1
|
Lin CH, Li SC, Lin MH, Ho CJ, Lu YT, Lin Y, Lin PH, Tsai KW, Tsai MH. S100A6 participates in initiation of autoimmune encephalitis and is under epigenetic control. Brain Behav 2023; 13:e2897. [PMID: 36748983 PMCID: PMC10013942 DOI: 10.1002/brb3.2897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Autoimmune encephalitis (AE) is caused by autoantibodies attacking neuronal cell surface antigens and/or synaptic antigens. We previously demonstrated that S100A6 was hypomethylated in patients with AE and that it promoted B lymphocyte infiltration through the simulated blood-brain barrier (BBB). In this study, we focused on the epigenetic regulation of S100A6, the process by which S100A6 affects B lymphocyte infiltration, and the therapeutic potential of S100A6 antibodies. METHODS We enrolled and collected serum from 10 patients with AE and 10 healthy control (HC) subjects. Promoter methylation and 5-azacytidine treatment assays were conducted to observe the methylation process of S100A6. The effect of S100A6 on B lymphocytes was analyzed using an adhesion assay and leukocyte transendothelial migration (LTEM) assay. A LTEM assay was also used to compare the effects of the serum of HCs, serum of AE patients, S100A6 recombinant protein, and S100A6 antibodies on B lymphocytes. RESULT The promoter methylation and 5-azacytidine treatment assays confirmed that S100A6 was regulated by DNA methylation. The adhesion study demonstrated that the addition of S100A6 enhanced adhesion between B lymphocytes and a BBB endothelial cell line in a concentration-dependent manner. The LTEM assay showed that the serum of AE patients, as well as S100A6, promoted B lymphocyte infiltration and that this effect could be attenuated by S100A6 antibodies. CONCLUSION We clarified that S100A6 was under epigenetic regulation in patients with AE and that it helped B lymphocytes to adhere to and infiltrate the BBB endothelial layer, which could be counteracted by S100A6 antibodies. Therefore, the methylation profile of S100A6 could be a marker of the activity of AE, and countering the effect of S100A6 may be a potential treatment target for AE.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuyu Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsien Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Aymonnier K, Amsler J, Lamprecht P, Salama A, Witko‐Sarsat V. The neutrophil: A key resourceful agent in immune‐mediated vasculitis. Immunol Rev 2022; 314:326-356. [PMID: 36408947 DOI: 10.1111/imr.13170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term "vasculitis" refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to "set the tone" for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease.
Collapse
Affiliation(s)
- Karen Aymonnier
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Jennifer Amsler
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology University of Lübeck Lübeck Germany
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital University College London London UK
| | | |
Collapse
|
3
|
Sun H, Liu C, Zhang X, Liu P, Du Z, Luo G, Pan S. Using bioinformatics analysis to screen abnormal methylated differentially expressed hub genes of Kawasaki disease and construct diagnostic model. Heliyon 2022; 8:e11905. [DOI: 10.1016/j.heliyon.2022.e11905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/21/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
|
4
|
iTRAQ Proteomics Identified the Potential Biomarkers of Coronary Artery Lesion in Kawasaki Disease and In Vitro Studies Demonstrated That S100A4 Treatment Made HCAECs More Susceptible to Neutrophil Infiltration. Int J Mol Sci 2022; 23:ijms232112770. [PMID: 36361563 PMCID: PMC9658444 DOI: 10.3390/ijms232112770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022] Open
Abstract
Coronary artery lesions (CAL) are a major complication of Kawasaki disease (KD). The early prediction of CAL enables the medical personnel to apply adequate medical intervention. We collected the serum samples from the KD patients with CAL (n = 32) and those without CAL (n = 31), followed by a global screening with isobaric tagging for relative and absolute quantification (iTRAQ) technology and specific validation with an enzyme-linked immunosorbent assay (ELISA). iTRAQ identified 846 proteins in total in the serum samples, and four candidate proteins related to CAL were selected for ELISA validation as follows: Protein S100-A4 (S100A4), Catalase (CAT), Folate receptor gamma (FOLR3), and Galectin 10 (CLC). ELISA validation showed that the S100A4 level was significantly higher in KD patients with CAL than in those without CAL (225.2 ± 209.5 vs. 143.3 ± 83 pg/mL, p < 0.05). In addition, KD patients with CAL had a significantly lower CAT level than those without CAL (1.6 ± 1.5 vs. 2.7 ± 2.3 ng/mL, p < 0.05). Next, we found that S100A4 treatment on human coronary artery endothelial cells (HCAECs) reduced the abundance of cell junction proteins, which promoted the migration of HCAECs. Further assays also demonstrated that S100A4 treatment enhanced the permeability of the endothelial layer. These results concluded that S100A4 treatment resulted in an incompact endothelial layer and made HCAECs more susceptible to in vitro neutrophil infiltration. In addition, both upregulated S100A4 and downregulated CAT increased the risk of CAL in KD. Further in vitro study implied that S100A4 could be a potential therapeutic target for CAL in KD.
Collapse
|
5
|
Wang LJ, Huang YC, Lin PY, Lee Y, Hung CF, Hsu ST, Huang LH, Li SC. BST-1 as a serum protein biomarker involved in neutrophil infiltration in schizophrenia. World J Biol Psychiatry 2022; 23:537-547. [PMID: 34870552 DOI: 10.1080/15622975.2021.2014151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Schizophrenia is a serious mental illness. The serum protein biomarkers of schizophrenia were explored using isobaric tags for relative and absolute quantitation (iTRAQ) technology. The underlying function of the identified protein biomarker was also investigated. METHODS We first collected serum samples from 12 schizophrenia patients and 12 healthy control (HC) subjects, followed by global screening with iTRAQ and tandem mass spectrometry (LC-MS/MS). In total, 691 serum proteins were detected and eight proteins, including ZYX, OSCAR, TPM4, SDPR, BST1, ARGHDB, ITIH5 and SH3BGRL3, were selected for further specific validation with enzyme-linked immunosorbent assay (ELISA) on the serum samples from 52 schizophrenia patients and 50 HC subjects. RESULTS Schizophrenia patients had significantly lower serum level of BST1 and higher ITIH5 level than the HC subjects did. Using the levels of BST1, ITIH5 and OSCAR combined with machine learning algorithm, we developed a prediction model of schizophrenia with an auROC value 0.78. Moreover, in vitro cell assay confirmed that BST1 significantly repressed neutrophil infiltration through endothelial layer, highlighted the anti-inflammation nature of BST1. CONCLUSIONS Four novel protein markers (BST1, ITIH5, SDPR, and OSCAR) of schizophrenia were identified, and BST-1 could serve as a serum protein biomarker involved in neutrophil infiltration in schizophrenia.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Chi Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu Lee
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Fa Hung
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Su-Ting Hsu
- Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Lien-Hung Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Zhang M, Ke B, Zhuo H, Guo B. Diagnostic model based on bioinformatics and machine learning to distinguish Kawasaki disease using multiple datasets. BMC Pediatr 2022; 22:512. [PMID: 36042431 PMCID: PMC9425821 DOI: 10.1186/s12887-022-03557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background Kawasaki disease (KD), characterized by systemic vasculitis, is the leading cause of acquired heart disease in children. Herein, we developed a diagnostic model, with some prognosis ability, to help distinguish children with KD. Methods Gene expression datasets were downloaded from Gene Expression Omnibus (GEO), and gene sets with a potential pathogenic mechanism in KD were identified using differential expressed gene (DEG) screening, pathway enrichment analysis, random forest (RF) screening, and artificial neural network (ANN) construction. Results We extracted 2,017 DEGs (1,130 with upregulated and 887 with downregulated expression) from GEO. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were significantly enriched in innate/adaptive immune response-related processes. Subsequently, the results of weighted gene co-expression network analysis and DEG screening were combined and, using RF and ANN, a model with eight genes (VPS9D1, CACNA1E, SH3GLB1, RAB32, ADM, GYG1, PGS1, and HIST2H2AC) was constructed. Classification results of the new model for KD diagnosis showed excellent performance for different datasets, including those of patients with KD, convalescents, and healthy individuals, with area under the curve values of 1, 0.945, and 0.95, respectively. Conclusions We used machine learning methods to construct and validate a diagnostic model using multiple bioinformatic datasets, and identified molecules expected to serve as new biomarkers for or therapeutic targets in KD. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-022-03557-y.
Collapse
Affiliation(s)
- Mengyi Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, PR, Sichuan Province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bocuo Ke
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, PR, Sichuan Province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Huichuan Zhuo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, PR, Sichuan Province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Binhan Guo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, PR, Sichuan Province, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
| |
Collapse
|
7
|
Davalos V, García-Prieto CA, Ferrer G, Aguilera-Albesa S, Valencia-Ramos J, Rodríguez-Palmero A, Ruiz M, Planas-Serra L, Jordan I, Alegría I, Flores-Pérez P, Cantarín V, Fumadó V, Viadero MT, Rodrigo C, Méndez-Hernández M, López-Granados E, Colobran R, Rivière JG, Soler-Palacín P, Pujol A, Esteller M. Epigenetic profiling linked to multisystem inflammatory syndrome in children (MIS-C): A multicenter, retrospective study. EClinicalMedicine 2022; 50:101515. [PMID: 35770252 PMCID: PMC9233426 DOI: 10.1016/j.eclinm.2022.101515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Most children and adolescents infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain asymptomatic or develop a mild coronavirus disease 2019 (COVID-19) that usually does not require medical intervention. However, a small proportion of pediatric patients develop a severe clinical condition, multisystem inflammatory syndrome in children (MIS-C). The involvement of epigenetics in the control of the immune response and viral activity prompted us to carry out an epigenomic study to uncover target loci regulated by DNA methylation that could be altered upon the appearance of MIS-C. METHODS Peripheral blood samples were recruited from 43 confirmed MIS-C patients. 69 non-COVID-19 pediatric samples and 15 COVID-19 pediatric samples without MIS-C were used as controls. The cases in the two groups were mixed and divided into discovery (MIS-C = 29 and non-MIS-C = 56) and validation (MIS-C = 14 and non-MIS-C = 28) cohorts, and balanced for age, gender and ethnic background. We interrogated 850,000 CpG sites of the human genome for DNA methylation variants. FINDINGS The DNA methylation content of 33 CpG loci was linked with the presence of MIS-C. Of these sites, 18 (54.5%) were located in described genes. The top candidate gene was the immune T-cell mediator ZEB2; and others highly ranked candidates included the regulator of natural killer cell functional competence SH2D1B; VWA8, which contains a domain of the Von Willebrand factor A involved in the pediatric hemostasis disease; and human leukocyte antigen complex member HLA-DRB1; in addition to pro-inflammatory genes such as CUL2 and AIM2. The identified loci were used to construct a DNA methylation profile (EPIMISC) that was associated with MIS-C in both cohorts. The EPIMISC signature was also overrepresented in Kawasaki disease patients, a childhood pathology with a possible viral trigger, that shares many of the clinical features of MIS-C. INTERPRETATION We have characterized DNA methylation loci that are associated with MIS-C diagnosis. The identified genes are likely contributors to the characteristic exaggerated host inflammatory response observed in these patients. The described epigenetic signature could also provide new targets for more specific therapies for the disorder. FUNDING Unstoppable campaign of Josep Carreras Leukaemia Foundation, Fundació La Marató de TV3, Cellex Foundation and CERCA Programme/Generalitat de Catalunya.
Collapse
Affiliation(s)
- Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Carlos A. García-Prieto
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Catalonia, Spain
| | - Gerardo Ferrer
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Spain
| | | | | | - Agustí Rodríguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Iolanda Jordan
- Pediatric Critical Care Unit, Hospital Universitari Sant Joan de Deu, Barcelona, Catalonia, Spain
| | | | | | - Verónica Cantarín
- Pediatrics Department, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Victoria Fumadó
- Unitat de Malalties Infeccioses i Importades, Servei de Pediatría, Infectious and Imported Diseases, Pediatric Unit, Hospital Universitari Sant Joan de Deú, Barcelona, Catalonia, Spain
| | - Maria Teresa Viadero
- Servicio de Pediatría del Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Carlos Rodrigo
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Maria Méndez-Hernández
- Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Barcelona, Spain
| | - Eduardo López-Granados
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Department of Immunology, La Paz University Hospital, Madrid, Spain; La Paz Institute of Biomedical Research, Madrid, Spain
| | - Roger Colobran
- Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Corresponding author at: Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Catalonia, Spain.
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain
- Corresponding author at: Josep Carreras Leukaemia Research Institute (IJC), Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Guo MMH, Huang YH, Wang FS, Chang LS, Chen KD, Kuo HC. CD36 is Associated With the Development of Coronary Artery Lesions in Patients With Kawasaki Disease. Front Immunol 2022; 13:790095. [PMID: 35154107 PMCID: PMC8828496 DOI: 10.3389/fimmu.2022.790095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Kawasaki disease (KD) is an autoimmune-like vasculitis of childhood involving the coronary arteries. Macrophages require scavenger receptors such as CD36 to effectively clear cellular debris and induce self-tolerance. In this study, we hypothesized that CD36 plays an important role in the immunopathogenesis of KD, by aiding in the clearance of plasma mitochondrial DNA, and by amplifying the immune response by activating the inflammasome pathway via AIM2. Fifty-two healthy controls, 52 febrile controls, and 102 KD patients were recruited for RT-PCR of target mRNA expression and plasma mitochondrial DNA. Blood samples were obtained 24 hours prior and 21 days after the administration of intravenous immunoglobulin (IVIG) therapy. Patients with acute KD had higher plasma levels of cell-free mitochondrial DNA (ND1, ND4, and COX1), and higher mRNA expressions of CD36 and AIM2 when compared to both healthy and febrile controls. A greater decrease in both CD36 and AIM2 mRNA expression after IVIG therapy was associated with the development of coronary artery lesions. Coronary artery lesions were associated with a larger decrease of CD36 expression following IVIG therapy, which may indicate that prolonged expression of the scavenger receptor may have a protective effect against the development of coronary artery lesions in KD.
Collapse
Affiliation(s)
- Mindy Ming-Huey Guo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Laboratory Animals, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ling-Sai Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Wu WS, Yang TH, Chen KD, Lin PH, Chen GR, Kuo HC. KDmarkers: A biomarker database for investigating epigenetic methylation and gene expression levels in Kawasaki disease. Comput Struct Biotechnol J 2022; 20:1295-1305. [PMID: 35356542 PMCID: PMC8931344 DOI: 10.1016/j.csbj.2022.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Kawasaki disease (KD) is a form of acute systemic vasculitis that primarily affects children and has become the most common cause of acquired heart disease. While the etiopathogenesis of KD remains unknown, the diagnostic criteria of KD have been well established. Nevertheless, the diagnosis of KD is currently based on subjective clinical symptoms, and no molecular biomarker is yet available. We have previously performed and combined methylation array (Illumina HumanMethylation450 BeadChip) and transcriptome array (Affymetrix GeneChip Human Transcriptome Array 2.0) to identify genes that are differentially methylated/expressed in KD patients compared with control subjects. We have found that decreased methylation levels combined with elevated gene expression can indicate genes (e.g., toll-like receptors and CD177) involved in the disease mechanisms of KD. In this study, we constructed a database called KDmarkers to allow researchers to access these valuable potential KD biomarkers identified via methylation array and transcriptome array. KDmarkers provides three search modes. First, users can search genes differentially methylated and/or differentially expressed in KD patients compared with control subjects. Second, users can check the KD patient groups in which a given gene is differentially methylated and/or differentially expressed. Third, users can explore the DNA methylation levels and gene expression levels in all samples (KD patients and controls) for a particular gene of interest. We further demonstrated that the results in KDmarkers are strongly associated with KD immune responses. All analysis results can be downloaded for downstream experimental designs. KDmarkers is available online at https://cosbi.ee.ncku.edu.tw/KDmarkers/.
Collapse
|
10
|
Kuo KC, Yang YL, Lo MH, Cai XY, Guo MMH, Kuo HC, Huang YH. Increased Expression of Pyroptosis in Leukocytes of Patients with Kawasaki Disease. Diagnostics (Basel) 2021; 11:diagnostics11112035. [PMID: 34829381 PMCID: PMC8620614 DOI: 10.3390/diagnostics11112035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Kawasaki disease (KD) is a form of febrile vasculitis that primarily occurs in children. It can cause inflammation of the coronary arteries, which leads to aneurysms. The pathogenesis of coronary arteries may be associated with apoptosis or pyroptosis mediated by caspases activity, but this idea has not been discussed much in KD. Materials and Methods: We enrolled 236 participants in this study. In the Affymetrix GeneChip® Human Transcriptome Array 2.0 study, there were 18 KD patients analyzed prior to receiving intravenous immunoglobulin (IVIG) treatment, at least 3 weeks after IVIG treatment, and 36 non-KD control subjects. We also recruited 24 KD patients prior to receiving IVIG treatment, at least 3 weeks after IVIG treatment, and 24 non-KD control subjects for Illumina HumanMethylation450 BeadChip study. A separate cohort of 134 subjects was analyzed to validate real-time quantitative PCR. Results: The mRNA levels of caspase-1, -3, -4, and -5 were significantly increased in KD patients compared with control subjects (p < 0.05). After administration of IVIG, the expression of these genes decreased considerably. Of particular note, the methylation status of the CpG sites of the caspase-4 and -5 genes demonstrated significant opposite tendencies between the KD patients and controls. Furthermore, compared with patients who responded to IVIG, refractory KD patients had a lower expression of the caspase-3 gene prior to IVIG treatment. Conclusion: Our study is the first to report the upregulation of pyroptotic caspase-1, -4, and -5 in peripheral leukocytes of KD patients. Moreover, the expression of caspase-3 may be associated with IVIG resistance in KD.
Collapse
Affiliation(s)
- Kuang-Che Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (K.-C.K.); (M.-H.L.); (X.-Y.C.); (M.M.-H.G.)
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Mao-Hung Lo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (K.-C.K.); (M.-H.L.); (X.-Y.C.); (M.M.-H.G.)
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Xin-Yuan Cai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (K.-C.K.); (M.-H.L.); (X.-Y.C.); (M.M.-H.G.)
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Mindy Ming-Huey Guo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (K.-C.K.); (M.-H.L.); (X.-Y.C.); (M.M.-H.G.)
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (K.-C.K.); (M.-H.L.); (X.-Y.C.); (M.M.-H.G.)
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Correspondence: (H.-C.K.); (Y.-H.H.)
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (K.-C.K.); (M.-H.L.); (X.-Y.C.); (M.M.-H.G.)
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Correspondence: (H.-C.K.); (Y.-H.H.)
| |
Collapse
|
11
|
Sabaie H, Dehghani H, Shiva S, Asadi MR, Rezaei O, Taheri M, Rezazadeh M. Mechanistic Insight Into the Regulation of Immune-Related Genes Expression in Autism Spectrum Disorder. Front Mol Biosci 2021; 8:754296. [PMID: 34746237 PMCID: PMC8568055 DOI: 10.3389/fmolb.2021.754296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder featuring impairment in verbal and non-verbal interactions, defects in social interactions, stereotypic behaviors as well as restricted interests. In recent times, the incidence of ASD is growing at a rapid pace. In spite of great endeavors devoted to explaining ASD pathophysiology, its precise etiology remains unresolved. ASD pathogenesis is related to different phenomena associated with the immune system; however, the mechanisms behind these immune phenomena as well as the potential contributing genes remain unclear. In the current work, we used a bioinformatics approach to describe the role of long non-coding RNA (lncRNA)-associated competing endogenous RNAs (ceRNAs) in the peripheral blood (PB) samples to figure out the molecular regulatory procedures involved in ASD better. The Gene Expression Omnibus database was used to obtain the PB microarray dataset (GSE89594) from the subjects suffering from ASD and control subjects, containing the data related to both mRNAs and lncRNAs. The list of immune-related genes was obtained from the ImmPort database. In order to determine the immune-related differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs), the limma package of R software was used. A protein-protein interaction network was developed for the immune-related DEmRNAs. By employing the Human MicroRNA Disease Database, DIANA-LncBase, and DIANA-TarBase databases, the RNA interaction pairs were determined. We used the Pearson correlation coefficient to discover the positive correlations between DElncRNAs and DEmRNAs within the ceRNA network. Finally, the lncRNA-associated ceRNA network was created based on DElncRNA-miRNA-DEmRNA interactions and co-expression interactions. In addition, the KEGG enrichment analysis was conducted for immune-related DEmRNAs found within the constructed network. This work found four potential DElncRNA-miRNA-DEmRNA axes in ASD pathogenesis, including, LINC00472/hsa-miR-221-3p/PTPN11, ANP32A-IT1/hsa-miR-182-5p/S100A2, LINC00472/hsa-miR-132-3p/S100A2, and RBM26-AS1/hsa-miR-182-5p/S100A2. According to pathway enrichment analysis, the immune-related DEmRNAs were enriched in the "JAK-STAT signaling pathway" and "Adipocytokine signaling pathway." An understanding of regulatory mechanisms of ASD-related immune genes would provide novel insights into the molecular mechanisms behind ASD pathogenesis.
Collapse
Affiliation(s)
- Hani Sabaie
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Dehghani
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Shadi Shiva
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Yu HR, Hsu TY, Tsai CC, Huang HC, Cheng HH, Lai YJ, Lin YJ, Chen CC, Li SC, Yang K. The Functional DNA Methylation Signatures Relevant to Altered Immune Response of Neonatal T Cells with l-Arginine Supplementation. Nutrients 2021; 13:nu13082780. [PMID: 34444938 PMCID: PMC8401784 DOI: 10.3390/nu13082780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
l-Arginine is an important nutrient in the infant diet that significantly regulates the maturation of the immune system in neonates, including the maturation of CD4+ T cells. The biological activities of CD4+ T cells differ substantially between neonates and adults, and these differences may be governed by epigenetic processes. Investigating these differences and the causative processes may help understand neonatal and developmental immunity. In this study, we compared the functional DNA methylation profiles in CD4+ T cells of neonates and adults, focusing on the role of l-arginine supplementation. Umbilical cord blood and adult CD4+ T cells were cultured with/without l-arginine treatment. By comparing DNA methylation in samples without l-arginine treatment, we found that CD4+ T cells of neonatal cord blood generally showed higher DNA methylation than those of adults (average CpG methylation percentage 0.6305 for neonate and 0.6254 for adult, t-test p-value < 0.0001), suggesting gene silencing in neonates. By examining DNA methylation patterns of CpG dinucleotides induced by l-arginine treatment, we found that more CpG dinucleotides were hypomethylated and more genes appeared to be activated in neonatal T-cells as compared with adult. Genes activated by l-arginine stimulation of cord blood samples were more enriched regarding immune-related pathways. CpG dinucleotides at IL-13 promoter regions were hypomethylated after l-arginine stimulation. Hypomethylated CpG dinucleotides corresponded to higher IL-13 gene expression and cytokine production. Thus, DNA methylation partially accounts for the mechanism underlying differential immune function in neonates. Modulatory effects of l-arginine on DNA methylation are gene-specific. Nutritional intervention is a potential strategy to modulate immune function of neonates.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (C.-C.C.)
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (T.-Y.H.); (C.-C.T.); (H.-H.C.); (Y.-J.L.); (Y.-J.L.)
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (T.-Y.H.); (C.-C.T.); (H.-H.C.); (Y.-J.L.); (Y.-J.L.)
| | - Hsin-Chun Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (C.-C.C.)
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (T.-Y.H.); (C.-C.T.); (H.-H.C.); (Y.-J.L.); (Y.-J.L.)
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (T.-Y.H.); (C.-C.T.); (H.-H.C.); (Y.-J.L.); (Y.-J.L.)
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (T.-Y.H.); (C.-C.T.); (H.-H.C.); (Y.-J.L.); (Y.-J.L.)
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan; (H.-R.Y.); (H.-C.H.); (C.-C.C.)
| | - Sung-Chou Li
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Correspondence: (S.-C.L.); (K.Y.)
| | - Kuender Yang
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 104217, Taiwan
- Correspondence: (S.-C.L.); (K.Y.)
| |
Collapse
|
13
|
Zhang Y, Yang X, Zhu XL, Bai H, Wang ZZ, Zhang JJ, Hao CY, Duan HB. S100A gene family: immune-related prognostic biomarkers and therapeutic targets for low-grade glioma. Aging (Albany NY) 2021; 13:15459-15478. [PMID: 34148033 PMCID: PMC8221329 DOI: 10.18632/aging.203103] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite the better prognosis given by surgical resection and chemotherapy in low-grade glioma (LGG), progressive transformation is still a huge concern. In this case, the S100A gene family, being capable of regulating inflammatory responses, can promote tumor development. METHODS The analysis was carried out via ONCOMINE, GEPIA, cBioPortal, String, GeneMANIA, WebGestalt, LinkedOmics, TIMER, CGGA, R 4.0.2 and immunohistochemistry. RESULTS S100A2, S100A6, S100A10, S100A11, and S100A16 were up-regulated and S100A1 and S100A13 were down-regulated in LGG compared to normal tissues. S100A3, S100A4, S100A8, and S100A9 expression was up-regulated during the progression of glioma grade. In addition, genetic variation of the S100A family was high in LGG, and the S100A family genes mostly function through IL-17 signaling pathway, S100 binding protein, and inflammatory responses. The TIMER database also revealed a relationship between gene expression and immune cell infiltration. High expression of S100A2, S100A3, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, S100A13, and S100A16 was significantly associated with poor prognosis in LGG patients. S100A family genes S100A2, S100A3, S100A6, S100A10, and S100A11 may be prognosis-related genes in LGG, and were significantly associated with IDH mutation and 1p19q codeletion. The immunohistochemical staining results also confirmed that S100A2, S100A3, S100A6, S100A10, and S100A11 expression was upregulated in LGG. CONCLUSION The S100A family plays a vital role in LGG pathogenesis, presumably facilitating LGG progression via modulating inflammatory state and immune cell infiltration.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Xiao-Lin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Hao Bai
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Zhuang-Zhuang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Jun-Jie Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Chun-Yan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Hu-Bin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang 033000, Shanxi, P.R. China
| |
Collapse
|
14
|
Long-Term Hypermethylation of FcγR2B in Leukocytes of Patients with Kawasaki Disease. J Clin Med 2021; 10:jcm10112347. [PMID: 34071896 PMCID: PMC8199050 DOI: 10.3390/jcm10112347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/08/2021] [Accepted: 05/23/2021] [Indexed: 12/18/2022] Open
Abstract
The Fc gamma receptor family contains several activating receptors and the only inhibitory receptor, FcγR2B. In this study, we investigated the dynamic methylation change of FcγR2B in different stages of Kawasaki disease (KD). We enrolled a total of 116 participants, which included patients with febrile diseases as controls and KD patients. Whole blood cells of KD patients were collected prior to intravenous immunoglobulin (IVIG) treatment (KD1), three to seven days after IVIG (KD2), three weeks after IVIG treatment (KD3), six months after IVIG (KD4), and one year after IVIG treatment (KD5). In total, 76 KD patients provided samples in every stage. Leukocytes of controls were also recruited. We performed DNA extraction and pyrosequencing. FcγR2B methylation levels were higher in KD3 compared to both the controls and KD1. A significantly higher methylation of FcγR2B was found in KD5 when compared with KD1. FcγR2B methylation levels in the IVIG-resistant group were lower than those in the IVIG-responsive group at KD1-3 (p = 0.004, 0.004, 0.005 respectively). This study is the first to report the dynamic change of FcγR2B methylation and to demonstrate long-term hypermethylation one year after disease onset. Hypomethylation of FcγR2B is associated with IVIG resistance.
Collapse
|
15
|
Chen MR, Kuo HC, Lee YJ, Chi H, Li SC, Lee HC, Yang KD. Phenotype, Susceptibility, Autoimmunity, and Immunotherapy Between Kawasaki Disease and Coronavirus Disease-19 Associated Multisystem Inflammatory Syndrome in Children. Front Immunol 2021; 12:632890. [PMID: 33732254 PMCID: PMC7959769 DOI: 10.3389/fimmu.2021.632890] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) in children is usually mild but some are susceptible to a Kawasaki disease (KD)-like multisystem inflammatory syndrome in children (MIS-C) in the convalescent stage, posing a need to differentiate the phenotype, susceptibility, autoimmunity, and immunotherapy between KD and MIS-C, particularly in the upcoming mass vaccination of COVID-19. Patients with MIS-C are prone to gastrointestinal symptoms, coagulopathy, and shock in addition to atypical KD syndrome with fever, mucocutaneous lesions, lymphadenopathy, and/or cardiovascular events. MIS-C manifests KD-like symptoms that alert physicians to early recognize and adopt the KD treatment regimen for patients with MIS-C. MIS-C linked to COVID-19 teaches us infection-associated autoimmune vasculitis and vice versa. Studies on genetic susceptibility have identified certain human leukocyte antigen (HLA) locus and toll-like receptor (TLR) associated with KD and/or COVID-19. Certain HLA subtypes, such as HLA-DRB1 and HLA-MICA A4 are associated with KD. HLA-B*46:01 is proposed to be the risk allele of severe COVID-19 infection, and blood group O type is a protective factor of COVID-19. The autoimmune vasculitis of KD, KD shock syndrome (KDSS), or MIS-C is mediated by a genetic variant of HLA, FcγR, and/or antibody-dependent enhancement (ADE) resulting in hyperinflammation with T helper 17 (Th17)/Treg imbalance with augmented Th17/Th1 mediators: interleukin-6 (IL-6), IL-10, inducible protein-10 (IP-10), Interferon (IFNγ), and IL-17A, and lower expression of Treg-signaling molecules, FoxP3, and transforming growth factor (TGF-β). There are certain similarities and differences in phenotypes, susceptibility, and pathogenesis of KD, KDSS, and MIS-C, by which a physician can make early protection, prevention, and precision treatment of the diseases. The evolution of immunotherapies for the diseases has shown that intravenous immunoglobulin (IVIG) alone or combined with corticosteroids is the standard treatment for KD, KDSS, and MIS-C. However, a certain portion of patients who revealed a treatment resistance to IVIG or IVIG plus corticosteroids, posing a need to early identify the immunopathogenesis, to protect hosts with genetic susceptibility, and to combat Th17/Treg imbalance by anti-cytokine or pro-Treg for reversal of the hyperinflammation and IVIG resistance. Based on physiological and pathological immunity of the diseases under genetic susceptibility and host milieu conditions, a series of sequential regimens are provided to develop a so-called "Know thyself, enemy (pathogen), and ever-victorious" strategy for the prevention and immunotherapy of KD and/or MIS-C.
Collapse
Affiliation(s)
- Ming-Ren Chen
- MacKay Children's Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Ho-Chang Kuo
- Kawasaki Disease Center and Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | - Hsin Chi
- MacKay Children's Hospital, Taipei, Taiwan
| | - Sung Chou Li
- Genomic and Proteomic Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | - Kuender D. Yang
- MacKay Children's Hospital, Taipei, Taiwan
- Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
16
|
DNA Methylation in LIME1 and SPTBN2 Genes Is Associated with Attention Deficit in Children. CHILDREN-BASEL 2021; 8:children8020092. [PMID: 33572947 PMCID: PMC7912017 DOI: 10.3390/children8020092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
DNA methylation levels are associated with neurodevelopment. Attention-deficit/hyperactivity disorder (ADHD), characterized by attention deficits, is a common neurodevelopmental disorder. We used methylation microarray and pyrosequencing to detect peripheral blood DNA methylation markers of ADHD. DNA methylation profiling data from the microarray assays identified potential differentially methylated CpG sites between 12 ADHD patients and 9 controls. Five candidate CpG sites (cg00446123, cg20513976, cg07922513, cg17096979, and cg02506324) in four genes (LIME1, KCNAB2, CAPN9, and SPTBN2) were further examined with pyrosequencing. The attention of patients were tested using the Conners’ Continuous Performance Test (CPT). In total, 126 ADHD patients with a mean age of 9.2 years (78.6% males) and 72 healthy control subjects with a mean age of 9.3 years (62.5% males) were recruited. When all participants were categorized by their CPT performance, the DNA methylation levels in LIME1 (cg00446123 and cg20513976) were found to be significantly higher and those in SPTBN2 (cg02506324) were significantly lower in children with worse CPT performance. Therefore, DNA methylation of two CpG sites in LIME1 and one CpG site in SPTBN2 is associated with attention deficits in children. DNA methylation biomarkers may assist in identifying attention deficits of children in clinical settings.
Collapse
|
17
|
Tsai CM, Chu CH, Liu X, Weng KP, Liu SF, Huang YH, Kuo HC. A novel score system of blood tests for differentiating Kawasaki disease from febrile children. PLoS One 2021; 16:e0244721. [PMID: 33481812 PMCID: PMC7822339 DOI: 10.1371/journal.pone.0244721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Kawasaki disease is the most common cause of acquired heart disease among febrile children under the age of 5 years old. It is also a clinically diagnosed disease. In this study, we developed and assessed a novel score system using objective parameters to differentiate Kawasaki disease from febrile children. METHODS We analyzed 6,310 febrile children and 485 Kawasaki disease subjects in this study. We collected biological parameters of a routine blood test, including complete blood count with differential, C-reactive protein, aspartate aminotransferase, and alanine aminotransferase. Receiver operating characteristic curve, logistic regression, and Youden's index were all used to develop the prediction model. Two other independent cohorts from different hospitals were used for verification. RESULTS We obtained eight independent predictors (platelets, eosinophil, alanine aminotransferase, C-reactive protein, hemoglobin, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and monocyte) and found the top three scores to be eosinophil >1.5% (score: 7), alanine aminotransferase >30 U/L (score: 6), and C-reactive protein>25 mg/L (score: 6). A score of 14 represents the best sensitivity value plus specificity prediction rate for Kawasaki disease. The sensitivity, specificity, and accuracy for our cohort were 0.824, 0.839, and 0.838, respectively. The verification test of two independent cohorts of Kawasaki disease patients (N = 103 and 170) from two different institutes had a sensitivity of 0.780 (213/273). CONCLUSION Our findings demonstrate a novel score system with good discriminatory ability for differentiating between children with Kawasaki disease and other febrile children, as well as highlight the importance of eosinophil in Kawasaki disease. Using this novel score system can help first-line physicians diagnose and then treat Kawasaki disease early.
Collapse
Affiliation(s)
- Chih-Min Tsai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Hsiang Chu
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan
| | - Xi Liu
- Department of Pediatrics, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Ken-Pen Weng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Sharma K, Vignesh P, Srivastava P, Sharma J, Chaudhary H, Mondal S, Kaur A, Kaur H, Singh S. Epigenetics in Kawasaki Disease. Front Pediatr 2021; 9:673294. [PMID: 34249810 PMCID: PMC8266996 DOI: 10.3389/fped.2021.673294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Kawasaki disease (KD) is a common febrile multisystemic inflammatory illness in children that preferentially affects coronary arteries. Children with KD who develop coronary artery aneurysms have a life-long risk of premature coronary artery disease. Hypothesis of inherent predisposition to KD is supported by epidemiological evidence that suggests increased risk of development of disease in certain ethnicities and in children with a previous history of KD in siblings or parents. However, occurrence of cases in clusters, seasonal variation, and very low risk of recurrence suggests an acquired trigger (such as infections) for the development of illness. Epigenetic mechanisms that modulate gene expression can plausibly explain the link between genetic and acquired predisposing factors in KD. Analysis of epigenetic factors can also be used to derive biomarkers for diagnosis and prognostication in KD. Moreover, epigenetic mechanisms can also help in pharmacogenomics with the development of targeted therapies. In this review, we analysed the available literature on epigenetic factors such as methylation, micro-RNAs, and long non-coding RNAs in KD and discuss how these mechanisms can help us better understand the disease pathogenesis and advance the development of new biomarkers in KD.
Collapse
Affiliation(s)
- Kaushal Sharma
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Priyanka Srivastava
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyoti Sharma
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Himanshi Chaudhary
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjib Mondal
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupriya Kaur
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harvinder Kaur
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
19
|
Identification of increased expression of activating Fc receptors and novel findings regarding distinct IgE and IgM receptors in Kawasaki disease. Pediatr Res 2021; 89:191-197. [PMID: 31816620 DOI: 10.1038/s41390-019-0707-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Kawasaki disease (KD) is associated with expression and methylation of Fc gamma receptor genes. We characterized immunoglobulin A (IgA), IgE, IgG, and IgM receptor expression levels in KD. METHODS Fc receptor expression levels were characterized using GeneChip Human Transcriptome Array 2.0 (HTA 2.0) with 18 KD patients, 18 non-febrile controls, and 18 febrile controls. Another 48 control individuals and 46 patients with KD were measured using pyrosequencing for the methylation levels. RESULTS The mRNA expression levels of FCER1A and FCER2 were significantly lower in KD patients than in non-febrile controls and then rose following treatments with intravenous immunoglobulin (IVIG). Expression levels of FCER1G increased compared to the non-febrile subjects and then subsided after IVIG. FCER1A methylation was significantly lower among KD patients and even lower in KD patients with IVIG resistance. HTA analysis revealed higher mRNA levels of FCAR, FCGR1C, and FCGR2A in KD patients. FCMR mRNA expression levels were significantly lower in KD patients. FCMR expression levels rose after IVIG treatment. After IVIG, FCGR1A, B, and C decreased even lower than the febrile controls. CONCLUSION This is the first study indicating that IgA, IgE, IgG, and IgM receptors are associated with KD. We highlighted potential biomarkers related to Fc receptors and their regulation.
Collapse
|
20
|
Chang L, Yang HW, Lin TY, Yang KD. Perspective of Immunopathogenesis and Immunotherapies for Kawasaki Disease. Front Pediatr 2021; 9:697632. [PMID: 34350146 PMCID: PMC8326331 DOI: 10.3389/fped.2021.697632] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Kawasaki Disease (KD) is an acute inflammatory illness that mostly occurs in children below 5 years of age, with intractable fever, mucocutaneous lesions, lymphadenopathy, and lesions of the coronary artery (CAL). KD is sharing clinical symptoms with systemic inflammatory syndrome in children (MIS-C) which is related to COVID-19. Certain genes are identified to be associated with KD, but the findings usually differ between countries and races. Human Leukocyte Antigen (HLA) allele types and toll-like receptor (TLR) expression are also correlated to KD. The acute hyperinflammation in KD is mediated by an imbalance between augmented T helper 17 (Th17)/Th1 responses with high levels of interleukin (IL)-6, IL-10, IL-17A, IFN-γ, and IP-10, in contrast to reduced Th2/Treg responses with lower IL-4, IL-5, FoxP3, and TGF-β expression. KD has varying phenotypic variations regarding age, gender, intravenous immunoglobulin (IVIG) resistance, macrophage activation and shock syndrome. The signs of macrophage activation syndrome (MAS) can be interpreted as hyperferritinemia and thrombocytopenia contradictory to thrombocytosis in typical KD; the signs of KD with shock syndrome (KDSS) can be interpreted as overproduction of nitric oxide (NO) and coagulopathy. For over five decades, IVIG and aspirin are the standard treatment for KD. However, some KD patients are refractory to IVIG required additional medications against inflammation. Further studies are proposed to delineate the immunopathogenesis of IVIG-resistance and KDSS, to identify high risk patients with genetic susceptibility, and to develop an ideal treatment regimen, such as by providing idiotypic immunoglobulins to curb cytokine storms, NO overproduction, and the epigenetic induction of Treg function.
Collapse
Affiliation(s)
- Lung Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan.,Division of Infectious Disease, MacKay Children's Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Horng-Woei Yang
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Tang-Yu Lin
- Division of Allergy-Immunology-Rheumatology, MacKay Children's Hospital, Taipei, Taiwan
| | - Kuender D Yang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Division of Allergy-Immunology-Rheumatology, MacKay Children's Hospital, Taipei, Taiwan.,Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
21
|
Kouidou S, Malousi A, Andreou AZ. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: Triggering a Lethal Fight to Keep Control of the Ten-Eleven Translocase (TET)-Associated DNA Demethylation? Pathogens 2020; 9:E1006. [PMID: 33266135 PMCID: PMC7760189 DOI: 10.3390/pathogens9121006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The extended and diverse interference of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in multiple host functions and the diverse associated symptoms implicate its involvement in fundamental cellular regulatory processes. The activity of ten-eleven translocase 2 (TET2) responsible for selective DNA demethylation, has been recently identified as a regulator of endogenous virus inactivation and viral invasion, possibly by proteasomal deregulation of the TET2/TET3 activities. In a recent report, we presented a detailed list of factors that can be affected by TET activity, including recognition of zinc finger protein binding sites and bimodal promoters, by enhancing the flexibility of adjacent sequences. In this review, we summarize the TET-associated processes and factors that could account for SARS-CoV-2 diverse symptoms. Moreover, we provide a correlation for the observed virus-induced symptoms that have been previously associated with TET activities by in vitro and in vitro studies. These include early hypoxia, neuronal regulation, smell and taste development, liver, intestinal, and cardiomyocyte differentiation. Finally, we propose that the high mortality of SARS-CoV-2 among adult patients, the different clinical symptoms of adults compared to children, the higher risk of patients with metabolic deregulation, and the low mortality rates among women can all be accounted for by the complex balance of the three enzymes with TET activity, which is developmentally regulated. This activity is age-dependent, related to telomere homeostasis and integrity, and associated with X chromosome inactivation via (de)regulation of the responsible XIST gene expression.
Collapse
Affiliation(s)
- Sofia Kouidou
- Lab of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Andigoni Malousi
- Lab of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | |
Collapse
|
22
|
Li SC, Tsai KW, Huang LH, Weng KP, Chien KJ, Lin Y, Tu CY, Lin PH. Serum proteins may facilitate the identification of Kawasaki disease and promote in vitro neutrophil infiltration. Sci Rep 2020; 10:15645. [PMID: 32973234 PMCID: PMC7518260 DOI: 10.1038/s41598-020-72695-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Kawasaki disease (KD) usually affects the children younger than 5 years of age and subsequently causes coronary artery lesions (CALs) without timely identification and treatment. Developing a robust and fast prediction method may facilitate the timely diagnosis of KD, significantly reducing the risk of CALs in KD patients. The levels of inflammatory serum proteins dramatically vary during the onsets of many immune diseases, including in KD. However, our understanding of their pathogenic roles in KD is behind satisfaction. The purpose of this study was to evaluate candidate diagnostic serum proteins and the potential mechanism in KD using iTRAQ gel-free proteomics. We enrolled subjects and conducted iTRAQ gel-free proteomics to globally screen serum proteins followed by specific validation with ELISA. Further in vitro leukocyte trans-endothelial model was also applied to investigate the pathogenesis roles of inflammatory serum proteins. We identified six KD protein biomarkers, including Protein S100-A8 (S100A8), Protein S100-A9 (S100A9), Protein S100-A12 (S100A12), Peroxiredoxin-2 (PRDX2), Neutrophil defensin 1 (DEFA1) and Alpha-1-acid glycoprotein 1 (ORM1). They enabled us to develop a high-performance KD prediction model with an auROC value of 0.94, facilitating the timely identification of KD. Further assays concluded that recombinant S100A12 protein treatment activated neutrophil surface adhesion molecules responsible for adhesion to endothelial cells. Therefore, S100A12 promoted both freshly clinically isolated neutrophils and neutrophil-like cells to infiltrate through the endothelial layer in vitro. Finally, the antibody against S100A12 may attenuate the infiltration promoted by S100A12. Our result demonstrated that evaluating S100A8, S100A9, S100A12, PRDX2, DEFA1 and ORM1 levels may be a good diagnostic tool of KD. Further in vitro study implied that S100A12 could be a potential therapeutic target for KD.
Collapse
Affiliation(s)
- Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Lien-Hung Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ken-Pen Weng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist., Kaohsiung, Taiwan. .,Department of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan.
| | - Kuang-Jen Chien
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist., Kaohsiung, Taiwan
| | - Yuyu Lin
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ying Tu
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying Dist., Kaohsiung, Taiwan
| | - Pei-Hsien Lin
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Tang L, Zhou F. Inflammasomes in Common Immune-Related Skin Diseases. Front Immunol 2020; 11:882. [PMID: 32528469 PMCID: PMC7247819 DOI: 10.3389/fimmu.2020.00882] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
The inflammasome is an important protein complex that cleaves the proinflammatory cytokines pro-IL-1β and pro-IL-18 into their active forms. Owing to its critical role in eliciting innate immune responses, IL-1β has been suggested to contribute to various skin diseases, including psoriasis, vitiligo, systemic lupus erythematosus (SLE), and atopic dermatitis (AD). Recently, several types of activators and inhibitors of different inflammasomes, as well as inflammasome-related genes and genetic susceptibility loci, have been identified in these immune-related common skin diseases. In particular, inflammasome activators and inhibitors presented highly cell-type-specific activity, suggesting that the inflammasome might perform different functions in different cell types. Moreover, most of these findings were based on experimental disease models, and the clinical features of the models partly resemble the typical symptoms of the diseases. In this review, from the perspective of activators and inhibitors, we collected evidence from the widely-studied inflammasomes, NLRP3, AIM2, and NLRP1, in psoriasis, vitiligo, SLE, and AD. Importantly, some small-molecule inhibitors hold therapeutic promise for the treatment of these diseases.
Collapse
Affiliation(s)
- Lili Tang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
24
|
Kuo KC, Yang YL, Lo MH, Cai XY, Kuo HC, Huang YH. The Expression of Glycoprotein Genes in the Inflammatory Process of Kawasaki Disease. Front Pediatr 2020; 8:592122. [PMID: 33344384 PMCID: PMC7744457 DOI: 10.3389/fped.2020.592122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Kawasaki disease (KD) is the most common form of febrile coronary vasculitis disease to occur in children. Early diagnosis and proper therapy can prevent the complication of coronary artery lesions (CAL). The main pathogenesis of KD is an inflammatory process related to the host's genetic characteristics. In innate human immunity, the interaction of leukocytes and glycoprotein plays an important role against microbes. The purpose of our study was to understand the role of leukocytes' glycoprotein genes during the acute phase of KD. Materials and Methods: We enrolled a total of 97 subjects from a medical center. Of those, 24 subjects were healthy controls, and 24 subjects were fever controls; the other 49 subjects were KD patients who had had blood samples taken both before and after IVIG treatment. We collected the total RNA from leukocytes and performed a quantitative polymerase chain reaction for the HP, GRP84, and CLEC4D genes in real time. Results: Compared with both the healthy and fever controls, the upregulation of HP, GRP84, and CLEC4D genes was significant in peripheral leukocytes during acute-phase KD. The transcriptional level of these respective genes not only demonstrated a positive correlation with each other, but were also effective predictors for KD (all auROC >0.87) according to the ROC curve analysis. The hyper-expression of these three genes was significantly associated with IVIG resistance, but not CAL formation. Conclusions: Our study demonstrates that the expression of HP, GRP84, and CLEC4D genes of leukocytes play an important role in the pathogenesis and primary IVIG response during the acute inflammatory process of KD.
Collapse
Affiliation(s)
- Kuang-Che Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mao-Hung Lo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Xin-Yuan Cai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Zandstra J, van de Geer A, Tanck MWT, van Stijn-Bringas Dimitriades D, Aarts CEM, Dietz SM, van Bruggen R, Schweintzger NA, Zenz W, Emonts M, Zavadska D, Pokorn M, Usuf E, Moll HA, Schlapbach LJ, Carrol ED, Paulus S, Tsolia M, Fink C, Yeung S, Shimizu C, Tremoulet A, Galassini R, Wright VJ, Martinón-Torres F, Herberg J, Burns J, Levin M, Kuijpers TW. Biomarkers for the Discrimination of Acute Kawasaki Disease From Infections in Childhood. Front Pediatr 2020; 8:355. [PMID: 32775314 PMCID: PMC7388698 DOI: 10.3389/fped.2020.00355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Kawasaki disease (KD) is a vasculitis of early childhood mimicking several infectious diseases. Differentiation between KD and infectious diseases is essential as KD's most important complication-the development of coronary artery aneurysms (CAA)-can be largely avoided by timely treatment with intravenous immunoglobulins (IVIG). Currently, KD diagnosis is only based on clinical criteria. The aim of this study was to evaluate whether routine C-reactive protein (CRP) and additional inflammatory parameters myeloid-related protein 8/14 (MRP8/14 or S100A8/9) and human neutrophil-derived elastase (HNE) could distinguish KD from infectious diseases. Methods and Results: The cross-sectional study included KD patients and children with proven infections as well as febrile controls. Patients were recruited between July 2006 and December 2018 in Europe and USA. MRP8/14, CRP, and HNE were assessed for their discriminatory ability by multiple logistic regression analysis with backward selection and receiver operator characteristic (ROC) curves. In the discovery cohort, the combination of MRP8/14+CRP discriminated KD patients (n = 48) from patients with infection (n = 105), with area under the ROC curve (AUC) of 0.88. The HNE values did not improve discrimination. The first validation cohort confirmed the predictive value of MRP8/14+CRP to discriminate acute KD patients (n = 26) from those with infections (n = 150), with an AUC of 0.78. The second validation cohort of acute KD patients (n = 25) and febrile controls (n = 50) showed an AUC of 0.72, which improved to 0.84 when HNE was included. Conclusion: When used in combination, the plasma markers MRP8/14, CRP, and HNE may assist in the discrimination of KD from both proven and suspected infection.
Collapse
Affiliation(s)
- Judith Zandstra
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Annemarie van de Geer
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Michael W T Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Diana van Stijn-Bringas Dimitriades
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Cathelijn E M Aarts
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sanne M Dietz
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nina A Schweintzger
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Werner Zenz
- Department of General Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Marieke Emonts
- Pediatric Infectious Diseases and Immunology Department, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Dace Zavadska
- Department of Pediatrics, Riga Stradins University, Riga, Latvia
| | - Marko Pokorn
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Effua Usuf
- Medical Research Council Unit the Gambia (MRCG) at LSHTM, Serrekunda, Gambia
| | - Henriette A Moll
- Department of General Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Luregn J Schlapbach
- Pediatric Intensive Care Unit, Lady Cilento Children's Hospital, Pediatric Critical Care Research Group, Brisbane, QLD, Australia
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection and Global Health, Liverpool, United Kingdom
| | - Stephane Paulus
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection and Global Health, Liverpool, United Kingdom
| | - Maria Tsolia
- Second Department of Pediatrics, P. & A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Colin Fink
- Micropathology Ltd., University of Warwick, Warwick, United Kingdom
| | - Shunmay Yeung
- Department of Clinical Research, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Chisato Shimizu
- Kawasaki Disease Research Center, Rady's Children's Hospital-San Diego, University of California, San Diego, San Diego, CA, United States
| | - Adriana Tremoulet
- Kawasaki Disease Research Center, Rady's Children's Hospital-San Diego, University of California, San Diego, San Diego, CA, United States
| | - Rachel Galassini
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Victoria J Wright
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, University of Santiago, Santiago de Compostela, Spain
| | - Jethro Herberg
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Jane Burns
- Kawasaki Disease Research Center, Rady's Children's Hospital-San Diego, University of California, San Diego, San Diego, CA, United States
| | - Michael Levin
- Section of Paediatric Infectious Diseases, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
26
|
Demirkaya E, Arici ZS, Romano M, Berard RA, Aksentijevich I. Current State of Precision Medicine in Primary Systemic Vasculitides. Front Immunol 2019; 10:2813. [PMID: 31921111 PMCID: PMC6927998 DOI: 10.3389/fimmu.2019.02813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
Precision medicine (PM) is an emerging data-driven health care approach that integrates phenotypic, genomic, epigenetic, and environmental factors unique to an individual. The goal of PM is to facilitate diagnosis, predict effective therapy, and avoid adverse reactions specific for each patient. The forefront of PM is in oncology; nonetheless, it is developing in other fields of medicine, including rheumatology. Recent studies on elucidating the genetic architecture of polygenic and monogenic rheumatological diseases have made PM possible by enabling physicians to customize medical treatment through the incorporation of clinical features and genetic data. For complex inflammatory disorders, the prevailing paradigm is that disease susceptibility is due to additive effects of common reduced-penetrance gene variants and environmental factors. Efforts have been made to calculate cumulative genetic risk score (GRS) and to relate specific susceptibility alleles for use of target therapies. The discovery of rare patients with single-gene high-penetrance mutations informed our understanding of pathways driving systemic inflammation. Here, we review the advances in practicing PM in patients with primary systemic vasculitides (PSVs). We summarize recent genetic studies and discuss current knowledge on the contribution of epigenetic factors and extracellular vesicles (EVs) in disease progression and treatment response. Implementation of PM in PSVs is a developing field that will require analysis of a large cohort of patients to validate data from genomics, transcriptomics, metabolomics, proteomics, and epigenomics studies for accurate disease profiling. This multi-omics approach to study disease pathogeneses should ultimately provide a powerful tool for stratification of patients to receive tailored optimal therapies and for monitoring their disease activity.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Zehra Serap Arici
- Department of Paediatric Rheumatology, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Micol Romano
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Pediatric Rheumatology, Istituto Ortopedico Gaetano Pini, Milan, Italy
| | - Roberta Audrey Berard
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Tsai MH, Lin CH, Tsai KW, Lin MH, Ho CJ, Lu YT, Weng KP, Lin Y, Lin PH, Li SC. S100A6 Promotes B Lymphocyte Penetration Through the Blood-Brain Barrier in Autoimmune Encephalitis. Front Genet 2019; 10:1188. [PMID: 31850060 PMCID: PMC6901080 DOI: 10.3389/fgene.2019.01188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autoimmune encephalitis (AE) is a severe neurological disease. The brain of the AE patient is attacked by a dysregulated immune system, which is caused by the excessive production of autoantibodies against neuronal receptors and synaptic proteins. AE is also characterized by the uncontrolled B lymphocyte infiltration through the blood–brain barrier (BBB) layer, and the investigation of the underlying mechanism involved in this infiltration may facilitate the discovery of novel therapies for AE. However, few AE-related studies have focused on this issue. In this study, we aimed to identify the factors involved in B lymphocyte infiltration in AE. For this purpose, we first enrolled four healthy control and five AE subjects, collecting their serum and/or total white blood cell samples. The white blood cell samples were further used for collecting RNA and DNA. Then, we simulated the in vivo B lymphocyte infiltration with an in vitro leukocyte transendothelial migration model. It turned out that AE serum treatment significantly and specifically promoted B cells to penetrate the BBB endothelial layer without affecting neutrophils. Next, through genome-wide DNA methylation assays on bisulfite-conversion DNA samples, we identified S100A6 and S100A11 as potential hypo-methylated disease genes in the AE samples. Further qPCR assays demonstrated their upregulation in AE samples, reflecting the negative correlations between gene expression and DNA methylation. Finally, recombinant S100A6 protein treatment significantly increased B lymphocyte infiltration through the BBB endothelial layer, which partially recapitulated the effect of AE serum. In summary, by using an in vitro leukocyte transendothelial migration model, we confirmed that S100A6 promoted B lymphocyte to penetrate the BBB endothelial layer, which is similar to the in vivo clinical manifestations of AE. Therefore, further studies on how the S100A6 protein facilitates B lymphocyte infiltration and on whether other factors in serum also contribute to this phenomenon are likely to improve our understanding of AE and hopefully to reveal novel therapeutic targets for this emerging treatable neurological disorder.
Collapse
Affiliation(s)
- Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ken-Pen Weng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Yuyu Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsien Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Li SC, Huang LH, Chien KJ, Pan CY, Lin PH, Lin Y, Weng KP, Tsai KW. MiR-182-5p enhances in vitro neutrophil infiltration in Kawasaki disease. Mol Genet Genomic Med 2019; 7:e990. [PMID: 31605468 PMCID: PMC6900372 DOI: 10.1002/mgg3.990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Background Kawasaki disease (KD) patients could develop coronary artery lesion (CAL) which threatens children's life. A previous study identified KD biomarker miRNAs that could discriminate KD patients from febrile non‐KD patients. We wonder whether these KD prediction biomarkers could be further applied to predict CAL formation in KD patients. Methods To examine this hypothesis, we conducted a meta‐analysis, miRNA mimic transfection, in vitro cell model and microarray assays. Results We first showed that miR‐182‐5p and miR‐183‐5p kept higher levels in the KD patients with CAL than those without CAL (p < .05). Further machine learning alignment confirmed that CAL formation could be predicted, with an auROC value of 0.86. We further treated neutrophil cells with miR‐182‐5p mimic, followed by in vitro transendotherial migration assay. As a result, miR‐182‐5p overexpression significantly (p < .05) enhanced neutrophil cells to infiltrate the endothelial layer composed of human coronary artery endothelium cells. Further microarray assay and pathway enrichment analysis showed that the genes activated with miR‐182‐5p overexpression were significantly enriched in the leukocyte transendothelial migration pathway (kegg_pathway_194, p < .05). Conclusion Therefore, our study suggested that miR‐182‐5p enhanced in vitro leukocyte infiltration by activating the leukocyte transendothelial migration pathway in CAL formation in KD.
Collapse
Affiliation(s)
- Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Lien-Hung Huang
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Jen Chien
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chao-Yu Pan
- Institute of Biomedical Science, Academia Sinica and Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Hsien Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuyu Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ken-Pen Weng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Huang YH, Lo MH, Cai XY, Liu SF, Kuo HC. Increase expression of CD177 in Kawasaki disease. Pediatr Rheumatol Online J 2019; 17:13. [PMID: 30943984 PMCID: PMC6446352 DOI: 10.1186/s12969-019-0315-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Kawasaki disease (KD) is the most common acute coronary vasculitis disease to occur in children. Its incidence has been attributed to the combined effects of infection, genetics, and immunity. Although the etiopathogenesis of KD remains unknown, we have performed a survey of global genetic DNA methylation status and transcripts expression in KD patients in order to determine their contribution to the pathogenesis of KD. METHODS We recruited 148 participants for this case-control study. The chip studies consisted of 18 KD patients that were analyzed both before undergoing intravenous immunoglobulin (IVIG) treatment and at least 3 weeks afterward, as well as 36 non-KD control subjects, using Illumina HumanMethylation450 BeadChip and Affymetrix GeneChip® Human Transcriptome Array 2.0. We then carried out real-time quantitative PCR on a separate cohort of 94 subjects for validation. RESULTS According to our microarray study, CD177, a neutrophil surface molecule, appeared to be significantly upregulated in KD patients when compared to controls with epigenetic hypomethylation. After patients received IVIG treatment, CD177 mRNA levels decreased significantly. PCR validation indicated that the CD177 expression is consistent with the Transcriptome Array 2.0 results. Furthermore, the area under the curve values of CD177 between KD patients and controls is 0.937. We also observed significantly higher CD177 levels in typical KD than in incomplete presentation or KD with IVIG resistance. CONCLUSION In this study, we have demonstrated the epigenetic hypomethylation and increased expression of CD177 during the acute stage of KD. Furthermore, a higher expression of CD177 in KD patients with typical presentation was associated with IVIG resistance.
Collapse
Affiliation(s)
- Ying-Hsien Huang
- grid.145695.aDepartment of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, #123 Da-Pei Road, Niaosong District, Kaohsiung, 83301 Taiwan ,grid.413804.aKawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, #123 Da-Pei Road, Niaosong District, Kaohsiung, 83301 Taiwan
| | - Mao-Hung Lo
- grid.145695.aDepartment of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, #123 Da-Pei Road, Niaosong District, Kaohsiung, 83301 Taiwan ,grid.413804.aKawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, #123 Da-Pei Road, Niaosong District, Kaohsiung, 83301 Taiwan
| | - Xin-Yuan Cai
- grid.145695.aDepartment of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, #123 Da-Pei Road, Niaosong District, Kaohsiung, 83301 Taiwan ,grid.413804.aKawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, #123 Da-Pei Road, Niaosong District, Kaohsiung, 83301 Taiwan
| | - Shih-Feng Liu
- grid.145695.aDivision of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.145695.aDepartment of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, #123 Da-Pei Road, Niaosong District, Kaohsiung, 83301, Taiwan. .,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, #123 Da-Pei Road, Niaosong District, Kaohsiung, 83301, Taiwan. .,Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
30
|
Huang YH, Chen KD, Lo MH, Cai XY, Chang LS, Kuo YH, Huang WD, Kuo HC. Decreased DNA methyltransferases expression is associated with coronary artery lesion formation in Kawasaki disease. Int J Med Sci 2019; 16:576-582. [PMID: 31171909 PMCID: PMC6535659 DOI: 10.7150/ijms.32773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Kawasaki disease (KD) is the most common acute coronary vasculitis to occur in children. Although we have uncovered global DNA hypomethylation in KD, its underlying cause remains uncertain. In this study, we performed a survey of transcript levels of DNA methyltransferases and demethylases in KD patients. Materials and Methods: We recruited 145 participants for this study. The chip studies consisted of 18 KD patients that were analyzed before undergoing intravenous immunoglobulin (IVIG) treatment and at least 3 weeks after IVIG treatment, as well as 36 control subjects, using Affymetrix GeneChip® Human Transcriptome Array 2.0. An additional study of 91 subjects was performed in order to validate real-time quantitative PCR. Results: In our microarray study, the mRNA levels of DNMT1 and DNMT3A were significantly lower while TET2 was higher in acute-stage KD patients compared to the healthy controls. Through PCR validation, we observed that the expression of DNMT1 and TET2 are consistent with the Transcriptome Array 2.0 results. Furthermore, we observed significantly lower DMNT1 mRNA levels following IVIG treatment between those who developed CAL and those who did not. Conclusion: Our findings provide an evidence of DNA methyltransferases and demethylases changes and are among the first report that transient DNA hypomethylation is induced during acute inflammatory phase of Kawasaki disease.
Collapse
Affiliation(s)
- Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mao-Hung Lo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Xin-Yuan Cai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ling-Sai Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Hsia Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Dong Huang
- Baoan Maternity and Child Health Hospital, Shenzhen, Guangdong Province, China. 518100
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|