1
|
Ammari S, Quillent A, Elvira V, Bidault F, Garcia GCTE, Hartl DM, Balleyguier C, Lassau N, Chouzenoux É. Using Machine Learning on MRI Radiomics to Diagnose Parotid Tumours Before Comparing Performance with Radiologists: A Pilot Study. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01255-y. [PMID: 39390287 DOI: 10.1007/s10278-024-01255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
The parotid glands are the largest of the major salivary glands. They can harbour both benign and malignant tumours. Preoperative work-up relies on MR images and fine needle aspiration biopsy, but these diagnostic tools have low sensitivity and specificity, often leading to surgery for diagnostic purposes. The aim of this paper is (1) to develop a machine learning algorithm based on MR images characteristics to automatically classify parotid gland tumours and (2) compare its results with the diagnoses of junior and senior radiologists in order to evaluate its utility in routine practice. While automatic algorithms applied to parotid tumours classification have been developed in the past, we believe that our study is one of the first to leverage four different MRI sequences and propose a comparison with clinicians. In this study, we leverage data coming from a cohort of 134 patients treated for benign or malignant parotid tumours. Using radiomics extracted from the MR images of the gland, we train a random forest and a logistic regression to predict the corresponding histopathological subtypes. On the test set, the best results are given by the random forest: we obtain a 0.720 accuracy, a 0.860 specificity, and a 0.720 sensitivity over all histopathological subtypes, with an average AUC of 0.838. When considering the discrimination between benign and malignant tumours, the algorithm results in a 0.760 accuracy and a 0.769 AUC, both on test set. Moreover, the clinical experiment shows that our model helps to improve diagnostic abilities of junior radiologists as their sensitivity and accuracy raised by 6 % when using our proposed method. This algorithm may be useful for training of physicians. Radiomics with a machine learning algorithm may help improve discrimination between benign and malignant parotid tumours, decreasing the need for diagnostic surgery. Further studies are warranted to validate our algorithm for routine use.
Collapse
Affiliation(s)
- Samy Ammari
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805, Villejuif, France
- Department of Imaging, Gustave Roussy Cancer Campus, Université Paris Saclay, 94805, Villejuif, France
| | - Arnaud Quillent
- Centre de Vision Numérique, OPIS, CentraleSupélec, Inria, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Víctor Elvira
- School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - François Bidault
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805, Villejuif, France
- Department of Imaging, Gustave Roussy Cancer Campus, Université Paris Saclay, 94805, Villejuif, France
| | - Gabriel C T E Garcia
- Department of Imaging, Gustave Roussy Cancer Campus, Université Paris Saclay, 94805, Villejuif, France
| | - Dana M Hartl
- Department of Otolaryngology Head and Neck Surgery, Gustave Roussy Cancer Campus, Université Paris Saclay, 94805, Villejuif, France
| | - Corinne Balleyguier
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805, Villejuif, France
- Department of Imaging, Gustave Roussy Cancer Campus, Université Paris Saclay, 94805, Villejuif, France
| | - Nathalie Lassau
- Biomaps, UMR1281 INSERM, CEA, CNRS, Université Paris-Saclay, 94805, Villejuif, France
- Department of Imaging, Gustave Roussy Cancer Campus, Université Paris Saclay, 94805, Villejuif, France
| | - Émilie Chouzenoux
- Centre de Vision Numérique, OPIS, CentraleSupélec, Inria, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
2
|
Vasilev YA, Vladzymyrskyy AV, Alymova YA, Akhmedzyanova DA, Blokhin IA, Romanenko MO, Seradzhi SR, Suchilova MM, Shumskaya YF, Reshetnikov RV. Development and Validation of a Questionnaire to Assess the Radiologists' Views on the Implementation of Artificial Intelligence in Radiology (ATRAI-14). Healthcare (Basel) 2024; 12:2011. [PMID: 39408191 PMCID: PMC11476276 DOI: 10.3390/healthcare12192011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Introduction: Artificial Intelligence (AI) is becoming an essential part of modern radiology. However, available evidence highlights issues in the real-world applicability of AI tools and mixed radiologists' acceptance. We aimed to develop and validate a questionnaire to evaluate the attitude of radiologists toward radiology AI (ATRAI-14). Materials and Methods: We generated items based on the European Society of Radiology questionnaire. Item reduction yielded 23 items, 12 of which contribute to scoring. The items were allocated into four domains ("Familiarity", "Trust", "Implementation Perspective", and "Hopes and Fears") and a part related to the respondent's demographics and professional background. As a pre-test method, we conducted cognitive interviews with 20 radiologists. Pilot testing with reliability and validity assessment was carried out on a representative sample of 90 respondents. Construct validity was assessed via confirmatory factor analysis (CFA). Results: CFA confirmed the feasibility of four domains structure. ATRAI-14 demonstrated acceptable internal consistency (Cronbach's Alpha 0.78 95%CI [0.68, 0.83]), good test-retest reliability (ICC = 0.89, 95% CI [0.67, 0.96], p-value < 0.05), and acceptable criterion validity (Spearman's rho 0.73, p-value < 0.001). Conclusions: The questionnaire is useful for providing detailed AI acceptance measurements for making management decisions when implementing AI in radiology.
Collapse
Affiliation(s)
| | | | | | - Dina A. Akhmedzyanova
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department, 127051 Moscow, Russia; (Y.A.V.); (A.V.V.); (Y.A.A.); (I.A.B.); (M.O.R.); (S.R.S.); (M.M.S.); (Y.F.S.); (R.V.R.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Zanardo M, Visser JJ, Colarieti A, Cuocolo R, Klontzas ME, Pinto Dos Santos D, Sardanelli F. Impact of AI on radiology: a EuroAIM/EuSoMII 2024 survey among members of the European Society of Radiology. Insights Imaging 2024; 15:240. [PMID: 39373853 PMCID: PMC11458846 DOI: 10.1186/s13244-024-01801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 10/08/2024] Open
Abstract
In order to assess the perceptions and expectations of the radiology staff about artificial intelligence (AI), we conducted an online survey among ESR members (January-March 2024). It was designed considering that conducted in 2018, updated according to recent advancements and emerging topics, consisting of seven questions regarding demographics and professional background and 28 AI questions. Of 28,000 members contacted, 572 (2%) completed the survey. AI impact was predominantly expected on breast and oncologic imaging, primarily involving CT, mammography, and MRI, and in the detection of abnormalities in asymptomatic subjects. About half of responders did not foresee an impact of AI on job opportunities. For 273/572 respondents (48%), AI-only reports would not be accepted by patients; and 242/572 respondents (42%) think that the use of AI systems will not change the relationship between the radiological team and the patient. According to 255/572 respondents (45%), radiologists will take responsibility for any AI output that may influence clinical decision-making. Of 572 respondents, 274 (48%) are currently using AI, 153 (27%) are not, and 145 (25%) are planning to do so. In conclusion, ESR members declare familiarity with AI technologies, as well as recognition of their potential benefits and challenges. Compared to the 2018 survey, the perception of AI's impact on job opportunities is in general slightly less optimistic (more positive from AI users/researchers), while the radiologist's responsibility for AI outputs is confirmed. The use of large language models is declared not only limited to research, highlighting the need for education in AI and its regulations. CRITICAL RELEVANCE STATEMENT: This study critically evaluates the current impact of AI on radiology, revealing significant usage patterns and clinical implications, thereby guiding future integration strategies to enhance efficiency and patient care in clinical radiology. KEY POINTS: The survey examines ESR member's views about the impact of AI on radiology practice. AI use is relevant in CT and MRI, with varying impacts on job roles. AI tools enhance clinical efficiency but require radiologist oversight for patient acceptance.
Collapse
Affiliation(s)
- Moreno Zanardo
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Jacob J Visser
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anna Colarieti
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi, Italy
| | - Michail E Klontzas
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Greece
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (ICS-FORTH), Crete, Greece
| | - Daniel Pinto Dos Santos
- Department of Radiology, University Hospital of Frankfurt, Frankfurt, Germany
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| | - Francesco Sardanelli
- Lega Italiana per la Lotta contro i Tumori (LILT) Milano Monza Brianza, Milan, Italy.
| |
Collapse
|
4
|
Deshpande P, Rasin A. Correlation Aware Relevance-Based Semantic Index for Clinical Big Data Repository. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2597-2611. [PMID: 38653911 PMCID: PMC11522240 DOI: 10.1007/s10278-024-01095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024]
Abstract
In this paper, we focus on indexing mechanisms for unstructured clinical big integrated data repository systems. Clinical data is unstructured and heterogeneous, which comes in different files and formats. Accessing data efficiently and effectively are critical challenges. Traditional indexing mechanisms are difficult to apply on unstructured data, especially by identifying correlation information between clinical data elements. In this research work, we developed a correlation-aware relevance-based index that retrieves clinical data by fetching most relevant cases efficiently. In our previous work, we designed a methodology that categorizes medical data based on the semantics of data elements and merges them into an integrated repository. We developed a data integration system for medical data sources that combines heterogeneous medical data and provides access to knowledge-based database repositories to different users. In this research work, we designed an indexing system using semantic tags extracted from clinical data sources and medical ontologies that retrieves relevant data from database repositories and speeds up the process of data retrieval. Our objective is to provide an integrated biomedical database repository that can be used by radiologists as a reference, or for patient care, or by researchers. In this paper, we focus on designing a technique that performs data processing for data integration, learn the semantic properties of data elements, and develop a correlation-aware topic index that facilitates efficient data retrieval. We generated semantic tags by identifying key elements from integrated clinical cases using topic modeling techniques. We investigated a technique that identifies tags for merged categories and provides an index to fetch data from an integrated database repository. We developed a topic coherence matrix that shows how well a topic is supported by a corpus from clinical cases and medical ontologies. We were able to find more relevant results using an annotation index from an integrated database repository, and there was a 61% increase in a recall. We evaluated results with the help of experts and compared them with naive index (index with all terms from the corpus). Our approach improved data retrieval quality by providing most relevant results and reduced data retrieval time as we applied correlation-aware index on an integrated data repository. Topic indexing approach proposed in this research work identifies tags based on a correlation between different data elements, improves data retrieval time, and provides most relevant cases as an outcome of this system.
Collapse
Affiliation(s)
- Priya Deshpande
- Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI, 53233, USA.
| | | |
Collapse
|
5
|
Togher D, Dean G, Moon J, Mayola R, Medina A, Repec J, Meheux M, Mather S, Storey M, Rickaby S, Abubacker MZ, Shelmerdine SC. Evolution of radiology staff perspectives during artificial intelligence (AI) implementation for expedited lung cancer triage. Clin Radiol 2024:S0009-9260(24)00515-4. [PMID: 39443240 DOI: 10.1016/j.crad.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
AIMS To investigate radiology staff perceptions of an AI tool for chest radiography triage, flagging findings suspicious for lung cancer to expedite same-day CT chest examination studies. MATERIALS AND METHODS Surveys were distributed to all radiology staff at three time points: at pre-implementation, one month and also seven months post-implementation of artificial intelligence (AI). Survey questions captured feedback on AI use and patient impact. RESULTS Survey response rates at the three time periods were 23.1% (45/195), 14.9% (29/195) and 27.2% (53/195), respectively. Most respondents initially anticipated AI to be time-saving for the department and patient (50.8%), but this shifted to faster follow-up care for patients after AI implementation (51.7%). From the free text comments, early apprehension about job role changes evolved into frustration regarding technical integration challenges after implementation. This later transitioned to a more balanced view of recognised patient benefits versus minor ongoing logistical issues by the late post-implementation stage. There was majority disagreement across all survey periods that AI could be considered to be used autonomously (53.3-72.5%), yet acceptance grew for personal AI usage if staff were to be patients themselves (from 31.1% pre-implementation to 47.2% post-implementation). CONCLUSION Successful AI integration in radiology demands active staff engagement, addressing concerns to transform initial mixed excitement and resistance into constructive adaptation. Continual feedback is vital for refining AI deployment strategies, ensuring its beneficial and sustainable incorporation into clinical care pathways.
Collapse
Affiliation(s)
- D Togher
- Epsom & St Helier University Hospitals NHS Trust, London, SM5 1AA, UK.
| | - G Dean
- Epsom & St Helier University Hospitals NHS Trust, London, SM5 1AA, UK.
| | - J Moon
- Epsom & St Helier University Hospitals NHS Trust, London, SM5 1AA, UK.
| | - R Mayola
- Epsom & St Helier University Hospitals NHS Trust, London, SM5 1AA, UK.
| | - A Medina
- Epsom & St Helier University Hospitals NHS Trust, London, SM5 1AA, UK.
| | - J Repec
- Epsom & St Helier University Hospitals NHS Trust, London, SM5 1AA, UK.
| | - M Meheux
- Epsom & St Helier University Hospitals NHS Trust, London, SM5 1AA, UK.
| | - S Mather
- Epsom & St Helier University Hospitals NHS Trust, London, SM5 1AA, UK.
| | - M Storey
- St George's University Hospital, Blackshaw Road, London, SW17 0QT, UK.
| | - S Rickaby
- Radiology Digital Transformation Lead, South West London APC, NHS South West London Health and Care Partnership, London, SW19 1RH, UK.
| | - M Z Abubacker
- Epsom & St Helier University Hospitals NHS Trust, London, SM5 1AA, UK.
| | - S C Shelmerdine
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, WC1H 3JH, UK; UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, WC1N 1EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, Bloomsbury, London, WC1N 1EH, UK.
| |
Collapse
|
6
|
Cè M, Ibba S, Cellina M, Tancredi C, Fantesini A, Fazzini D, Fortunati A, Perazzo C, Presta R, Montanari R, Forzenigo L, Carrafiello G, Papa S, Alì M. Radiologists' perceptions on AI integration: An in-depth survey study. Eur J Radiol 2024; 177:111590. [PMID: 38959557 DOI: 10.1016/j.ejrad.2024.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE To assess the perceptions and attitudes of radiologists toward the adoption of artificial intelligence (AI) in clinical practice. METHODS A survey was conducted among members of the SIRM Lombardy. Radiologists' attitudes were assessed comprehensively, covering satisfaction with AI-based tools, propensity for innovation, and optimism for the future. The questionnaire consisted of two sections: the first gathered demographic and professional information using categorical responses, while the second evaluated radiologists' attitudes toward AI through Likert-type responses ranging from 1 to 5 (with 1 representing extremely negative attitudes, 3 indicating a neutral stance, and 5 reflecting extremely positive attitudes). Questionnaire refinement involved an iterative process with expert panels and a pilot phase to enhance consistency and eliminate redundancy. Exploratory data analysis employed descriptive statistics and visual assessment of Likert plots, supported by non-parametric tests for subgroup comparisons for a thorough analysis of specific emerging patterns. RESULTS The survey yielded 232 valid responses. The findings reveal a generally optimistic outlook on AI adoption, especially among young radiologist (<30) and seasoned professionals (>60, p<0.01). However, while 36.2 % (84 out 232) of subjects reported daily use of AI-based tools, only a third considered their contribution decisive (30 %, 25 out of 84). AI literacy varied, with a notable proportion feeling inadequately informed (36 %, 84 out of 232), particularly among younger radiologists (46 %, p < 0.01). Positive attitudes towards the potential of AI to improve detection, characterization of anomalies and reduce workload (positive answers > 80 %) and were consistent across subgroups. Radiologists' opinions were more skeptical about the role of AI in enhancing decision-making processes, including the choice of further investigation, and in personalized medicine in general. Overall, respondents recognized AI's significant impact on the radiology profession, viewing it as an opportunity (61 %, 141 out of 232) rather than a threat (18 %, 42 out of 232), with a majority expressing belief in AI's relevance to future radiologists' career choices (60 %, 139 out of 232). However, there were some concerns, particularly among breast radiologists (20 of 232 responders), regarding the potential impact of AI on the profession. Eighty-four percent of the respondents consider the final assessment by the radiologist still to be essential. CONCLUSION Our results indicate an overall positive attitude towards the adoption of AI in radiology, though this is moderated by concerns regarding training and practical efficacy. Addressing AI literacy gaps, especially among younger radiologists, is essential. Furthermore, proactively adapting to technological advancements is crucial to fully leverage AI's potential benefits. Despite the generally positive outlook among radiologists, there remains significant work to be done to enhance the integration and widespread use of AI tools in clinical practice.
Collapse
Affiliation(s)
- Maurizio Cè
- Postgraduation School of Radiodiagnostic, University of Milan, via Festa del Perdono 7, 20122 Milan, Italy
| | - Simona Ibba
- Unit of Diagnostic Imaging and Stereotactic Radiosurgery, CDI Centro Diagnostico Italiano S.p.A., Via Simone Saint Bon 20, 20147 Milan, Italy.
| | - Michaela Cellina
- Radiology Department, ASST Fatebenefratelli Sacco, Piazza Principessa Clotilde 3, 20121 Milan, Italy.
| | - Chiara Tancredi
- University Suor Orsola Benincasa, corso Vittorio Emanuele 292, 80135 Naples, Italy.
| | | | - Deborah Fazzini
- Unit of Diagnostic Imaging and Stereotactic Radiosurgery, CDI Centro Diagnostico Italiano S.p.A., Via Simone Saint Bon 20, 20147 Milan, Italy.
| | - Alice Fortunati
- Postgraduation School of Radiodiagnostic, University of Milan, via Festa del Perdono 7, 20122 Milan, Italy.
| | - Chiara Perazzo
- Postgraduation School of Radiodiagnostic, University of Milan, via Festa del Perdono 7, 20122 Milan, Italy.
| | - Roberta Presta
- University Suor Orsola Benincasa, corso Vittorio Emanuele 292, 80135 Naples, Italy.
| | - Roberto Montanari
- University Suor Orsola Benincasa, corso Vittorio Emanuele 292, 80135 Naples, Italy; RE:LAB s.r.l., Via Tamburini, 5, 42122 Reggio Emilia, Italy.
| | - Laura Forzenigo
- Radiology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School of Radiodiagnostic, University of Milan, via Festa del Perdono 7, 20122 Milan, Italy; Radiology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
| | - Sergio Papa
- Unit of Diagnostic Imaging and Stereotactic Radiosurgery, CDI Centro Diagnostico Italiano S.p.A., Via Simone Saint Bon 20, 20147 Milan, Italy.
| | - Marco Alì
- Unit of Diagnostic Imaging and Stereotactic Radiosurgery, CDI Centro Diagnostico Italiano S.p.A., Via Simone Saint Bon 20, 20147 Milan, Italy; Bracco Imaging SpA, Via Caduti di Marcinelle, 20134 Milan, Italy.
| |
Collapse
|
7
|
Pahud de Mortanges A, Luo H, Shu SZ, Kamath A, Suter Y, Shelan M, Pöllinger A, Reyes M. Orchestrating explainable artificial intelligence for multimodal and longitudinal data in medical imaging. NPJ Digit Med 2024; 7:195. [PMID: 39039248 PMCID: PMC11263688 DOI: 10.1038/s41746-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Explainable artificial intelligence (XAI) has experienced a vast increase in recognition over the last few years. While the technical developments are manifold, less focus has been placed on the clinical applicability and usability of systems. Moreover, not much attention has been given to XAI systems that can handle multimodal and longitudinal data, which we postulate are important features in many clinical workflows. In this study, we review, from a clinical perspective, the current state of XAI for multimodal and longitudinal datasets and highlight the challenges thereof. Additionally, we propose the XAI orchestrator, an instance that aims to help clinicians with the synopsis of multimodal and longitudinal data, the resulting AI predictions, and the corresponding explainability output. We propose several desirable properties of the XAI orchestrator, such as being adaptive, hierarchical, interactive, and uncertainty-aware.
Collapse
Affiliation(s)
| | - Haozhe Luo
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Shelley Zixin Shu
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Amith Kamath
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Yannick Suter
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mohamed Shelan
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexander Pöllinger
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Mauricio Reyes
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Johansson JV, Engström E. 'Humans think outside the pixels' - Radiologists' perceptions of using artificial intelligence for breast cancer detection in mammography screening in a clinical setting. Health Informatics J 2024; 30:14604582241275020. [PMID: 39155239 DOI: 10.1177/14604582241275020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
OBJECTIVE This study aimed to explore radiologists' views on using an artificial intelligence (AI) tool named ScreenTrustCAD with Philips equipment) as a diagnostic decision support tool in mammography screening during a clinical trial at Capio Sankt Göran Hospital, Sweden. METHODS We conducted semi-structured interviews with seven breast imaging radiologists, evaluated using inductive thematic content analysis. RESULTS We identified three main thematic categories: AI in society, reflecting views on AI's contribution to the healthcare system; AI-human interactions, addressing the radiologists' self-perceptions when using the AI and its potential challenges to their profession; and AI as a tool among others. The radiologists were generally positive towards AI, and they felt comfortable handling its sometimes-ambiguous outputs and erroneous evaluations. While they did not feel that it would undermine their profession, they preferred using it as a complementary reader rather than an independent one. CONCLUSION The results suggested that breast radiology could become a launch pad for AI in healthcare. We recommend that this exploratory work on subjective perceptions be complemented by quantitative assessments to generalize the findings.
Collapse
Affiliation(s)
- Jennifer Viberg Johansson
- Department of Public Health and Caring Sciences, Centre for Research Ethics & Bioethics, Uppsala University, Uppsala, Sweden
| | - Emma Engström
- Institute for Futures Studies, Stockholm, Sweden; Department of Urban Planning and Environment, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
9
|
Allam AH, Eltewacy NK, Alabdallat YJ, Owais TA, Salman S, Ebada MA. Knowledge, attitude, and perception of Arab medical students towards artificial intelligence in medicine and radiology: A multi-national cross-sectional study. Eur Radiol 2024; 34:1-14. [PMID: 38150076 PMCID: PMC11213794 DOI: 10.1007/s00330-023-10509-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/26/2023] [Accepted: 11/02/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVES We aimed to assess undergraduate medical students' knowledge, attitude, and perception regarding artificial intelligence (AI) in medicine. METHODS A multi-national, multi-center cross-sectional study was conducted from March to April 2022, targeting undergraduate medical students in nine Arab countries. The study utilized a web-based questionnaire, with data collection carried out with the help of national leaders and local collaborators. Logistic regression analysis was performed to identify predictors of knowledge, attitude, and perception among the participants. Additionally, cluster analysis was employed to identify shared patterns within their responses. RESULTS Of the 4492 students surveyed, 92.4% had not received formal AI training. Regarding AI and deep learning (DL), 87.1% exhibited a low level of knowledge. Most students (84.9%) believed AI would revolutionize medicine and radiology, with 48.9% agreeing that it could reduce the need for radiologists. Students with high/moderate AI knowledge and training had higher odds of agreeing to endorse AI replacing radiologists, reducing their numbers, and being less likely to consider radiology as a career compared to those with low knowledge/no AI training. Additionally, the majority agreed that AI would aid in the automated detection and diagnosis of pathologies. CONCLUSIONS Arab medical students exhibit a notable deficit in their knowledge and training pertaining to AI. Despite this, they hold a positive perception of AI implementation in medicine and radiology, demonstrating a clear understanding of its significance for the healthcare system and medical curriculum. CLINICAL RELEVANCE STATEMENT This study highlights the need for widespread education and training in artificial intelligence for Arab medical students, indicating its significance for healthcare systems and medical curricula. KEY POINTS • Arab medical students demonstrate a significant knowledge and training gap when it comes to using AI in the fields of medicine and radiology. • Arab medical students recognize the importance of integrating AI into the medical curriculum. Students with a deeper understanding of AI were more likely to agree that all medical students should receive AI education. However, those with previous AI training were less supportive of this idea. • Students with moderate/high AI knowledge and training displayed increased odds of agreeing that AI has the potential to replace radiologists, reduce the demand for their services, and were less inclined to pursue a career in radiology, when compared to students with low knowledge/no AI training.
Collapse
Affiliation(s)
- Ahmed Hafez Allam
- Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt.
- Eltewacy Arab Research Group, Cairo, Egypt.
| | - Nael Kamel Eltewacy
- Eltewacy Arab Research Group, Cairo, Egypt
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmeen Jamal Alabdallat
- Eltewacy Arab Research Group, Cairo, Egypt
- Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Tarek A Owais
- Eltewacy Arab Research Group, Cairo, Egypt
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Saif Salman
- Eltewacy Arab Research Group, Cairo, Egypt
- Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Mahmoud A Ebada
- Eltewacy Arab Research Group, Cairo, Egypt
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
- Egyptian Fellowship of Neurology, Nasr City Hospital for Health Insurance, Nasr City, Cairo, Egypt
| |
Collapse
|
10
|
Trieu PDY, Barron ML, Jiang Z, Tavakoli Taba S, Gandomkar Z, Lewis SJ. Familiarity, confidence and preference of artificial intelligence feedback and prompts by Australian breast cancer screening readers. AUST HEALTH REV 2024; 48:299-311. [PMID: 38692648 DOI: 10.1071/ah23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Objectives This study explored the familiarity, perceptions and confidence of Australian radiology clinicians involved in reading screening mammograms, regarding artificial intelligence (AI) applications in breast cancer detection. Methods Sixty-five radiologists, breast physicians and radiology trainees participated in an online survey that consisted of 23 multiple choice questions asking about their experience and familiarity with AI products. Furthermore, the survey asked about their confidence in using AI outputs and their preference for AI modes applied in a breast screening context. Participants' responses to questions were compared using Pearson's χ 2 test. Bonferroni-adjusted significance tests were used for pairwise comparisons. Results Fifty-five percent of respondents had experience with AI in their workplaces, with automatic density measurement powered by machine learning being the most familiar AI product (69.4%). The top AI outputs with the highest ranks of perceived confidence were 'Displaying suspicious areas on mammograms with the percentage of cancer possibility' (67.8%) and 'Automatic mammogram classification (normal, benign, cancer, uncertain)' (64.6%). Radiology and breast physicians preferred using AI as second-reader mode (75.4% saying 'somewhat happy' to 'extremely happy') over triage (47.7%), pre-screening and first-reader modes (both with 26.2%) (P < 0.001). Conclusion The majority of screen readers expressed increased confidence in utilising AI for highlighting suspicious areas on mammograms and for automatically classifying mammograms. They considered AI as an optimal second-reader mode being the most ideal use in a screening program. The findings provide valuable insights into the familiarities and expectations of radiologists and breast clinicians for the AI products that can enhance the effectiveness of the breast cancer screening programs, benefitting both healthcare professionals and patients alike.
Collapse
Affiliation(s)
- Phuong Dung Yun Trieu
- Discipline of Medical Imaging Sciences, Faculty of Medicine and Health, University of Sydney, D18- Level 7 - Susan Wakil Health Building, Camperdown, NSW 2006, Australia
| | - Melissa L Barron
- Discipline of Medical Imaging Sciences, Faculty of Medicine and Health, University of Sydney, D18- Level 7 - Susan Wakil Health Building, Camperdown, NSW 2006, Australia
| | - Zhengqiang Jiang
- Discipline of Medical Imaging Sciences, Faculty of Medicine and Health, University of Sydney, D18- Level 7 - Susan Wakil Health Building, Camperdown, NSW 2006, Australia
| | - Seyedamir Tavakoli Taba
- Discipline of Medical Imaging Sciences, Faculty of Medicine and Health, University of Sydney, D18- Level 7 - Susan Wakil Health Building, Camperdown, NSW 2006, Australia
| | - Ziba Gandomkar
- Discipline of Medical Imaging Sciences, Faculty of Medicine and Health, University of Sydney, D18- Level 7 - Susan Wakil Health Building, Camperdown, NSW 2006, Australia
| | - Sarah J Lewis
- Discipline of Medical Imaging Sciences, Faculty of Medicine and Health, University of Sydney, D18- Level 7 - Susan Wakil Health Building, Camperdown, NSW 2006, Australia; and School of Health Sciences, Western Sydney University, University Drive, Campbelltown, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
11
|
Hoppe BF, Rueckel J, Dikhtyar Y, Heimer M, Fink N, Sabel BO, Ricke J, Rudolph J, Cyran CC. Implementing Artificial Intelligence for Emergency Radiology Impacts Physicians' Knowledge and Perception: A Prospective Pre- and Post-Analysis. Invest Radiol 2024; 59:404-412. [PMID: 37843828 DOI: 10.1097/rli.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
PURPOSE The aim of this study was to evaluate the impact of implementing an artificial intelligence (AI) solution for emergency radiology into clinical routine on physicians' perception and knowledge. MATERIALS AND METHODS A prospective interventional survey was performed pre-implementation and 3 months post-implementation of an AI algorithm for fracture detection on radiographs in late 2022. Radiologists and traumatologists were asked about their knowledge and perception of AI on a 7-point Likert scale (-3, "strongly disagree"; +3, "strongly agree"). Self-generated identification codes allowed matching the same individuals pre-intervention and post-intervention, and using Wilcoxon signed rank test for paired data. RESULTS A total of 47/71 matched participants completed both surveys (66% follow-up rate) and were eligible for analysis (34 radiologists [72%], 13 traumatologists [28%], 15 women [32%]; mean age, 34.8 ± 7.8 years). Postintervention, there was an increase that AI "reduced missed findings" (1.28 [pre] vs 1.94 [post], P = 0.003) and made readers "safer" (1.21 vs 1.64, P = 0.048), but not "faster" (0.98 vs 1.21, P = 0.261). There was a rising disagreement that AI could "replace the radiological report" (-2.04 vs -2.34, P = 0.038), as well as an increase in self-reported knowledge about "clinical AI," its "chances," and its "risks" (0.40 vs 1.00, 1.21 vs 1.70, and 0.96 vs 1.34; all P 's ≤ 0.028). Radiologists used AI results more frequently than traumatologists ( P < 0.001) and rated benefits higher (all P 's ≤ 0.038), whereas senior physicians were less likely to use AI or endorse its benefits (negative correlation with age, -0.35 to 0.30; all P 's ≤ 0.046). CONCLUSIONS Implementing AI for emergency radiology into clinical routine has an educative aspect and underlines the concept of AI as a "second reader," to support and not replace physicians.
Collapse
Affiliation(s)
- Boj Friedrich Hoppe
- From the Department of Radiology, University Hospital, LMU Munich, Munich, Germany (B.F.J., J.Rueckel, Y.D., M.H., N.F., B.O.S., J.Ricke, J.Rudolph, C.C.C.); and Institute of Neuroradiology, University Hospital, LMU Munich, Munich, Germany (J.R.)
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lastrucci A, Wandael Y, Ricci R, Maccioni G, Giansanti D. The Integration of Deep Learning in Radiotherapy: Exploring Challenges, Opportunities, and Future Directions through an Umbrella Review. Diagnostics (Basel) 2024; 14:939. [PMID: 38732351 PMCID: PMC11083654 DOI: 10.3390/diagnostics14090939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigates, through a narrative review, the transformative impact of deep learning (DL) in the field of radiotherapy, particularly in light of the accelerated developments prompted by the COVID-19 pandemic. The proposed approach was based on an umbrella review following a standard narrative checklist and a qualification process. The selection process identified 19 systematic review studies. Through an analysis of current research, the study highlights the revolutionary potential of DL algorithms in optimizing treatment planning, image analysis, and patient outcome prediction in radiotherapy. It underscores the necessity of further exploration into specific research areas to unlock the full capabilities of DL technology. Moreover, the study emphasizes the intricate interplay between digital radiology and radiotherapy, revealing how advancements in one field can significantly influence the other. This interdependence is crucial for addressing complex challenges and advancing the integration of cutting-edge technologies into clinical practice. Collaborative efforts among researchers, clinicians, and regulatory bodies are deemed essential to effectively navigate the evolving landscape of DL in radiotherapy. By fostering interdisciplinary collaborations and conducting thorough investigations, stakeholders can fully leverage the transformative power of DL to enhance patient care and refine therapeutic strategies. Ultimately, this promises to usher in a new era of personalized and optimized radiotherapy treatment for improved patient outcomes.
Collapse
Affiliation(s)
- Andrea Lastrucci
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (A.L.); (Y.W.); (R.R.)
| | - Yannick Wandael
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (A.L.); (Y.W.); (R.R.)
| | - Renzo Ricci
- Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy; (A.L.); (Y.W.); (R.R.)
| | | | | |
Collapse
|
13
|
Stewart J, Freeman S, Eroglu E, Dumitrascu N, Lu J, Goudie A, Sprivulis P, Akhlaghi H, Tran V, Sanfilippo F, Celenza A, Than M, Fatovich D, Walker K, Dwivedi G. Attitudes towards artificial intelligence in emergency medicine. Emerg Med Australas 2024; 36:252-265. [PMID: 38044755 DOI: 10.1111/1742-6723.14345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE To assess Australian and New Zealand emergency clinicians' attitudes towards the use of artificial intelligence (AI) in emergency medicine. METHODS We undertook a qualitative interview-based study based on grounded theory. Participants were recruited through ED internal mailing lists, the Australasian College for Emergency Medicine Bulletin, and the research teams' personal networks. Interviews were transcribed, coded and themes presented. RESULTS Twenty-five interviews were conducted between July 2021 and May 2022. Thematic saturation was achieved after 22 interviews. Most participants were from either Western Australia (52%) or Victoria (16%) and were consultants (96%). More participants reported feeling optimistic (10/25) than neutral (6/25), pessimistic (2/25) or mixed (7/25) towards the use of AI in the ED. A minority expressed scepticism regarding the feasibility or value of implementing AI into the ED. Multiple potential risks and ethical issues were discussed by participants including skill loss from overreliance on AI, algorithmic bias, patient privacy and concerns over liability. Participants also discussed perceived inadequacies in existing information technology systems. Participants felt that AI technologies would be used as decision support tools and not replace the roles of emergency clinicians. Participants were not concerned about the impact of AI on their job security. Most (17/25) participants thought that AI would impact emergency medicine within the next 10 years. CONCLUSIONS Emergency clinicians interviewed were generally optimistic about the use of AI in emergency medicine, so long as it is used as a decision support tool and they maintain the ability to override its recommendations.
Collapse
Affiliation(s)
- Jonathon Stewart
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Samuel Freeman
- SensiLab, Monash University, Melbourne, Victoria, Australia
- Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Ege Eroglu
- School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Nicole Dumitrascu
- School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Juan Lu
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Department of Computer Science and Software Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Adrian Goudie
- Department of Emergency Medicine, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Peter Sprivulis
- Strategy and Governance Division, Western Australia Department of Health, Perth, Western Australia, Australia
| | - Hamed Akhlaghi
- Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Viet Tran
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Department of Emergency Medicine, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Frank Sanfilippo
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Antonio Celenza
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Emergency Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Martin Than
- Department of Emergency Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Daniel Fatovich
- Emergency Medicine, Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Katie Walker
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Girish Dwivedi
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Al Mohammad B, Aldaradkeh A, Gharaibeh M, Reed W. Assessing radiologists' and radiographers' perceptions on artificial intelligence integration: opportunities and challenges. Br J Radiol 2024; 97:763-769. [PMID: 38273675 PMCID: PMC11027289 DOI: 10.1093/bjr/tqae022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/30/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES The objective of this study was to evaluate radiologists' and radiographers' opinions and perspectives on artificial intelligence (AI) and its integration into the radiology department. Additionally, we investigated the most common challenges and barriers that radiologists and radiographers face when learning about AI. METHODS A nationwide, online descriptive cross-sectional survey was distributed to radiologists and radiographers working in hospitals and medical centres from May 29, 2023 to July 30, 2023. The questionnaire examined the participants' opinions, feelings, and predictions regarding AI and its applications in the radiology department. Descriptive statistics were used to report the participants' demographics and responses. Five-points Likert-scale data were reported using divergent stacked bar graphs to highlight any central tendencies. RESULTS Responses were collected from 258 participants, revealing a positive attitude towards implementing AI. Both radiologists and radiographers predicted breast imaging would be the subspecialty most impacted by the AI revolution. MRI, mammography, and CT were identified as the primary modalities with significant importance in the field of AI application. The major barrier encountered by radiologists and radiographers when learning about AI was the lack of mentorship, guidance, and support from experts. CONCLUSION Participants demonstrated a positive attitude towards learning about AI and implementing it in the radiology practice. However, radiologists and radiographers encounter several barriers when learning about AI, such as the absence of experienced professionals support and direction. ADVANCES IN KNOWLEDGE Radiologists and radiographers reported several barriers to AI learning, with the most significant being the lack of mentorship and guidance from experts, followed by the lack of funding and investment in new technologies.
Collapse
Affiliation(s)
- Badera Al Mohammad
- Department of Allied Medical Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Afnan Aldaradkeh
- Department of Allied Medical Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Monther Gharaibeh
- Department of Special Surgery, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Warren Reed
- Discipline of Medical Imaging Science, Faculty of Medicine and Health, University of Sydney 2006, Sydney, NSW, Australia
| |
Collapse
|
15
|
Lepri G, Oddi F, Gulino RA, Giansanti D. Beyond the Clinic Walls: Examining Radiology Technicians' Experiences in Home-Based Radiography. Healthcare (Basel) 2024; 12:732. [PMID: 38610154 PMCID: PMC11011261 DOI: 10.3390/healthcare12070732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the landscape of diagnostic imaging has undergone a significant transformation with the emergence of home radiology, challenging the traditional paradigm. This shift, bringing diagnostic imaging directly to patients, has gained momentum and has been further accelerated by the global COVID-19 pandemic, highlighting the increasing importance and convenience of decentralized healthcare services. This study aims to offer a nuanced understanding of the attitudes and experiences influencing the integration of in-home radiography into contemporary healthcare practices. The research methodology involves a survey administered through Computer-Aided Web Interviewing (CAWI) tools, enabling real-time engagement with a diverse cohort of medical radiology technicians in the health domain. A second CAWI tool is submitted to experts to assess their feedback on the methodology. The survey explores key themes, including perceived advantages and challenges associated with domiciliary imaging, its impact on patient care, and the technological intricacies specific to conducting radiologic procedures outside the conventional clinical environment. Findings from a sample of 26 medical radiology technicians (drawn from a larger pool of 186 respondents) highlight a spectrum of opinions and constructive feedback. Enthusiasm is evident for the potential of domiciliary imaging to enhance patient convenience and provide a more patient-centric approach to healthcare. Simultaneously, this study suggests areas of intervention to improve the diffusion of home-based radiology. The methodology based on CAWI tools proves instrumental in the efficiency and depth of data collection, as evaluated by 16 experts from diverse professional backgrounds. The dynamic and responsive nature of this approach allows for a more allocated exploration of technicians' opinions, contributing to a comprehensive understanding of the evolving landscape of medical imaging services. Emphasis is placed on the need for national and international initiatives in the field, supported by scientific societies, to further explore the evolving landscape of teleradiology and the integration of artificial intelligence in radiology. This study encourages expansion involving other key figures in this practice, including, naturally, medical radiologists, general practitioners, medical physicists, and other stakeholders.
Collapse
Affiliation(s)
- Graziano Lepri
- Azienda Unità Sanitaria Locale Umbria 1, Via Guerriero Guerra 21, 06127 Perugia, Italy;
| | - Francesco Oddi
- Facoltà di Ingegneria, Università di Tor Vergata, Via del Politecnico, 1, 00133 Rome, Italy; (F.O.); (R.A.G.)
| | - Rosario Alfio Gulino
- Facoltà di Ingegneria, Università di Tor Vergata, Via del Politecnico, 1, 00133 Rome, Italy; (F.O.); (R.A.G.)
| | - Daniele Giansanti
- Centro Nazionale TISP, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
16
|
Boverhof BJ, Redekop WK, Bos D, Starmans MPA, Birch J, Rockall A, Visser JJ. Radiology AI Deployment and Assessment Rubric (RADAR) to bring value-based AI into radiological practice. Insights Imaging 2024; 15:34. [PMID: 38315288 PMCID: PMC10844175 DOI: 10.1186/s13244-023-01599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To provide a comprehensive framework for value assessment of artificial intelligence (AI) in radiology. METHODS This paper presents the RADAR framework, which has been adapted from Fryback and Thornbury's imaging efficacy framework to facilitate the valuation of radiology AI from conception to local implementation. Local efficacy has been newly introduced to underscore the importance of appraising an AI technology within its local environment. Furthermore, the RADAR framework is illustrated through a myriad of study designs that help assess value. RESULTS RADAR presents a seven-level hierarchy, providing radiologists, researchers, and policymakers with a structured approach to the comprehensive assessment of value in radiology AI. RADAR is designed to be dynamic and meet the different valuation needs throughout the AI's lifecycle. Initial phases like technical and diagnostic efficacy (RADAR-1 and RADAR-2) are assessed pre-clinical deployment via in silico clinical trials and cross-sectional studies. Subsequent stages, spanning from diagnostic thinking to patient outcome efficacy (RADAR-3 to RADAR-5), require clinical integration and are explored via randomized controlled trials and cohort studies. Cost-effectiveness efficacy (RADAR-6) takes a societal perspective on financial feasibility, addressed via health-economic evaluations. The final level, RADAR-7, determines how prior valuations translate locally, evaluated through budget impact analysis, multi-criteria decision analyses, and prospective monitoring. CONCLUSION The RADAR framework offers a comprehensive framework for valuing radiology AI. Its layered, hierarchical structure, combined with a focus on local relevance, aligns RADAR seamlessly with the principles of value-based radiology. CRITICAL RELEVANCE STATEMENT The RADAR framework advances artificial intelligence in radiology by delineating a much-needed framework for comprehensive valuation. KEYPOINTS • Radiology artificial intelligence lacks a comprehensive approach to value assessment. • The RADAR framework provides a dynamic, hierarchical method for thorough valuation of radiology AI. • RADAR advances clinical radiology by bridging the artificial intelligence implementation gap.
Collapse
Affiliation(s)
- Bart-Jan Boverhof
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - W Ken Redekop
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Martijn P A Starmans
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Andrea Rockall
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Jacob J Visser
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
van Kooten MJ, Tan CO, Hofmeijer EIS, van Ooijen PMA, Noordzij W, Lamers MJ, Kwee TC, Vliegenthart R, Yakar D. A framework to integrate artificial intelligence training into radiology residency programs: preparing the future radiologist. Insights Imaging 2024; 15:15. [PMID: 38228800 DOI: 10.1186/s13244-023-01595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVES To present a framework to develop and implement a fast-track artificial intelligence (AI) curriculum into an existing radiology residency program, with the potential to prepare a new generation of AI conscious radiologists. METHODS The AI-curriculum framework comprises five sequential steps: (1) forming a team of AI experts, (2) assessing the residents' knowledge level and needs, (3) defining learning objectives, (4) matching these objectives with effective teaching strategies, and finally (5) implementing and evaluating the pilot. Following these steps, a multidisciplinary team of AI engineers, radiologists, and radiology residents designed a 3-day program, including didactic lectures, hands-on laboratory sessions, and group discussions with experts to enhance AI understanding. Pre- and post-curriculum surveys were conducted to assess participants' expectations and progress and were analyzed using a Wilcoxon rank-sum test. RESULTS There was 100% response rate to the pre- and post-curriculum survey (17 and 12 respondents, respectively). Participants' confidence in their knowledge and understanding of AI in radiology significantly increased after completing the program (pre-curriculum means 3.25 ± 1.48 (SD), post-curriculum means 6.5 ± 0.90 (SD), p-value = 0.002). A total of 75% confirmed that the course addressed topics that were applicable to their work in radiology. Lectures on the fundamentals of AI and group discussions with experts were deemed most useful. CONCLUSION Designing an AI curriculum for radiology residents and implementing it into a radiology residency program is feasible using the framework presented. The 3-day AI curriculum effectively increased participants' perception of knowledge and skills about AI in radiology and can serve as a starting point for further customization. CRITICAL RELEVANCE STATEMENT The framework provides guidance for developing and implementing an AI curriculum in radiology residency programs, educating residents on the application of AI in radiology and ultimately contributing to future high-quality, safe, and effective patient care. KEY POINTS • AI education is necessary to prepare a new generation of AI-conscious radiologists. • The AI curriculum increased participants' perception of AI knowledge and skills in radiology. • This five-step framework can assist integrating AI education into radiology residency programs.
Collapse
Affiliation(s)
- Maria Jorina van Kooten
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Can Ozan Tan
- Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Elfi Inez Saïda Hofmeijer
- Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Peter Martinus Adrianus van Ooijen
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
- Machine Learning Lab, Data Science Center in Health (DASH), University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Maria Jolanda Lamers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Thomas Christian Kwee
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
- Machine Learning Lab, Data Science Center in Health (DASH), University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Derya Yakar
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
18
|
Sultan S, Acharya Y, Zayed O, Elzomour H, Parodi JC, Soliman O, Hynes N. Is the Cardiovascular Specialist Ready For the Fifth Revolution? The Role of Artificial Intelligence, Machine Learning, Big Data Analysis, Intelligent Swarming, and Knowledge-Centered Service on the Future of Global Cardiovascular Healthcare Delivery. J Endovasc Ther 2023; 30:877-884. [PMID: 35695277 PMCID: PMC10637093 DOI: 10.1177/15266028221102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sherif Sultan
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, National University of Ireland, Galway, Galway, Ireland
- Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Royal College of Surgeons in Ireland and National University of Ireland, Galway Affiliated Hospital, Galway, Ireland
- CORRIB-CÚRAM-Vascular Group, National University of Ireland, Galway, Galway, Ireland
| | - Yogesh Acharya
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, National University of Ireland, Galway, Galway, Ireland
- Department of Vascular Surgery and Endovascular Surgery, Galway Clinic, Royal College of Surgeons in Ireland and National University of Ireland, Galway Affiliated Hospital, Galway, Ireland
| | - Omnia Zayed
- Data Science Institute, National University of Ireland, Galway, Galway, Ireland
| | - Hesham Elzomour
- Discipline of Cardiology, CORRIB-CÚRAM-Vascular Group, National University of Ireland, Galway, Galway, Ireland
| | - Juan Carlos Parodi
- Department of Vascular Surgery and Biomedical Engineering Department, Alma Mater, University of Buenos Aires, and Trinidad Hospital, Buenos Aires, Argentina
| | - Osama Soliman
- Discipline of Cardiology, CORRIB-CÚRAM-Vascular Group, National University of Ireland, Galway, Galway, Ireland
| | - Niamh Hynes
- CORRIB-CÚRAM-Vascular Group, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
19
|
Li LT, Haley LC, Boyd AK, Bernstam EV. Technical/Algorithm, Stakeholder, and Society (TASS) barriers to the application of artificial intelligence in medicine: A systematic review. J Biomed Inform 2023; 147:104531. [PMID: 37884177 DOI: 10.1016/j.jbi.2023.104531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION The use of artificial intelligence (AI), particularly machine learning and predictive analytics, has shown great promise in health care. Despite its strong potential, there has been limited use in health care settings. In this systematic review, we aim to determine the main barriers to successful implementation of AI in healthcare and discuss potential ways to overcome these challenges. METHODS We conducted a literature search in PubMed (1/1/2001-1/1/2023). The search was restricted to publications in the English language, and human study subjects. We excluded articles that did not discuss AI, machine learning, predictive analytics, and barriers to the use of these techniques in health care. Using grounded theory methodology, we abstracted concepts to identify major barriers to AI use in medicine. RESULTS We identified a total of 2,382 articles. After reviewing the 306 included papers, we developed 19 major themes, which we categorized into three levels: the Technical/Algorithm, Stakeholder, and Social levels (TASS). These themes included: Lack of Explainability, Need for Validation Protocols, Need for Standards for Interoperability, Need for Reporting Guidelines, Need for Standardization of Performance Metrics, Lack of Plan for Updating Algorithm, Job Loss, Skills Loss, Workflow Challenges, Loss of Patient Autonomy and Consent, Disturbing the Patient-Clinician Relationship, Lack of Trust in AI, Logistical Challenges, Lack of strategic plan, Lack of Cost-effectiveness Analysis and Proof of Efficacy, Privacy, Liability, Bias and Social Justice, and Education. CONCLUSION We identified 19 major barriers to the use of AI in healthcare and categorized them into three levels: the Technical/Algorithm, Stakeholder, and Social levels (TASS). Future studies should expand on barriers in pediatric care and focus on developing clearly defined protocols to overcome these barriers.
Collapse
Affiliation(s)
- Linda T Li
- Department of Surgery, Division of Pediatric Surgery, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, United States; McWilliams School of Biomedical Informatics at UT Health Houston, 7000 Fannin St, Suite 600, Houston, TX 77030, United States.
| | - Lauren C Haley
- McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, United States.
| | - Alexandra K Boyd
- McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, United States.
| | - Elmer V Bernstam
- McWilliams School of Biomedical Informatics at UT Health Houston, 7000 Fannin St, Suite 600, Houston, TX 77030, United States; McGovern Medical School at the University of Texas Health Science Center at Houston, 6431 Fannin St, Houston, TX 77030, United States.
| |
Collapse
|
20
|
Chen Y, Wu Z, Wang P, Xie L, Yan M, Jiang M, Yang Z, Zheng J, Zhang J, Zhu J. Radiology Residents' Perceptions of Artificial Intelligence: Nationwide Cross-Sectional Survey Study. J Med Internet Res 2023; 25:e48249. [PMID: 37856181 PMCID: PMC10623237 DOI: 10.2196/48249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Artificial intelligence (AI) is transforming various fields, with health care, especially diagnostic specialties such as radiology, being a key but controversial battleground. However, there is limited research systematically examining the response of "human intelligence" to AI. OBJECTIVE This study aims to comprehend radiologists' perceptions regarding AI, including their views on its potential to replace them, its usefulness, and their willingness to accept it. We examine the influence of various factors, encompassing demographic characteristics, working status, psychosocial aspects, personal experience, and contextual factors. METHODS Between December 1, 2020, and April 30, 2021, a cross-sectional survey was completed by 3666 radiology residents in China. We used multivariable logistic regression models to examine factors and associations, reporting odds ratios (ORs) and 95% CIs. RESULTS In summary, radiology residents generally hold a positive attitude toward AI, with 29.90% (1096/3666) agreeing that AI may reduce the demand for radiologists, 72.80% (2669/3666) believing AI improves disease diagnosis, and 78.18% (2866/3666) feeling that radiologists should embrace AI. Several associated factors, including age, gender, education, region, eye strain, working hours, time spent on medical images, resilience, burnout, AI experience, and perceptions of residency support and stress, significantly influence AI attitudes. For instance, burnout symptoms were associated with greater concerns about AI replacement (OR 1.89; P<.001), less favorable views on AI usefulness (OR 0.77; P=.005), and reduced willingness to use AI (OR 0.71; P<.001). Moreover, after adjusting for all other factors, perceived AI replacement (OR 0.81; P<.001) and AI usefulness (OR 5.97; P<.001) were shown to significantly impact the intention to use AI. CONCLUSIONS This study profiles radiology residents who are accepting of AI. Our comprehensive findings provide insights for a multidimensional approach to help physicians adapt to AI. Targeted policies, such as digital health care initiatives and medical education, can be developed accordingly.
Collapse
Affiliation(s)
- Yanhua Chen
- Vanke School of Public Health, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Ziye Wu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Peicheng Wang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Linbo Xie
- Vanke School of Public Health, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Mengsha Yan
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Maoqing Jiang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Jingfeng Zhang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Jiming Zhu
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Sahin E. Are medical oncologists ready for the artificial intelligence revolution? Evaluation of the opinions, knowledge, and experiences of medical oncologists about artificial intelligence technologies. Med Oncol 2023; 40:327. [PMID: 37812310 DOI: 10.1007/s12032-023-02200-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
The use of artificial intelligence technologies (AIT) in medicine is increasing worldwide. In this study, it was aimed to evaluate the experiences, opinions, and future expectations of medical oncologists on artificial intelligence (AI). After the reliability and validity analyses were carried out by a pilot study, the main online questionnaire was sent to the members of the "Turkish Society of Medical Oncology" mail group by an invitation e-mail. The anonymized responses of the participants were analyzed. The median age of the 156 participants was 36 (34-43) years and half (51%) were male. Most (45%) were fellows. Forty-six percent were working in university hospitals, 56% were visiting 20-40 patients a day. Medical oncologists' view of AIT was mostly positive (78%). However, some (especially women) had doubts about the reliability of AI (44%) and the establishment of its ethical/legal basis (49%). Sixty-five percent of the participants had no/superficial knowledge about AI. More than half (55%) had never used AI-based applications in their academic or clinical work. However, unlike now, 80% of the participants believed that they would use AIT frequently in their practice in the future and it would be beneficial. The most anticipated (81%) benefit was real-time information processing and real-time access to big data. Sixty-two percent believed that information about AI should be in the education curriculum. The vast majority of respondents (79%) thought that AI would not completely replace medical oncologists in the future. Some differences were found in the perception and experience of oncologists according to age, gender, title, and the number of patients examined per day. About AI, the general opinion of medical oncologists was positive, but their level of knowledge and use was low. However, they thought they would use it frequently in future and needed training.
Collapse
Affiliation(s)
- Elif Sahin
- Department of Medical Oncology, Kocaeli City Hospital, Tavsantepe mah., 41000, Izmit, Kocaeli, Turkey.
| |
Collapse
|
22
|
Eltawil FA, Atalla M, Boulos E, Amirabadi A, Tyrrell PN. Analyzing Barriers and Enablers for the Acceptance of Artificial Intelligence Innovations into Radiology Practice: A Scoping Review. Tomography 2023; 9:1443-1455. [PMID: 37624108 PMCID: PMC10459931 DOI: 10.3390/tomography9040115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVES This scoping review was conducted to determine the barriers and enablers associated with the acceptance of artificial intelligence/machine learning (AI/ML)-enabled innovations into radiology practice from a physician's perspective. METHODS A systematic search was performed using Ovid Medline and Embase. Keywords were used to generate refined queries with the inclusion of computer-aided diagnosis, artificial intelligence, and barriers and enablers. Three reviewers assessed the articles, with a fourth reviewer used for disagreements. The risk of bias was mitigated by including both quantitative and qualitative studies. RESULTS An electronic search from January 2000 to 2023 identified 513 studies. Twelve articles were found to fulfill the inclusion criteria: qualitative studies (n = 4), survey studies (n = 7), and randomized controlled trials (RCT) (n = 1). Among the most common barriers to AI implementation into radiology practice were radiologists' lack of acceptance and trust in AI innovations; a lack of awareness, knowledge, and familiarity with the technology; and perceived threat to the professional autonomy of radiologists. The most important identified AI implementation enablers were high expectations of AI's potential added value; the potential to decrease errors in diagnosis; the potential to increase efficiency when reaching a diagnosis; and the potential to improve the quality of patient care. CONCLUSIONS This scoping review found that few studies have been designed specifically to identify barriers and enablers to the acceptance of AI in radiology practice. The majority of studies have assessed the perception of AI replacing radiologists, rather than other barriers or enablers in the adoption of AI. To comprehensively evaluate the potential advantages and disadvantages of integrating AI innovations into radiology practice, gathering more robust research evidence on stakeholder perspectives and attitudes is essential.
Collapse
Affiliation(s)
- Fatma A. Eltawil
- Department of Medical Imaging, University of Toronto, Toronto, ON M5S 1A1, Canada; (F.A.E.); (M.A.); (E.B.)
| | - Michael Atalla
- Department of Medical Imaging, University of Toronto, Toronto, ON M5S 1A1, Canada; (F.A.E.); (M.A.); (E.B.)
| | - Emily Boulos
- Department of Medical Imaging, University of Toronto, Toronto, ON M5S 1A1, Canada; (F.A.E.); (M.A.); (E.B.)
| | - Afsaneh Amirabadi
- Diagnostic Imaging Department, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada;
| | - Pascal N. Tyrrell
- Department of Medical Imaging, University of Toronto, Toronto, ON M5S 1A1, Canada; (F.A.E.); (M.A.); (E.B.)
- Department of Statistical Sciences, University of Toronto, Toronto, ON M5G 1Z5, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
23
|
Salastekar NV, Maxfield C, Hanna TN, Krupinski EA, Heitkamp D, Grimm LJ. Artificial Intelligence/Machine Learning Education in Radiology: Multi-institutional Survey of Radiology Residents in the United States. Acad Radiol 2023; 30:1481-1487. [PMID: 36710101 DOI: 10.1016/j.acra.2023.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/31/2023]
Abstract
RATIONALE AND OBJECTIVES To evaluate radiology residents' perspectives regarding inclusion of artificial intelligence/ machine learning (AI/ML) education in the residency curriculum. MATERIALS AND METHODS An online anonymous survey was sent to 759 residents at 21 US radiology residency programs. Resident demographics, sub-specialty interests, educational background and research experiences, as well as the awareness, availability, and usefulness of various resources for AI/ML education were collected. RESULTS The survey response rate was 27% (209/759). A total of 74% of respondents were male, 80% were training at large university programs, and only a minority (<20) had formal education or research experience in AI/ML. All four years of training were represented (range: 20%-38%). The majority of the residents agreed or strongly agreed (83%) that AI/ML education should be a part of the radiology residency curriculum and that such education should equip them with the knowledge to troubleshoot an AI tool in practice / determine whether a tool is working as intended (82%). Among the residency programs that offer AI/ML education, the most common resources were lecture series (43%), national informatics courses (28%), and in-house/institutional courses (26%). About 24% of the residents reported no AI/ML educational offerings in their residency curriculum. Hands on AI/ML laboratory (67%) and lecture series (61%) were reported as the most beneficial or effective. The majority of the residents preferred AI/ML education offered as a continuous course spanning the radiology residency (R1 to R4) (76%), followed by mini fellowship during R4 (32%) and as a course during PGY1 (21%). CONCLUSION Residents largely favor the inclusion of formal AI/ML education in the radiology residency curriculum, prefer hands-on learning and lectures as learning tools, and prefer a continuous AI/ML course spanning R1-R4.
Collapse
Affiliation(s)
- Ninad V Salastekar
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322.
| | - Charles Maxfield
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Tarek N Hanna
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322
| | - Elizabeth A Krupinski
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322
| | | | - Lars J Grimm
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
24
|
Mangone M, Diko A, Giuliani L, Agostini F, Paoloni M, Bernetti A, Santilli G, Conti M, Savina A, Iudicelli G, Ottonello C, Santilli V. A Machine Learning Approach for Knee Injury Detection from Magnetic Resonance Imaging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6059. [PMID: 37372646 DOI: 10.3390/ijerph20126059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
The knee is an essential part of our body, and identifying its injuries is crucial since it can significantly affect quality of life. To date, the preferred way of evaluating knee injuries is through magnetic resonance imaging (MRI), which is an effective imaging technique that accurately identifies injuries. The issue with this method is that the high amount of detail that comes with MRIs is challenging to interpret and time consuming for radiologists to analyze. The issue becomes even more concerning when radiologists are required to analyze a significant number of MRIs in a short period. For this purpose, automated tools may become helpful to radiologists assisting them in the evaluation of these images. Machine learning methods, in being able to extract meaningful information from data, such as images or any other type of data, are promising for modeling the complex patterns of knee MRI and relating it to its interpretation. In this study, using a real-life imaging protocol, a machine-learning model based on convolutional neural networks used for detecting medial meniscus tears, bone marrow edema, and general abnormalities on knee MRI exams is presented. Furthermore, the model's effectiveness in terms of accuracy, sensitivity, and specificity is evaluated. Based on this evaluation protocol, the explored models reach a maximum accuracy of 83.7%, a maximum sensitivity of 82.2%, and a maximum specificity of 87.99% for meniscus tears. For bone marrow edema, a maximum accuracy of 81.3%, a maximum sensitivity of 93.3%, and a maximum specificity of 78.6% is reached. Finally, for general abnormalities, the explored models reach 83.7%, 90.0% and 84.2% of maximum accuracy, sensitivity and specificity, respectively.
Collapse
Affiliation(s)
- Massimiliano Mangone
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy
| | - Anxhelo Diko
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy
- Department of Computer Science Sapienza, University of Rome, 00198 Rome, Italy
| | - Luca Giuliani
- San Salvatore Hospital, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Vetoio Stree, 67100 L'Aquila, Italy
| | - Francesco Agostini
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy
| | - Marco Paoloni
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy
| | - Andrea Bernetti
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy
| | - Gabriele Santilli
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy
| | - Marco Conti
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy
| | - Alessio Savina
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy
| | - Giovanni Iudicelli
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy
| | - Carlo Ottonello
- Fisiocard Medical Centre, Via Francesco Tovaglieri 17, 00155 Rome, Italy
| | - Valter Santilli
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
25
|
Edzie EKM, Dzefi-Tettey K, Asemah AR, Brakohiapa EK, Asiamah S, Quarshie F, Amankwa AT, Raj A, Nimo O, Boadi E, Kpobi JM, Edzie RA, Osei B, Turkson V, Kusodzi H. Perspectives of radiologists in Ghana about the emerging role of artificial intelligence in radiology. Heliyon 2023; 9:e15558. [PMID: 37153404 PMCID: PMC10160753 DOI: 10.1016/j.heliyon.2023.e15558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Background The integration of Artificial Intelligence (AI)-based technologies in medicine is advancing rapidly especially in the field of radiology. This however, is at a slow pace in Africa, hence, this study to evaluate the perspectives of Ghanaian radiologists. Methods Data for this cross-sectional prospective study was collected between September and November 2021 through an online survey and entered into SPSS for analysis. A Mann-Whitney U test assisted in checking for possible gender differences in the mean Likert scale responses on the radiologists' perspectives about AI in radiology. Statistical significance was set at P ≤ 0.05. Results The study comprised 77 radiologists, with more males (71.4%). 97.4% were aware of the concept of AI, with their initial exposure via conferences (42.9%). The majority of the respondents had average awareness (36.4%) and below average expertise (44.2%) in radiological AI usage. Most of the participants (54.5%) stated, they do not use AI in their practices. The respondents disagreed that AI will ultimately replace radiologists in the near future (average Likert score = 3.49, SD = 1.096) and that AI should be an integral part of the training of radiologists (average Likert score = 1.91, SD = 0.830). Conclusion Although the radiologists had positive opinions about the capabilities of AI, they exhibited an average awareness of and below average expertise in the usage of AI applications in radiology. They agreed on the potential life changing impact of AI and were of the view that AI will not replace radiologists but serve as a complement. There was inadequate radiological AI infrastructure in Ghana.
Collapse
Affiliation(s)
- Emmanuel Kobina Mesi Edzie
- Department of Medical Imaging, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Corresponding author.
| | - Klenam Dzefi-Tettey
- Department of Radiology, Korle Bu Teaching Hospital, 1 Guggisberg Avenue, Accra, Ghana
| | - Abdul Raman Asemah
- Department of Medical Imaging, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | - Samuel Asiamah
- Department of Radiology, Korle Bu Teaching Hospital, 1 Guggisberg Avenue, Accra, Ghana
| | - Frank Quarshie
- African Institute for Mathematical Sciences (AIMS), Summerhill Estate, East Legon Hills, Santoe, Accra, Ghana
| | - Adu Tutu Amankwa
- Department of Radiology, School of Medical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Amrit Raj
- Department of Pediatrics, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Obed Nimo
- Department of Imaging Technology and Sonography, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Evans Boadi
- Department of Radiology, Korle Bu Teaching Hospital, 1 Guggisberg Avenue, Accra, Ghana
| | - Joshua Mensah Kpobi
- Department of Radiology, Korle Bu Teaching Hospital, 1 Guggisberg Avenue, Accra, Ghana
| | - Richard Ato Edzie
- Department of Medical Imaging, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bernard Osei
- African Institute for Mathematical Sciences (AIMS), Summerhill Estate, East Legon Hills, Santoe, Accra, Ghana
| | - Veronica Turkson
- Department of Medical Imaging, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Henry Kusodzi
- Department of Medical Imaging, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
26
|
Högberg C, Larsson S, Lång K. Anticipating artificial intelligence in mammography screening: views of Swedish breast radiologists. BMJ Health Care Inform 2023; 30:e100712. [PMID: 37217249 PMCID: PMC10230899 DOI: 10.1136/bmjhci-2022-100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
OBJECTIVES Artificial intelligence (AI) is increasingly tested and integrated into breast cancer screening. Still, there are unresolved issues regarding its possible ethical, social and legal impacts. Furthermore, the perspectives of different actors are lacking. This study investigates the views of breast radiologists on AI-supported mammography screening, with a focus on attitudes, perceived benefits and risks, accountability of AI use, and potential impact on the profession. METHODS We conducted an online survey of Swedish breast radiologists. As early adopter of breast cancer screening, and digital technologies, Sweden is a particularly interesting case to study. The survey had different themes, including: attitudes and responsibilities pertaining to AI, and AI's impact on the profession. Responses were analysed using descriptive statistics and correlation analyses. Free texts and comments were analysed using an inductive approach. RESULTS Overall, respondents (47/105, response rate 44.8%) were highly experienced in breast imaging and had a mixed knowledge of AI. A majority (n=38, 80.8%) were positive/somewhat positive towards integrating AI in mammography screening. Still, many considered there to be potential risks to a high/somewhat high degree (n=16, 34.1%) or were uncertain (n=16, 34.0%). Several important uncertainties were identified, such as defining liable actor(s) when AI is integrated into medical decision-making. CONCLUSIONS Swedish breast radiologists are largely positive towards integrating AI in mammography screening, but there are significant uncertainties that need to be addressed, especially regarding risks and responsibilities. The results stress the importance of understanding actor-specific and context-specific challenges to responsible implementation of AI in healthcare.
Collapse
Affiliation(s)
- Charlotte Högberg
- Department of Technology and Society, Lund University Faculty of Engineering, Lund, Sweden
| | - Stefan Larsson
- Department of Technology and Society, Lund University Faculty of Engineering, Lund, Sweden
| | - Kristina Lång
- Department of Translational Medicine, Diagnostic Radiology, Lund University Faculty of Medicine, Lund, Sweden
- Unilabs Mammography Unit, Skåne University Hospital Lund, Malmö, Sweden
| |
Collapse
|
27
|
Choi H, Sunwoo L, Cho SJ, Baik SH, Bae YJ, Choi BS, Jung C, Kim JH. A Nationwide Web-Based Survey of Neuroradiologists' Perceptions of Artificial Intelligence Software for Neuro-Applications in Korea. Korean J Radiol 2023; 24:454-464. [PMID: 37133213 PMCID: PMC10157324 DOI: 10.3348/kjr.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVE We aimed to investigate current expectations and clinical adoption of artificial intelligence (AI) software among neuroradiologists in Korea. MATERIALS AND METHODS In April 2022, a 30-item online survey was conducted by neuroradiologists from the Korean Society of Neuroradiology (KSNR) to assess current user experiences, perceptions, attitudes, and future expectations regarding AI for neuro-applications. Respondents with experience in AI software were further investigated in terms of the number and type of software used, period of use, clinical usefulness, and future scope. Results were compared between respondents with and without experience with AI software through multivariable logistic regression and mediation analyses. RESULTS The survey was completed by 73 respondents, accounting for 21.9% (73/334) of the KSNR members; 72.6% (53/73) were familiar with AI and 58.9% (43/73) had used AI software, with approximately 86% (37/43) using 1-3 AI software programs and 51.2% (22/43) having up to one year of experience with AI software. Among AI software types, brain volumetry software was the most common (62.8% [27/43]). Although 52.1% (38/73) assumed that AI is currently useful in practice, 86.3% (63/73) expected it to be useful for clinical practice within 10 years. The main expected benefits were reducing the time spent on repetitive tasks (91.8% [67/73]) and improving reading accuracy and reducing errors (72.6% [53/73]). Those who experienced AI software were more familiar with AI (adjusted odds ratio, 7.1 [95% confidence interval, 1.81-27.81]; P = 0.005). More than half of the respondents with AI software experience (55.8% [24/43]) agreed that AI should be included in training curriculums, while almost all (95.3% [41/43]) believed that radiologists should coordinate to improve its performance. CONCLUSION A majority of respondents experienced AI software and showed a proactive attitude toward adopting AI in clinical practice, suggesting that AI should be incorporated into training and active participation in AI development should be encouraged.
Collapse
Affiliation(s)
- Hyunsu Choi
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
- Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Se Jin Cho
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sung Hyun Baik
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yun Jung Bae
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byung Se Choi
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheolkyu Jung
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
28
|
Alsultan K. Awareness of Artificial Intelligence in Medical Imaging Among Radiologists and Radiologic Technologists. Cureus 2023; 15:e38325. [PMID: 37261164 PMCID: PMC10228162 DOI: 10.7759/cureus.38325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Current technological developments in medical imaging are primarily focused on increasing the integration of artificial intelligence (AI) into all medical imaging modalities. They are already considered capable of handling tasks such as image reconstruction, processing (denoising, segmentation), analysis, and predictive modeling. The purpose of this study is to assess the awareness (knowledge, attitudes, and practices) of radiologists and radiologic technologists regarding AI in medical imaging. MATERIALS AND METHODS This cross-sectional, qualitative study focuses on radiologists and radiologic technologists in Saudi Arabia, Sudan, and Yemen. A self-administered questionnaire based on published studies was used to collect primary data. Version 25.0 of IBM SPSS Statistics (IBM Corp., Armonk, NY) was used for the statistical analysis. The demographics were summarized as frequency and percentage. Independent samples t-tests and ANOVA tests were used to evaluate and compare the degree of AI awareness among the study groups. RESULTS A total of 210 individuals completed the survey. According to demographic information, there were 134 (63.8%) radiologic technologists and 76 radiologists (36.2%). Of the participants, 131 (62%) were male, while 79 (37.6%) were female. A total of 130 (61.9%) of the targeted respondents had a positive attitude, 105 (50%) had appropriate practice, and 122 (58.1%) of them were informed (knowledgeable) about AI in medical imaging. There was a significant difference in knowledge awareness between radiologists and radiologic technologists (p-value: <0.05). Radiologists were more knowledgeable than radiologic technologists, and females were more knowledgeable than males (p-value: 0.049). For attitude awareness, there were no significant differences regarding specialization, gender, age, academic qualification, and experience (p-value > 0.05). Regarding practice awareness, it turned out that females are more knowledgeable than males (p-value: 0.007). Additionally, it was discovered that significant differences indicated that bachelor's degree holders have a higher level of practice awareness than diploma holders (p-value: <0.05). CONCLUSION Significant differences between the respondent's knowledge awareness regarding specialization, gender, and experience are linked with relatively sufficient AI-basic knowledge and positive attitude awareness among radiologists and radiologic technologists. Only half of the study participants had appropriate practical awareness; therefore, additional training could enhance practical awareness.
Collapse
Affiliation(s)
- Kamal Alsultan
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Medina, SAU
| |
Collapse
|
29
|
Hashmi OU, Chan N, de Vries CF, Gangi A, Jehanli L, Lip G. Artificial intelligence in radiology: trainees want more. Clin Radiol 2023; 78:e336-e341. [PMID: 36746724 DOI: 10.1016/j.crad.2022.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
AIM To understand the attitudes of UK radiology trainees towards artificial intelligence (AI) in Radiology, in particular, assessing the demand for AI education. MATERIALS AND METHODS A survey, which ran over a period of 2 months, was created using the Google Forms platform and distributed via email to all UK training programmes. RESULTS The survey was completed by 149 trainee radiologists with at least one response from all UK training programmes. Of the responses, 83.7% were interested in AI use in radiology but 71.4% had no experience of working with AI and 79.9% would like to be involved in AI-based projects. Almost all (98.7%) felt that AI should be taught during their training, yet only one respondent stated that their training programme had implemented AI teaching. Respondents indicated that basic understanding, implementation, and critical appraisal of AI software should be prioritized in teaching. Of the trainees, 74.2% agreed that AI would enhance the job of diagnostic radiologists over the next 20 years. The main concerns raised were information technology/implementation and ethical/regulatory issues. CONCLUSION Despite the current limited availability of AI-based activities and teaching within UK training programmes, UK trainees' attitudes towards AI are mostly positive with many showing interest in being involved with AI-based projects, activities, and teaching.
Collapse
Affiliation(s)
- O-U Hashmi
- East of England Imaging Academy, The Cotman Centre, Norfolk and Norwich University Hospital, Norwich, NR4 7UB, UK.
| | - N Chan
- Department of Interventional Neuroradiology, The Royal London Hospital, Whitechapel Road, London, UK
| | - C F de Vries
- Aberdeen Centre for Health Data Science, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - A Gangi
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - L Jehanli
- North West School of Radiology, Manchester, UK
| | - G Lip
- National Health Service Grampian (NHSG), Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
30
|
Wagner G, Raymond L, Paré G. Understanding Prospective Physicians' Intention to Use Artificial Intelligence in Their Future Medical Practice: Configurational Analysis. JMIR MEDICAL EDUCATION 2023; 9:e45631. [PMID: 36947121 PMCID: PMC10131981 DOI: 10.2196/45631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Prospective physicians are expected to find artificial intelligence (AI) to be a key technology in their future practice. This transformative change has caught the attention of scientists, educators, and policy makers alike, with substantive efforts dedicated to the selection and delivery of AI topics and competencies in the medical curriculum. Less is known about the behavioral perspective or the necessary and sufficient preconditions for medical students' intention to use AI in the first place. OBJECTIVE Our study focused on medical students' knowledge, experience, attitude, and beliefs related to AI and aimed to understand whether they are necessary conditions and form sufficient configurations of conditions associated with behavioral intentions to use AI in their future medical practice. METHODS We administered a 2-staged questionnaire operationalizing the variables of interest (ie, knowledge, experience, attitude, and beliefs related to AI, as well as intention to use AI) and recorded 184 responses at t0 (February 2020, before the COVID-19 pandemic) and 138 responses at t1 (January 2021, during the COVID-19 pandemic). Following established guidelines, we applied necessary condition analysis and fuzzy-set qualitative comparative analysis to analyze the data. RESULTS Findings from the fuzzy-set qualitative comparative analysis show that the intention to use AI is only observed when students have a strong belief in the role of AI (individually necessary condition); certain AI profiles, that is, combinations of knowledge and experience, attitudes and beliefs, and academic level and gender, are always associated with high intentions to use AI (equifinal and sufficient configurations); and profiles associated with nonhigh intentions cannot be inferred from profiles associated with high intentions (causal asymmetry). CONCLUSIONS Our work contributes to prior knowledge by showing that a strong belief in the role of AI in the future of medical professions is a necessary condition for behavioral intentions to use AI. Moreover, we suggest that the preparation of medical students should go beyond teaching AI competencies and that educators need to account for the different AI profiles associated with high or nonhigh intentions to adopt AI.
Collapse
Affiliation(s)
- Gerit Wagner
- Faculty Information Systems and Applied Computer Sciences, University of Bamberg, Bamberg, Germany
| | - Louis Raymond
- Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Guy Paré
- Department of Information Technologies, École des Hautes Études commerciales Montréal, Montréal, QC, Canada
| |
Collapse
|
31
|
Computer-Aided Detection of Subsolid Nodules on Chest Computed Tomography: Assessment of Visualization on Vessel-Suppressed Images. J Comput Assist Tomogr 2023; 47:412-417. [PMID: 36877791 DOI: 10.1097/rct.0000000000001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
OBJECTIVES This study aimed to clarify the performance of automatic detection of subsolid nodules by commercially available software on computed tomography (CT) images of various slice thicknesses and compare it with visualization on the accompanying vessel-suppression CT (VS-CT) images. METHODS A total of 95 subsolid nodules from 84 CT examinations of 84 patients were included. The reconstructed CT image series of each case with 3-, 2-, and 1-mm slice thicknesses were loaded into a commercially available software application (ClearRead CT) for automatic detection of subsolid nodules and generation of VS-CT images. Automatic nodule detection sensitivity was assessed for 95 nodules on each series of images acquired at 3 slice thicknesses. Four radiologists subjectively evaluated visual assessment of the nodules on VS-CT. RESULTS ClearRead CT automatically detected 69.5% (66/95 nodules), 68.4% (65/95 nodules), and 70.5% (67/95 nodules) of all subsolid nodules in 3-, 2-, and 1-mm slices, respectively. The detection rate was higher for part-solid nodules than for pure ground-glass nodules at all slice thicknesses. In the visualization assessment on VS-CT, 3 nodules at each slice thickness (3.2%) were judged as invisible, while 26 of 29 (89.7%), 27 of 30 (90.0%), and 25 of 28 (89.3%) nodules, which were missed by computer-aided detection, were judged as visible in 3-, 2-, and 1-mm slices, respectively. CONCLUSIONS The automatic detection rate of subsolid nodules by ClearRead CT was approximately 70% at all slice thicknesses. More than 95% of subsolid nodules were visualized on VS-CT, including nodules undetected by the automated software. Computed tomography acquisition at slices thinner than 3 mm did not confer any benefits.
Collapse
|
32
|
Hemphill S, Jackson K, Bradley S, Bhartia B. The implementation of artificial intelligence in radiology: a narrative review of patient perspectives. Future Healthc J 2023; 10:63-68. [PMID: 37786489 PMCID: PMC10538685 DOI: 10.7861/fhj.2022-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Aim To synthesise research on the view of the public and patients of the use of artificial intelligence (AI) in radiology investigations. Methods A literature review of narrative synthesis of qualitative and quantitative studies that reported views of the public and patients toward the use of AI in radiology. Results Only seven studies related to patient and public views were retrieved, suggesting that this is an underexplored area of research. Two broad themes, of confidence in the capabilities of AI, and the accountability and transparency of AI, were identified. Conclusions Both optimism and concerns were expressed by participants. Transparency in the implementation of AI, scientific validation, clear regulation and accountability were expected. Combined human and AI interpretation of imaging was strongly favoured over AI acting autonomously. The review highlights the limited engagement of the public in the adoption of AI in a radiology setting. Successful implementation of AI in this field will require demonstrating not only adequate accuracy of the technology, but also its acceptance by patients.
Collapse
|
33
|
Kedar S, Khazanchi D. Neurology education in the era of artificial intelligence. Curr Opin Neurol 2023; 36:51-58. [PMID: 36367213 DOI: 10.1097/wco.0000000000001130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE OF REVIEW The practice of neurology is undergoing a paradigm shift because of advances in the field of data science, artificial intelligence, and machine learning. To ensure a smooth transition, physicians must have the knowledge and competence to apply these technologies in clinical practice. In this review, we describe physician perception and preparedness, as well as current state for clinical applications of artificial intelligence and machine learning in neurology. RECENT FINDINGS Digital health including artificial intelligence-based/machine learning-based technology has made significant inroads into various aspects of healthcare including neurological care. Surveys of physicians and healthcare stakeholders suggests an overall positive perception about the benefits of artificial intelligence/machine learning in clinical practice. This positive perception is tempered by concerns for lack of knowledge and limited opportunities to build competence in artificial intelligence/machine learning technology. Literature about neurologist's perception and preparedness towards artificial intelligence/machine learning-based technology is scant. There are very few opportunities for physicians particularly neurologists to learn about artificial intelligence/machine learning-based technology. SUMMARY Neurologists have not been surveyed about their perception and preparedness to adopt artificial intelligence/machine learning-based technology in clinical practice. We propose development of a practical artificial intelligence/machine learning curriculum to enhance neurologists' competence in these newer technologies.
Collapse
Affiliation(s)
- Sachin Kedar
- Department of Ophthalmology
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Deepak Khazanchi
- Department of Information Systems & Quantitative Analysis, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
34
|
Silkens MEWM, Ross J, Hall M, Scarbrough H, Rockall A. The time is now: making the case for a UK registry of deployment of radiology artificial intelligence applications. Clin Radiol 2023; 78:107-114. [PMID: 36639171 DOI: 10.1016/j.crad.2022.09.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Artificial intelligence (AI)-based healthcare applications (apps) are rapidly evolving, and radiology is a target specialty for their implementation. In this paper, we put the case for a national deployment registry to track the spread of AI apps into clinical use in radiology in the UK. By gathering data on the specific locations, purposes, and people associated with AI app deployment, such a registry would provide greater transparency on their spread in the radiology field. In combination with other regulatory and audit mechanisms, it would provide radiologists and patients with greater confidence and trust in AI apps. At the same time, coordination of this information would reduce costs for the National Health Service (NHS) by preventing duplication of piloting activities. This commentary discusses the need for a UK-wide registry for such apps, its benefits and risks, and critical success factors for its establishment. We conclude by noting that a critical window of opportunity has opened up for the development of a deployment registry, before the current pattern of localised clusters of activity turns into the widespread proliferation of AI apps across clinical practice.
Collapse
Affiliation(s)
- M E W M Silkens
- Centre for Healthcare Innovation Research, City University of London, London, UK.
| | - J Ross
- Department of Cancer and Surgery, Imperial College London, London, UK
| | - M Hall
- Queen Elizabeth University Hospital, Glasgow, UK
| | - H Scarbrough
- Centre for Healthcare Innovation Research, City University of London, London, UK
| | - A Rockall
- Department of Cancer and Surgery, Imperial College London, London, UK
| |
Collapse
|
35
|
Derevianko A, Pizzoli SFM, Pesapane F, Rotili A, Monzani D, Grasso R, Cassano E, Pravettoni G. The Use of Artificial Intelligence (AI) in the Radiology Field: What Is the State of Doctor-Patient Communication in Cancer Diagnosis? Cancers (Basel) 2023; 15:cancers15020470. [PMID: 36672417 PMCID: PMC9856827 DOI: 10.3390/cancers15020470] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In the past decade, interest in applying Artificial Intelligence (AI) in radiology to improve diagnostic procedures increased. AI has potential benefits spanning all steps of the imaging chain, from the prescription of diagnostic tests to the communication of test reports. The use of AI in the field of radiology also poses challenges in doctor-patient communication at the time of the diagnosis. This systematic review focuses on the patient role and the interpersonal skills between patients and physicians when AI is implemented in cancer diagnosis communication. METHODS A systematic search was conducted on PubMed, Embase, Medline, Scopus, and PsycNet from 1990 to 2021. The search terms were: ("artificial intelligence" or "intelligence machine") and "communication" "radiology" and "oncology diagnosis". The PRISMA guidelines were followed. RESULTS 517 records were identified, and 5 papers met the inclusion criteria and were analyzed. Most of the articles emphasized the success of the technological support of AI in radiology at the expense of patient trust in AI and patient-centered communication in cancer disease. Practical implications and future guidelines were discussed according to the results. CONCLUSIONS AI has proven to be beneficial in helping clinicians with diagnosis. Future research may improve patients' trust through adequate information about the advantageous use of AI and an increase in medical compliance with adequate training on doctor-patient diagnosis communication.
Collapse
Affiliation(s)
- Alexandra Derevianko
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Francesca Maria Pizzoli
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-0294372099
| | - Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Dario Monzani
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90128 Palermo, Italy
| | - Roberto Grasso
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
36
|
Abstract
In the era of artificial intelligence (AI), a great deal of attention is being paid to AI in radiological practice. There are a large number of AI products on the radiological market based on X-rays, computed tomography, magnetic resonance imaging, and ultrasound. AI will not only change the way of radiological practice but also the way of radiological education. It is still not clearly defined about the exact role AI will play in radiological practice, but it will certainly be consolidated into radiological education in the foreseeable future. However, there are few literatures that have comprehensively summarized the attitudes, opportunities and challenges that AI can pose in the different training phases of radiologists, from university education to continuing education. Herein, we describe medical students' attitudes towards AI, summarize the role of AI in radiological education, and analyze the challenges that AI can pose in radiological education.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * Correspondence: Chao Wang, Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou 310009 Zhejiang, China (e-mail: )
| | - Huanhuan Xie
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shan Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyu Yang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ling Hu
- Department of Ultrasound, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Deshpande P, Rasin A, Tchoua R, Furst J, Raicu D, Schinkel M, Trivedi H, Antani S. Biomedical heterogeneous data categorization and schema mapping toward data integration. Front Big Data 2023; 6:1173038. [PMID: 37139170 PMCID: PMC10149933 DOI: 10.3389/fdata.2023.1173038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 05/05/2023] Open
Abstract
Data integration is a well-motivated problem in the clinical data science domain. Availability of patient data, reference clinical cases, and datasets for research have the potential to advance the healthcare industry. However, the unstructured (text, audio, or video data) and heterogeneous nature of the data, the variety of data standards and formats, and patient privacy constraint make data interoperability and integration a challenge. The clinical text is further categorized into different semantic groups and may be stored in different files and formats. Even the same organization may store cases in different data structures, making data integration more challenging. With such inherent complexity, domain experts and domain knowledge are often necessary to perform data integration. However, expert human labor is time and cost prohibitive. To overcome the variability in the structure, format, and content of the different data sources, we map the text into common categories and compute similarity within those. In this paper, we present a method to categorize and merge clinical data by considering the underlying semantics behind the cases and use reference information about the cases to perform data integration. Evaluation shows that we were able to merge 88% of clinical data from five different sources.
Collapse
Affiliation(s)
- Priya Deshpande
- Marquette University, Milwaukee, WI, United States
- *Correspondence: Priya Deshpande
| | | | | | - Jacob Furst
- DePaul University, Chicago, IL, United States
| | | | - Michiel Schinkel
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, Netherlands
| | | | - Sameer Antani
- National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
38
|
Zellner T, Romanek K, Rabe C, Schmoll S, Geith S, Heier EC, Stich R, Burwinkel H, Keicher M, Bani-Harouni D, Navab N, Ahmadi SA, Eyer F. ToxNet: an artificial intelligence designed for decision support for toxin prediction. Clin Toxicol (Phila) 2023; 61:56-63. [PMID: 36373611 DOI: 10.1080/15563650.2022.2144345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Artificial intelligences (AIs) are emerging in the field of medical informatics in many areas. They are mostly used for diagnosis support in medical imaging but have potential uses in many other fields of medicine where large datasets are available. AIM To develop an artificial intelligence (AI) "ToxNet", a machine-learning based computer-aided diagnosis (CADx) system, which aims to predict poisons based on patient's symptoms and metadata from our Poison Control Center (PCC) data. To prove its accuracy and compare it against medical doctors (MDs). METHODS The CADx system was developed and trained using data from 781,278 calls recorded in our PCC database from 2001 to 2019. All cases were mono-intoxications. Patient symptoms and meta-information (e.g., age group, sex, etiology, toxin point of entry, weekday, etc.) were provided. In the pilot phase, the AI was trained on 10 substances, the AI's prediction was compared to naïve matching, literature matching, a multi-layer perceptron (MLP), and the graph attention network (GAT). The trained AI's accuracy was then compared to 10 medical doctors in an individual and in an identical dataset. The dataset was then expanded to 28 substances and the predictions and comparisons repeated. RESULTS In the pilot, the prediction performance in a set of 8995 patients with 10 substances was 0.66 ± 0.01 (F1 micro score). Our CADx system was significantly superior to naïve matching, literature matching, MLP, and GAT (p < 0.005). It outperformed our physicians experienced in clinical toxicology in the individual and identical dataset. In the extended dataset, our CADx system was able to predict the correct toxin in a set of 36,033 patients with 28 substances with an overall performance of 0.27 ± 0.01 (F1 micro score), also significantly superior to naïve matching, literature matching, MLP, and GAT. It also outperformed our MDs. CONCLUSION Our AI trained on a large PCC database works well for poison prediction in these experiments. With further research, it might become a valuable aid for physicians in predicting unknown substances and might be the first step into AI use in PCCs.
Collapse
Affiliation(s)
- Tobias Zellner
- Division of Clinical Toxicology, Department of Internal Medicine II, Poison Control Centre Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Katrin Romanek
- Division of Clinical Toxicology, Department of Internal Medicine II, Poison Control Centre Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Rabe
- Division of Clinical Toxicology, Department of Internal Medicine II, Poison Control Centre Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sabrina Schmoll
- Division of Clinical Toxicology, Department of Internal Medicine II, Poison Control Centre Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Geith
- Division of Clinical Toxicology, Department of Internal Medicine II, Poison Control Centre Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva-Carina Heier
- Division of Clinical Toxicology, Department of Internal Medicine II, Poison Control Centre Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Raphael Stich
- Division of Clinical Toxicology, Department of Internal Medicine II, Poison Control Centre Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Hendrik Burwinkel
- Computer Aided Medical Procedures, TUM Department of Informatics, Technical University of Munich, Garching, Germany
| | - Matthias Keicher
- Computer Aided Medical Procedures, TUM Department of Informatics, Technical University of Munich, Garching, Germany
| | - David Bani-Harouni
- Computer Aided Medical Procedures, TUM Department of Informatics, Technical University of Munich, Garching, Germany
| | - Nassir Navab
- Computer Aided Medical Procedures, TUM Department of Informatics, Technical University of Munich, Garching, Germany
| | | | - Florian Eyer
- Division of Clinical Toxicology, Department of Internal Medicine II, Poison Control Centre Munich, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
39
|
Artificial Intelligence (AI) in Breast Imaging: A Scientometric Umbrella Review. Diagnostics (Basel) 2022; 12:diagnostics12123111. [PMID: 36553119 PMCID: PMC9777253 DOI: 10.3390/diagnostics12123111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Artificial intelligence (AI), a rousing advancement disrupting a wide spectrum of applications with remarkable betterment, has continued to gain momentum over the past decades. Within breast imaging, AI, especially machine learning and deep learning, honed with unlimited cross-data/case referencing, has found great utility encompassing four facets: screening and detection, diagnosis, disease monitoring, and data management as a whole. Over the years, breast cancer has been the apex of the cancer cumulative risk ranking for women across the six continents, existing in variegated forms and offering a complicated context in medical decisions. Realizing the ever-increasing demand for quality healthcare, contemporary AI has been envisioned to make great strides in clinical data management and perception, with the capability to detect indeterminate significance, predict prognostication, and correlate available data into a meaningful clinical endpoint. Here, the authors captured the review works over the past decades, focusing on AI in breast imaging, and systematized the included works into one usable document, which is termed an umbrella review. The present study aims to provide a panoramic view of how AI is poised to enhance breast imaging procedures. Evidence-based scientometric analysis was performed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline, resulting in 71 included review works. This study aims to synthesize, collate, and correlate the included review works, thereby identifying the patterns, trends, quality, and types of the included works, captured by the structured search strategy. The present study is intended to serve as a "one-stop center" synthesis and provide a holistic bird's eye view to readers, ranging from newcomers to existing researchers and relevant stakeholders, on the topic of interest.
Collapse
|
40
|
AI in breast screening mammography: breast screening readers' perspectives. Insights Imaging 2022; 13:186. [PMID: 36484919 PMCID: PMC9733732 DOI: 10.1186/s13244-022-01322-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES This study surveyed the views of breast screening readers in the UK on how to incorporate Artificial Intelligence (AI) technology into breast screening mammography. METHODS An online questionnaire was circulated to the UK breast screening readers. Questions included their degree of approval of four AI implementation scenarios: AI as triage, AI as a companion reader/reader aid, AI replacing one of the initial two readers, and AI replacing all readers. They were also asked to rank five AI representation options (discrete opinion; mammographic scoring; percentage score with 100% indicating malignancy; region of suspicion; heat map) and indicate which evidence they considered necessary to support the implementation of AI into their practice among six options offered. RESULTS The survey had 87 nationally accredited respondents across the UK; 73 completed the survey in full. Respondents approved of AI replacing one of the initial two human readers and objected to AI replacing all human readers. Participants were divided on AI as triage and AI as a reader companion. A region of suspicion superimposed on the image was the preferred AI representation option. Most screen readers considered national guidelines (77%), studies using a nationally representative dataset (65%) and independent prospective studies (60%) as essential evidence. Participants' free-text comments highlighted concerns and the need for additional validation. CONCLUSIONS Overall, screen readers supported the introduction of AI as a partial replacement of human readers and preferred a graphical indication of the suspected tumour area, with further evidence and national guidelines considered crucial prior to implementation.
Collapse
|
41
|
Jin H, Wagner MW, Ertl-Wagner B, Khalvati F. An Educational Graphical User Interface to Construct Convolutional Neural Networks for Teaching Artificial Intelligence in Radiology. Can Assoc Radiol J 2022:8465371221144264. [PMID: 36475925 DOI: 10.1177/08465371221144264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Deep learning techniques using convolutional neural networks (CNNs) have been successfully developed for various medical image analysis tasks. However, the skills to understand and develop deep learning models are not usually taught during radiology training, which constitutes a barrier for radiologists looking to integrate machine learning (ML) into their research or clinical practice. In this work, we developed and evaluated an educational graphical user interface (GUI) to construct CNNs for teaching deep learning concepts to radiology trainees. The GUI was developed in Python using the PyQt and PyTorch frameworks. The functionality of the GUI was demonstrated through a binary classification task on a dataset of MR images of the brain. The usability of the GUI was assessed through 45-min user testing sessions with 5 neuroradiologists and neuroradiology fellows, assessing mean task completion times, the System Usability Scale (SUS), and a qualitative questionnaire as metrics. Task completion times were compared against a ML expert who performed the same tasks. After a 20-min introduction to CNNs and a walkthrough of the GUI, users were able to perform all assigned tasks successfully. There was no significant difference in task completion time compared to a ML expert. The educational GUI achieved a score of 82.5 on the SUS, suggesting that the system is highly usable. Users indicated that the GUI seems useful as an educational tool to teach ML topics to radiology trainees. An educational GUI allows interactive teaching in ML that can be incorporated into radiology training.
Collapse
Affiliation(s)
- Haiyue Jin
- Division of Engineering Science, University of Toronto, Toronto, ON, Canada
| | - Matthias W Wagner
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada,Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada,Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
| | - Birgit Ertl-Wagner
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada,Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada,Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
| | - Farzad Khalvati
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada,Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada,Department of Computer Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
42
|
Jonske F, Dederichs M, Kim MS, Keyl J, Egger J, Umutlu L, Forsting M, Nensa F, Kleesiek J. Deep Learning-driven classification of external DICOM studies for PACS archiving. Eur Radiol 2022; 32:8769-8776. [PMID: 35788757 PMCID: PMC9705446 DOI: 10.1007/s00330-022-08926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Over the course of their treatment, patients often switch hospitals, requiring staff at the new hospital to import external imaging studies to their local database. In this study, the authors present MOdality Mapping and Orchestration (MOMO), a Deep Learning-based approach to automate this mapping process by combining metadata analysis and a neural network ensemble. METHODS A set of 11,934 imaging series with existing anatomical labels was retrieved from the PACS database of the local hospital to train an ensemble of neural networks (DenseNet-161 and ResNet-152), which process radiological images and predict the type of study they belong to. We developed an algorithm that automatically extracts relevant metadata from imaging studies, regardless of their structure, and combines it with the neural network ensemble, forming a powerful classifier. A set of 843 anonymized external studies from 321 hospitals was hand-labeled to assess performance. We tested several variations of this algorithm. RESULTS MOMO achieves 92.71% accuracy and 2.63% minor errors (at 99.29% predictive power) on the external study classification task, outperforming both a commercial product (82.86% accuracy, 1.36% minor errors, 96.20% predictive power) and a pure neural network ensemble (72.69% accuracy, 10.3% minor errors, 99.05% predictive power) performing the same task. We find that the highest performance is achieved by an algorithm that combines all information into one vote-based classifier. CONCLUSION Deep Learning combined with metadata matching is a promising and flexible approach for the automated classification of external DICOM studies for PACS archiving. KEY POINTS • The algorithm can successfully identify 76 medical study types across seven modalities (CT, X-ray angiography, radiographs, MRI, PET (+CT/MRI), ultrasound, and mammograms). • The algorithm outperforms a commercial product performing the same task by a significant margin (> 9% accuracy gain). • The performance of the algorithm increases through the application of Deep Learning techniques.
Collapse
Affiliation(s)
- Frederic Jonske
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany.
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany.
| | - Maximilian Dederichs
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Moon-Sung Kim
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Julius Keyl
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
- Department of Tumor Research, University Hospital Essen, Essen, Germany
| | - Jan Egger
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Felix Nensa
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Jens Kleesiek
- Institute of AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
- University Duisburg-Essen, Essen, Germany
| |
Collapse
|
43
|
Caparrós Galán G, Sendra Portero F. Medical students’ perceptions of the impact of artificial intelligence in radiology. RADIOLOGIA 2022; 64:516-524. [DOI: 10.1016/j.rxeng.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022]
|
44
|
The Use of Artificial Intelligence in Medical Imaging: A Nationwide Pilot Survey of Trainees in Saudi Arabia. Clin Pract 2022; 12:852-866. [PMID: 36412669 PMCID: PMC9680253 DOI: 10.3390/clinpract12060090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022] Open
Abstract
Artificial intelligence is dramatically transforming medical imaging. In Saudi Arabia, there are a lack of studies assessing the level of artificial intelligence use and reliably determining the perceived impact of artificial intelligence on the radiology workflow and the profession. We assessed the levels of artificial intelligence use among radiology trainees and correlated the perceived impact of artificial intelligence on the workflow and profession with the behavioral intention to use artificial intelligence. This cross-sectional study enrolled radiology trainees from Saudi Arabia, and a 5-part-structured questionnaire was disseminated. The items concerning the perceived impact of artificial intelligence on the radiology workflow conformed to the six-step standard workflow in radiology, which includes ordering and scheduling, protocoling and acquisition, image interpretation, reporting, communication, and billing. We included 98 participants. Few used artificial intelligence in routine practice (7%). The perceived impact of artificial intelligence on the radiology workflow was at a considerable level in all radiology workflow steps (range, 3.64−3.97 out of 5). Behavioral intention to use artificial intelligence was linearly correlated with the perceptions of its impact on the radiology workflow and on the profession (p < 0.001). Artificial intelligence is used at a low level in radiology. The perceived impact of artificial intelligence on radiology workflow and the profession is correlated to an increase in behavioral intention to use artificial intelligence. Thus, increasing awareness about the positive impact of artificial intelligence can improve its adoption.
Collapse
|
45
|
Nagy E, Marterer R, Hržić F, Sorantin E, Tschauner S. Learning rate of students detecting and annotating pediatric wrist fractures in supervised artificial intelligence dataset preparations. PLoS One 2022; 17:e0276503. [PMID: 36264961 PMCID: PMC9584407 DOI: 10.1371/journal.pone.0276503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/13/2022] [Indexed: 11/06/2022] Open
Abstract
The use of artificial intelligence (AI) in image analysis is an intensively debated topic in the radiology community these days. AI computer vision algorithms typically rely on large-scale image databases, annotated by specialists. Developing and maintaining them is time-consuming, thus, the involvement of non-experts into the workflow of annotation should be considered. We assessed the learning rate of inexperienced evaluators regarding correct labeling of pediatric wrist fractures on digital radiographs. Students with and without a medical background labeled wrist fractures with bounding boxes in 7,000 radiographs over ten days. Pediatric radiologists regularly discussed their mistakes. We found F1 scores-as a measure for detection rate-to increase substantially under specialist feedback (mean 0.61±0.19 at day 1 to 0.97±0.02 at day 10, p<0.001), but not the Intersection over Union as a parameter for labeling precision (mean 0.27±0.29 at day 1 to 0.53±0.25 at day 10, p<0.001). The times needed to correct the students decreased significantly (mean 22.7±6.3 seconds per image at day 1 to 8.9±1.2 seconds at day 10, p<0.001) and were substantially lower as annotated by the radiologists alone. In conclusion our data showed, that the involvement of undergraduated students into annotation of pediatric wrist radiographs enables a substantial time saving for specialists, therefore, it should be considered.
Collapse
Affiliation(s)
- Eszter Nagy
- Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Robert Marterer
- Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Franko Hržić
- Faculty of Engineering, University of Rijeka, Rijeka, Croatia
| | - Erich Sorantin
- Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Sebastian Tschauner
- Division of Pediatric Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
46
|
Chen M, Zhang B, Cai Z, Seery S, Gonzalez MJ, Ali NM, Ren R, Qiao Y, Xue P, Jiang Y. Acceptance of clinical artificial intelligence among physicians and medical students: A systematic review with cross-sectional survey. Front Med (Lausanne) 2022; 9:990604. [PMID: 36117979 PMCID: PMC9472134 DOI: 10.3389/fmed.2022.990604] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Artificial intelligence (AI) needs to be accepted and understood by physicians and medical students, but few have systematically assessed their attitudes. We investigated clinical AI acceptance among physicians and medical students around the world to provide implementation guidance. Materials and methods We conducted a two-stage study, involving a foundational systematic review of physician and medical student acceptance of clinical AI. This enabled us to design a suitable web-based questionnaire which was then distributed among practitioners and trainees around the world. Results Sixty studies were included in this systematic review, and 758 respondents from 39 countries completed the online questionnaire. Five (62.50%) of eight studies reported 65% or higher awareness regarding the application of clinical AI. Although, only 10–30% had actually used AI and 26 (74.28%) of 35 studies suggested there was a lack of AI knowledge. Our questionnaire uncovered 38% awareness rate and 20% utility rate of clinical AI, although 53% lacked basic knowledge of clinical AI. Forty-five studies mentioned attitudes toward clinical AI, and over 60% from 38 (84.44%) studies were positive about AI, although they were also concerned about the potential for unpredictable, incorrect results. Seventy-seven percent were optimistic about the prospect of clinical AI. The support rate for the statement that AI could replace physicians ranged from 6 to 78% across 40 studies which mentioned this topic. Five studies recommended that efforts should be made to increase collaboration. Our questionnaire showed 68% disagreed that AI would become a surrogate physician, but believed it should assist in clinical decision-making. Participants with different identities, experience and from different countries hold similar but subtly different attitudes. Conclusion Most physicians and medical students appear aware of the increasing application of clinical AI, but lack practical experience and related knowledge. Overall, participants have positive but reserved attitudes about AI. In spite of the mixed opinions around clinical AI becoming a surrogate physician, there was a consensus that collaborations between the two should be strengthened. Further education should be conducted to alleviate anxieties associated with change and adopting new technologies.
Collapse
Affiliation(s)
- Mingyang Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziting Cai
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Samuel Seery
- Faculty of Health and Medicine, Division of Health Research, Lancaster University, Lancaster, United Kingdom
| | | | - Nasra M. Ali
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ran Ren
- Global Health Research Center, Dalian Medical University, Dalian, China
| | - Youlin Qiao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Youlin Qiao,
| | - Peng Xue
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Peng Xue,
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Yu Jiang,
| |
Collapse
|
47
|
Coakley S, Young R, Moore N, England A, O'Mahony A, O'Connor OJ, Maher M, McEntee MF. Radiographers' knowledge, attitudes and expectations of artificial intelligence in medical imaging. Radiography (Lond) 2022; 28:943-948. [PMID: 35839662 DOI: 10.1016/j.radi.2022.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Artificial intelligence (AI) is increasingly utilised in medical imaging systems and processes, and radiographers must embrace this advancement. This study aimed to investigate perceptions, knowledge, and expectations towards integrating AI into medical imaging amongst a sample of radiographers and determine the current state of AI education within the community. METHODS A cross-sectional online quantitative study targeting radiographers based in Europe was conducted over ten weeks. Captured data included demographical information, participants' perceptions and understanding of AI, expectations of AI and AI-related educational backgrounds. Both descriptive and inferential statistical techniques were used to analyse the obtained data. RESULTS A total of 96 valid responses were collected. Of these, 64% correctly identified the true definition of AI from a range of options, but fewer (37%) fully understood the difference between AI, machine learning and deep learning. The majority of participants (83%) agreed they were excited about the advancement of AI, though a level of apprehensiveness remained amongst 29%. A severe lack of education on AI was noted, with only 8% of participants having received AI teachings in their pre-registration qualification. CONCLUSION Overall positive attitudes towards AI implementation were observed. The slight apprehension may stem from the lack of technical understanding of AI technologies and AI training within the community. Greater educational programs focusing on AI principles are required to help increase European radiography workforce engagement and involvement in AI technologies. IMPLICATIONS FOR PRACTICE This study offers insight into the current perspectives of European based radiographers on AI in radiography to help facilitate the embracement of AI technology and convey the need for AI-focused education within the profession.
Collapse
Affiliation(s)
- S Coakley
- Discipline of Medical Imaging and Radiation Therapy, School of Medicine, University College Cork, Ireland
| | - R Young
- Discipline of Medical Imaging and Radiation Therapy, School of Medicine, University College Cork, Ireland
| | - N Moore
- Discipline of Medical Imaging and Radiation Therapy, School of Medicine, University College Cork, Ireland
| | - A England
- Discipline of Medical Imaging and Radiation Therapy, School of Medicine, University College Cork, Ireland.
| | - A O'Mahony
- Department of Radiology, Cork University Hospital, Ireland
| | - O J O'Connor
- Department of Radiology, Cork University Hospital, Ireland
| | - M Maher
- Department of Radiology, Cork University Hospital, Ireland
| | - M F McEntee
- Discipline of Medical Imaging and Radiation Therapy, School of Medicine, University College Cork, Ireland
| |
Collapse
|
48
|
Nawaz FA, Barr AA, Desai MY, Tsagkaris C, Singh R, Klager E, Eibensteiner F, Parvanov ED, Hribersek M, Kletecka-Pulker M, Willschke H, Atanasov AG. Promoting Research, Awareness, and Discussion on AI in Medicine Using #MedTwitterAI: A Longitudinal Twitter Hashtag Analysis. Front Public Health 2022; 10:856571. [PMID: 35844878 PMCID: PMC9283788 DOI: 10.3389/fpubh.2022.856571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Artificial intelligence (AI) has the potential to reshape medical practice and the delivery of healthcare. Online discussions surrounding AI's utility in these domains are increasingly emerging, likely due to considerable interest from healthcare practitioners, medical technology developers, and other relevant stakeholders. However, many practitioners and medical students report limited understanding and familiarity with AI. Objective To promote research, events, and resources at the intersection of AI and medicine for the online medical community, we created a Twitter-based campaign using the hashtag #MedTwitterAI. Methods In the present study, we analyze the use of #MedTwitterAI by tracking tweets containing this hashtag posted from 26th March, 2019 to 26th March, 2021, using the Symplur Signals hashtag analytics tool. The full text of all #MedTwitterAI tweets was also extracted and subjected to a natural language processing analysis. Results Over this time period, we identified 7,441 tweets containing #MedTwitterAI, posted by 1,519 unique Twitter users which generated 59,455,569 impressions. The most common identifiable locations for users including this hashtag in tweets were the United States (378/1,519), the United Kingdom (80/1,519), Canada (65/1,519), India (46/1,519), Spain (29/1,519), France (24/1,519), Italy (16/1,519), Australia (16/1,519), Germany (16/1,519), and Brazil (15/1,519). Tweets were frequently enhanced with links (80.2%), mentions of other accounts (93.9%), and photos (56.6%). The five most abundant single words were AI (artificial intelligence), patients, medicine, data, and learning. Sentiment analysis revealed an overall majority of positive single word sentiments (e.g., intelligence, improve) with 230 positive and 172 negative sentiments with a total of 658 and 342 mentions of all positive and negative sentiments, respectively. Most frequently mentioned negative sentiments were cancer, risk, and bias. Most common bigrams identified by Markov chain depiction were related to analytical methods (e.g., label-free detection) and medical conditions/biological processes (e.g., rare circulating tumor cells). Conclusion These results demonstrate the generated considerable interest of using #MedTwitterAI for promoting relevant content and engaging a broad and geographically diverse audience. The use of hashtags in Twitter-based campaigns can be an effective tool to raise awareness of interdisciplinary fields and enable knowledge-sharing on a global scale.
Collapse
Affiliation(s)
- Faisal A. Nawaz
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | | | | | - Romil Singh
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Elisabeth Klager
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Fabian Eibensteiner
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Emil D. Parvanov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Mojca Hribersek
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Maria Kletecka-Pulker
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute for Ethics and Law in Medicine, University of Vienna, Vienna, Austria
| | - Harald Willschke
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
49
|
Current practical experience with artificial intelligence in clinical radiology: a survey of the European Society of Radiology. Insights Imaging 2022; 13:107. [PMID: 35727355 PMCID: PMC9213582 DOI: 10.1186/s13244-022-01247-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
A survey among the members of European Society of Radiology (ESR) was conducted regarding the current practical clinical experience of radiologists with Artificial Intelligence (AI)-powered tools. 690 radiologists completed the survey. Among these were 276 radiologists from 229 institutions in 32 countries who had practical clinical experience with an AI-based algorithm and formed the basis of this study. The respondents with clinical AI experience included 143 radiologists (52%) from academic institutions, 102 radiologists (37%) from regional hospitals, and 31 radiologists (11%) from private practice. The use case scenarios of the AI algorithm were mainly related to diagnostic interpretation, image post-processing, and prioritisation of workflow. Technical difficulties with integration of AI-based tools into the workflow were experienced by only 49 respondents (17.8%). Of 185 radiologists who used AI-based algorithms for diagnostic purposes, 140 (75.7%) considered the results of the algorithms generally reliable. The use of a diagnostic algorithm was mentioned in the report by 64 respondents (34.6%) and disclosed to patients by 32 (17.3%). Only 42 (22.7%) experienced a significant reduction of their workload, whereas 129 (69.8%) found that there was no such effect. Of 111 respondents who used AI-based algorithms for clinical workflow prioritisation, 26 (23.4%) considered algorithms to be very helpful for reducing the workload of the medical staff whereas the others found them only moderately helpful (62.2%) or not helpful at all (14.4%). Only 92 (13.3%) of the total 690 respondents indicated that they had intentions to acquire AI tools. In summary, although the assistance of AI algorithms was found to be reliable for different use case scenarios, the majority of radiologists experienced no reduction of practical clinical workload.
Collapse
|
50
|
Mulryan P, Ni Chleirigh N, O'Mahony AT, Crowley C, Ryan D, McLaughlin P, McEntee M, Maher M, O'Connor OJ. An evaluation of information online on artificial intelligence in medical imaging. Insights Imaging 2022; 13:79. [PMID: 35467250 PMCID: PMC9038977 DOI: 10.1186/s13244-022-01209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/12/2022] [Indexed: 08/24/2023] Open
Abstract
Background Opinions seem somewhat divided when considering the effect of artificial intelligence (AI) on medical imaging. The aim of this study was to characterise viewpoints presented online relating to the impact of AI on the field of radiology and to assess who is engaging in this discourse.
Methods Two search methods were used to identify online information relating to AI and radiology. Firstly, 34 terms were searched using Google and the first two pages of results for each term were evaluated. Secondly, a Rich Search Site (RSS) feed evaluated incidental information over 3 weeks. Webpages were evaluated and categorized as having a positive, negative, balanced, or neutral viewpoint based on study criteria. Results Of the 680 webpages identified using the Google search engine, 248 were deemed relevant and accessible. 43.2% had a positive viewpoint, 38.3% a balanced viewpoint, 15.3% a neutral viewpoint, and 3.2% a negative viewpoint. Peer-reviewed journals represented the most common webpage source (48%), followed by media (29%), commercial sources (12%), and educational sources (8%). Commercial webpages had the highest proportion of positive viewpoints (66%). Radiologists were identified as the most common author group (38.9%). The RSS feed identified 177 posts of which were relevant and accessible. 86% of posts were of media origin expressing positive viewpoints (64%). Conclusion The overall opinion of the impact of AI on radiology presented online is a positive one. Consistency across a range of sources and author groups exists. Radiologists were significant contributors to this online discussion and the results may impact future recruitment. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01209-4.
Collapse
Affiliation(s)
- Philip Mulryan
- Cork University Hospital/Mercy University Hospital, Cork, Ireland
| | | | | | - Claire Crowley
- Cork University Hospital/Mercy University Hospital, Cork, Ireland
| | | | | | | | - Michael Maher
- Cork University Hospital/Mercy University Hospital, Cork, Ireland.,University College Cork, Cork, Ireland
| | - Owen J O'Connor
- Cork University Hospital/Mercy University Hospital, Cork, Ireland.,University College Cork, Cork, Ireland
| |
Collapse
|