to big, using microRNA profiling to investigate infant origins of childhood asthma. Eur Respir J 2023; 62:2301052. [PMID: 37536728 DOI: 10.1183/13993003.01052-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Affiliation(s)
- Weston T Powell
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen R Reeves
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
7
|
Nassikas NJ, Rifas-Shiman SL, Luttmann-Gibson H, Chen K, Blossom JC, Oken E, Gold DR, Rice MB. Precipitation and Adolescent Respiratory Health in the Northeast United States. Ann Am Thorac Soc 2023; 20:698-704. [PMID: 36749585 PMCID: PMC10174124 DOI: 10.1513/annalsats.202209-805oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023] Open
Abstract
Rationale: With more frequent and intense precipitation events across the globe due to a changing climate, there is a need to understand the relationship between precipitation and respiratory health. Precipitation may trigger asthma exacerbations, but little is known about how precipitation affects lung function and airway inflammation in early adolescents. Objectives: To determine if short-term precipitation exposure is associated with lung function and airway inflammation in early adolescents and if ever having a diagnosis of asthma modifies associations of precipitation with lung function and airway inflammation. Methods: In a prospective prebirth cohort, Project Viva, that included 1,019 early adolescents born in the northeastern United States, we evaluated associations of 1-, 2-, 3-, and 7-day moving averages of precipitation in the preceding week and forced expiratory volume in 1 second, forced vital capacity, and fractional exhaled nitric oxide (FeNO) using linear regression. We used log-transformed FeNO with effect estimates presented as percentage change. We adjusted for maternal education and household income at enrollment; any smoking in the home in early adolescence; child sex, race/ethnicity, and ever asthma diagnosis; and age, height, weight, date, and season (as sine and cosine functions of visit date) at the early adolescent visit and moving averages for mean daily temperature (same time window as exposure). Results: In fully adjusted linear models, 3- and 7-day moving averages for precipitation were positively associated with FeNO but not lung function. Every 2-mm increase in the 7-day moving average for precipitation was associated with a 4.0% (95% confidence interval, 1.1, 6.9) higher FeNO. There was evidence of effect modification by asthma status: Precipitation was associated with lower forced vital capacity and higher FeNO among adolescents with asthma. We also found that outdoor aeroallergen sensitization (immunoglobulin E against common ragweed, oak, ryegrass, or silver birch) modified associations of precipitation with FeNO, with higher FeNO in sensitized adolescents compared with nonsensitized adolescents. The associations of precipitation with FeNO were not explained by relative humidity or air pollution exposure. Conclusions: We found that greater short-term precipitation may trigger airway inflammation in adolescents, particularly among those with asthma.
Collapse
Affiliation(s)
- Nicholas J. Nassikas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Heike Luttmann-Gibson
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Kelly Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jeffrey C. Blossom
- Center for Geographic Analysis, Harvard University, Cambridge, Massachusetts; and
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Diane R. Gold
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Mary B. Rice
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
8
|
Rosenberg L, Liu C, Sharma R, Wood C, Vyhlidal CA, Gaedigk R, Kho AT, Ziniti JP, Celedón JC, Tantisira KG, Weiss ST, McGeachie MJ, Kechris K, Sharma S. Intrauterine Smoke Exposure, microRNA Expression during Human Lung Development, and Childhood Asthma. Int J Mol Sci 2023; 24:7727. [PMID: 37175432 PMCID: PMC10178351 DOI: 10.3390/ijms24097727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Intrauterine smoke (IUS) exposure during early childhood has been associated with a number of negative health consequences, including reduced lung function and asthma susceptibility. The biological mechanisms underlying these associations have not been established. MicroRNAs regulate the expression of numerous genes involved in lung development. Thus, investigation of the impact of IUS on miRNA expression during human lung development may elucidate the impact of IUS on post-natal respiratory outcomes. We sought to investigate the effect of IUS exposure on miRNA expression during early lung development. We hypothesized that miRNA-mRNA networks are dysregulated by IUS during human lung development and that these miRNAs may be associated with future risk of asthma and allergy. Human fetal lung samples from a prenatal tissue retrieval program were tested for differential miRNA expression with IUS exposure (measured using placental cotinine concentration). RNA was extracted and miRNA-sequencing was performed. We performed differential expression using IUS exposure, with covariate adjustment. We also considered the above model with an additional sex-by-IUS interaction term, allowing IUS effects to differ by male and female samples. Using paired gene expression profiles, we created sex-stratified miRNA-mRNA correlation networks predictive of IUS using DIABLO. We additionally evaluated whether miRNAs were associated with asthma and allergy outcomes in a cohort of childhood asthma. We profiled pseudoglandular lung miRNA in n = 298 samples, 139 (47%) of which had evidence of IUS exposure. Of 515 miRNAs, 25 were significantly associated with intrauterine smoke exposure (q-value < 0.10). The IUS associated miRNAs were correlated with well-known asthma genes (e.g., ORM1-Like Protein 3, ORDML3) and enriched in disease-relevant pathways (oxidative stress). Eleven IUS-miRNAs were also correlated with clinical measures (e.g., Immunoglobulin E andlungfunction) in children with asthma, further supporting their likely disease relevance. Lastly, we found substantial differences in IUS effects by sex, finding 95 significant IUS-miRNAs in male samples, but only four miRNAs in female samples. The miRNA-mRNA correlation networks were predictive of IUS (AUC = 0.78 in males and 0.86 in females) and suggested that IUS-miRNAs are involved in regulation of disease-relevant genes (e.g., A disintegrin and metalloproteinase domain 19 (ADAM19), LBH regulator of WNT signaling (LBH)) and sex hormone signaling (Coactivator associated methyltransferase 1(CARM1)). Our study demonstrated differential expression of miRNAs by IUS during early prenatal human lung development, which may be modified by sex. Based on their gene targets and correlation to clinical asthma and atopy outcomes, these IUS-miRNAs may be relevant for subsequent allergy and asthma risk. Our study provides insight into the impact of IUS in human fetal lung transcriptional networks and on the developmental origins of asthma and allergic disorders.
Collapse
Affiliation(s)
- Lynne Rosenberg
- Department of Pediatrics and Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Roger Gaedigk
- Children’s Mercy Hospital and Clinics, Kansas City, MO 64108, USA
| | - Alvin T. Kho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - John P. Ziniti
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kelan G. Tantisira
- Division of Pediatric Respiratory Medicine, Rady Children’s Hospital, University of California, San Diego, CA 92123, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael J. McGeachie
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Kilanowski A, Merid SK, Abrishamcar S, Feil D, Thiering E, Waldenberger M, Melén E, Peters A, Standl M, Hüls A. DNA methylation and aeroallergen sensitization: The chicken or the egg? Clin Epigenetics 2022; 14:114. [PMID: 36114581 PMCID: PMC9482323 DOI: 10.1186/s13148-022-01332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background DNA methylation (DNAm) is considered a plausible pathway through which genetic and environmental factors may influence the development of allergies. However, causality has yet to be determined as it is unknown whether DNAm is rather a cause or consequence of allergic sensitization. Here, we investigated the direction of the observed associations between well-known environmental and genetic determinants of allergy, DNAm, and aeroallergen sensitization using a combination of high-dimensional and causal mediation analyses.
Methods Using prospectively collected data from the German LISA birth cohort from two time windows (6–10 years: N = 234; 10–15 years: N = 167), we tested whether DNAm is a cause or a consequence of aeroallergen sensitization (specific immunoglobulin E > 0.35kU/l) by conducting mediation analyses for both effect directions using maternal smoking during pregnancy, family history of allergies, and a polygenic risk score (PRS) for any allergic disease as exposure variables. We evaluated individual CpG sites (EPIC BeadChip) and allergy-related methylation risk scores (MRS) as potential mediators in the mediation analyses. We applied three high-dimensional mediation approaches (HIMA, DACT, gHMA) and validated results using causal mediation analyses. A replication of results was attempted in the Swedish BAMSE cohort.
Results Using high-dimensional methods, we identified five CpGs as mediators of prenatal exposures to sensitization with significant (adjusted p < 0.05) indirect effects in the causal mediation analysis (maternal smoking: two CpGs, family history: one, PRS: two). None of these CpGs could be replicated in BAMSE. The effect of family history on allergy-related MRS was significantly mediated by aeroallergen sensitization (proportions mediated: 33.7–49.6%), suggesting changes in DNAm occurred post-sensitization. Conclusion The results indicate that DNAm may be a cause or consequence of aeroallergen sensitization depending on genomic location. Allergy-related MRS, identified as a potential cause of sensitization, can be considered as a cross-sectional biomarker of disease. Differential DNAm in individual CpGs, identified as mediators of the development of sensitization, could be used as clinical predictors of disease development. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01332-5.
Collapse
|
10
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
11
|
Legaki E, Arsenis C, Taka S, Papadopoulos NG. DNA methylation biomarkers in asthma and rhinitis: Are we there yet? Clin Transl Allergy 2022; 12:e12131. [PMID: 35344303 PMCID: PMC8967268 DOI: 10.1002/clt2.12131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
The study of epigenetics has improved our understanding of mechanisms underpinning gene‐environment interactions and is providing new insights in the pathophysiology of respiratory allergic diseases. We reviewed the literature on DNA methylation patterns across different tissues in asthma and/or rhinitis and attempted to elucidate differentially methylated loci that could be used to characterize asthma or rhinitis. Although nasal and bronchial epithelia are similar in their histological structure and cellular composition, genetic and epigenetic regulation may differ across tissues. Advanced methods have enabled comprehensive, high‐throughput methylation profiling of different tissues (bronchial or nasal epithelial cells, whole blood or isolated mononuclear cells), in subjects with respiratory conditions, aiming to elucidate gene regulation mechanisms and identify new biomarkers. Several genes and CpGs have been suggested as asthma biomarkers, though research on allergic rhinitis is still lacking. The most common differentially methylated loci presented in both blood and nasal samples are ACOT7, EPX, KCNH2, SIGLEC8, TNIK, FOXP1, ATPAF2, ZNF862, ADORA3, ARID3A, IL5RA, METRNL and ZFPM1. Overall, there is substantial variation among studies, (i.e. sample sizes, age groups and disease phenotype). Greater variability of analysis method detailed phenotypic characterization and age stratification should be taken into account in future studies.
Collapse
Affiliation(s)
- Evangelia Legaki
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Christos Arsenis
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Nikolaos G. Papadopoulos
- Allergy and Clinical Immunology Unit Second Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
12
|
Wu J, Chen D, Huang H, Luo N, Chen H, Zhao J, Wang Y, Zhao T, Huang S, Ren Y, Zhai T, Sun W, Li H, Li W. A novel gene ZNF862 causes hereditary gingival fibromatosis. eLife 2022; 11:66646. [PMID: 35142290 PMCID: PMC8856651 DOI: 10.7554/elife.66646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Hereditary gingival fibromatosis (HGF) is the most common genetic form of gingival fibromatosis which is featured as a localized or generalized overgrowth of gingivae. Currently two genes (SOS1 and REST), as well as four loci (2p22.1, 2p23.3–p22.3, 5q13–q22, and 11p15), have been identified as associated with HGF in a dominant inheritance pattern. Here, we report 13 individuals with autosomal-dominant HGF from a four-generation Chinese family. Whole-exome sequencing followed by further genetic co-segregation analysis was performed for the family members across three generations. A novel heterozygous missense mutation (c.2812G > A) in zinc finger protein 862 gene (ZNF862) was identified, and it is absent among the population as per the Genome Aggregation Database. The functional study supports a biological role of ZNF862 for increasing the profibrotic factors particularly COL1A1 synthesis and hence resulting in HGF. Here, for the first time we identify the physiological role of ZNF862 for the association with the HGF.
Collapse
Affiliation(s)
- Juan Wu
- Department of Periodontology, Medical School of Nanjing University, Nanjing, China
| | - Dongna Chen
- Clinical research, BGI Genomics, Shenzhen, China
| | - Hui Huang
- Clinical research, BGI Genomics, Shenzhen, China
| | - Ning Luo
- Department of Periodontology, Medical School of Nanjing University, Nanjing, China
| | | | - Junjie Zhao
- Department of Periodontology, Medical School of Nanjing University, Nanjing, China
| | - Yanyan Wang
- Clinical research, BGI Genomics, Shenzhen, China
| | - Tian Zhao
- Department of Periodontology, Medical School of Nanjing University, shenzhen, China
| | - Siyuan Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yang Ren
- Department of Periodontology, Medical School of Nanjing University, Nanjing, China
| | - Teng Zhai
- Clinical research, BGI Genomics, shenzhen, China
| | - Weibin Sun
- Department of Periodontology, Medical School of Nanjing University, shenzhen, China
| | - Houxuan Li
- Department of Periodontology, Medical School of Nanjing University, Nanjing, China
| | - Wei Li
- Clinical Research, BGI Genomics, Shen zhen, China
| |
Collapse
|
13
|
Abstract
The prevalence of allergic diseases such as asthma is globally increasing, posing threat to the life quality of the affected population. Genome-wide association studies (GWAS) suggest that genetic variations only account for a small proportion of immunoglobulin E (IgE)-mediated type I hypersensitivity. Recently, epigenetics has gained attention as an approach to further understand the missing heritability and underpinning mechanisms of allergic diseases. Furthermore, epigenetic regulation allows the evaluation of the interaction between an individual's genetic predisposition and their environmental exposures. This chapter summarizes several large-scale epigenome-wide association studies (EWAS) on asthma and other allergic diseases and draws a blueprint for future analysis and research direction.
Collapse
Affiliation(s)
- Yale Jiang
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Role of Epigenetics in the Pathogenesis, Treatment, Prediction, and Cellular Transformation of Asthma. Mediators Inflamm 2021; 2021:9412929. [PMID: 34566492 PMCID: PMC8457970 DOI: 10.1155/2021/9412929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma is a mysterious disease with heterogeneity in etiology, pathogenesis, and clinical phenotypes. Although ongoing studies have provided a better understanding of asthma, its natural history, progression, pathogenesis, diversified phenotypes, and even the exact epigenetic linkage between childhood asthma and adult-onset/old age asthma remain elusive in many aspects. Asthma heritability has been established through genetic studies, but genetics is not the only influencing factor in asthma. The increasing incidence and some unsolved queries suggest that there may be other elements related to asthma heredity. Epigenetic mechanisms link genetic and environmental factors with developmental trajectories in asthma. This review provides an overview of asthma epigenetics and its components, including several epigenetic studies on asthma, and discusses the epigenetic linkage between childhood asthma and adult-onset/old age asthma. Studies involving asthma epigenetics present valuable novel approaches to solve issues related to asthma. Asthma epigenetic research guides us towards gene therapy and personalized T cell therapy, directs the discovery of new therapeutic agents, predicts long-term outcomes in severe cases, and is also involved in the cellular transformation of childhood asthma to adult-onset/old age asthma.
Collapse
|
15
|
Agache I, Palmer E, Sanver D, Kirtland M, Shamji MH. Molecular allergology approach to allergic asthma. Mol Aspects Med 2021; 85:101027. [PMID: 34579961 DOI: 10.1016/j.mam.2021.101027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Allergic asthma is a frequently encountered and well described asthma phenotype. However, its precise mechanisms are less known. The tools for targeted selection of patients for an optimal response to intervention (prevention or treatment) are also lacking. Here we explore the potential of the molecular allergology approach to achieve a better understanding of allergic asthma mechanisms, a precise diagnosis and an optimal management of these patients.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | - Elizabeth Palmer
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| | - Didem Sanver
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK; Necmettin Erbakan University, Engineering & Architecture Faculty, Department of Food Engineering, Konya, Turkey
| | - Max Kirtland
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| | - Mohamed H Shamji
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, London, UK
| |
Collapse
|
16
|
Allergic Food Sensitization and Disease Manifestation in the Fetus and Infant: A Perspective. ALLERGIES 2021. [DOI: 10.3390/allergies1020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Even though allergic disease is identified in the first year of life, it is often in a less forward fashion, with elements of a wait and see approach. If the infant does not have an anaphylactic food reaction, other less dramatic allergic phenomenon is often under-emphasized, waiting for additional concerns. We approached this with a conception to first conduct birthday surveys, attempting to link intrauterine and peri-birth circumstances to affect better allergy recognition in young infants.
Collapse
|
17
|
Flashner BM, Rifas-Shiman SL, Oken E, Camargo CA, Platts-Mills TAE, Workman L, Litonjua AA, Gold DR, Rice MB. Contributions of asthma, rhinitis and IgE to exhaled nitric oxide in adolescents. ERJ Open Res 2021; 7:00945-2020. [PMID: 33898613 PMCID: PMC8053905 DOI: 10.1183/23120541.00945-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/04/2021] [Indexed: 12/02/2022] Open
Abstract
Exhaled nitric oxide fraction (FeNO) is an indicator of allergic airway inflammation. However, it is unknown how asthma, allergic rhinitis (AR) and allergic sensitisation relate to FeNO, particularly among adolescents and in overlapping conditions. We sought to determine the associations between asthma, AR, and aeroallergen immunoglobulin (Ig)E and FeNO in adolescents. We measured FeNO among 929 adolescents (aged 11–16 years) in Project Viva, an unselected prebirth cohort in Massachusetts, USA. We defined asthma as ever asthma physician diagnosis plus wheezing in the past year or taking asthma medications in the past month, AR as a physician diagnosis of hay fever or AR, and aeroallergen IgE as any IgE >0.35 IU·mL−1 among 592 participants who provided blood samples. We examined associations of asthma, AR and IgE with percent difference in FeNO in linear regression models adjusted for sex, race/ethnicity, age and height, maternal education and smoking during pregnancy, and household/neighbourhood demographics. Asthma (14%) was associated with 97% higher FeNO (95% CI 70–128%), AR (21%) with 45% higher FeNO (95% CI 28–65%), and aeroallergen IgE (58%) with 102% higher FeNO (95% CI 80–126%) compared to those without each condition, respectively. In the absence of asthma or AR, aeroallergen IgE was associated with 75% higher FeNO (95% CI 52–101), while asthma and AR were not associated with FeNO in the absence of IgE. The link between asthma and AR with FeNO is limited to those with IgE-mediated phenotypes. FeNO may be elevated in those with allergic sensitisation alone, even in the absence of asthma or AR. While asthma, allergic rhinitis (AR) and allergic sensitisation are associated with higher FENO, asthma and AR in the absence of aeroallergen IgE are not associated with FENO. When elevated in asthma or AR, FENO suggests allergic sensitisation.https://bit.ly/3bGgr0r
Collapse
Affiliation(s)
- Bess M Flashner
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Dept of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Dept of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carlos A Camargo
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Dept of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas A E Platts-Mills
- Dept of Allergy and Immunology, University of Virginia Health System, Charlottesville, VA, USA
| | - Lisa Workman
- Dept of Allergy and Immunology, University of Virginia Health System, Charlottesville, VA, USA
| | - Augusto A Litonjua
- Pediatric Pulmonary Division, Dept of Pediatrics, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester, NY, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Dept of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mary B Rice
- Division of Pulmonary, Critical Care and Sleep Medicine, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
18
|
Han L, Kaushal A, Zhang H, Kadalayil L, Duan J, Holloway JW, Karmaus W, Banerjee P, Tsai SF, Wen HJ, Arshad SH, Wang SL. DNA Methylation at Birth is Associated with Childhood Serum Immunoglobulin E Levels. Epigenet Insights 2021; 14:25168657211008108. [PMID: 33870089 PMCID: PMC8024453 DOI: 10.1177/25168657211008108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/25/2020] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin E (IgE) is known to play an important role in allergic diseases. Epigenetic traits acquired due to modification of deoxyribonucleic acid (DNA) methylation (DNAm) in early life may have phenotypic consequences through their role in transcriptional regulation with relevance to the developmental origins of diseases including allergy. However, epigenome-scale studies on the longitudinal association of cord blood DNAm with IgE over time are lacking. Our study aimed to examine the association of DNAm at birth with childhood serum IgE levels during early life. Genome-scale DNAm and total serum IgE measured at birth, 5, 8, and 11 years of children in the Taiwan Maternal and Infant Cohort Study were included in the study in the discovery stage. Linear mixed models were implemented to assess the association between cord blood DNAm at ~310K 5′-cytosine-phosphate-guanine-3′ (CpG) sites with repeated IgE measurements, adjusting for cord blood IgE. Identified statistically significant CpGs (at a false discovery rate, FDR, of 0.05) were further tested in an independent replication cohort, the Isle of Wight (IoW) birth cohort. We mapped replicated CpGs to genes and conducted gene ontology analysis using ToppFun to identify significantly enriched pathways and biological processes of the genes. Cord blood DNAm of 273 CpG sites were significantly (FDR = 0.05) associated with IgE levels longitudinally. Among the identified CpGs available in both cohorts (184 CpGs), 92 CpGs (50%) were replicated in the IoW in terms of consistency in direction of associations between DNA methylation and IgE levels later in life, and 16 of the 92 CpGs showed statistically significant associations (P < .05). Gene ontology analysis identified 4 pathways (FDR = 0.05). The identified 16 CpG sites had the potential to serve as epigenetic markers associated with later IgE production, beneficial to allergic disease prevention and intervention.
Collapse
Affiliation(s)
- Luhang Han
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jiasong Duan
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Shih-Fen Tsai
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli
| | - Hui-Ju Wen
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK
| | - Shu-Li Wang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli.,School of Public Health, National Defense Medical Center, Taipei.,Department of Public Health, China Medical University, Taichung
| |
Collapse
|
19
|
Acevedo N, Scala G, Merid SK, Frumento P, Bruhn S, Andersson A, Ogris C, Bottai M, Pershagen G, Koppelman GH, Melén E, Sonnhammer E, Alm J, Söderhäll C, Kere J, Greco D, Scheynius A. DNA Methylation Levels in Mononuclear Leukocytes from the Mother and Her Child Are Associated with IgE Sensitization to Allergens in Early Life. Int J Mol Sci 2021; 22:ijms22020801. [PMID: 33466918 PMCID: PMC7830007 DOI: 10.3390/ijms22020801] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
DNA methylation changes may predispose becoming IgE-sensitized to allergens. We analyzed whether DNA methylation in peripheral blood mononuclear cells (PBMC) is associated with IgE sensitization at 5 years of age (5Y). DNA methylation was measured in 288 PBMC samples from 74 mother/child pairs from the birth cohort ALADDIN (Assessment of Lifestyle and Allergic Disease During INfancy) using the HumanMethylation450BeadChip (Illumina). PBMCs were obtained from the mothers during pregnancy and from their children in cord blood, at 2 years and 5Y. DNA methylation levels at each time point were compared between children with and without IgE sensitization to allergens at 5Y. For replication, CpG sites associated with IgE sensitization in ALADDIN were evaluated in whole blood DNA of 256 children, 4 years old, from the BAMSE (Swedish abbreviation for Children, Allergy, Milieu, Stockholm, Epidemiology) cohort. We found 34 differentially methylated regions (DMRs) associated with IgE sensitization to airborne allergens and 38 DMRs associated with sensitization to food allergens in children at 5Y (Sidak p ≤ 0.05). Genes associated with airborne sensitization were enriched in the pathway of endocytosis, while genes associated with food sensitization were enriched in focal adhesion, the bacterial invasion of epithelial cells, and leukocyte migration. Furthermore, 25 DMRs in maternal PBMCs were associated with IgE sensitization to airborne allergens in their children at 5Y, which were functionally annotated to the mTOR (mammalian Target of Rapamycin) signaling pathway. This study supports that DNA methylation is associated with IgE sensitization early in life and revealed new candidate genes for atopy. Moreover, our study provides evidence that maternal DNA methylation levels are associated with IgE sensitization in the child supporting early in utero effects on atopy predisposition.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
- Institute for Immunological Research, University of Cartagena, 130014 Cartagena, Colombia
| | - Giovanni Scala
- Department of Biology, University of Naples Federico II, 80138 Napoli, Italy;
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
- Institute of Biosciences and Medical Technologies (BioMediTech), Tampere University, 33520 Tampere, Finland
| | - Simon Kebede Merid
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
| | - Paolo Frumento
- Department of Political Sciences, University of Pisa, 56126 Pisa, Italy;
| | - Sören Bruhn
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (S.B.); (A.A.)
| | - Anna Andersson
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (S.B.); (A.A.)
| | - Christoph Ogris
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, SE-17121 Solna, Sweden; (C.O.); (E.S.)
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Matteo Bottai
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (M.B.); (G.P.)
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (M.B.); (G.P.)
| | - Gerard H. Koppelman
- Section of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Groningen Research Institute of Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Erik Melén
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (M.B.); (G.P.)
| | - Erik Sonnhammer
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, Science for Life Laboratory, SE-17121 Solna, Sweden; (C.O.); (E.S.)
| | - Johan Alm
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (C.S.); (J.K.)
- Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (C.S.); (J.K.)
- Folkhälsan Research Institute, Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
- Institute of Biosciences and Medical Technologies (BioMediTech), Tampere University, 33520 Tampere, Finland
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Annika Scheynius
- Department of Clinical Science and Education, Karolinska Institutet, and Sachs’ Children and Youth Hospital, Södersjukhuset, SE-118 83 Stockholm, Sweden; (N.A.); (S.K.M.); (E.M.); (J.A.)
- Science for Life Laboratory, Karolinska Institutet, SE-171 65 Solna, Sweden
- Correspondence:
| |
Collapse
|
20
|
Kottyan LC, Trimarchi MP, Lu X, Caldwell JM, Maddox A, Parameswaran S, Lape M, D'Mello RJ, Bonfield M, Ballaban A, Mukkada V, Putnam PE, Abonia P, Ben-Baruch Morgenstern N, Eapen AA, Wen T, Weirauch MT, Rothenberg ME. Replication and meta-analyses nominate numerous eosinophilic esophagitis risk genes. J Allergy Clin Immunol 2021; 147:255-266. [PMID: 33446330 PMCID: PMC8082436 DOI: 10.1016/j.jaci.2020.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is an emerging, chronic, rare allergic disease associated with marked eosinophil accumulation in the esophagus. Previous genome-wide association studies have provided strong evidence for 3 genome-wide susceptibility loci. OBJECTIVE We sought to replicate known and suggestive EoE genetic risk loci and conduct a meta-analysis of previously reported data sets. METHODS An EoE-Custom single-nucleotide polymophism (SNP) Chip containing 956 candidate EoE risk single-nucleotide polymorphisms was used to genotype 627 cases and 365 controls. Statistical power was enhanced by adding 1959 external controls and performing meta-analyses with 2 independent EoE genome-wide association studies. RESULTS Meta-analysis identified replicated association and genome-wide significance at 6 loci: 2p23 (2 independent genetic effects) and 5q22, 10p14, 11q13, and 16p13. Seven additional loci were identified at suggestive significance (P < 10-6): 1q31, 5q23, 6q15, 6q21, 8p21, 17q12, and 22q13. From these risk loci, 13 protein-coding EoE candidate risk genes were expressed in a genotype-dependent manner. EoE risk genes were expressed in disease-relevant cell types, including esophageal epithelia, fibroblasts, and immune cells, with some expressed as a function of disease activity. The genetic risk burden of EoE-associated genetic variants was markedly larger in cases relative to controls (P < 10-38); individuals with the highest decile of genetic burden had greater than 12-fold risk of EoE compared with those within the lowest decile. CONCLUSIONS This study extends the genetic underpinnings of EoE, highlighting 13 genes whose genotype-dependent expression expands our etiologic understanding of EoE and provides a framework for a polygenic risk score to be validated in future studies.
Collapse
Affiliation(s)
- Leah C Kottyan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Michael P Trimarchi
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiaoming Lu
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julie M Caldwell
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Avery Maddox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael Lape
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Graduate Program in Biomedical Informatics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Rahul J D'Mello
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Immunology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Madeline Bonfield
- Immunology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Adina Ballaban
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Vincent Mukkada
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Philip E Putnam
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Pablo Abonia
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Amy A Eapen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
21
|
Watanabe H, Miyake K, Matsuoka T, Kojima R, Sakurai D, Masuyama K, Yamagata Z. LPCAT2 Methylation, a Novel Biomarker for the Severity of Cedar Pollen Allergic Rhinitis in Japan. Am J Rhinol Allergy 2020; 35:631-639. [PMID: 33356413 DOI: 10.1177/1945892420983646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recently, the role of the epigenome in allergies has been receiving increasing attention. Although several genes that are methylated in relation to serum immunoglobulin E (IgE) concentration have been reported by epigenome-wide association studies, little is known about the DNA methylation sites associated with the symptoms and severity of cedar pollinosis (CP). OBJECTIVE Our aim was to analyze the association between DNA methylation and the symptoms and severity of CP in peripheral blood mononuclear cells (PBMCs) and nasal mucosa scraping cells (NMSCs). METHODS We recruited 70 participants during the cedar pollen dispersal season. IgE levels were measured by a fluorescence enzyme immunoassay. We analyzed DNA methylation of acyl-CoA thioesterase 7 (ACOT7), mucin 4 (MUC4), schlafen 12 (SLFN12), lysophosphatidylcholine acyltransferase 2 (LPCAT2), and interleukin-4 (IL4) in PBMCs and NMSCs using bisulfite next-generation sequencing; the correlation of DNA methylation with non-specific IgE and cedar pollen-specific IgE levels in peripheral blood samples was also investigated. Symptom severity and DNA methylation were investigated in 15 untreated CP patients. RESULTS Non-specific IgE levels showed a significant negative correlation with average IL4 methylation in PBMCs (r = -0.46, P < 0.0001) but not with methylation of ACOT7, MUC4, SLFN12, and LPCAT2. Cedar pollen-specific IgE levels showed a significant negative correlation with average IL4 and MUC4 methylation in PBMCs (r = -0.31, P = 0.01 and r = -0.241, P = 0.046, respectively) but not with methylation of ACOT7, SLFN12, and LPCAT2. The methylation of some genes in NMSCs was not significantly correlated with IgE levels. The mean methylation of LPCAT2 in NMSCs showed a decreasing trend with increasing severity of CP (P = 0.027). CONCLUSION LPCAT2 methylation in NMSCs may reflect the severity of CP and could be used as a novel biomarker to identify suitable treatment options for CP.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan.,Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Kunio Miyake
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Tomokazu Matsuoka
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Reiji Kojima
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Daiju Sakurai
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Keisuke Masuyama
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan.,Department of Otorhinolaryngology, Suwa Central Hospital, Chino, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| |
Collapse
|
22
|
Xu CJ, Gruzieva O, Qi C, Esplugues A, Gehring U, Bergström A, Mason D, Chatzi L, Porta D, Lodrup Carlsen KC, Baïz N, Madore AM, Alenius H, van Rijkom B, Jankipersadsing SA, van der Vlies P, Kull I, van Hage M, Bustamante M, Lertxundi A, Torrent M, Santorelli G, Fantini MP, Hovland V, Pesce G, Fyhrquist N, Laatikainen T, Nawijn MC, Li Y, Wijmenga C, Netea MG, Bousquet J, Anto JM, Laprise C, Haahtela T, Annesi-Maesano I, Carlsen KH, Gori D, Kogevinas M, Wright J, Söderhäll C, Vonk JM, Sunyer J, Melén E, Koppelman GH. Shared DNA methylation signatures in childhood allergy: The MeDALL study. J Allergy Clin Immunol 2020; 147:1031-1040. [PMID: 33338541 DOI: 10.1016/j.jaci.2020.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Differential DNA methylation associated with allergy might provide novel insights into the shared or unique etiology of asthma, rhinitis, and eczema. OBJECTIVE We sought to identify DNA methylation profiles associated with childhood allergy. METHODS Within the European Mechanisms of the Development of Allergy (MeDALL) consortium, we performed an epigenome-wide association study of whole blood DNA methylation by using a cross-sectional design. Allergy was defined as having symptoms from at least 1 allergic disease (asthma, rhinitis, or eczema) and positive serum-specific IgE to common aeroallergens. The discovery study included 219 case patients and 417 controls at age 4 years and 228 case patients and 593 controls at age 8 years from 3 birth cohorts, with replication analyses in 325 case patients and 1111 controls. We performed additional analyses on 21 replicated sites in 785 case patients and 2124 controls by allergic symptoms only from 8 cohorts, 3 of which were not previously included in analyses. RESULTS We identified 80 differentially methylated CpG sites that showed a 1% to 3% methylation difference in the discovery phase, of which 21 (including 5 novel CpG sites) passed genome-wide significance after meta-analysis. All 21 CpG sites were also significantly differentially methylated with allergic symptoms and shared between asthma, rhinitis, and eczema. The 21 CpG sites mapped to relevant genes, including ACOT7, LMAN3, and CLDN23. All 21 CpG sties were differently methylated in asthma in isolated eosinophils, and 10 were replicated in respiratory epithelium. CONCLUSION Reduced whole blood DNA methylation at 21 CpG sites was significantly associated with childhood allergy. The findings provide novel insights into the shared molecular mechanisms underlying asthma, rhinitis, and eczema.
Collapse
Affiliation(s)
- Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ana Esplugues
- Nursing Department, Faculty of Nursing and Chiropody, Universitat de València, València, Spain; FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, València, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dan Mason
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Daniela Porta
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Karin C Lodrup Carlsen
- Division of Paediatric and Adolescent Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Nour Baïz
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | - Anne-Marie Madore
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bianca van Rijkom
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Soesma A Jankipersadsing
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; HZPC Research BV, Metslawier, The Netherlands
| | - Inger Kull
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Mariona Bustamante
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Preventive Medicine and Public Health Department, University of Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Health Research institute Biodonostia, Donostia-San Sebastian, Gipuzkoa, Spain
| | - Matias Torrent
- Health Research Institute of the Balearic Islands, Spain; ib-salut, Area de Salut de Menorca, Spain
| | | | - Maria Pia Fantini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vegard Hovland
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Giancarlo Pesce
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | | | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Human Microbiome Program, Medicum, University of Helsinki, Helsinki, Finland
| | - Tiina Laatikainen
- Finnish Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Martijn C Nawijn
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yang Li
- Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jean Bousquet
- University Hospital, Montpellier, France; Department of Dermatology, Charité, Berlin, Germany
| | - Josep M Anto
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada; Centre de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Isabella Annesi-Maesano
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | - Kai-Håkon Carlsen
- Division of Paediatric and Adolescent Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - John Wright
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jordi Sunyer
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
23
|
Asthma genomics and pharmacogenomics. Curr Opin Immunol 2020; 66:136-142. [PMID: 33171417 DOI: 10.1016/j.coi.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
Abstract
In this review, we summarize recent published work interrogating the relationship between genetic variation or gene expression regulation across the genome and asthma or asthma treatment outcomes. This includes 11 genome-wide association studies of asthma phenotypes that collectively identified 64 novel loci; transcriptome-wide asthma association studies which identified genes involved in virus recognition, bacterial infection, lung tissue remodeling, eosinophilic and neutrophilic inflammation and genes in the chromosome 17q12 asthma susceptibility locus; and three epigenome-wide studies of asthma that had robust sample sizes and replicated findings. We also highlight pharmacogenomic studies of corticosteroids, bronchodilator response to albuterol and zileuton, although finding from these studies may still be preliminary due to their relatively small sample sizes and limited availability of replication cohorts.
Collapse
|
24
|
Hoang TT, Sikdar S, Xu CJ, Lee MK, Cardwell J, Forno E, Imboden M, Jeong A, Madore AM, Qi C, Wang T, Bennett BD, Ward JM, Parks CG, Beane-Freeman LE, King D, Motsinger-Reif A, Umbach DM, Wyss AB, Schwartz DA, Celedón JC, Laprise C, Ober C, Probst-Hensch N, Yang IV, Koppelman GH, London SJ. Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. Eur Respir J 2020; 56:13993003.00217-2020. [PMID: 32381493 PMCID: PMC7469973 DOI: 10.1183/13993003.00217-2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in relation to non-atopic and atopic asthma. We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a United States agricultural cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression. No associations were observed with atopy without asthma. Numerous cytosine–phosphate–guanine (CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER) p<9×10−8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104 FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation. We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma. Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma. Distinct methylation signals are found in non-atopic and atopic asthma. Most are related to gene expression and are replicated in asthma-relevant tissues, confirming the value of blood DNA methylation for identifying novel genes linked in asthma pathogenesis.https://bit.ly/2VnbJg3
Collapse
Affiliation(s)
- Thanh T Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA.,Joint first authors
| | - Sinjini Sikdar
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA.,Dept of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA.,Joint first authors
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Centre for Experimental and Clinical Infection Research (TWINCORE), Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Joint first authors
| | - Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Jonathan Cardwell
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Dept of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Medea Imboden
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Anne-Marie Madore
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Cancan Qi
- Dept of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital and GRIAC Research Institute, Groningen, The Netherlands
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Laura E Beane-Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Debra King
- Clinical Pathology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - David A Schwartz
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Dept of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Centre Intersectoriel en Santé Durable, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Dept of Pediatrics, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada
| | - Carole Ober
- Dept of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Nicole Probst-Hensch
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Ivana V Yang
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gerard H Koppelman
- Dept of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital and GRIAC Research Institute, Groningen, The Netherlands
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This review aims to explore how circadian rhythms influence disease susceptibility and potentially modify the effect of environmental exposures. We aimed to identify biomarkers commonly used in environmental health research that have also been the subject of chronobiology studies, in order to review circadian rhythms of relevance to environmental health and determine if time-of-day is an important factor to consider in environmental health studies. Moreover, we discuss opportunities for studying how environmental exposures may interact with circadian rhythms to structure disease pathology and etiology. RECENT FINDINGS In recent years, the study of circadian rhythms in mammals has flourished. Animal models revealed that all body tissues have circadian rhythms. In humans, circadian rhythms were also shown to exist at multiple levels of organization: molecular, cellular, and physiological processes, including responding to oxidative stress, cell trafficking, and sex hormone production, respectively. Together, these rhythms are an essential component of human physiology and can shape an individual's susceptibility and response to disease. Circadian rhythms are relatively unexplored in environmental health research. However, circadian clocks control many physiological and behavioral processes that impact exposure pathways and disease systems. We believe this review will motivate new studies of (i) the impact of exposures on circadian rhythms, (ii) how circadian rhythms modify the effect of environmental exposures, and (iii) how time-of-day impacts our ability to observe the body's response to exposure.
Collapse
Affiliation(s)
- Jacqueline M Leung
- Department of Environmental Health Sciences, Columbia University, 630 West 168th Street, Room 16-421C, New York, NY, USA
| | - Micaela E Martinez
- Department of Environmental Health Sciences, Columbia University, 630 West 168th Street, Room 16-421C, New York, NY, USA.
| |
Collapse
|
26
|
Long A, Bunning B, Sampath V, DeKruyff RH, Nadeau KC. Epigenetics and the Environment in Airway Disease: Asthma and Allergic Rhinitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:153-181. [PMID: 32445095 DOI: 10.1007/978-981-15-3449-2_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Asthma and rhinitis are complex, heterogeneous diseases characterized by chronic inflammation of the upper and lower airways. While genome-wide association studies (GWAS) have identified a number of susceptible loci and candidate genes associated with the pathogenesis of asthma and allergic rhinitis (AR), the risk-associated alleles account for only a very small percent of the genetic risk. In allergic airway and other complex diseases, it is thought that epigenetic modifications, including DNA methylation, histone modifications, and non-coding microRNAs, caused by complex interactions between the underlying genome and the environment may account for some of this "missing heritability" and may explain the high degree of plasticity in immune responses. In this chapter, we will focus on the current knowledge of classical epigenetic modifications, DNA methylation and histone modifications, and their potential role in asthma and AR. In particular, we will review epigenetic variations associated with maternal airway disease, demographics, environment, and non-specific associations. The role of specific genetic haplotypes in environmentally induced epigenetic changes are also discussed. A major limitation of many of the current studies of asthma epigenetics is that they evaluate epigenetic modifications in both allergic and non-allergic asthma, making it difficult to distinguish those epigenetic modifications that mediate allergic asthma from those that mediate non-allergic asthma. Additionally, most DNA methylation studies in asthma use peripheral or cord blood due to poor accessibility of airway cells or tissue. Unlike DNA sequences, epigenetic alterations are quite cell- and tissue-specific, and epigenetic changes found in airway tissue or cells may be discordant from that of circulating blood. These two confounding factors should be considered when reviewing epigenetic studies in allergic airway disease.
Collapse
Affiliation(s)
- Andrew Long
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.,Department of Pharmacy, Lucile Packard Children's Hospital, Stanford, CA, 94304, USA
| | - Bryan Bunning
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA
| | - Vanitha Sampath
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA
| | - Rosemarie H DeKruyff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA
| | - Kari C Nadeau
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Lin PI, Shu H, Mersha TB. Comparing DNA methylation profiles across different tissues associated with the diagnosis of pediatric asthma. Sci Rep 2020; 10:151. [PMID: 31932625 PMCID: PMC6957523 DOI: 10.1038/s41598-019-56310-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
DNA methylation (DNAm) profiles in central airway epithelial cells (AECs) may play a key role in pathological processes in asthma. The goal of the current study is to compare the diagnostic performance of DNAm markers across three tissues: AECs, nasal epithelial cells (NECs), and peripheral blood mononuclear cells (PBMCs). Additionally, we focused on the results using the machine learning algorithm in the context of multi-locus effects to evaluate the diagnostic performance of the optimal subset of CpG sites. We obtained 74 subjects with asthma and 41 controls from AECs, 15 subjects with asthma and 14 controls from NECs, 697 subjects with asthma and 97 controls from PBMCs. Epigenome-wide DNA methylation levels in AECs, NECs and PBMCs were measured using the Infinium Human Methylation 450 K BeadChip. Overlap analysis across the three different sample sources at the locus and pathway levels were studied to investigate shared or unique pathophysiological processes of asthma across tissues. Using the top 100 asthma-associated methylation markers as classifiers from each dataset, we found that both AEC- and NEC-based DNAm signatures exerted a lower classification error than the PBMC-based DNAm markers (p-value = 0.0002). The area-under-the-curve (AUC) analysis based on out-of-bag errors using the random forest classification algorithm revealed that PBMC-, NEC-, and AEC-based methylation data yielded 31 loci (AUC: 0.87), 8 loci (AUC: 0.99), and 4 loci (AUC: 0.97) from each optimal subset of tissue-specific markers, respectively. We also discovered the locus-locus interaction of DNAm levels of the CDH6 gene and RAPGEF3 gene might interact with each other to jointly predict the risk of asthma – which suggests the pivotal role of cell-cell junction in the pathological changes of asthma. Both AECs and NECs might provide better diagnostic accuracy and efficacy levels than PBMCs. Further research is warranted to evaluate how these tissue-specific DNAm markers classify and predict asthma risk.
Collapse
Affiliation(s)
- Ping-I Lin
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Huan Shu
- Department of Health Sciences, Karlstad University, Karlstad, Sweden.,Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Bellanti JA. Epigenetic studies and pediatric research. Pediatr Res 2020; 87:378-384. [PMID: 31731288 DOI: 10.1038/s41390-019-0644-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
The 2020 Annual Review Issue, "Preventing Disease in the 21st Century" was selected by the Editors-in-Chief of Pediatric Research to include a variety of disease entities that confront health-care practitioners entrusted to the care of infants and children. In keeping with this mandate, this article reviews the subject of epigenetics, which impacts pediatric research from bench to bedside. Epigenetic mechanisms exert their effects through the interaction of environment, various susceptibility genes, and immunologic development and include: (1) DNA methylation; (2) posttranslational modifications of histone proteins through acetylation and methylation, and (3) RNA-mediated gene silencing by microRNA (miRNA) regulation. The effects of epigenetics during fetal life and early periods of development are first reviewed together with clinical applications of cardiovascular and metabolic disorders in later life. The relationships of epigenetics to the allergic and autoimmune diseases and cancer are next reviewed. A specific focus of the article is directed to the recent recognition that many of these disorders are driven by aberrant immune responses in which immunoregulatory events are often poorly functioning and where through interventive epigenetic measures prevention may be possible by alterations in programming of DNA during fetal and early periods as well as in later life.
Collapse
Affiliation(s)
- Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA. .,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Asthma is one of the most common chronic respiratory diseases linked with increased morbidity and healthcare utilization. The underlying pathophysiological processes and causal relationships of asthma with epigenetic mechanisms are partially understood. Here we review human studies of epigenetic mechanisms in asthma, with a special focus on DNA methylation. RECENT FINDINGS Epigenetic studies of childhood asthma have identified specific methylation signatures associated with allergic inflammation in the airway and immune cells, demonstrating a regulatory role for methylation in asthma pathogenesis. Despite these novel findings, additional research in the role of epigenetic mechanisms underlying asthma endotypes is needed. Similarly, studies of histone modifications are also lacking in asthma. Future studies of epigenetic mechanisms in asthma will benefit from data integration in well phenotyped cohorts. This review provides an overview of the current literature on epigenetic studies in human asthma, with special emphasis on methylation and childhood asthma.
Collapse
Affiliation(s)
- Jose L Gomez
- Pulmonary, Critical Care and Sleep, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
30
|
Laubach ZM, Perng W, Cardenas A, Rifas-Shiman SL, Oken E, DeMeo D, Litonjua AA, Duca RC, Godderis L, Baccarelli A, Hivert MF. Socioeconomic status and DNA methylation from birth through mid-childhood: a prospective study in Project Viva. Epigenomics 2019; 11:1413-1427. [PMID: 31509016 PMCID: PMC6802709 DOI: 10.2217/epi-2019-0040] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/20/2018] [Indexed: 12/28/2022] Open
Abstract
Aim: We investigated associations of prenatal socioeconomic status (SES) with DNA methylation at birth, and to explore persistence of associations into early (∼3 years) and mid-childhood (∼7 years) among 609 mother-child pairs in a Boston-area prebirth cohort. Materials & methods: First, we created a prenatal SES index comprising individual- and neighborhood-level metrics and examined associations of low (lowest 10%) versus high (upper 90%) SES with genome-wide DNA methylation in cord blood via the Infinium HumanMethylation450 BeadChip. Next, we evaluated persistence of associations detected in cord blood with DNA methylation of the same CpG sites measured in peripheral leukocytes in early- and mid-childhood. Results & conclusion: Low prenatal SES was associated with methylation at CpG sites near ACSF3, TNRC6C-AS1, MTMR4 and LRRN4. The relationship with LRRN4 persisted into early childhood.
Collapse
Affiliation(s)
- Zachary M Laubach
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health, Anschutz Medical Center, Aurora, CO 80045, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dawn DeMeo
- Center for Chest Diseases, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Radu-Corneliu Duca
- Centre for Environment & Health, Department of Public Health & Primary Care, University of Leuven (KU Leuven), 3000, Belgium
| | - Lode Godderis
- Centre for Environment & Health, Department of Public Health & Primary Care, University of Leuven (KU Leuven), 3000, Belgium
- IDEWE, External Service for Prevention at Protection at Work, Heverlee, 3001, Belgium
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| |
Collapse
|
31
|
Barfield R, Wang H, Liu Y, Brody JA, Swenson B, Li R, Bartz TM, Sotoodehnia N, Chen YDI, Cade BE, Chen H, Patel SR, Zhu X, Gharib SA, Johnson WC, Rotter JI, Saxena R, Purcell S, Lin X, Redline S, Sofer T. Epigenome-wide association analysis of daytime sleepiness in the Multi-Ethnic Study of Atherosclerosis reveals African-American-specific associations. Sleep 2019; 42:zsz101. [PMID: 31139831 PMCID: PMC6685317 DOI: 10.1093/sleep/zsz101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
STUDY OBJECTIVES Daytime sleepiness is a consequence of inadequate sleep, sleep-wake control disorder, or other medical conditions. Population variability in prevalence of daytime sleepiness is likely due to genetic and biological factors as well as social and environmental influences. DNA methylation (DNAm) potentially influences multiple health outcomes. Here, we explored the association between DNAm and daytime sleepiness quantified by the Epworth Sleepiness Scale (ESS). METHODS We performed multi-ethnic and ethnic-specific epigenome-wide association studies for DNAm and ESS in the Multi-Ethnic Study of Atherosclerosis (MESA; n = 619) and the Cardiovascular Health Study (n = 483), with cross-study replication and meta-analysis. Genetic variants near ESS-associated DNAm were analyzed for methylation quantitative trait loci and followed with replication of genotype-sleepiness associations in the UK Biobank. RESULTS In MESA only, we detected four DNAm-ESS associations: one across all race/ethnic groups; three in African-Americans (AA) only. Two of the MESA AA associations, in genes KCTD5 and RXRA, nominally replicated in CHS (p-value < 0.05). In the AA meta-analysis, we detected 14 DNAm-ESS associations (FDR q-value < 0.05, top association p-value = 4.26 × 10-8). Three DNAm sites mapped to genes (CPLX3, GFAP, and C7orf50) with biological relevance. We also found evidence for associations with DNAm sites in RAI1, a gene associated with sleep and circadian phenotypes. UK Biobank follow-up analyses detected SNPs in RAI1, RXRA, and CPLX3 with nominal sleepiness associations. CONCLUSIONS We identified methylation sites in multiple genes possibly implicated in daytime sleepiness. Most significant DNAm-ESS associations were specific to AA. Future work is needed to identify mechanisms driving ancestry-specific methylation effects.
Collapse
Affiliation(s)
- Richard Barfield
- Department of Epidemiology, University of Washington, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Heming Wang
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Brenton Swenson
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Institute for Public Health Genetics, University of Washington, Seattle, WA
| | - Ruitong Li
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Institute for Public Health Genetics, University of Washington, Seattle, WA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Yii-der I Chen
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Brian E Cade
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Han Chen
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX
| | - Sanjay R Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington Medicine Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Richa Saxena
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA
| | - Shaun Purcell
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Department of Psychiatry, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA
| | - Xihong Lin
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
- Department of Statistics, Harvard University, Cambridge, MA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA
| |
Collapse
|
32
|
Cardenas A, Sordillo JE, Rifas-Shiman SL, Chung W, Liang L, Coull BA, Hivert MF, Lai PS, Forno E, Celedón JC, Litonjua AA, Brennan KJ, DeMeo DL, Baccarelli AA, Oken E, Gold DR. The nasal methylome as a biomarker of asthma and airway inflammation in children. Nat Commun 2019; 10:3095. [PMID: 31300640 PMCID: PMC6625976 DOI: 10.1038/s41467-019-11058-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
The nasal cellular epigenome may serve as biomarker of airway disease and environmental response. Here we collect nasal swabs from the anterior nares of 547 children (mean-age 12.9 y), and measure DNA methylation (DNAm) with the Infinium MethylationEPIC BeadChip. We perform nasal Epigenome-Wide Association analyses (EWAS) of current asthma, allergen sensitization, allergic rhinitis, fractional exhaled nitric oxide (FeNO) and lung function. We find multiple differentially methylated CpGs (FDR < 0.05) and Regions (DMRs; ≥ 5-CpGs and FDR < 0.05) for asthma (285-CpGs), FeNO (8,372-CpGs; 191-DMRs), total IgE (3-CpGs; 3-DMRs), environment IgE (17-CpGs; 4-DMRs), allergic asthma (1,235-CpGs; 7-DMRs) and bronchodilator response (130-CpGs). Discovered DMRs annotated to genes implicated in allergic asthma, Th2 activation and eosinophilia (EPX, IL4, IL13) and genes previously associated with asthma and IgE in EWAS of blood (ACOT7, SLC25A25). Asthma, IgE and FeNO were associated with nasal epigenetic age acceleration. The nasal epigenome is a sensitive biomarker of asthma, allergy and airway inflammation. Epigenetic differences in nasal epithelium have been proposed as a biomarker for lower airway disease and asthma. Here, in epigenome-wide association studies for asthma and other airway traits using nasal swabs, the authors identify differentially methylated CpGs that highlight genes involved in TH2 response.
Collapse
Affiliation(s)
- Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA.
| | - Joanne E Sordillo
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Wonil Chung
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Marie-France Hivert
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA.,Diabetes Unit, Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Peggy S Lai
- Massachusetts General Hospital, Pulmonary/Critical Care, Boston, MA, 02114, USA
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kasey J Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Dawn L DeMeo
- Department of Medicine, Brigham and Women's Hospital, Channing Division of Network Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Emily Oken
- Department of Population Medicine, Division of Chronic Disease Research Across the Lifecourse, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, 02215, USA
| | - Diane R Gold
- Department of Medicine, Brigham and Women's Hospital, Channing Division of Network Medicine, Harvard Medical School, Boston, MA, 02115, USA.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
33
|
Peng C, Van Meel ER, Cardenas A, Rifas-Shiman SL, Sonawane AR, Glass KR, Gold DR, Platts-Mills TA, Lin X, Oken E, Hivert MF, Baccarelli AA, De Jong NW, Felix JF, Jaddoe VW, Duijts L, Litonjua AA, DeMeo DL. Epigenome-wide association study reveals methylation pathways associated with childhood allergic sensitization. Epigenetics 2019; 14:445-466. [PMID: 30876376 DOI: 10.1080/15592294.2019.1590085] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epigenetic mechanisms integrate both genetic variability and environmental exposures. However, comprehensive epigenome-wide analysis has not been performed across major childhood allergic phenotypes. We examined the association of epigenome-wide DNA methylation in mid-childhood peripheral blood (Illumina HumanMethyl450K) with mid-childhood atopic sensitization, environmental/inhalant and food allergen sensitization in 739 children in two birth cohorts (Project Viva-Boston, and the Generation R Study-Rotterdam). We performed covariate-adjusted epigenome-wide association meta-analysis and employed pathway and regional analyses of results. Seven-hundred and five methylation sites (505 genes) were significantly cross-sectionally associated with mid-childhood atopic sensitization, 1411 (905 genes) for environmental and 45 (36 genes) for food allergen sensitization (FDR<0.05). We observed differential methylation across multiple genes for all three phenotypes, including genes implicated previously in innate immunity (DICER1), eosinophilic esophagitis and sinusitis (SIGLEC8), the atopic march (AP5B1) and asthma (EPX, IL4, IL5RA, PRG2, SIGLEC8, CLU). In addition, most of the associated methylation marks for all three phenotypes occur in putative transcription factor binding motifs. Pathway analysis identified multiple methylation sites associated with atopic sensitization and environmental allergen sensitization located in/near genes involved in asthma, mTOR signaling, and inositol phosphate metabolism. We identified multiple differentially methylated regions associated with atopic sensitization (8 regions) and environmental allergen sensitization (26 regions). A number of nominally significant methylation sites in the cord blood analysis were epigenome-wide significant in the mid-childhood analysis, and we observed significant methylation - time interactions among a subset of sites examined. Our findings provide insights into epigenetic regulatory pathways as markers of childhood allergic sensitization.
Collapse
Affiliation(s)
- Cheng Peng
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Evelien R Van Meel
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Andres Cardenas
- d Division of Environmental Health Science , University of California, Berkeley, School of Public Health , Berkeley , CA , USA
| | - Sheryl L Rifas-Shiman
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Abhijeet R Sonawane
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Kimberly R Glass
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA
| | - Diane R Gold
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,g Department of Environmental Health , Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Thomas A Platts-Mills
- h Division of Allergy and Clinical Immunology , University of Virginia School of Medicine , Charlottesville , VA , USA
| | - Xihong Lin
- f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA.,i Department of Statistics , Harvard University , Cambridge , MA , USA
| | - Emily Oken
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Marie-France Hivert
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA.,j Diabetes Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Andrea A Baccarelli
- k Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , New York , NY , USA
| | - Nicolette W De Jong
- l Department of Internal Medicine, Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Janine F Felix
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Vincent W Jaddoe
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Liesbeth Duijts
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,o Department of Pediatrics, Division of Neonatology , Erasmus MC, University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Augusto A Litonjua
- p Department of Pediatrics, Division of Pulmonary Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Dawn L DeMeo
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,q Division of Pulmonary and Critical Care, Harvard Medical School , Department of Medicine, Brigham and Women's Hospital , Boston , MA , USA
| |
Collapse
|
34
|
Epigenetic age acceleration is associated with allergy and asthma in children in Project Viva. J Allergy Clin Immunol 2019; 143:2263-2270.e14. [PMID: 30738172 DOI: 10.1016/j.jaci.2019.01.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Epigenetic clocks have been suggested to capture one feature of the complexity between aging and the epigenome. However, little is known about the epigenetic clock in childhood allergy and asthma. OBJECTIVE We sought to examine associations of DNA methylation age (DNAmAge) and epigenetic age acceleration with childhood allergy and asthma. METHODS We calculated DNAmAge and age acceleration at birth, early childhood, and midchildhood based on the IlluminaHumanMethylation450BeadChip in Project Viva. We evaluated epigenetic clock associations with allergy and asthma using covariate-adjusted linear and logistic regressions. We attempted to replicate our findings in the Genetics of Asthma in Costa Rica Study. RESULTS At midchildhood (mean age, 7.8 years) in Project Viva, DNAmAge and age acceleration were cross-sectionally associated with greater total serum IgE levels and greater odds of atopic sensitization. Every 1-year increase in intrinsic epigenetic age acceleration was associated with a 1.22 (95% CI, 1.07-1.39), 1.17 (95% CI, 1.03-1.34), and 1.29 (95% CI, 1.12-1.49) greater odds of atopic sensitization and environmental and food allergen sensitization. DNAmAge and extrinsic epigenetic age acceleration were also cross-sectionally associated with current asthma at midchildhood. DNAmAge and age acceleration at birth and early childhood were not associated with midchildhood allergy or asthma. The midchildhood association between age acceleration and atopic sensitization were replicated in an independent data set. CONCLUSIONS Because the epigenetic clock might reflect immune and developmental components of biological aging, our study suggests pathways through which molecular epigenetic mechanisms of immunity, development, and maturation can interact along the age axis and associate with childhood allergy and asthma by midchildhood.
Collapse
|