1
|
Li Y, Wang Z, Kong M, Yong Y, Yang X, Liu C. The role of GZMA as a target of cysteine and biomarker in Alzheimer's disease, pelvic organ prolapse, and tumor progression. Front Pharmacol 2024; 15:1447605. [PMID: 39228516 PMCID: PMC11368878 DOI: 10.3389/fphar.2024.1447605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Objective: This study aims to investigate how changes in peripheral blood metabolites in Alzheimer's Disease (AD) patients affect the development of Pelvic Organ Prolapse (POP) using a multi-omics approach. We specifically explore the interactions of signaling pathways, gene expression, and protein-metabolite interactions, with a focus on GZMA and cysteine in age-related diseases. Methods: This study utilized multi-omics analysis, including metabolomics and transcriptomics, to evaluate the perturbations in peripheral blood metabolites and their effect on POP in AD patients. Additionally, a comprehensive pan-cancer and immune infiltration analysis was performed on the core targets of AD combined with POP, exploring their potential roles in tumor progression and elucidating their pharmacological relevance to solid tumors. Results: We identified 47 differential metabolites linked to 9 significant signaling pathways, such as unsaturated fatty acid biosynthesis and amino acid metabolism. A thorough gene expression analysis revealed numerous differentially expressed genes (DEGs), with Gene Set Enrichment Analysis (GSEA) showing significant changes in gene profiles of AD and POP. Network topology analysis highlighted central nodes in the AD-POP co-expressed genes network. Functional analyses indicated involvement in critical biological processes and pathways. Molecular docking studies showed strong interactions between cysteine and proteins PTGS2 and GZMA, and molecular dynamics simulations confirmed the stability of these complexes. In vitro validation demonstrated that cysteine reduced ROS levels and protected cell viability. GZMA was widely expressed in various cancers, associated with immune cells, and correlated with patient survival prognosis. Conclusion: Multi-omics analysis revealed the role of peripheral blood metabolites in the molecular dynamics of AD and their interactions with POP. This study identified potential biomarkers and therapeutic targets, emphasizing the effectiveness of integrative approaches in treating AD and POP concurrently. The findings highlight the need for in-depth research on novel targets and biomarkers to advance therapeutic strategies.
Collapse
Affiliation(s)
- Yan Li
- Department of Gynecology and Obstetrics, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhuo Wang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Min Kong
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yong
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xin Yang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Kim BH, Lee H, Ham H, Kim HJ, Jang H, Kim JP, Park YH, Kim M, Seo SW. Clinical effects of novel susceptibility genes for beta-amyloid: a gene-based association study in the Korean population. Front Aging Neurosci 2023; 15:1278998. [PMID: 37901794 PMCID: PMC10602697 DOI: 10.3389/fnagi.2023.1278998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Amyloid-beta (Aβ) is a pathological hallmark of Alzheimer's disease (AD). We aimed to identify genes related to Aβ uptake in the Korean population and investigate the effects of these novel genes on clinical outcomes, including neurodegeneration and cognitive impairments. We recruited a total of 759 Korean participants who underwent neuropsychological tests, brain magnetic resonance imaging, 18F-flutemetamol positron emission tomography, and microarray genotyping data. We performed gene-based association analysis, and also performed expression quantitative trait loci and network analysis. In genome-wide association studies, no single nucleotide polymorphism (SNP) passed the genome-wide significance threshold. In gene-based association analysis, six genes (LCMT1, SCRN2, LRRC46, MRPL10, SP6, and OSBPL7) were significantly associated with Aβ standardised uptake value ratio in the brain. The three most significant SNPs (rs4787307, rs9903904, and rs11079797) on these genes are associated with the regulation of the LCMT1, OSBPL7, and SCRN2 genes, respectively. These SNPs are involved in decreasing hippocampal volume and cognitive scores by mediating Aβ uptake. The 19 enriched gene sets identified by pathway analysis included axon and chemokine activity. Our findings suggest novel susceptibility genes associated with the uptake of Aβ, which in turn leads to worse clinical outcomes. Our findings might lead to the discovery of new AD treatment targets.
Collapse
Affiliation(s)
- Bo-Hyun Kim
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - HyunWoo Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hongki Ham
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyemin Jang
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Pyo Kim
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yu Hyun Park
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Mansu Kim
- Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sang Won Seo
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Petrill SA, Klamer BG, Buyske S, Willcutt EG, Gruen JR, Francis DJ, Flax JF, Brzustowicz LM, Bartlett CW. The Rosetta Phenotype Harmonization Method Facilitates Finding a Relationship Quantitative Trait Locus for a Complex Cognitive Trait. Genes (Basel) 2023; 14:1748. [PMID: 37761888 PMCID: PMC10531321 DOI: 10.3390/genes14091748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Genetics researchers increasingly combine data across many sources to increase power and to conduct analyses that cross multiple individual studies. However, there is often a lack of alignment on outcome measures when the same constructs are examined across studies. This inhibits comparison across individual studies and may impact the findings from meta-analysis. Using a well-characterized genotypic (brain-derived neurotrophic factor: BDNF) and phenotypic constructs (working memory and reading comprehension), we employ an approach called Rosetta, which allows for the simultaneous examination of primary studies that employ related but incompletely overlapping data. We examined four studies of BDNF, working memory, and reading comprehension with a combined sample size of 1711 participants. Although the correlation between working memory and reading comprehension over all participants was high, as expected (ρ = 0.45), the correlation between working memory and reading comprehension was attenuated in the BDNF Met/Met genotype group (ρ = 0.18, n.s.) but not in the Val/Val (ρ = 0.44) or Val/Met (ρ = 0.41) groups. These findings indicate that Met/Met carriers may be a unique and robustly defined subgroup in terms of memory and reading comprehension. This study demonstrates the utility of the Rosetta method when examining complex phenotypes across multiple studies, including psychiatric genetic studies, as shown here, and also for the mega-analysis of cohorts generally.
Collapse
Affiliation(s)
- Stephen A. Petrill
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Brett G. Klamer
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Erik G. Willcutt
- Department of Psychology, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - Jeffrey R. Gruen
- Departments of Pediatrics and of Genetics, Yale Medical School, New Haven, CT 06511, USA;
| | - David J. Francis
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX 77004, USA;
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (J.F.F.); (L.M.B.)
| | - Christopher W. Bartlett
- The Steve & Cindy Rasmussen Institute for Genomic Medicine in the Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
4
|
Jang YO, Ahn HS, Dao TNT, Hong J, Shin W, Lim YM, Chung SJ, Lee JH, Liu H, Koo B, Kim MG, Kim K, Lee EJ, Shin Y. Magnetic transferrin nanoparticles (MTNs) assay as a novel isolation approach for exosomal biomarkers in neurological diseases. Biomater Res 2023; 27:12. [PMID: 36797805 PMCID: PMC9936675 DOI: 10.1186/s40824-023-00353-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/05/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Brain-derived exosomes released into the blood are considered a liquid biopsy to investigate the pathophysiological state, reflecting the aberrant heterogeneous pathways of pathological progression of the brain in neurological diseases. Brain-derived blood exosomes provide promising prospects for the diagnosis of neurological diseases, with exciting possibilities for the early and sensitive diagnosis of such diseases. However, the capability of traditional exosome isolation assays to specifically isolate blood exosomes and to characterize the brain-derived blood exosomal proteins by high-throughput proteomics for clinical specimens from patients with neurological diseases cannot be assured. We report a magnetic transferrin nanoparticles (MTNs) assay, which combined transferrin and magnetic nanoparticles to isolate brain-derived blood exosomes from clinical samples. METHODS The principle of the MTNs assay is a ligand-receptor interaction through transferrin on MTNs and transferrin receptor on exosomes, and electrostatic interaction via positively charged MTNs and negatively charged exosomes to isolate brain-derived blood exosomes. In addition, the MTNs assay is simple and rapid (< 35 min) and does not require any large instrument. We confirmed that the MTNs assay accurately and efficiently isolated exosomes from serum samples of humans with neurodegenerative diseases, such as dementia, Parkinson's disease (PD), and multiple sclerosis (MS). Moreover, we isolated exosomes from serum samples of 30 patients with three distinct neurodegenerative diseases and performed unbiased proteomic analysis to explore the pilot value of brain-derived blood protein profiles as biomarkers. RESULTS Using comparative statistical analysis, we found 21 candidate protein biomarkers that were significantly different among three groups of neurodegenerative diseases. CONCLUSION The MTNs assay is a convenient approach for the specific and affordable isolation of extracellular vesicles from body fluids for minimally-invasive diagnosis of neurological diseases.
Collapse
Affiliation(s)
- Yoon Ok Jang
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Hee-Sung Ahn
- grid.413967.e0000 0001 0842 2126Department of Convergence Medicine, Asan Medical Center, Seoul, 05505 Republic of Korea
| | - Thuy Nguyen Thi Dao
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - JeongYeon Hong
- grid.413967.e0000 0001 0842 2126Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505 Republic of Korea ,grid.267370.70000 0004 0533 4667Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Wangyong Shin
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Young-Min Lim
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Sun Ju Chung
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Jae-Hong Lee
- grid.413967.e0000 0001 0842 2126Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Huifang Liu
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Bonhan Koo
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Myoung Gyu Kim
- grid.15444.300000 0004 0470 5454Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea. .,Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Hansson O, Kumar A, Janelidze S, Stomrud E, Insel PS, Blennow K, Zetterberg H, Fauman E, Hedman ÅK, Nagle MW, Whelan CD, Baird D, Mälarstig A, Mattsson‐Carlgren N. The genetic regulation of protein expression in cerebrospinal fluid. EMBO Mol Med 2023; 15:e16359. [PMID: 36504281 PMCID: PMC9832827 DOI: 10.15252/emmm.202216359] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Studies of the genetic regulation of cerebrospinal fluid (CSF) proteins may reveal pathways for treatment of neurological diseases. 398 proteins in CSF were measured in 1,591 participants from the BioFINDER study. Protein quantitative trait loci (pQTL) were identified as associations between genetic variants and proteins, with 176 pQTLs for 145 CSF proteins (P < 1.25 × 10-10 , 117 cis-pQTLs and 59 trans-pQTLs). Ventricular volume (measured with brain magnetic resonance imaging) was a confounder for several pQTLs. pQTLs for CSF and plasma proteins were overall correlated, but CSF-specific pQTLs were also observed. Mendelian randomization analyses suggested causal roles for several proteins, for example, ApoE, CD33, and GRN in Alzheimer's disease, MMP-10 in preclinical Alzheimer's disease, SIGLEC9 in amyotrophic lateral sclerosis, and CD38, GPNMB, and ADAM15 in Parkinson's disease. CSF levels of GRN, MMP-10, and GPNMB were altered in Alzheimer's disease, preclinical Alzheimer's disease, and Parkinson's disease, respectively. These findings point to pathways to be explored for novel therapies. The novel finding that ventricular volume confounded pQTLs has implications for design of future studies of the genetic regulation of the CSF proteome.
Collapse
Affiliation(s)
- Oskar Hansson
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University Hospital, Lund UniversityLundSweden
| | - Atul Kumar
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University Hospital, Lund UniversityLundSweden
| | - Philip S Insel
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
- Department of Psychiatry and Behavioral SciencesUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Kaj Blennow
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska AcademyUniversity of GothenburgMölndalSweden
| | - Henrik Zetterberg
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska AcademyUniversity of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Eric Fauman
- Internal Medicine Research UnitPfizer Worldwide Research, Development and MedicalCambridgeMAUSA
| | - Åsa K Hedman
- Pfizer Worldwide Research, Development and MedicalStockholmSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Michael W Nagle
- Neurogenomics, Genetics‐Guided Dementia DiscoveryEisai, IncCambridgeMAUSA
| | | | - Denis Baird
- Department of Neurology, Skåne University HospitalLund UniversityLundSweden
| | - Anders Mälarstig
- Pfizer Worldwide Research, Development and MedicalStockholmSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Niklas Mattsson‐Carlgren
- Clinical Memory Research Unit, Faculty of MedicineLund UniversityLundSweden
- Department of Neurology, Skåne University HospitalLund UniversityLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| |
Collapse
|
6
|
Maxwell TJ, Franks PW, Kahn SE, Knowler WC, Mather KJ, Florez JC, Jablonski KA. Quantitative trait loci, G×E and G×G for glycemic traits: response to metformin and placebo in the Diabetes Prevention Program (DPP). J Hum Genet 2022; 67:465-473. [PMID: 35260800 PMCID: PMC10102970 DOI: 10.1038/s10038-022-01027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022]
Abstract
The complex genetic architecture of type-2-diabetes (T2D) includes gene-by-environment (G×E) and gene-by-gene (G×G) interactions. To identify G×E and G×G, we screened markers for patterns indicative of interactions (relationship loci [rQTL] and variance heterogeneity loci [vQTL]). rQTL exist when the correlation between multiple traits varies by genotype and vQTL occur when the variance of a trait differs by genotype (potentially flagging G×G and G×E). In the metformin and placebo arms of the DPP (n = 1762) we screened 280,965 exomic and intergenic SNPs, for rQTL and vQTL patterns in association with year one changes from baseline in glycemia and related traits (insulinogenic index [IGI], insulin sensitivity index [ISI], fasting glucose and fasting insulin). Significant (p < 1.8 × 10-7) rQTL and vQTL generated a priori hypotheses of individual G×E tests for a SNP × metformin treatment interaction and secondarily for G×G screens. Several rQTL and vQTL identified led to 6 nominally significant (p < 0.05) metformin treatment × SNP interactions (4 for IGI, one insulin, and one glucose) and 12G×G interactions (all IGI) that exceeded experiment-wide significance (p < 4.1 × 10-9). Some loci are directly associated with incident diabetes, and others are rQTL and modify a trait's relationship with diabetes (2 diabetes/glucose, 2 diabetes/insulin, 1 diabetes/IGI). rs3197999, an ISI/insulin rQTL, is a possible gene damaging missense mutation in MST1, is associated with ulcerative colitis, sclerosing cholangitis, Crohn's disease, BMI and coronary artery disease. This study demonstrates evidence for context-dependent effects (G×G & G×E) and the complexity of these T2D-related traits.
Collapse
Affiliation(s)
- Taylor J Maxwell
- Computational Biology Institute, The George Washington University, Ashburn, VA, USA.
| | - Paul W Franks
- Genetic & Molecular Epidemiology Unit, Lund University Diabetes Center, Lund, Sweden
| | - Steven E Kahn
- VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - William C Knowler
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Kieren J Mather
- Center for Diabetes and Metabolic Diseases & Division of Endocrinology & Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kathleen A Jablonski
- The Biostatistics Center, The Milken Institute of Public Health, The George Washington University, Rockville, MD, USA
| | | |
Collapse
|
7
|
Ali M, Sung YJ, Wang F, Fernández MV, Morris JC, Fagan AM, Blennow K, Zetterberg H, Heslegrave A, Johansson PM, Svensson J, Nellgård B, Lleó A, Alcolea D, Clarimon J, Rami L, Molinuevo JL, Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G, Haass C, Ewers M, Levin J, Farlow MR, Perrin RJ, Cruchaga C. Leveraging large multi-center cohorts of Alzheimer disease endophenotypes to understand the role of Klotho heterozygosity on disease risk. PLoS One 2022; 17:e0267298. [PMID: 35617280 PMCID: PMC9135221 DOI: 10.1371/journal.pone.0267298] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Two genetic variants in strong linkage disequilibrium (rs9536314 and rs9527025) in the Klotho (KL) gene, encoding a transmembrane protein, implicated in longevity and associated with brain resilience during normal aging, were recently shown to be associated with Alzheimer disease (AD) risk in cognitively normal participants who are APOE ε4 carriers. Specifically, the participants heterozygous for this variant (KL-SVHET+) showed lower risk of developing AD. Furthermore, a neuroprotective effect of KL-VSHET+ has been suggested against amyloid burden for cognitively normal participants, potentially mediated via the regulation of redox pathways. However, inconsistent associations and a smaller sample size of existing studies pose significant hurdles in drawing definitive conclusions. Here, we performed a well-powered association analysis between KL-VSHET+ and five different AD endophenotypes; brain amyloidosis measured by positron emission tomography (PET) scans (n = 5,541) or cerebrospinal fluid Aβ42 levels (CSF; n = 5,093), as well as biomarkers associated with tau pathology: the CSF Tau (n = 5,127), phosphorylated Tau (pTau181; n = 4,778) and inflammation: CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2; n = 2,123) levels. Our results found nominally significant associations of KL-VSHET+ status with biomarkers for brain amyloidosis (e.g., CSF Aβ positivity; odds ratio [OR] = 0.67 [95% CI, 0.55-0.78], β = 0.72, p = 0.007) and tau pathology (e.g., biomarker positivity for CSF Tau; OR = 0.39 [95% CI, 0.19-0.77], β = -0.94, p = 0.007, and pTau; OR = 0.50 [95% CI, 0.27-0.96], β = -0.68, p = 0.04) in cognitively normal participants, 60-80 years old, who are APOE e4-carriers. Our work supports previous findings, suggesting that the KL-VSHET+ on an APOE ε4 genotype background may modulate Aβ and tau pathology, thereby lowering the intensity of neurodegeneration and incidence of cognitive decline in older controls susceptible to AD.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Neurogenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Neurogenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Fengxian Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Neurogenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria V. Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Neurogenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Per M. Johansson
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Anesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Bengt Nellgård
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | - Alberto Lleó
- Neurology Department, Hospital de Sant Pau, Barcelona, Spain
| | - Daniel Alcolea
- Neurology Department, Hospital de Sant Pau, Barcelona, Spain
| | - Jordi Clarimon
- Neurology Department, Hospital de Sant Pau, Barcelona, Spain
| | - Lorena Rami
- IDIBAPS, Alzheimer´s Disease and Other Cognitive Disorders Unit, Neurology Service, ICN Hospital Clinic, Barcelona, Spain
| | - José Luis Molinuevo
- IDIBAPS, Alzheimer´s Disease and Other Cognitive Disorders Unit, Neurology Service, ICN Hospital Clinic, Barcelona, Spain
- Alzheimer´s Disease and Other Cognitive Disorders Unit, Neurology Service, ICN Hospital Clinic i Universitari, Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Marc Suárez-Calvet
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Biomedical Center (BMC), Biochemistry, Ludwig‐Maximilians‐Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Estrella Morenas-Rodríguez
- Biomedical Center (BMC), Biochemistry, Ludwig‐Maximilians‐Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gernot Kleinberger
- Biomedical Center (BMC), Biochemistry, Ludwig‐Maximilians‐Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Biochemistry, Ludwig‐Maximilians‐Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin R. Farlow
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Richard J. Perrin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | | | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Neurogenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
8
|
Systematic Search for Novel Circulating Biomarkers Associated with Extracellular Vesicles in Alzheimer's Disease: Combining Literature Screening and Database Mining Approaches. J Pers Med 2021; 11:jpm11100946. [PMID: 34683087 PMCID: PMC8538213 DOI: 10.3390/jpm11100946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs play an important role in neurodegenerative diseases. Many miRNA-target gene interactions (MTI) have been experimentally confirmed and associated with Alzheimer’s disease (AD). miRNAs may also be contained within extracellular vesicles (EVs), mediators of cellular communication and a potential source of circulating biomarkers in body fluids. Therefore, EV-associated miRNAs (EV-miRNAs) in peripheral blood could support earlier and less invasive AD diagnostics. We aimed to prioritize EV-related miRNA with AD-related genes and to identify the most promising candidates for novel AD biomarkers. A list of unique EV-miRNAs from the literature was combined with a known set of AD risk genes and enriched for MTI. Additionally, miRNAs associated with the AD phenotype were combined with all known target genes in MTI enrichment. Expression in different sample types was analyzed to identify AD-associated miRNAs with the greatest potential as AD circulating biomarkers. Four common MTI were observed between EV-miRNAs and AD-associated miRNAs: hsa-miR-375–APH1B, hsa-miR-107–CDC42SE2, hsa-miR-375–CELF2, and hsa-miR-107–IL6. An additional 61 out of 169 unique miRNAs (36.1%) and seven out of 84 unique MTI (8.3%), observed in the body fluids of AD patients, were proposed as very strong AD-circulating biomarker candidates. Our analysis summarized several potential novel AD biomarkers, but further studies are needed to evaluate their potential in clinical practice.
Collapse
|
9
|
Horimoto ARVR, Xue D, Thornton TA, Blue EE. Admixture mapping reveals the association between Native American ancestry at 3q13.11 and reduced risk of Alzheimer's disease in Caribbean Hispanics. Alzheimers Res Ther 2021; 13:122. [PMID: 34217363 PMCID: PMC8254995 DOI: 10.1186/s13195-021-00866-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/20/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Genetic studies have primarily been conducted in European ancestry populations, identifying dozens of loci associated with late-onset Alzheimer's disease (AD). However, much of AD's heritability remains unexplained; as the prevalence of AD varies across populations, the genetic architecture of the disease may also vary by population with the presence of novel variants or loci. METHODS We conducted genome-wide analyses of AD in a sample of 2565 Caribbean Hispanics to better understand the genetic contribution to AD in this population. Statistical analysis included both admixture mapping and association testing. Evidence for differential gene expression within regions of interest was collected from independent transcriptomic studies comparing AD cases and controls in samples with primarily European ancestry. RESULTS Our genome-wide association study of AD identified no loci reaching genome-wide significance. However, a genome-wide admixture mapping analysis that tests for association between a haplotype's ancestral origin and AD status detected a genome-wide significant association with chromosome 3q13.11 (103.7-107.7Mb, P = 8.76E-07), driven by a protective effect conferred by the Native American ancestry (OR = 0.58, 95%CI = 0.47-0.73). Within this region, two variants were significantly associated with AD after accounting for the number of independent tests (rs12494162, P = 2.33E-06; rs1731642, P = 6.36E-05). The significant admixture mapping signal is composed of 15 haplotype blocks spanning 5 protein-coding genes (ALCAM, BBX, CBLB, CCDC54, CD47) and four brain-derived topologically associated domains, and includes markers significantly associated with the expression of ALCAM, BBX, CBLB, and CD47 in the brain. ALCAM and BBX were also significantly differentially expressed in the brain between AD cases and controls with European ancestry. CONCLUSION These results provide multiethnic evidence for a relationship between AD and multiple genes at 3q13.11 and illustrate the utility of leveraging genetic ancestry diversity via admixture mapping for new insights into AD.
Collapse
Affiliation(s)
| | - Diane Xue
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Elizabeth E Blue
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA.
- Division of Medical Genetics, University of Washington, BOX 357720, Seattle, WA, 98195-7720, USA.
| |
Collapse
|
10
|
Life History Is a Major Source of Adaptive Individual and Species Differences: a Critical Commentary on Zietsch and Sidari (2020). EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2021. [DOI: 10.1007/s40806-021-00280-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Kim BH, Nho K, Lee JM. Genome-wide association study identifies susceptibility loci of brain atrophy to NFIA and ST18 in Alzheimer's disease. Neurobiol Aging 2021; 102:200.e1-200.e11. [PMID: 33640202 DOI: 10.1016/j.neurobiolaging.2021.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 02/04/2023]
Abstract
To identify genetic variants influencing cortical atrophy in Alzheimer's disease (AD), we performed genome-wide association studies (GWAS) of mean cortical thicknesses in 17 AD-related brain. In this study, we used neuroimaging and genetic data of 919 participants from the Alzheimer's Disease Neuroimaging Initiative cohort, which include 268 cognitively normal controls, 488 mild cognitive impairment, 163 AD individuals. We performed GWAS with 3,041,429 single nucleotide polymorphisms (SNPs) for cortical thickness. The results of GWAS indicated that rs10109716 in ST18 (ST18 C2H2C-type zinc finger transcription factor) and rs661526 in NFIA (nuclear factor I A) genes are significantly associated with mean cortical thicknesses of the left inferior frontal gyrus and left parahippocampal gyrus, respectively. The rs661526 regulates the expression levels of NFIA in the substantia nigra and frontal cortex and rs10109716 regulates the expression levels of ST18 in the thalamus. These results suggest a crucial role of identified genes for cortical atrophy and could provide further insights into the genetic basis of AD.
Collapse
Affiliation(s)
- Bo-Hyun Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea.
| | | |
Collapse
|
12
|
Sun BL, Li WW, Wang J, Xu YL, Sun HL, Tian DY, Wang YJ, Yao XQ. Gut Microbiota Alteration and Its Time Course in a Tauopathy Mouse Model. J Alzheimers Dis 2020; 70:399-412. [PMID: 31177213 DOI: 10.3233/jad-181220] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that gut microbiota dysbiosis plays a role in neurodegenerative disorders. However, whether the composition and diversity of the gut microbiota are altered in tauopathies remains largely unknown. This study was aimed to examine the diversity and composition of the gut microbiota in tauopathies, as well as the correlation with pathological changes in the brain. We collected fecal samples from 32 P301L tau transgenic mice and 32 age- and gender-matched littermate mice at different ages. The 16S ribosomal RNA sequencing technique was used to analyze the microbiota composition in feces. Brain tau pathology levels were measured by immunohistochemistry. The diversity and composition of the gut microbiota significantly changed with aging. At the phylum level, the relative abundance of Bacteroidetes was increased, while Firmicutes were decreased in P301L mice compared with that in Wt mice after 3 months of age. In addition, Actinobacteria was decreased in P301L mice at 3 and 6 months of age, meanwhile Tenericutes was decreased in P301L mice at 10 months of age. Moreover, several specific macrobiota were highly associated with the levels of AT8-tau or pT231-tau protein in the brain. Our findings suggest that gut microbiota changed with aging, as well as in the tauopathy mice model. Modulation of the gut microbiota may be a potential strategy for treatment of tauopathy.
Collapse
Affiliation(s)
- Bin-Lu Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei-Wei Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ya-Li Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hao-Lun Sun
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ding-Yuan Tian
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China.,Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Beijing, China
| | - Xiu-Qing Yao
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
13
|
Tavana JP, Rosene M, Jensen NO, Ridge PG, Kauwe JS, Karch CM. RAB10: an Alzheimer's disease resilience locus and potential drug target. Clin Interv Aging 2018; 14:73-79. [PMID: 30643396 PMCID: PMC6312396 DOI: 10.2147/cia.s159148] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is mainly a late-onset neurodegenerative disorder. Substantial efforts have been made to solve the complex genetic architecture of AD as a means to identify therapeutic targets. Unfortunately, to date, no disease-altering therapeutics have been developed. As therapeutics are likely to be most effective in the early stages of disease (ie, before the onset of symptoms), a recent focus of AD research has been the identification of protective factors that prevent disease. One example is the discovery of a rare variant in the 3'-UTR of RAB10 that is protective for AD. Here, we review the possible genetic, molecular, and functional role of RAB10 in AD and potential therapeutic approaches to target RAB10.
Collapse
Affiliation(s)
- Justina P Tavana
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Matthew Rosene
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA,
| | - Nick O Jensen
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA,
| | - Perry G Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - John Sk Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
- Department of Neuroscience, Brigham Young University, Provo, UT 84602, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA,
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA,
| |
Collapse
|
14
|
More J, Galusso N, Veloso P, Montecinos L, Finkelstein JP, Sanchez G, Bull R, Valdés JL, Hidalgo C, Paula-Lima A. N-Acetylcysteine Prevents the Spatial Memory Deficits and the Redox-Dependent RyR2 Decrease Displayed by an Alzheimer's Disease Rat Model. Front Aging Neurosci 2018; 10:399. [PMID: 30574085 PMCID: PMC6291746 DOI: 10.3389/fnagi.2018.00399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022] Open
Abstract
We have previously reported that primary hippocampal neurons exposed to synaptotoxic amyloid beta oligomers (AβOs), which are likely causative agents of Alzheimer’s disease (AD), exhibit abnormal Ca2+ signals, mitochondrial dysfunction and defective structural plasticity. Additionally, AβOs-exposed neurons exhibit a decrease in the protein content of type-2 ryanodine receptor (RyR2) Ca2+ channels, which exert critical roles in hippocampal synaptic plasticity and spatial memory processes. The antioxidant N-acetylcysteine (NAC) prevents these deleterious effects of AβOs in vitro. The main contribution of the present work is to show that AβOs injections directly into the hippocampus, by engaging oxidation-mediated reversible pathways significantly decreased RyR2 protein content but increased single RyR2 channel activation by Ca2+ and caused considerable spatial memory deficits. AβOs injections into the CA3 hippocampal region impaired rat performance in the Oasis maze spatial memory task, decreased hippocampal glutathione levels and overall content of plasticity-related proteins (c-Fos, Arc, and RyR2) and increased ERK1/2 phosphorylation. In contrast, in hippocampus-derived mitochondria-associated membranes (MAM) AβOs injections increased RyR2 levels. Rats fed with NAC for 3-weeks prior to AβOs injections displayed comparable redox potential, RyR2 and Arc protein contents, similar ERK1/2 phosphorylation and RyR2 single channel activation by Ca2+ as saline-injected (control) rats. NAC-fed rats subsequently injected with AβOs displayed the same behavior in the spatial memory task as control rats. Based on the present in vivo results, we propose that redox-sensitive neuronal RyR2 channels partake in the mechanism underlying AβOs-induced memory disruption in rodents.
Collapse
Affiliation(s)
- Jamileth More
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - Nadia Galusso
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Pablo Veloso
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - Luis Montecinos
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Gina Sanchez
- CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Ricardo Bull
- Physiology and Biophysics Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - José Luis Valdés
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,CEMC, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Physiology and Biophysics Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Paula-Lima
- Faculty of Medicine, Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|