1
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
2
|
Hall RN, Li H, Chai C, Vermeulen S, Bigasin RR, Song ES, Sarkar SR, Gibson J, Prakash M, Fire AZ, Wang B. A genetic and microscopy toolkit for manipulating and monitoring regeneration in Macrostomum lignano. Cell Rep 2024; 43:114892. [PMID: 39427313 DOI: 10.1016/j.celrep.2024.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Live imaging of regenerative processes can reveal how animals restore their bodies after injury through a cascade of dynamic cellular events. Here, we present a comprehensive toolkit for live imaging of tissue regeneration in the flatworm Macrostomum lignano, including a high-throughput cloning pipeline, targeted cellular ablation, and advanced microscopy solutions. Using tissue-specific reporter expression, we examine how various structures regenerate. Enabled by a custom luminescence/fluorescence microscope, we overcome intense stress-induced autofluorescence to demonstrate genetic cellular ablation and reveal the limited regenerative capacity of neurons and their essential role during wound healing, contrasting muscle cells' rapid regeneration after ablation. Finally, we build an open-source tracking microscope to continuously image freely moving animals throughout the week-long process of regeneration, quantifying kinetics of wound healing, nerve cord repair, body regeneration, growth, and behavioral recovery. Our findings suggest that nerve cord reconnection is highly robust and proceeds independently of regeneration.
Collapse
Affiliation(s)
- R Nelson Hall
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Hongquan Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Chew Chai
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sidney Vermeulen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Robin R Bigasin
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eun Sun Song
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | | | - Jesse Gibson
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Manu Prakash
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Andrew Z Fire
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
de Miguel Bonet MDM, Hartenstein V. Ultrastructural analysis and 3D reconstruction of the frontal sensory-glandular complex and its neural projections in the platyhelminth Macrostomum lignano. Cell Tissue Res 2024:10.1007/s00441-024-03901-x. [PMID: 38898317 DOI: 10.1007/s00441-024-03901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
The marine microturbellarian Macrostomum lignano (Platyhelminthes, Rhabditophora) is an emerging laboratory model used by a growing community of researchers because it is easy to cultivate, has a fully sequenced genome, and offers multiple molecular tools for its study. M. lignano has a compartmentalized brain that receives sensory information from receptors integrated in the epidermis. Receptors of the head, as well as accompanying glands and specialized epidermal cells, form a compound sensory structure called the frontal glandular complex. In this study, we used semi-serial transmission electron microscopy (TEM) to document the types, ultrastructure, and three-dimensional architecture of the cells of the frontal glandular complex. We distinguish a ventral compartment formed by clusters of type 1 (multiciliated) sensory receptors from a central domain where type 2 (collar) sensory receptors predominate. Six different types of glands (rhammite glands, mucoid glands, glands with aster-like and perimaculate granula, vacuolated glands, and buckle glands) are closely associated with type 1 sensory receptors. Endings of a seventh type of gland (rhabdite gland) define a dorsal domain of the frontal glandular complex. A pair of ciliary photoreceptors is closely associated with the base of the frontal glandular complex. Bundles of dendrites, connecting the receptor endings with their cell bodies which are located in the brain, form the (frontal) peripheral nerves. Nerve fibers show a varicose structure, with thick segments alternating with thin segments, and are devoid of a glial layer. This distinguishes platyhelminths from larger and/or more complex invertebrates whose nerves are embedded in prominent glial sheaths.
Collapse
Affiliation(s)
- Maria Del Mar de Miguel Bonet
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Biomedicine and Biotechnology, University of Alcalá (UAH), Madrid, Spain
- BioWorld Science, Clarivate Analytics, Barcelona, Spain
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
4
|
Mouton S, Mougel A, Ustyantsev K, Dissous C, Melnyk O, Berezikov E, Vicogne J. Optimized protocols for RNA interference in Macrostomum lignano. G3 (BETHESDA, MD.) 2024; 14:jkae037. [PMID: 38421640 PMCID: PMC11075559 DOI: 10.1093/g3journal/jkae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Macrostomum lignano, a marine free-living flatworm, has emerged as a potent invertebrate model in developmental biology for studying stem cells, germline, and regeneration processes. In recent years, many tools have been developed to manipulate this worm and to facilitate genetic modification. RNA interference is currently the most accessible and direct technique to investigate gene functions. It is obtained by soaking worms in artificial seawater containing dsRNA targeting the gene of interest. Although easy to perform, the original protocol calls for daily exchange of dsRNA solutions, usually until phenotypes are observed, which is both time- and cost-consuming. In this work, we have evaluated alternative dsRNA delivery techniques, such as electroporation and osmotic shock, to facilitate the experiments with improved time and cost efficiency. During our investigation to optimize RNAi, we demonstrated that, in the absence of diatoms, regular single soaking in artificial seawater containing dsRNA directly produced in bacteria or synthesized in vitro is, in most cases, sufficient to induce a potent gene knockdown for several days with a single soaking step. Therefore, this new and highly simplified method allows a very significant reduction of dsRNA consumption and lab work. In addition, it enables performing experiments on a larger number of worms at minimal cost.
Collapse
Affiliation(s)
- Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9700AD, The Netherlands
| | - Alexandra Mougel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Kirill Ustyantsev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9700AD, The Netherlands
| | - Colette Dissous
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9700AD, The Netherlands
| | - Jérôme Vicogne
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Marie-Orleach L, Hall MD, Schärer L. Contrasting the form and strength of pre- and postcopulatory sexual selection in a flatworm. Evolution 2024; 78:511-525. [PMID: 38149973 DOI: 10.1093/evolut/qpad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/10/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Sexual traits may be selected during multiple consecutive episodes of selection, occurring before, during, or after copulation. The overall strength and form of selection acting on traits may thus be determined by how selection (co-)varies along different episodes. However, it is challenging to measure pre- and postcopulatory phenotypic traits alongside variation in fitness components at each different episode. Here, we used a transgenic line of the transparent flatworm Macrostomum lignano expressing green fluorescent protein (GFP) in all cell types, including sperm cells, enabling in vivo sperm tracking. We assessed the mating success, sperm-transfer efficiency, and sperm fertilizing efficiency of GFP(+) focal worms in which we measured 13 morphological traits. We found linear selection on sperm production rate arising from pre- and postcopulatory components and on copulatory organ shape arising from sperm fertilizing efficiency. We further found nonlinear (mostly concave) selection on combinations of copulatory organ and sperm morphology traits arising mostly from sperm-transfer efficiency and sperm fertilizing efficiency. Our study provides a fine-scale quantification of sexual selection, showing that both the form and strength of selection can change across fitness components. Quantifying how sexual selection builds up along episodes of selection allows us to better understand the evolution of sexually selected traits.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
- CNRS, Université de Rennes 1, ECOBIO (Écosystèmes, Biodiversité, Évolution)-UMR 6553, Rennes, France
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours, France
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Brand JN. Support for a radiation of free-living flatworms in the African Great Lakes region and the description of five new Macrostomum species. Front Zool 2023; 20:31. [PMID: 37670326 PMCID: PMC10478486 DOI: 10.1186/s12983-023-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The African Great Lakes have long been recognized as an excellent location to study speciation. Most famously, cichlid fishes have radiated in Lake Tanganyika and subsequently spread into Lake Malawi and Lake Victoria, where they again radiated. Other taxa have diversified in these lakes, such as catfish, ostracods, gastropods, and Monegenean gill parasites of cichlids. However, these radiations have received less attention, and the process leading to their speciation in this unique region remains to be further explored. Here I present evidence that suggests a radiation of Macrostomum flatworms has occurred in the African Great Lakes region, offering a good opportunity for such investigations. RESULTS Recent field work has revealed a monophyletic clade of 16 Macrostomum flatworms that have, to date, only been collected from Lake Tanganyika. Additionally, a species collected from Lake Malawi was found nested within this clade. Molecular phylogenetic analysis, largely based on transcriptome data, suggests that this clade underwent rapid speciation, possibly due to a large habitat diversity in the lake. I also observed significant differences in the sperm morphology of these flatworms compared to those of species found outside Lake Tanganyika and Lake Malawi. These included the elongation of an anterior structure, a reduction in the size of the lateral sperm bristles, and changes in relative proportions. I propose functional hypotheses for these changes in sperm design, and formally describe Macrostomum gracilistylum sp. nov from Lake Malawi and its sister species Macrostomum crassum sp. nov., Macrostomum pellitum sp. nov., Macrostomum longispermatum sp. nov., and Macrostomum schäreri sp. nov., from Lake Tanganyika. CONCLUSIONS The available evidence is consistent with the hypothesis that Macrostomum flatworms have radiated in Lake Tanganyika and subsequently spread to Lake Malawi. However, whether this represents a bona fide adaptive radiation still needs to be determined. Therefore, the African Great Lakes are promising targets for further research into flatworm diversity and speciation.
Collapse
Affiliation(s)
- Jeremias N Brand
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, Basel, 4051, Switzerland.
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Science, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
7
|
Wiberg RAW, Brand JN, Viktorin G, Mitchell JO, Beisel C, Schärer L. Genome assemblies of the simultaneously hermaphroditic flatworms Macrostomum cliftonense and Macrostomum hystrix. G3 (BETHESDA, MD.) 2023; 13:jkad149. [PMID: 37398989 PMCID: PMC10468722 DOI: 10.1093/g3journal/jkad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
The free-living, simultaneously hermaphroditic flatworms of the genus Macrostomum are increasingly used as model systems in various contexts. In particular, Macrostomum lignano, the only species of this group with a published genome assembly, has emerged as a model for the study of regeneration, reproduction, and stem-cell function. However, challenges have emerged due to M. lignano being a hidden polyploid, having recently undergone whole-genome duplication and chromosome fusion events. This complex genome architecture presents a significant roadblock to the application of many modern genetic tools. Hence, additional genomic resources for this genus are needed. Here, we present such resources for Macrostomum cliftonense and Macrostomum hystrix, which represent the contrasting mating behaviors of reciprocal copulation and hypodermic insemination found in the genus. We use a combination of PacBio long-read sequencing and Illumina shot-gun sequencing, along with several RNA-Seq data sets, to assemble and annotate highly contiguous genomes for both species. The assemblies span ∼227 and ∼220 Mb and are represented by 399 and 42 contigs for M. cliftonense and M. hystrix, respectively. Furthermore, high BUSCO completeness (∼84-85%), low BUSCO duplication rates (8.3-6.2%), and low k-mer multiplicity indicate that these assemblies do not suffer from the same assembly ambiguities of the M. lignano genome assembly, which can be attributed to the complex karyology of this species. We also show that these resources, in combination with the prior resources from M. lignano, offer an excellent foundation for comparative genomic research in this group of organisms.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel 4051, Switzerland
| | - Jeremias N Brand
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel 4051, Switzerland
| | - Gudrun Viktorin
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel 4051, Switzerland
| | - Jack O Mitchell
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel 4051, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel 4051, Switzerland
| |
Collapse
|
8
|
Ma Y, He J, Sieber M, von Frieling J, Bruchhaus I, Baines JF, Bickmeyer U, Roeder T. The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Commun Biol 2023; 6:289. [PMID: 36934156 PMCID: PMC10024726 DOI: 10.1038/s42003-023-04671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The close association between animals and their associated microbiota is usually beneficial for both partners. Here, we used a simple marine model invertebrate, the flatworm Macrostomum lignano, to characterize the host-microbiota interaction in detail. This analysis revealed that the different developmental stages each harbor a specific microbiota. Studies with gnotobiotic animals clarified the physiological significance of the microbiota. While no fitness benefits were mediated by the microbiota when food was freely available, animals with microbiota showed significantly increased fitness with a reduced food supply. The microbiota of M. lignano shows circadian rhythmicity, affecting both the total bacterial load and the behavior of specific taxa. Moreover, the presence of the worm influences the composition of the bacterial consortia in the environment. In summary, the Macrostomum-microbiota system described here can serve as a general model for host-microbe interactions in marine invertebrates.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Jinru He
- Kiel University, Zoological Institute, Cell and Developmental Biology, Kiel, Germany
| | - Michael Sieber
- Max-Planck Institute for Evolutionary Biology, Dept. Evolutionary Theory, Plön, Germany
| | - Jakob von Frieling
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John F Baines
- Kiel University, Medical Faculty, Institute for Experimental Medicine, Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, Group Evolutionary Medicine, Plön, Germany
| | - Ulf Bickmeyer
- Alfred-Wegener-Institute, Biosciences, Ecological Chemistry, Bremerhaven, Germany
| | - Thomas Roeder
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany.
- German Center for Lung Research (DZL), Airway Research Center North, Kiel, Germany.
| |
Collapse
|
9
|
Glycoproteins Involved in Sea Urchin Temporary Adhesion. Mar Drugs 2023; 21:md21030145. [PMID: 36976195 PMCID: PMC10057474 DOI: 10.3390/md21030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023] Open
Abstract
Biomedical adhesives, despite having been used increasingly in recent years, still face a major technological challenge: strong adhesion in wet environments. In this context, biological adhesives secreted by marine invertebrates have appealing characteristics to incorporate into new underwater biomimetic adhesives: water resistance, nontoxicity and biodegradability. Little is still known about temporary adhesion. Recently, a transcriptomic differential analysis of sea urchin Paracentrotus lividus tube feet pinpointed 16 adhesive/cohesive protein candidates. In addition, it has been demonstrated that the adhesive secreted by this species is composed of high molecular weight proteins associated with N-Acetylglucosamine in a specific chitobiose arrangement. As a follow-up, we aimed to investigate which of these adhesive/cohesive protein candidates were glycosylated through lectin pulldowns, protein identification by mass spectroscopy and in silico characterization. We demonstrate that at least five of the previously identified protein adhesive/cohesive candidates are glycoproteins. We also report the involvement of a third Nectin variant, the first adhesion-related protein to be identified in P. lividus. By providing a deeper characterization of these adhesive/cohesive glycoproteins, this work advances our understanding of the key features that should be replicated in future sea urchin-inspired bioadhesives.
Collapse
|
10
|
Amiel AR, Tsai SL, Wehner D. Embracing the diversity of model systems to deconstruct the basis of regeneration and tissue repair. Development 2023; 150:286821. [PMID: 36718794 DOI: 10.1242/dev.201579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The eighth EMBO conference in the series 'The Molecular and Cellular Basis of Regeneration and Tissue Repair' took place in Barcelona (Spain) in September 2022. A total of 173 researchers from across the globe shared their latest advances in deciphering the molecular and cellular basis of wound healing, tissue repair and regeneration, as well as their implications for future clinical applications. The conference showcased an ever-expanding diversity of model organisms used to identify mechanisms that promote regeneration. Over 25 species were discussed, ranging from invertebrates to humans. Here, we provide an overview of the exciting topics presented at the conference, highlighting novel discoveries in regeneration and perspectives for regenerative medicine.
Collapse
Affiliation(s)
- Aldine R Amiel
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), 06107 Nice, France
| | - Stephanie L Tsai
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel Wehner
- Max Planck Institute for the Science of Light, Erlangen 91058, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen 91058, Germany
| |
Collapse
|
11
|
Wiberg RAW, Viktorin G, Schärer L. Mating strategy predicts gene presence/absence patterns in a genus of simultaneously hermaphroditic flatworms. Evolution 2022; 76:3054-3066. [PMID: 36199200 PMCID: PMC10092323 DOI: 10.1111/evo.14635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/28/2022] [Indexed: 01/22/2023]
Abstract
Gene repertoire turnover is a characteristic of genome evolution. However, we lack well-replicated analyses of presence/absence patterns associated with different selection contexts. Here, we study ∼100 transcriptome assemblies across Macrostomum, a genus of simultaneously hermaphroditic flatworms exhibiting multiple convergent shifts in mating strategy and associated reproductive morphologies. Many species mate reciprocally, with partners donating and receiving sperm at the same time. Other species convergently evolved to mate by hypodermic injection of sperm into the partner. We find that for orthologous transcripts annotated as expressed in the body region containing the testes, sequences from hypodermically inseminating species diverge more rapidly from the model species, Macrostomum lignano, and have a lower probability of being observed in other species. For other annotation categories, simpler models with a constant rate of similarity decay with increasing genetic distance from M. lignano match the observed patterns well. Thus, faster rates of sequence evolution for hypodermically inseminating species in testis-region genes result in higher rates of homology detection failure, yielding a signal of rapid evolution in sequence presence/absence patterns. Our results highlight the utility of considering appropriate null models for unobserved genes, as well as associating patterns of gene presence/absence with replicated evolutionary events in a phylogenetic context.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, CH-4051, Switzerland.,Evolutionary Biology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden
| | - Gudrun Viktorin
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, CH-4051, Switzerland
| | - Lukas Schärer
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, CH-4051, Switzerland
| |
Collapse
|
12
|
Biryukov M, Dmitrieva A, Vavilova V, Ustyantsev K, Bazarova E, Sukhikh I, Berezikov E, Blinov A. Mlig-SKP1 Gene Is Required for Spermatogenesis in the Flatworm Macrostomum lignano. Int J Mol Sci 2022; 23:ijms232315110. [PMID: 36499445 PMCID: PMC9740662 DOI: 10.3390/ijms232315110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
In a free-living flatworm, Macrostomum lignano, an S-phase kinase-associated protein 1 (SKP1) homologous gene was identified as enriched in proliferating cells, suggesting that it can function in the regulation of stem cells or germline cells since these are the only two types of proliferating cells in flatworms. SKP1 is a conserved protein that plays a role in ubiquitination processes as a part of the Skp1-Cullin 1-F-box (SCF) ubiquitin ligase complex. However, the exact role of Mlig-SKP1 in M. lignano was not established. Here, we demonstrate that Mlig-SKP1 is neither involved in stem cell regulation during homeostasis, nor in regeneration, but is required for spermatogenesis. Mlig-SKP1(RNAi) animals have increased testes size and decreased fertility as a result of the aberrant maturation of sperm cells. Our findings reinforce the role of ubiquitination pathways in germ cell regulation and demonstrate the conserved role of SKP1 in spermatogenesis.
Collapse
Affiliation(s)
- Mikhail Biryukov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Anastasia Dmitrieva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Valeriya Vavilova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Kirill Ustyantsev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9700AD Groningen, The Netherlands
| | - Erzhena Bazarova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Igor Sukhikh
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9700AD Groningen, The Netherlands
| | - Alexandr Blinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
13
|
Sukhikh IS, Biryukov MY, Blinov AG. Transgenesis in Worms: Candidates for an Ideal Model. Mol Biol 2022. [DOI: 10.1134/s0026893322060176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Shi Y, Zeng Z, Wang J, Zhang S, Deng L, Wang A. Three new species of Macrostomum (Platyhelminthes, Macrostomorpha) from China and Australia, with notes on taxonomy and phylogenetics. Zookeys 2022; 1099:1-28. [PMID: 36761444 PMCID: PMC9848920 DOI: 10.3897/zookeys.1099.72964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
In this paper, three species of the macrostomid free-living flatworm genus Macrostomum are described. Two species, Macrostomumlittorale Wang & Shi, sp. nov. and M.shekouense Wang & Shi, sp. nov., were collected from coastal water at Shenzhen, Guangdong Province, China. One species, M.brandi Wang & Shi, sp. nov., was collected from Perth, Western Australia and Queenscliff, Victoria, Australia. Macrostomumlittorale sp. nov. differs from congeneric species within the genus in the length of the stylet, diameter of stylet opening, and the bend of the stylet. Macrostomumshekouense sp. nov. and M.brandi sp. nov. differ from similar species within the genus in the stylet morphology, position of the female antrum and developing eggs, or presence or absence of the false seminal vesicle. Phylogenetic analysis based on cytochrome c oxidase subunit I (COI) gene shows that M.littorale sp. nov. and M.hystrix are sister clades on two well-separated branch, M.shekouense sp. nov. and M.brandi sp. nov. are sister clades on two well-separated branches. Accordingly, both morphological and molecular evidence support M.littorale sp. nov., M.shekouense sp. nov., and M.brandi sp. nov. as three new species.
Collapse
Affiliation(s)
- Yongshi Shi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| | - Zhiyu Zeng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| | - Jia Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| | - Siyu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| | - Li Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| | - Antai Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, ChinaShenzhen UniversityShenzhenChina
| |
Collapse
|
15
|
Kobayashi A, Hamada M, Yoshida MA, Kobayashi Y, Tsutsui N, Sekiguchi T, Matsukawa Y, Maejima S, Gingell JJ, Sekiguchi S, Hamamoto A, Hay DL, Morris JF, Sakamoto T, Sakamoto H. Vasopressin-oxytocin-type signaling is ancient and has a conserved water homeostasis role in euryhaline marine planarians. SCIENCE ADVANCES 2022; 8:eabk0331. [PMID: 35245108 PMCID: PMC8896804 DOI: 10.1126/sciadv.abk0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Vasopressin/oxytocin (VP/OT)-related peptides are essential for mammalian antidiuresis, sociosexual behavior, and reproduction. However, the evolutionary origin of this peptide system is still uncertain. Here, we identify orthologous genes to those for VP/OT in Platyhelminthes, intertidal planarians that have a simple bilaterian body structure but lack a coelom and body-fluid circulatory system. We report a comprehensive characterization of the neuropeptide derived from this VP/OT-type gene, identifying its functional receptor, and name it the "platytocin" system. Our experiments with these euryhaline planarians, living where environmental salinities fluctuate due to evaporation and rainfall, suggest that platytocin functions as an "antidiuretic hormone" and also organizes diverse actions including reproduction and chemosensory-associated behavior. We propose that bilaterians acquired physiological adaptations to amphibious lives by such regulation of the body fluids. This neuropeptide-secreting system clearly became indispensable for life even without the development of a vascular circulatory system or relevant synapses.
Collapse
Affiliation(s)
- Aoshi Kobayashi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Masa-aki Yoshida
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane 685-0024, Japan
| | - Yasuhisa Kobayashi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Laboratory for Aquatic Biology, Department of Fisheries, Faculty of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Naoaki Tsutsui
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Marine Bioresources, Faculty of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Yuta Matsukawa
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Sho Maejima
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Joseph J. Gingell
- Vertex Pharmaceuticals (Europe) Ltd., Milton Park, Abingdon OX11 4RW, UK
| | - Shoko Sekiguchi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Ayumu Hamamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kita-ku, Tsushimanaka, Okayama 700-8530, Japan
| | - Debbie L. Hay
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Otago, New Zealand
| | - John F. Morris
- Department of Physiology, Anatomy, and Genetic, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Physiology, Anatomy, and Genetic, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Corresponding author.
| |
Collapse
|
16
|
Brand JN, Harmon LJ, Schärer L. Frequent origins of traumatic insemination involve convergent shifts in sperm and genital morphology. Evol Lett 2022; 6:63-82. [PMID: 35127138 PMCID: PMC8802240 DOI: 10.1002/evl3.268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Traumatic insemination is a mating behavior during which the (sperm) donor uses a traumatic intromittent organ to inject an ejaculate through the epidermis of the (sperm) recipient, thereby frequently circumventing the female genitalia. Traumatic insemination occurs widely across animals, but the frequency of its evolution, the intermediate stages via which it originates, and the morphological changes that such shifts involve remain poorly understood. Based on observations in 145 species of the free-living flatworm genus Macrostomum, we identify at least nine independent evolutionary origins of traumatic insemination from reciprocal copulation, but no clear indication of reversals. These origins involve convergent shifts in multivariate morphospace of male and female reproductive traits, suggesting that traumatic insemination has a canalizing effect on morphology. We also observed sperm in both the sperm receiving organ and within the body tissue of two species. These species had intermediate trait values indicating that traumatic insemination evolves through initial internal wounding during copulation. Finally, signatures of male-female coevolution of genitalia across the genus indicate that sexual selection and sexual conflict drive the evolution of traumatic insemination, because it allows donors to bypass postcopulatory control mechanisms of recipients.
Collapse
Affiliation(s)
- Jeremias N. Brand
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBaselCH‐4051Switzerland
- Department of Tissue Dynamics and RegenerationMax Planck Institute for Biophysical ChemistryGöttingenDE‐37077Germany
| | - Luke J. Harmon
- Department of Biological SciencesUniversity of IdahoMoscowIdaho83843
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBaselCH‐4051Switzerland
| |
Collapse
|
17
|
Wudarski J, Ustyantsev K, Reinoite F, Berezikov E. Random Integration Transgenesis in a Free-Living Regenerative Flatworm Macrostomum lignano. Methods Mol Biol 2022; 2450:493-508. [PMID: 35359325 PMCID: PMC9761508 DOI: 10.1007/978-1-0716-2172-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Regeneration-capable flatworms are highly informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. Transgenesis is a powerful research tool for investigating gene function, but until recently, a transgenesis method was missing in flatworms, hampering their wider adoption in biomedical research. Here we describe a detailed protocol to create stable transgenic lines of the flatworm M. lignano using random integration of DNA constructs through microinjection into single-cell stage embryos.
Collapse
Affiliation(s)
- Jakub Wudarski
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Filipa Reinoite
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
18
|
Zadesenets KS, Rubtsov NB. B Chromosomes in Free-Living Flatworms of the Genus Macrostomum (Platyhelminthes, Macrostomorpha). Int J Mol Sci 2021; 22:13617. [PMID: 34948412 PMCID: PMC8708343 DOI: 10.3390/ijms222413617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
B chromosomes (Bs) or supernumerary chromosomes are extra chromosomes in the species karyotype that can vary in its copy number. Bs are widespread in eukaryotes. Usually, the Bs of specimens collected from natural populations are the object of the B chromosome studies. We applied another approach analyzing the Bs in animals maintained under the laboratory conditions as lines and cultures. In this study, three species of the Macrostomum genus that underwent a recent whole-genome duplication (WGD) were involved. In laboratory lines of M. lignano and M. janickei, the frequency of Bs was less than 1%, while in the laboratory culture of M. mirumnovem, it was nearer 30%. Their number in specimens of the culture varied from 1 to 14. Mosaicism on Bs was discovered in parts of these animals. We analyzed the distribution of Bs among the worms of the laboratory cultures during long-term cultivation, the transmission rates of Bs in the progeny obtained from crosses of worms with different numbers of Bs, and from self-fertilized isolated worms. The DNA content of the Bs in M. mirumnovem was analyzed with the chromosomal in situ suppression (CISS) hybridization of microdissected DNA probes derived from A chromosomes (As). Bs mainly consisted of repetitive DNA. The cytogenetic analysis also revealed the divergence and high variation in large metacentric chromosomes (LMs) containing numerous regions enriched for repeats. The possible mechanisms of the appearance and evolution of Bs and LMs in species of the Macrostomum genus were also discussed.
Collapse
Affiliation(s)
- Kira S. Zadesenets
- The Federal Research Center Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
19
|
Ustyantsev KV, Vavilova VY, Blinov AG, Berezikov EV. Macrostomum lignano as a model to study the genetics and genomics of parasitic flatworms. Vavilovskii Zhurnal Genet Selektsii 2021; 25:108-116. [PMID: 34901708 PMCID: PMC8629357 DOI: 10.18699/vj21.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/02/2022] Open
Abstract
Hundreds of millions of people worldwide are infected by various species of parasitic flatworms. Without
treatment, acute and chronical infections frequently lead to the development of severe pathologies and even death.
Emerging data on a decreasing efficiency of some important anthelmintic compounds and the emergence of resistance to them force the search for alternative drugs. Parasitic flatworms have complex life cycles, are laborious and
expensive in culturing, and have a range of anatomic and physiological adaptations that complicate the application
of standard molecular-biological methods. On the other hand, free-living flatworm species, evolutionarily close to
parasitic flatworms, do not have the abovementioned difficulties, which makes them potential alternative models
to search for and study homologous genes. In this review, we describe the use of the basal free-living flatworm
Macrostomum lignano as such a model. M. lignano has a number of convenient biological and experimental properties, such as fast reproduction, easy and non-expensive laboratory culturing, optical body transparency, obligatory
sexual reproduction, annotated genome and transcriptome assemblies, and the availability of modern molecular
methods, including transgenesis, gene knockdown by RNA interference, and in situ hybridization. All this makes
M. lignano amenable to the most modern approaches of forward and reverse genetics, such as transposon insertional mutagenesis and methods of targeted genome editing by the CRISPR/Cas9 system. Due to the availability of
an increasing number of genome and transcriptome assemblies of different parasitic flatworm species, new knowledge generated by studying M. lignano can be easily translated to parasitic flatworms with the help of modern
bioinformatic methods of comparative genomics and transcriptomics. In support of this, we provide the results of
our bioinformatics search and analysis of genes homologous between M. lignano and parasitic flatworms, which
predicts a list of promising gene targets for subsequent research.
Collapse
Affiliation(s)
- K V Ustyantsev
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V Yu Vavilova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A G Blinov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Berezikov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
20
|
Ustyantsev KV, Berezikov EV. Computational analysis of spliced leader trans-splicing in the regenerative flatworm Macrostomum lignano reveals its prevalence in conserved and stem cell related genes. Vavilovskii Zhurnal Genet Selektsii 2021; 25:101-107. [PMID: 34901707 PMCID: PMC8629364 DOI: 10.18699/vj21.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022] Open
Abstract
In eukaryotes, trans-splicing is a process of nuclear pre-mRNA maturation where two different RNA molecules are joined together by the spliceosomal machinery utilizing mechanisms similar to cis-splicing. In diverse taxa of
lower eukaryotes, spliced leader (SL) trans-splicing is the most frequent type of trans-splicing, when the same sequence
derived from short small nuclear RNA molecules, called SL RNAs, is attached to the 5’ ends of different non-processed
pre-mRNAs. One of the functions of SL trans-splicing is processing polycistronic pre-mRNA molecules transcribed from
operons, when several genes are transcribed as one pre-mRNA molecule. However, only a fraction of trans-spliced
genes reside in operons, suggesting that SL trans-splicing must also have some other, less understood functions. Regenerative flatworms are informative model organisms which hold the keys to understand the mechanism of stem
cell regulation and specialization during regeneration and homeostasis. Their ability to regenerate is fueled by the
division and differentiation of the adult somatic stem cell population called neoblasts. Macrostomum lignano is a flatworm model organism where substantial technological advances have been achieved in recent years, including the
development of transgenesis. Although a large fraction of genes in M. lignano were estimated to be SL trans-spliced,
SL trans-splicing was not studied in detail in M. lignano before. Here, we performed the first comprehensive study of
SL trans-splicing in M. lignano. By reanalyzing the existing genome and transcriptome data of M. lignano, we estimate
that 30 % of its genes are SL trans-spliced, 15 % are organized in operons, and almost 40 % are both SL trans-spliced
and in operons. We annotated and characterized the sequence of SL RNA and characterized conserved cis- and SL transsplicing motifs. Finally, we found that a majority of SL trans-spliced genes are evolutionarily conserved and significantly
over-represented in neoblast-specific genes. Our findings suggest an important role of SL trans-splicing in the regulation and maintenance of neoblasts in M. lignano.
Collapse
Affiliation(s)
- K V Ustyantsev
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Berezikov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
21
|
Wiberg RAW, Brand JN, Schärer L. Faster Rates of Molecular Sequence Evolution in Reproduction-Related Genes and in Species with Hypodermic Sperm Morphologies. Mol Biol Evol 2021; 38:5685-5703. [PMID: 34534329 PMCID: PMC8662610 DOI: 10.1093/molbev/msab276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sexual selection drives the evolution of many striking behaviors and morphologies and should leave signatures of selection at loci underlying these phenotypes. However, although loci thought to be under sexual selection often evolve rapidly, few studies have contrasted rates of molecular sequence evolution at such loci across lineages with different sexual selection contexts. Furthermore, work has focused on separate sexed animals, neglecting alternative sexual systems. We investigate rates of molecular sequence evolution in hermaphroditic flatworms of the genus Macrostomum. Specifically, we compare species that exhibit contrasting sperm morphologies, strongly associated with multiple convergent shifts in the mating strategy, reflecting different sexual selection contexts. Species donating and receiving sperm in every mating have sperm with bristles, likely to prevent sperm removal. Meanwhile, species that hypodermically inject sperm lack bristles, potentially as an adaptation to the environment experienced by hypodermic sperm. Combining functional annotations from the model, Macrostomum lignano, with transcriptomes from 93 congeners, we find genus-wide faster sequence evolution in reproduction-related versus ubiquitously expressed genes, consistent with stronger sexual selection on the former. Additionally, species with hypodermic sperm morphologies had elevated molecular sequence evolution, regardless of a gene's functional annotation. These genome-wide patterns suggest reduced selection efficiency following shifts to hypodermic mating, possibly due to higher selfing rates in these species. Moreover, we find little evidence for convergent amino acid changes across species. Our work not only shows that reproduction-related genes evolve rapidly also in hermaphroditic animals, but also that well-replicated contrasts of different sexual selection contexts can reveal underappreciated genome-wide effects.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Jeremias N Brand
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
(Un)expected Similarity of the Temporary Adhesive Systems of Marine, Brackish, and Freshwater Flatworms. Int J Mol Sci 2021; 22:ijms222212228. [PMID: 34830109 PMCID: PMC8621496 DOI: 10.3390/ijms222212228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Many free-living flatworms have evolved a temporary adhesion system, which allows them to quickly attach to and release from diverse substrates. In the marine Macrostomum lignano, the morphology of the adhesive system and the adhesion-related proteins have been characterised. However, little is known about how temporary adhesion is performed in other aquatic environments. Here, we performed a 3D reconstruction of the M. lignano adhesive organ and compared it to the morphology of five selected Macrostomum, representing two marine, one brackish, and two freshwater species. We compared the protein domains of the two adhesive proteins, as well as an anchor cell-specific intermediate filament. We analysed the gene expression of these proteins by in situ hybridisation and performed functional knockdowns with RNA interference. Remarkably, there are almost no differences in terms of morphology, protein regions, and gene expression based on marine, brackish, and freshwater habitats. This implies that glue components produced by macrostomids are conserved among species, and this set of two-component glue functions from low to high salinity. These findings could contribute to the development of novel reversible biomimetic glues that work in all wet environments and could have applications in drug delivery systems, tissue adhesives, or wound dressings.
Collapse
|
23
|
Large-scale phylogenomics of the genus Macrostomum (Platyhelminthes) reveals cryptic diversity and novel sexual traits. Mol Phylogenet Evol 2021; 166:107296. [PMID: 34438051 DOI: 10.1016/j.ympev.2021.107296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Free-living flatworms of the genus Macrostomum are small and transparent animals, representing attractive study organisms for a broad range of topics in evolutionary, developmental, and molecular biology. The genus includes the model organism M. lignano for which extensive molecular resources are available, and recently there is a growing interest in extending work to additional species in the genus. These endeavours are currently hindered because, even though >200 Macrostomum species have been taxonomically described, molecular phylogenetic information and geographic sampling remain limited. We report on a global sampling campaign aimed at increasing taxon sampling and geographic representation of the genus. Specifically, we use extensive transcriptome and single-locus data to generate phylogenomic hypotheses including 145 species. Across different phylogenetic methods and alignments used, we identify several consistent clades, while their exact grouping is less clear, possibly due to a radiation early in Macrostomum evolution. Moreover, we uncover a large undescribed diversity, with 94 of the studied species likely being new to science, and we identify multiple novel morphological traits. Furthermore, we identify cryptic speciation in a taxonomically challenging assemblage of species, suggesting that the use of molecular markers is a prerequisite for future work, and we describe the distribution of putative synapomorphies and suggest taxonomic revisions based on our finding. Our large-scale phylogenomic dataset now provides a robust foundation for comparative analyses of morphological, behavioural and molecular evolution in this genus.
Collapse
|
24
|
Zhang S, Shi Y, Zeng Z, Xin F, Deng L, Wang A. Two New Brackish-Water Species of Macrostomum (Platyhelminthes: Macrostomorpha) from China and Their Phylogenetic Positions. Zoolog Sci 2021; 38:273-286. [PMID: 34057353 DOI: 10.2108/zs200121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022]
Abstract
In this paper, two new brackish-water species of the macrostomid turbellarian genus Macrostomum, Macrostomum pseudosinense sp. nov. and Macrostomum taurinum sp. nov., collected from coastal water at Shenzhen, Guangdong Province, China, are described based on morphological, histological, and molecular phylogenetic analyses. Macrostomum pseudosinense sp. nov. differs from similar species within the genus in the length of the stylet (152 ± 15.0 µm), diameter of stylet opening (20 ± 4.0 µm proximally; 7 ± 0.5 µm distally), two bends of the stylet, and the non-spiral end of the stylet. Macrostomum taurinum sp. nov. differs from its congeners in the length of the stylet (81 ± 7.4 µm), the stylet bending position and angle (50% and 60°), diameter of stylet proximal opening (15 ± 3.0 µm), sperm with bristles and brush, and the smooth-walled ovaries. Phylogenetic analyses inferred from nuclear 18S and 28S rRNA genes support the establishments of these two new species. In addition, reciprocal mating behavior of M. pseudosinense sp. nov. was observed and documented.
Collapse
Affiliation(s)
- Siyu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Yongshi Shi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Zicheng Zeng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Fan Xin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China
| | - Li Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China,
| | - Antai Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, PR China,
| |
Collapse
|
25
|
Ustyantsev K, Wudarski J, Sukhikh I, Reinoite F, Mouton S, Berezikov E. Proof of principle for piggyBac-mediated transgenesis in the flatworm Macrostomum lignano. Genetics 2021; 218:6276877. [PMID: 33999134 PMCID: PMC8717057 DOI: 10.1093/genetics/iyab076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Regeneration-capable flatworms are informative research models to study the mechanisms of stem cell regulation, regeneration, and tissue patterning. The free-living flatworm Macrostomum lignano is currently the only flatworm where stable transgenesis is available, and as such it offers a powerful experimental platform to address questions that were previously difficult to answer. The published transgenesis approach relies on random integration of DNA constructs into the genome. Despite its efficiency, there is room and need for further improvement and diversification of transgenesis methods in M. lignano. Transposon-mediated transgenesis is an alternative approach, enabling easy mapping of the integration sites and the possibility of insertional mutagenesis studies. Here, we report for the first time that transposon-mediated transgenesis using piggyBac can be performed in M. lignano to create stable transgenic lines with single-copy transgene insertions.
Collapse
Affiliation(s)
- Kirill Ustyantsev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Jakub Wudarski
- Laboratory of Biological Diversity, National Institute for Basic Biology, Okazaki 444-8585 Aichi, Japan
| | - Igor Sukhikh
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Filipa Reinoite
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, 9700AD, The Netherlands
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, 9700AD, The Netherlands
| | - Eugene Berezikov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, 9700AD, The Netherlands
| |
Collapse
|
26
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
27
|
TIM29 is required for enhanced stem cell activity during regeneration in the flatworm Macrostomum lignano. Sci Rep 2021; 11:1166. [PMID: 33441924 PMCID: PMC7806878 DOI: 10.1038/s41598-020-80682-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
TIM29 is a mitochondrial inner membrane protein that interacts with the protein import complex TIM22. TIM29 was shown to stabilize the TIM22 complex but its biological function remains largely unknown. Until recently, it was classified as one of the Domain of Unknown Function (DUF) genes, with a conserved protein domain DUF2366 of unclear function. Since characterizing DUF genes can provide novel biological insight, we used previously established transcriptional profiles of the germline and stem cells of the flatworm Macrostomum lignano to probe conserved DUFs for their potential role in germline biology, stem cell function, regeneration, and development. Here, we demonstrate that DUF2366/TIM29 knockdown in M. lignano has very limited effect during the normal homeostatic condition but prevents worms from adapting to a highly proliferative state required for regeneration.
Collapse
|