1
|
Sen S, de Guimaraes TAC, Filho AG, Fabozzi L, Pearson RA, Michaelides M. Stem cell-based therapies for retinal diseases: focus on clinical trials and future prospects. Ophthalmic Genet 2024:1-14. [PMID: 39544140 DOI: 10.1080/13816810.2024.2423784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/09/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Stem cell-based therapy has gained importance over the past decades due to huge advances in science and technology behind the generation and directed differentiation of pluripotent cells from embryos and adult cells. Preclinical proof-of-concept studies have been followed by clinical trials showing efficacy and safety of transplantation of stem cell-based therapy, which are beginning to establish this as a modality of treatment. Disease candidates of interest are primarily conditions that may benefit from replacing dead or dying cells, including advanced inherited retinal dystrophies and age-related macular degeneration, and predominantly seek to transplant either RPE or photoreceptors, although neurotrophic approaches have also been trialed. Whilst a consensus has yet to be reached about the best stage/type of cells for transplantation (stem cells, progenitor cells, differentiated RPE and photoreceptors) and the methods of implantation (sheet, suspension), several CTs have shown safety. There remain potential concerns regarding tumorigenicity and immune rejection; however, with ongoing improvements in cell generation, selection, and delivery, these can be minimized. Earlier studies showed efficacy with immunosuppressive drugs to prevent rejection, and recent donor-matched transplants have avoided the need for immunosuppression. Retinal regenerative medicine is a challenging field and is in a nascent stage but holds tremendous promise. This narrative review delves into the current understanding of stem cells and the latest clinical trials of retinal cell transplantation.
Collapse
Affiliation(s)
- Sagnik Sen
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | | | | | - Rachael A Pearson
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Michel Michaelides
- Deaprtment of Genetics, Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
2
|
Wu KY, Dhaliwal JK, Sasitharan A, Kalevar A. Cell Therapy for Retinal Degenerative Diseases: Progress and Prospects. Pharmaceutics 2024; 16:1299. [PMID: 39458628 PMCID: PMC11510658 DOI: 10.3390/pharmaceutics16101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are leading causes of vision loss, with AMD affecting older populations and RP being a rarer, genetically inherited condition. Both diseases result in progressive retinal degeneration, for which current treatments remain inadequate in advanced stages. This review aims to provide an overview of the retina's anatomy and physiology, elucidate the pathophysiology of AMD and RP, and evaluate emerging cell-based therapies for these conditions. Methods: A comprehensive review of the literature was conducted, focusing on cell therapy approaches, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells. Preclinical and clinical studies were analyzed to assess therapeutic potential, with attention to mechanisms such as cell replacement, neuroprotection, and paracrine effects. Relevant challenges, including ethical concerns and clinical translation, were also explored. Results: Cell-based therapies demonstrate potential for restoring retinal function and slowing disease progression through mechanisms like neuroprotection and cell replacement. Preclinical trials show promising outcomes, but clinical studies face significant hurdles, including challenges in cell delivery and long-term efficacy. Combination therapies integrating gene editing and biomaterials offer potential future advancements. Conclusions: While cell-based therapies for AMD and RP have made significant progress, substantial barriers to clinical application remain. Further research is essential to overcome these obstacles, improve delivery methods, and ensure the safe and effective translation of these therapies into clinical practice.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Jaskarn K. Dhaliwal
- Faculty of Health Sciences, Department of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Akash Sasitharan
- Faculty of Medicine and Health Sciences, Department of Medicine, McGill University, Montreal, QC H3A 0GA, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
3
|
Yang J, Lewis GP, Hsiang CH, Menges S, Luna G, Cho W, Turovets N, Fisher SK, Klassen H. Amelioration of Photoreceptor Degeneration by Intravitreal Transplantation of Retinal Progenitor Cells in Rats. Int J Mol Sci 2024; 25:8060. [PMID: 39125629 PMCID: PMC11312009 DOI: 10.3390/ijms25158060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Photoreceptor degeneration is a major cause of untreatable blindness worldwide and has recently been targeted by emerging technologies, including cell- and gene-based therapies. Cell types of neural lineage have shown promise for replacing either photoreceptors or retinal pigment epithelial cells following delivery to the subretinal space, while cells of bone marrow lineage have been tested for retinal trophic effects following delivery to the vitreous cavity. Here we explore an alternate approach in which cells from the immature neural retinal are delivered to the vitreous cavity with the goal of providing trophic support for degenerating photoreceptors. Rat and human retinal progenitor cells were transplanted to the vitreous of rats with a well-studied photoreceptor dystrophy, resulting in substantial anatomical preservation and functional rescue of vision. This work provides scientific proof-of-principle for a novel therapeutic approach to photoreceptor degeneration that is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Jing Yang
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Geoffrey P. Lewis
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Chin-Hui Hsiang
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Steven Menges
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Gabriel Luna
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - William Cho
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Nikolay Turovets
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Steven K. Fisher
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Radu M, Brănișteanu DC, Pirvulescu RA, Dumitrescu OM, Ionescu MA, Zemba M. Exploring Stem-Cell-Based Therapies for Retinal Regeneration. Life (Basel) 2024; 14:668. [PMID: 38929652 PMCID: PMC11204673 DOI: 10.3390/life14060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The escalating prevalence of retinal diseases-notably, age-related macular degeneration and hereditary retinal disorders-poses an intimidating challenge to ophthalmic medicine, often culminating in irreversible vision loss. Current treatments are limited and often fail to address the underlying loss of retinal cells. This paper explores the potential of stem-cell-based therapies as a promising avenue for retinal regeneration. We review the latest advancements in stem cell technology, focusing on embryonic stem cells (ESCs), pluripotent stem cells (PSCs), and mesenchymal stem cells (MSCs), and their ability to differentiate into retinal cell types. We discuss the challenges in stem cell transplantation, such as immune rejection, integration into the host retina, and functional recovery. Previous and ongoing clinical trials are examined to highlight the therapeutic efficacy and safety of these novel treatments. Additionally, we address the ethical considerations and regulatory frameworks governing stem cell research. Our analysis suggests that while stem-cell-based therapies offer a groundbreaking approach to treating retinal diseases, further research is needed to ensure long-term safety and to optimize therapeutic outcomes. This review summarizes the clinical evidence of stem cell therapy and current limitations in utilizing stem cells for retinal degeneration, such as age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease.
Collapse
Affiliation(s)
- Madalina Radu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | | | - Ruxandra Angela Pirvulescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Ophthalmology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Otilia Maria Dumitrescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihai Alexandru Ionescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihail Zemba
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
5
|
Niu Y, Ji J, Yao K, Fu Q. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:52-64. [PMID: 38586868 PMCID: PMC10997875 DOI: 10.1016/j.aopr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024]
Abstract
Background Degenerate eye disorders, such as glaucoma, cataracts and age-related macular degeneration (AMD), are prevalent causes of blindness and visual impairment worldwide. Other eye disorders, including limbal stem cell deficiency (LSCD), dry eye diseases (DED), and retinitis pigmentosa (RP), result in symptoms such as ocular discomfort and impaired visual function, significantly impacting quality of life. Traditional therapies are limited, primarily focus on delaying disease progression, while emerging stem cell therapy directly targets ocular tissues, aiming to restore ocular function by reconstructing ocular tissue. Main text The utilization of stem cells for the treatment of diverse degenerative ocular diseases is becoming increasingly significant, owing to the regenerative and malleable properties of stem cells and their functional cells. Currently, stem cell therapy for ophthalmopathy involves various cell types, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), and retinal progenitor cells (RPCs). In the current article, we will review the current progress regarding the utilization of stem cells for the regeneration of ocular tissue covering key eye tissues from the cornea to the retina. These therapies aim to address the loss of functional cells, restore damaged ocular tissue and or in a paracrine-mediated manner. We also provide an overview of the ocular disorders that stem cell therapy is targeting, as well as the difficulties and opportunities in this field. Conclusions Stem cells can not only promote tissue regeneration but also release exosomes to mitigate inflammation and provide neuroprotection, making stem cell therapy emerge as a promising approach for treating a wide range of eye disorders through multiple mechanisms.
Collapse
Affiliation(s)
- Yifei Niu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Qiuli Fu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
6
|
Khaboushan AS, Ebadpour N, Moghadam MMJ, Rezaee Z, Kajbafzadeh AM, Zolbin MM. Cell therapy for retinal degenerative disorders: a systematic review and three-level meta-analysis. J Transl Med 2024; 22:227. [PMID: 38431596 PMCID: PMC10908175 DOI: 10.1186/s12967-024-05016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Retinal degenerative disorders (RDDs) cause vision loss by damaging retinal neurons and photoreceptors, affecting individuals of all ages. Cell-based therapy has emerged as an effective approach for the treatment of RDDs with promising results. This meta-analysis aims to comprehensively evaluate the efficacy of cell therapy in treating age-related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt macular degeneration (SMD) as the most prevalent RDDs. METHODS PubMed, Scopus, Web of Science, and Embase were searched using keywords related to various retinal diseases and cell therapy treatments until November 25th, 2023. The studies' quality was evaluated using the Joanna Briggs Institute's (JBI) checklist for quasi-experimental studies. Visual acuity measured as LogMAR score was used as our main outcome. A three-level random-effect meta-analysis was used to explore the visual acuity in patients who received cell-based therapy. Heterogeneity among the included studies was evaluated using subgroup and sensitivity analyses. Moreover, meta-regression for the type of cells, year of publication, and mean age of participants were performed. RESULTS Overall, 8345 studies were retrieved by the search, and 39 met the eligibility criteria, out of which 18 studies with a total of 224 eyes were included in the meta-analysis. There were 12 studies conducted on AMD, 7 on SMD, and 2 on RP. Cell therapy for AMD showed significant improvement in LogMAR (p < 0.05). Also, cell therapy decreased the LogMAR score in SMD and RP (p < 0.01 and p < 0.0001, respectively). Across all conditions, no substantial publication bias was detected (p < 0.05). CONCLUSION The findings of the study highlight that the application of cell therapy can enhance the visual acuity in AMD, SMD, and RP.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Ebadpour
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Mehdi Johari Moghadam
- Department of Ophthalmology & Vision Science, Tschannen Eye Institute, University of California, Davis, Sacramento, CA, USA
| | - Zahra Rezaee
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
7
|
Norte-Muñoz M, García-Bernal D, García-Ayuso D, Vidal-Sanz M, Agudo-Barriuso M. Interplay between mesenchymal stromal cells and the immune system after transplantation: implications for advanced cell therapy in the retina. Neural Regen Res 2024; 19:542-547. [PMID: 37721282 PMCID: PMC10581591 DOI: 10.4103/1673-5374.380876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 05/11/2023] [Indexed: 09/19/2023] Open
Abstract
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models. Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration, namely trophic factor deprivation and neuroinflammation. Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement. However, little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system. Here, we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system, focusing on recent work in the retina and the importance of the type of transplantation.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - David García-Bernal
- Grupo de Investigación Trasplante Hematopoyético y Terapia celular, Departamento de Bioquímica e Inmunología. Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Diego García-Ayuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Manuel Vidal-Sanz
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Marta Agudo-Barriuso
- Grupo de Investigación Oftalmología Experimental, Departamento de Oftalmología, Optometría, Otorrinolaringología y Anatomía Patológica, Facultad de Medicina, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|
8
|
Hu Y, Du Y, Jin Y, Feng K, Chen H, Han L, Qu H, Ma Z. A Novel Surgical Approach for Big Sheet Allogenic Retinal Pigment Epithelium-Bruch Membrane Complex Transplantation Into the Subretinal Space. Retina 2023; 43:1816-1819. [PMID: 37721726 DOI: 10.1097/iae.0000000000003273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Allogenic transplantation of retinal pigmented epithelium monolayer sheet has experienced bottlenecks due to imperfect surgical techniques. In this study, we developed a novel approach for allogenic transplantation of big sheets of retinal pigment epithelium (RPE)-Bruch membrane complex. METHODS RPE-Bruch membrane complex sheets of 5 × 6 mm2 to 10 × 10 mm2 were taken from donated eyes. Through a novel approach, the sheets of RPE-Bruch membrane complex were transplanted into the subretinal space of eight eyes (8 patients) with late-stage retinitis pigmentosa. The patients were followed up for 5 ± 2 months. RESULTS All RPE-Bruch membrane complexes were successfully inserted into the subretinal space during the surgery. Follow-up examinations also showed that the grafts attached well to the transplantation site. No rejection or retinal detachment was found. CONCLUSION Through our technique, big sheets of allogenic RPE-Bruch membrane complexes could be implanted into the subretinal space smoothly. This novel approach may be useful for big sheet of allogenic RPE-derived or stem cells-derived RPE transplantation in the treatment of RP and other retinal dystrophic diseases.
Collapse
Affiliation(s)
- Yuntao Hu
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
- Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China; and
| | - Yu Du
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
- Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China; and
| | - Ying Jin
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
- Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China; and
- The Ophthalmology Division, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kang Feng
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
- Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China; and
| | - Huijin Chen
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
- Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China; and
| | - Liang Han
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
- Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China; and
| | - Hongqiang Qu
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
- Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China; and
| | - Zhizhong Ma
- Peking University Eye Center, Peking University Third Hospital, Beijing, China
- Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China; and
| |
Collapse
|
9
|
Huang Z, Huang Q, Xu K, Liang L, Li Y, Zhou W, Ning N, Zhou J, Hu J, Liu S, Dang L. Protective effect of ZYMT, a traditional Chinese patent medicine in a mouse model of retinitis pigmentosa. Biomed Pharmacother 2023; 162:114580. [PMID: 36989720 DOI: 10.1016/j.biopha.2023.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common genetic disorder that causes blindness. At present, there exists no remedy for the disease. The aim of the current research was to investigate the protective effect of Zhangyanming Tablets (ZYMT) in a mouse model of RP, and explore the underlying mechanism. Eighty RP mice were randomly divided into two groups. The mice in ZYMT group were administered with ZYMT suspension(0.0378 g/mL), while the mice in model group were given the same volume of distilled water. At day 7 and day 14 after intervention, electroretinogram (ERG), fundus photography, and histological examination were used to assess the retinal function and structure. TUNEL, immunofluorescence and qPCR were used to evaluate cell apoptosis and expressions of Sirt1, Iba1, Bcl-2, Bax and Caspase-3. A significantly shortened latency of ERG waves was observed in ZYMT-treated mice, in comparison to those in the model group (P < 0.05). Histologically, ultrastructure of the retina was better preserved, and the outer nuclear layer (ONL) exhibited marked increase in thickness and cell count in ZYMP group (P < 0.05). The apoptosis rate was decreased markedly in ZYMT group. Immunofluorescence analysis showed that the expressions of Iba1 and Bcl-2 in the retina were increased, Bax and Caspase-3 were decreased after ZYMT intervention, while the qPCR revealed that the expressions of Iba1 and Sirt1 were significantly increased (P < 0.05). This study indicated that ZYMT has protective effect on retinal function and morphology of inherited RP mice in the early stage, possibly mediated via the regulation of antioxidant and anti-/pro-apoptotic factors expressions.
Collapse
|
10
|
Chang AY. Challenges of Treatment Methodologies and the Future of Gene Therapy and Stem Cell Therapy to Treat Retinitis Pigmentosa. Methods Mol Biol 2022; 2560:363-374. [PMID: 36481911 DOI: 10.1007/978-1-0716-2651-1_33] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary retinal degenerations for which there is currently no cure. Studies investigating the use of gene therapy, gene editing, and stem cells as potential treatment strategies have shown promising results in animal models and some early clinical trials. Even still, major barriers still exist, including the ability to develop therapies that can target the wide range of mutational etiologies and phenotypic presentations that encompass RP. Additionally, effective screening and early diagnosis are crucial for maximum therapeutic potential, especially because many therapeutic agents require a baseline level photoreceptor function.
Collapse
Affiliation(s)
- Angela Y Chang
- Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
12
|
Lin F, Xie M, Sheng X, Guo L, Jia J, Wang Y. Research trends in the field of retinitis pigmentosa from 2002 to 2021: a 20 years bibliometric analysis. Int Ophthalmol 2022; 43:1825-1833. [DOI: 10.1007/s10792-022-02581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
|
13
|
Liu W, Liu S, Li P, Yao K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int J Mol Sci 2022; 23:ijms23094883. [PMID: 35563274 PMCID: PMC9101511 DOI: 10.3390/ijms23094883] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is genetically heterogeneous retinopathy caused by photoreceptor cell death and retinal pigment epithelial atrophy that eventually results in blindness in bilateral eyes. Various photoreceptor cell death types and pathological phenotypic changes that have been disclosed in RP demand in-depth research of its pathogenic mechanism that may account for inter-patient heterogeneous responses to mainstream drug treatment. As the primary method for studying the genetic characteristics of RP, molecular biology has been widely used in disease diagnosis and clinical trials. Current technology iterations, such as gene therapy, stem cell therapy, and optogenetics, are advancing towards precise diagnosis and clinical applications. Specifically, technologies, such as effective delivery vectors, CRISPR/Cas9 technology, and iPSC-based cell transplantation, hasten the pace of personalized precision medicine in RP. The combination of conventional therapy and state-of-the-art medication is promising in revolutionizing RP treatment strategies. This article provides an overview of the latest research on the pathogenesis, diagnosis, and treatment of retinitis pigmentosa, aiming for a convenient reference of what has been achieved so far.
Collapse
|
14
|
Jin C, Ou Q, Chen J, Wang T, Zhang J, Wang Z, Wang Y, Tian H, Xu JY, Gao F, Wang J, Li J, Lu L, Xu GT. Chaperone-mediated autophagy plays an important role in regulating retinal progenitor cell homeostasis. Stem Cell Res Ther 2022; 13:136. [PMID: 35365237 PMCID: PMC8973999 DOI: 10.1186/s13287-022-02809-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To explore the function and regulatory mechanism of IFITM3 in mouse neural retinal progenitor cells (mNRPCs), which was found to be very important not only in the development of the retina in embryos but also in NRPCs after birth. METHODS Published single-cell sequencing data were used to analyze IFITM3 expression in mNRPCs. RNA interference was used to knock down the expression of IFITM3. CCK-8 assays were used to analyze cell viability. RNA-seq was used to assess mRNA expression, as confirmed by real-time quantitative PCR, and immunofluorescence assays and western blots were used to validate the levels of relative proteins, and autophagy flux assay. Lysosomal trackers were used to track the organelle changes. RESULTS The results of single-cell sequencing data showed that IFITM3 is highly expressed in the embryo, and after birth, RNA-seq showed high IFITM3 expression in mNRPCs. Proliferation and cell viability were greatly reduced after IFITM3 was knocked down. The cell membrane system and lysosomes were dramatically changed, and lysosomes were activated and evidently agglomerated in RAMP-treated cells. The expression of LAMP1 was significantly increased with lysosome agglomeration after treatment with rapamycin (RAMP). Further detection showed that SQSTM1/P62, HSC70 and LAMP-2A were upregulated, while no significant difference in LC3A/B expression was observed; no autophagic flux was generated. CONCLUSION IFITM3 regulates mNRPC viability and proliferation mainly through chaperone-mediated autophagy (CMA) but not macroautophagy (MA). IFITM3 plays a significant role in maintaining the homeostasis of progenitor cell self-renewal by sustaining low-level activation of CMA to eliminate deleterious factors in cells.
Collapse
Affiliation(s)
- Caixia Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China.
| | - Guo-Tong Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| |
Collapse
|
15
|
Garcia-Ayuso D, Di Pierdomenico J, García-Bernal D, Vidal-Sanz M, Villegas-Pérez MP. Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations. Neural Regen Res 2022; 17:1937-1944. [PMID: 35142670 PMCID: PMC8848608 DOI: 10.4103/1673-5374.335692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Retinal degenerative diseases affecting the outer retina in its many forms (inherited, acquired or induced) are characterized by photoreceptor loss, and represent currently a leading cause of irreversible vision loss in the world. At present, there are very few treatments capable of preventing, recovering or reversing photoreceptor degeneration or the secondary retinal remodeling, which follows photoreceptor loss and can also cause the death of other retinal cells. Thus, these diseases are nowadays one of the greatest challenges in the field of ophthalmological research. Bone marrow derived-mononuclear stem cell transplantation has shown promising results for the treatment of photoreceptor degenerations. These cells may have the potential to slow down photoreceptor loss, and therefore should be applied in the early stages of photoreceptor degenerations. Furthermore, because of their possible paracrine effects, they may have a wide range of clinical applications, since they can potentially impact on several retinal cell types at once and photoreceptor degenerations can involve different cells and/or begin in one cell type and then affect adjacent cells. The intraocular injection of bone marrow derived-mononuclear stem cells also enhances the outcomes of other treatments aimed to protect photoreceptors. Therefore, it is likely that future investigations may combine bone marrow derived-mononuclear stem cell therapy with other systemic or intraocular treatments to obtain greater therapeutic effects in degenerative retinal diseases.
Collapse
Affiliation(s)
- Diego Garcia-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - David García-Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca); Servicio de Hematología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| |
Collapse
|
16
|
Samoila O, Samoila L. Stem Cells in the Path of Light, from Corneal to Retinal Reconstruction. Biomedicines 2021; 9:biomedicines9080873. [PMID: 34440077 PMCID: PMC8389604 DOI: 10.3390/biomedicines9080873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The future of eye reconstruction invariably includes stem cells transplantation. Corneal limbus, corneal stroma, trabeculum, retinal cells, optic nerve, and all structures that are irreversibly damaged and have no means to be repaired or replaced, through conventional treatment or surgery, represent targets for stem cell reconstruction. This review tries to answer the question if there is any clinical validation for stem therapies, so far, starting from the cornea and, on the path of light, arriving to the retina. The investigation covers the last 10 years of publications. From 2385 published sources, we found 56 clinical studies matching inclusion criteria, 39 involving cornea, and 17 involving retina. So far, corneal epithelial reconstruction seems well validated clinically. Enough clinical data are collected to allow some form of standardization for the stem cell transplant procedures. Cultivated limbal epithelial stem cells (CLET), simple limbal epithelial transplant (SLET), and oral mucosa transplantation are implemented worldwide. In comparison, far less patients are investigated in retinal stem reconstructions, with lower anatomical and clinical success, so far. Intravitreal, subretinal, and suprachoroidal approach for retinal stem therapies face specific challenges.
Collapse
Affiliation(s)
- Ovidiu Samoila
- Ophthalmology Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400006 Cluj-Napoca, Romania
- Correspondence:
| | | |
Collapse
|
17
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Cell-based therapy for ocular disorders: A promising frontier. Curr Stem Cell Res Ther 2021; 17:147-165. [PMID: 34161213 DOI: 10.2174/1574888x16666210622124555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
As the ocular disorders causing long-term blindness or optical abnormalities of the ocular tissue affect the quality of life of patients to a large extent, awareness of their corresponding pathogenesis and the earlier detection and treatment need more consideration. Though current therapeutics result in desirable outcomes, they do not offer an inclusive solution for development of visual impairment to blindness. Accordingly, stem cells, because of their particular competencies, have gained extensive attention for application in regenerative medicine of ocular diseases. In the last decades, a wide spectrum of stem cells surrounding mesenchymal stem/stromal cells (MSC), neural stem cells (NSCs), and embryonic/induced pluripotent stem cells (ESCs/iPSCs) accompanied by Müller glia, ciliary epithelia-derived stem cells, and retinal pigment epithelial (RPE) stem cells have been widely investigated to report their safety and efficacy in preclinical models and also human subjects. In this regard, in the first interventions, RPE cell suspensions were successfully utilized to ameliorate visual defects of the patients suffering from age-related macular degeneration (AMD) after subretinal transplantation. Herein, we will explain the pathogenesis of ocular diseases and highlight the novel discoveries and recent findings in the context of stem cell-based therapies in these disorders, focusing on the in vivo reports published during the last decade.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
18
|
Coco-Martin RM, Pastor-Idoate S, Pastor JC. Cell Replacement Therapy for Retinal and Optic Nerve Diseases: Cell Sources, Clinical Trials and Challenges. Pharmaceutics 2021; 13:pharmaceutics13060865. [PMID: 34208272 PMCID: PMC8230855 DOI: 10.3390/pharmaceutics13060865] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this review was to provide an update on the potential of cell therapies to restore or replace damaged and/or lost cells in retinal degenerative and optic nerve diseases, describing the available cell sources and the challenges involved in such treatments when these techniques are applied in real clinical practice. Sources include human fetal retinal stem cells, allogenic cadaveric human cells, adult hippocampal neural stem cells, human CNS stem cells, ciliary pigmented epithelial cells, limbal stem cells, retinal progenitor cells (RPCs), human pluripotent stem cells (PSCs) (including both human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs)) and mesenchymal stem cells (MSCs). Of these, RPCs, PSCs and MSCs have already entered early-stage clinical trials since they can all differentiate into RPE, photoreceptors or ganglion cells, and have demonstrated safety, while showing some indicators of efficacy. Stem/progenitor cell therapies for retinal diseases still have some drawbacks, such as the inhibition of proliferation and/or differentiation in vitro (with the exception of RPE) and the limited long-term survival and functioning of grafts in vivo. Some other issues remain to be solved concerning the clinical translation of cell-based therapy, including (1) the ability to enrich for specific retinal subtypes; (2) cell survival; (3) cell delivery, which may need to incorporate a scaffold to induce correct cell polarization, which increases the size of the retinotomy in surgery and, therefore, the chance of severe complications; (4) the need to induce a localized retinal detachment to perform the subretinal placement of the transplanted cell; (5) the evaluation of the risk of tumor formation caused by the undifferentiated stem cells and prolific progenitor cells. Despite these challenges, stem/progenitor cells represent the most promising strategy for retinal and optic nerve disease treatment in the near future, and therapeutics assisted by gene techniques, neuroprotective compounds and artificial devices can be applied to fulfil clinical needs.
Collapse
Affiliation(s)
- Rosa M. Coco-Martin
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-983423559
| | - Salvador Pastor-Idoate
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Department of Ophthalmology, Hospital Clinico Universitario of Valladolid, 47003 Valladolid, Spain
| | - Jose Carlos Pastor
- Instituto de Oftalmobiologia Aplicada (IOBA), Medical School, Universidad de Valladolid, 47011 Valladolid, Spain; (S.P.-I.); (J.C.P.)
- National Institute of Health Carlos III (ISCIII), (RETICS) Cooperative Health Network for Research in Ophthalmology (Oftared), 28040 Madrid, Spain
- Department of Ophthalmology, Hospital Clinico Universitario of Valladolid, 47003 Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Fundacion del Instituto de Estudios de Ciencias de la Salud de Castilla y León (ICSCYL), 42002 Soria, Spain
| |
Collapse
|
19
|
Wiącek MP, Gosławski W, Grabowicz A, Sobuś A, Kawa MP, Baumert B, Paczkowska E, Milczarek S, Osękowska B, Safranow K, Zawiślak A, Lubiński W, Machaliński B, Machalińska A. Long-Term Effects of Adjuvant Intravitreal Treatment with Autologous Bone Marrow-Derived Lineage-Negative Cells in Retinitis Pigmentosa. Stem Cells Int 2021; 2021:6631921. [PMID: 34122558 PMCID: PMC8192192 DOI: 10.1155/2021/6631921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/24/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autologous bone marrow-derived lineage-negative (Lin-) cells present antiapoptotic and neuroprotective activity. The aim of the study was to evaluate the safety and efficacy of novel autologous Lin- cell therapy during a 12-month follow-up period. METHODS Intravitreal injection of Lin- cells in 30 eyes with retinitis pigmentosa (RP) was performed. The fellow eyes (FEs) were considered control eyes. Functional and morphological eye examinations were performed before and 1, 3, 6, 9, and 12 months after the injection. RESULTS Patients whose symptoms started less than 10 years ago gained 14 ± 10 letters, while those with a longer disease duration gained 2.86 ± 8.54 letters compared to baseline at the 12-month follow-up (p = 0.021). There were significantly higher differences in response densities of P1-wave amplitudes in the first ring of multifocal ERGs in treated eyes than FE recordings in all follow-up points were detected. Accordingly, the mean deviation in 10-2 static perimetry improved significantly in the treated eyes compared with fellow eyes 12 months after the procedure. The QoL scores improved significantly and lasted until the 9-month visit. CONCLUSION Lin- cell-based therapy is safe and effective, especially for a well-selected group of RP patients who still maintained good function of the foveal cones.
Collapse
Affiliation(s)
- Marta P. Wiącek
- First Department of Ophthalmology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
| | - Wojciech Gosławski
- Second Department of Ophthalmology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
| | - Aleksandra Grabowicz
- First Department of Ophthalmology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
| | - Miłosz P. Kawa
- Department of General Pathology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
| | - Bartłomiej Baumert
- Department of Bone Marrow Transplantation, Department of Hematology and Bone Marrow Transplantation, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
- Department of Bone Marrow Transplantation, Department of Hematology and Bone Marrow Transplantation, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Sławomir Milczarek
- Department of General Pathology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
- Department of Bone Marrow Transplantation, Department of Hematology and Bone Marrow Transplantation, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Bogumiła Osękowska
- Department of Bone Marrow Transplantation, Department of Hematology and Bone Marrow Transplantation, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
| | - Alicja Zawiślak
- Department of General Pathology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
| | - Wojciech Lubiński
- Second Department of Ophthalmology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
- Department of Bone Marrow Transplantation, Department of Hematology and Bone Marrow Transplantation, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, Powst. Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
20
|
Limoli PG, Limoli C, Vingolo EM, Franzone F, Nebbioso M. Mesenchymal stem and non-stem cell surgery, rescue, and regeneration in glaucomatous optic neuropathy. Stem Cell Res Ther 2021; 12:275. [PMID: 33957957 PMCID: PMC8101217 DOI: 10.1186/s13287-021-02351-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glaucomatous optic neuropathy (GON) is an anatomofunctional impairment of the optic nerve triggered by glaucoma. Recently, growth factors (GFs) have been shown to produce retinal neuroenhancement. The suprachoroidal autograft of mesenchymal stem cells (MSCs) by the Limoli retinal restoration technique (LRRT) has proven to achieve retinal neuroenhancement by producing GF directly into the choroidal space. This retrospectively registered clinical study investigated the visual function changes in patients with GON treated with LRRT. Methods Twenty-five patients (35 eyes) with GON in progressive disease conditions were included in the study. Each patient underwent a comprehensive ocular examination, including the analysis of best corrected visual acuity (BCVA) for far and near visus, sensitivity by Maia microperimetry, and the study of the spectral domain-optical coherence tomography (SD-OCT). The patients were divided into two groups: a control group, consisting of 21 eyes (average age 72.2 years, range 50–83), and an LRRT group, consisting of 14 eyes (average age 67.4, range 50–84). Results After 6 months, the BCVA, close-up visus, and microperimetric sensitivity significantly improved in the LRRT-treated group (p<0.05), whereas the mean increases were not statistically significant in controls (p>0.5). Conclusions Patients with GON treated with LRRT showed a significant increase in visual performance (VP) both in BCVA and sensitivity and an improvement of residual close-up visus, in the comparison between the LRRT results and the control group. Further studies will be needed to establish the actual significance of the reported findings.
Collapse
Affiliation(s)
| | - Celeste Limoli
- Low Vision Research Centre of Milan, Piazza Sempione 3, 20145, Milan, Italy
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Federica Franzone
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy. .,Department of Sense Organs, Ocular Electrophysiology Centre, Umberto I Policlinic, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
21
|
Komáromy AM, Koehl KL, Park SA. Looking into the future: Gene and cell therapies for glaucoma. Vet Ophthalmol 2021; 24 Suppl 1:16-33. [PMID: 33411993 PMCID: PMC7979454 DOI: 10.1111/vop.12858] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Glaucoma is a complex group of optic neuropathies that affects both humans and animals. Intraocular pressure (IOP) elevation is a major risk factor that results in the loss of retinal ganglion cells (RGCs) and their axons. Currently, lowering IOP by medical and surgical methods is the only approved treatment for primary glaucoma, but there is no cure, and vision loss often progresses despite therapy. Recent technologic advances provide us with a better understanding of disease mechanisms and risk factors; this will permit earlier diagnosis of glaucoma and initiation of therapy sooner and more effectively. Gene and cell therapies are well suited to target these mechanisms specifically with the potential to achieve a lasting therapeutic effect. Much progress has been made in laboratory settings to develop these novel therapies for the eye. Gene and cell therapies have already been translated into clinical application for some inherited retinal dystrophies and age-related macular degeneration (AMD). Except for the intravitreal application of ciliary neurotrophic factor (CNTF) by encapsulated cell technology for RGC neuroprotection, there has been no other clinical translation of gene and cell therapies for glaucoma so far. Possible application of gene and cell therapies consists of long-term IOP control via increased aqueous humor drainage, including inhibition of fibrosis following filtration surgery, RGC neuroprotection and neuroregeneration, modification of ocular biomechanics for improved IOP tolerance, and inhibition of inflammation and neovascularization to prevent the development of some forms of secondary glaucoma.
Collapse
Affiliation(s)
- András M. Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kristin L. Koehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Shin Ae Park
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
22
|
Tuekprakhon A, Sangkitporn S, Trinavarat A, Pawestri AR, Vamvanij V, Ruangchainikom M, Luksanapruksa P, Pongpaksupasin P, Khorchai A, Dambua A, Boonchu P, Yodtup C, Uiprasertkul M, Sangkitporn S, Atchaneeyasakul LO. Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Res Ther 2021; 12:52. [PMID: 33422139 PMCID: PMC7796606 DOI: 10.1186/s13287-020-02122-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a progressive inherited retinal disease with great interest for finding effective treatment modalities. Stem cell-based therapy is one of the promising candidates. We aimed to investigate the safety, feasibility, and short-term efficacy of intravitreal injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in participants with advanced stage RP. Methods This non-randomized phase I clinical trial enrolled 14 participants, categorized into three groups based on a single dose intravitreal BM-MSC injection of 1 × 106, 5 × 106, or 1 × 107 cells. We evaluated signs of inflammation and other adverse events (AEs). We also assessed the best corrected visual acuity (BCVA), visual field (VF), central subfield thickness (CST), and subjective experiences. Results During the 12-month period, we noticed several mild and transient AEs. Interestingly, we found statistically significant improvements in the BCVA compared to baseline, although they returned to the baseline at 12 months. The VF and CST were stable, indicating no remarkable disease progression. We followed 12 participants beyond the study period, ranging from 1.5 to 7 years, and observed one severe but manageable AE at year 3. Conclusion Intravitreal injection of BM-MSCs appears to be safe and potentially effective. All adverse events during the 12-month period required observation without any intervention. For the long-term follow-up, only one participant needed surgical treatment for a serious adverse event and the vision was restored. An enrollment of larger number of participants with less advanced RP and long-term follow-up is required to evaluate the safety and efficacy of this intervention. Trial registration ClinicalTrials.gov, NCT01531348. Registered on February 10, 2012 Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02122-7.
Collapse
Affiliation(s)
- Aekkachai Tuekprakhon
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Siripakorn Sangkitporn
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Adisak Trinavarat
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | | | - Visit Vamvanij
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monchai Ruangchainikom
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Panya Luksanapruksa
- Department of Orthopaedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phitchapa Pongpaksupasin
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand.,Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Areerat Khorchai
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Acharaporn Dambua
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Patcharaporn Boonchu
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Chonlada Yodtup
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand
| | - Mongkol Uiprasertkul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somchai Sangkitporn
- Stem cell and Regenerative Medicine Center, Department of Medical Sciences, Ministry of Public Health, National Institute of Health, 88/7 Tivanon Road, Muang, Nonthaburi, 11000, Thailand.
| | - La-Ongsri Atchaneeyasakul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand.
| |
Collapse
|
23
|
Abstract
PURPOSE The aim of this investigation was to study the patient-reported outcomes of patients with microbial keratitis (MK) using the 9-item National Eye Institute-Visual Function Questionnaire (NEI VFQ-9). METHODS Using the Sight Outcomes Research Collaborative ophthalmology electronic health record repository, patients with MK and control patients who completed the NEI VFQ-9 within 7 days of their appointment were identified. The questionnaire is scored as a mean of the 9 items on a scale from 0 to 100, with higher scores indicating better functioning. Composite and individual item scores were compared between groups using the analysis of variance. RESULTS In total, 916 questionnaires were completed from patients with acute MK (n = 84), nonacute MK (n = 30), MK with a corneal transplant (n = 21), from controls seen in a satellite comprehensive ophthalmology clinic (n = 528), and controls seen at a subspecialty ophthalmology clinic (n = 253). The mean NEI VFQ-9 composite scores per group were 66.6 (SD = 26.8), 78.1 (SD = 17.1), 58.6 (SD =21.6), 88.0 (SD = 10.2), and 83.5 (SD = 13.0), respectively (P < 0.0001). Both patients with acute MK and patients with MK requiring transplant reported significantly worse function than nonacute MK, comprehensive, and specialty patients. Patients with nonacute MK reported significantly worse function than comprehensive control patients (all Tukey-adjusted P < 0.05). DISCUSSION Patients who had or eventually require corneal transplant for management of their MK report worse visual function than patients with nonacute MK. This may be important in helping physicians counsel their patients.
Collapse
Affiliation(s)
- Megan M. Tuohy
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Leslie M. Niziol
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Shazhad Mian
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Dena Ballouz
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | | | - Maria A. Woodward
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Intravitreal Use of a Bone Marrow Mononuclear Fraction (BMMF) Containing CD34+ Cells in Patients with Stargardt Type Macular Dystrophy. Stem Cells Int 2020; 2020:8828256. [PMID: 33488737 PMCID: PMC7787861 DOI: 10.1155/2020/8828256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
To assess the therapeutic potential and the safety of intravitreous use of a bone marrow mononuclear fraction (BMMF) containing CD34+ cells in patients with Stargardt type macular dystrophy. The study was conducted on 10 patients with Stargardt dystrophy with worse eye visual acuity ≤ 20/125. A bone marrow aspirate was obtained from all patients, and after processing in the cell therapy center (CTC), 0.1 ml of the intravitreous BMMF suspension was injected into the eye with worse visual acuity. A sham injection was performed in the contralateral eye. The patients were evaluated at baseline and one, three, and six months after the injection. All of them were submitted to measurement of best corrected visual acuity (BCVA), microperimetry, multifocal electroretinography (mfERG) and full field electroretinography (ffERG), autofluorescence (AF), and optical coherence tomography (OCT). Fluorescein angiography was also performed before and six months after the injection. All patients completed the six-month period of evaluation. Mean visual acuity of the treated eye was 1.1 logMAR (20/250) before intravitreous (IV) injection, 0.96 logMAR (20/200+2) one month after injection, and 0.92 logMAR (20/160-1) 3 months after injection. In the untreated eye, mean VA was 1.0 logMAR (20/200) at baseline and 0.96 logMAR (20/200+2) and 0.94 logMAR (20/160-2) one and three months after injection, respectively. In the treated group, VA at baseline ranged from best acuity of 20/125-1 to worst acuity of 20/640+2, going through 20/100+2 and 20/400 during the first month. In the untreated group, BCVA ranged from 20/100+2 to 20/400 at baseline and from 20/100 to 20/400 after one month. The results for the treated group differed significantly at all follow-up times, whereas no significant difference was observed in the untreated group. Regarding the mean sensitivity of microperimetry, although there was improvement throughout all months, a significant difference occurred only during the first month. In the untreated eye, there was no significant difference in any analysis. Angiofluoresceinography did not reveal neovessel formation or tumor growth. The remaining exams were used in order to aid the diagnosis. The results indicate that the use of intravitreous BMMF in patients with Stargardt dystrophy is safe and is associated with a discrete improvement of BCVA and microperimetry in the treated eye compared to the untreated one.
Collapse
|
25
|
Antioxidant and Biological Properties of Mesenchymal Cells Used for Therapy in Retinitis Pigmentosa. Antioxidants (Basel) 2020; 9:antiox9100983. [PMID: 33066211 PMCID: PMC7602011 DOI: 10.3390/antiox9100983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Both tissue repair and regeneration are a priority in regenerative medicine. Retinitis pigmentosa (RP), a complex retinal disease characterized by the progressive loss of impaired photoreceptors, is currently lacking effective therapies: this represents one of the greatest challenges in the field of ophthalmological research. Although this inherited retinal dystrophy is still an incurable genetic disease, the oxidative damage is an important pathogenetic element that may represent a viable target of therapy. In this review, we summarize the current neuroscientific evidence regarding the effectiveness of cell therapies in RP, especially those based on mesenchymal cells, and we focus on their therapeutic action: limitation of both oxidative stress and apoptotic processes triggered by the disease and promotion of cell survival. Cell therapy could therefore represent a feasible therapeutic option in RP.
Collapse
|
26
|
Wang Y, Tang Z, Gu P. Stem/progenitor cell-based transplantation for retinal degeneration: a review of clinical trials. Cell Death Dis 2020; 11:793. [PMID: 32968042 PMCID: PMC7511341 DOI: 10.1038/s41419-020-02955-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Retinal degeneration (RD) is one of the dominant causes of irreversible vision impairment and blindness worldwide. However, the current effective therapeutics for RD in the ophthalmologic clinic are unclear and controversial. In recent years, extensively investigated stem/progenitor cells-including retinal progenitor cells (RPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and mesenchymal stromal cells (MSCs)-with proliferation and multidirectional differentiation potential have presented opportunities to revolutionise the ultimate clinical management of RD. Herein, we provide a comprehensive overview on the progression of clinical trials for RD treatment using four types of stem/progenitor cell-based transplantation to replace degenerative retinal cells and/or to supplement trophic factors from the aspects of safety, effectiveness and their respective advantages and disadvantages. In addition, we also discuss the emerging role of stem cells in the secretion of multifunctional nanoscale exosomes by which stem cells could be further exploited as a potential RD therapy. This review will facilitate the understanding of scientists and clinicians of the enormous promise of stem/progenitor cell-based transplantation for RD treatment, and provide incentive for superior employment of such strategies that may be suitable for treatment of other diseases, such as stroke and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Yiqi Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Zhimin Tang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P.R. China.
| |
Collapse
|
27
|
Kahraman NS, Oner A. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial. Int J Ophthalmol 2020; 13:1423-1429. [PMID: 32953582 DOI: 10.18240/ijo.2020.09.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
AIM To investigate the efficacy and the safety of umbilical cord derived mesenchymal stem cell (UC-MSC) implantation in patients with retinitis pigmentosa (RP). METHODS This prospective, single-center, phase 3 clinical study enrolled 124 eyes of 82 RP patients. The patients received 5 million UC-MSCs to the suprachoroidal area with a surgical procedure. Patients were evaluated on the 1st day, 1st, and 6th months postoperatively. Best corrected visual acuity (BCVA), anterior segment and fundus examinations, color photography, optical coherence tomography (OCT), and visual field (VF) tests were carried out at each visit. Fundus fluorescein angiography (FFA) and multifocal electroretinography (mfERG) recordings were performed at the end of the 6th month. Ocular and systemic adverse events of the surgical procedure were also noted. RESULTS All of the 82 patients completed the 6-month follow-up period. None of them had any serious systemic or ocular complications. There were statistically significant improvements in BCVA and VF during the study (all P<0.05). The amplitudes of the P1 waves in the central areas showed significant improvements in mfERG recordings. There were also significant increases in implicit times of P1 waves in the central areas. CONCLUSION Suprachoroidal administration of UC-MSCs has beneficial effect on BCVA, VF, and mfERG measurements during the 6-month follow-up period. Cell mediated therapy based on the secretion of growth factors (GFs) seems to be an effective and safe option for degenerative retinal diseases.
Collapse
Affiliation(s)
| | - Ayse Oner
- Department of Ophthalmology, Kayseri Acibadem Hospital, Kayseri 38030, Turkey
| |
Collapse
|
28
|
Ikelle L, Al-Ubaidi MR, Naash MI. Pluripotent Stem Cells for the Treatment of Retinal Degeneration: Current Strategies and Future Directions. Front Cell Dev Biol 2020; 8:743. [PMID: 32923439 PMCID: PMC7457054 DOI: 10.3389/fcell.2020.00743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/16/2020] [Indexed: 01/14/2023] Open
Abstract
Stem cells have been part of the biomedical landscape since the early 1960s. However, the translation of stem cells to effective therapeutics have met significant challenges, especially for retinal diseases. The retina is a delicate and complex architecture of interconnected cells that are steadfastly interdependent. Degenerative mechanisms caused by acquired or inherited diseases disrupt this interconnectivity, devastating the retina and causing severe vision loss in many patients. Consequently, retinal differentiation of exogenous and endogenous stem cells is currently being explored as replacement therapies in the debilitating diseases. In this review, we will examine the mechanisms involved in exogenous stem cells differentiation and the challenges of effective integration to the host retina. Furthermore, we will explore the current advancements in trans-differentiation of endogenous stem cells, primarily Müller glia.
Collapse
Affiliation(s)
- Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
29
|
Zhao T, Liang Q, Meng X, Duan P, Wang F, Li S, Liu Y, Yin ZQ. Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells Maintains and Partially Improves Visual Function in Patients with Advanced Retinitis Pigmentosa. Stem Cells Dev 2020; 29:1029-1037. [PMID: 32679004 DOI: 10.1089/scd.2020.0037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary retinal degeneration disease with no effective therapeutic approaches. Inflammatory and immune disorders are thought to play an important role in the pathogenesis of RP. Human umbilical cord mesenchymal stem cells (UCMSCs), with multiple biological functions such as anti-inflammation and immunoregulation, have been applied in different systemic diseases. We conducted a phase I/II clinical trial aiming to evaluate the safety and efficacy of intravenous administration of UCMSCs in advanced RP patients. All 32 subjects were intravenously infused with one dose of 108 UCMSCs and were followed up for 12 months. No serious local or systemic adverse effects occurred in the whole follow-up. Most patients improved their best corrected visual acuity (BCVA) in the first 3 months. The proportions of patients with improved or maintained BCVA were 96.9%, 95.3%, 93.8%, 95.4%, 90.6%, and 90.6% at the 1st, 2nd, 3rd, 6th, 9th, and 12th month follow-up, respectively. Most of the patients (81.3%) maintained or improved their visual acuities for 12 months. The average NEI VFQ-25 questionnaire scores were significantly improved at the third month (P < 0.05). The average visual field sensitivity and flash visual evoked potential showed no significant difference (P = 0.185, P = 0.711). Our results indicated that the intravenous infusion of UCMSCs was safe for advanced RP patients. Most of the patients improved or maintained their visual functions in a long term. The life qualities were improved significantly in the first 3 months, suggesting that the intravenous infusion of UCMSCs may be a promising therapeutic approach for advanced RP patients.
Collapse
Affiliation(s)
- Tongtao Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qingling Liang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaohong Meng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Duan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiying Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
30
|
Targeting of the NRL Pathway as a Therapeutic Strategy to Treat Retinitis Pigmentosa. J Clin Med 2020; 9:jcm9072224. [PMID: 32668775 PMCID: PMC7408925 DOI: 10.3390/jcm9072224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal dystrophy (IRD) with a prevalence of 1:4000, characterized by initial rod photoreceptor loss and subsequent cone photoreceptor loss with accompanying nyctalopia, visual field deficits, and visual acuity loss. A diversity of causative mutations have been described with autosomal dominant, autosomal recessive, and X-linked inheritance and sporadic mutations. The diversity of mutations makes gene therapy challenging, highlighting the need for mutation-agnostic treatments. Neural leucine zipper (NRL) and NR2E3 are factors important for rod photoreceptor cell differentiation and homeostasis. Germline mutations in NRL or NR2E3 leads to a loss of rods and an increased number of cones with short wavelength opsin in both rodents and humans. Multiple groups have demonstrated that inhibition of NRL or NR2E3 activity in the mature retina could endow rods with certain properties of cones, which prevents cell death in multiple rodent RP models with diverse mutations. In this review, we summarize the literature on NRL and NR2E3, therapeutic strategies of NRL/NR2E3 modulation in preclinical RP models, as well as future directions of research. In summary, inhibition of the NRL/NR2E3 pathway represents an intriguing mutation agnostic and disease-modifying target for the treatment of RP.
Collapse
|
31
|
Costela FM, Pesudovs K, Sandberg MA, Weigel-DiFranco C, Woods RL. Validation of a vision-related activity scale for patients with retinitis pigmentosa. Health Qual Life Outcomes 2020; 18:196. [PMID: 32571342 PMCID: PMC7310073 DOI: 10.1186/s12955-020-01427-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose There have been few systematic reports of vision-related activity limitations of people with retinitis pigmentosa (RP). We report a merging of data from the National Eye Institute Visual Function Questionnaire (NEI-VFQ) obtained in five previous studies. We asked whether the Vision Function Scale (VFS; Pesudovs et al., 2010) which was developed for cataract patients would apply in this new population (condition). Methods Five hundred ninety-four individuals completed a total of 1753 questionnaires, with 209 participants providing responses over at least 4 years. Rasch analysis showed that the 15-item VFS was poorly targeted. A new instrument created by adding four driving-related items to the VFS had better targeting. As an indirect validation, VFS-plus person scores were compared to visual field area measured using a Goldmann perimeter, to the summed score for the combined 30–2 and 30/60–1 Humphrey Field Analyzer programs (HFA), to 30-Hz full-field cone electroretinogram (ERG) amplitude, and to ETDRS visual acuity. Changes in VFS-plus person scores with age and between four common heredity groups were also examined. Results The Rasch model of responses to the 19 VFS-plus items had person and item separation of 2.66 and 24.43 respectively. The VFS-plus person scores were related to each vision measure (p < 0.001). Over a five-year period, there was a reduction in person scores of 0.5 logits (p < 0.001). Person scores fell by an average of 0.34 logits per decade (p < 0.0001). Participants with an X-linked hereditary pattern had, on average, lower person scores (p < 0.001). Conclusions The VFS-plus instrument quantified a highly-significant annual reduction in perceived vision-related ability over a five-year period. The outcome was consistent with clinical measures of vision, and detected lower perceived vision-related ability in participants with X-linked disease. It may be of use in future studies, but this needs to be tested in a representative population sample.
Collapse
Affiliation(s)
- Francisco M Costela
- Schepens Eye Research Institute, 20 Staniford St, Boston, MA, 02114, USA. .,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Konrad Pesudovs
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Michael A Sandberg
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Massachusetts Eye and Ear, Boston, MA, USA
| | | | - Russell L Woods
- Schepens Eye Research Institute, 20 Staniford St, Boston, MA, 02114, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Interactions between Amyloid-Β Proteins and Human Brain Pericytes: Implications for the Pathobiology of Alzheimer's Disease. J Clin Med 2020; 9:jcm9051490. [PMID: 32429102 PMCID: PMC7290583 DOI: 10.3390/jcm9051490] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is the most common cause of dementia, especially among aging populations. Despite advances in AD research, the underlying cause and the discovery of disease-modifying treatments have remained elusive. Two key features of AD pathology are the aberrant deposition of amyloid beta (amyloid-β or Aβ) proteins in the brain parenchyma and Aβ toxicity in brain pericytes of the neurovascular unit/blood–brain barrier (NVU/BBB). This toxicity induces oxidative stress in pericytes and leads to capillary constriction. The interaction between pericytes and Aβ proteins results in the release of endothelin-1 in the pericytes. Endothelin-1 interacts with ETA receptors to cause pericyte contraction. This pericyte-mediated constriction of brain capillaries can cause chronic hypoperfusion of the brain microvasculature, subsequently leading to the neurodegeneration and cognitive decline observed in AD patients. The interaction between Aβ proteins and brain pericytes is largely unknown and requires further investigation. This review provides an updated overview of the interaction between Aβ proteins with pericytes, one the most significant and often forgotten cellular components of the BBB and the inner blood–retinal barrier (IBRB). The IBRB has been shown to be a window into the central nervous system (CNS) that could allow the early diagnosis of AD pathology in the brain and the BBB using modern photonic imaging systems such as optical coherence tomography (OCT) and two-photon microscopy. In this review, I explore the regulation of Aβ proteins in the brain parenchyma, their role in AD pathobiology, and their association with pericyte function. This review discusses Aβ proteins and pericytes in the ocular compartment of AD patients as well as strategies to rescue or protect pericytes from the effects of Aβ proteins, or to replace them with healthy cells.
Collapse
|
33
|
Roborel de Climens A, Tugaut B, Piscopo A, Arnould B, Buggage R, Brun-Strang C. Living with type I Usher syndrome: insights from patients and their parents. Ophthalmic Genet 2020; 41:240-251. [DOI: 10.1080/13816810.2020.1737947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Andrea Piscopo
- Global HEVA Early Portfolio, Sanofi, Chilly-Mazarin, France
| | | | - Ronald Buggage
- Research and Development, Sanofi, Chilly-Mazarin, France
| | | |
Collapse
|
34
|
Kumar M, van Dijk EHC, Raman R, Mehta P, Boon CJF, Goud A, Bharani S, Chhablani J. Stress and vision-related quality of life in acute and chronic central serous chorioretinopathy. BMC Ophthalmol 2020; 20:90. [PMID: 32143668 PMCID: PMC7060585 DOI: 10.1186/s12886-020-01361-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To compare vision-related quality of life (VRQOL) between acute and chronic Central serous chorioretinopathy (CSC) and correlate this with Cohen's Perceived Stress Scale (PSS) questionnaire. METHODS Patients who were diagnosed with both acute and chronic CSC were recruited in this study. Vision-related quality of life (VRQOL) was assessed with Rasch revised National Eye Institute Visual Functioning Questionnaire 25 (NEI-VFQ25) and perceived stress with Cohen's PSS questionnaire in 118 subjects with either acute or chronic CSC. The quality of life score was compared between patients with acute and chronic CSC. Correlations between the functional score and visual acuity (VA), stage of CSC, and stress were studied. RESULTS There was no significant difference in VRQOL between Acute and Chronic CSC. In Acute CSC, affected eye VA correlated significantly with near vision question of the visual function subscale. Better eye VA correlated significantly with distance vision, social function, role limitation and dependency of the socioeconomic subscale. In chronic CSC, affected eye VA correlated with social function question of the socioemotional subscale and the better eye VA correlated with driving and distance vision of the visual function subscale. No other significant correlations with VA were noted. No correlations were observed between outcome of Cohen's PSS questionnaire and NEI-VFQ25 scores of acute and chronic CSC. CONCLUSION The VRQOL is similar between acute and chronic CSC. Perceived stress was not found to influence the VRQOL in CSC.
Collapse
Affiliation(s)
- Meenakshi Kumar
- Shri Bhagwan Mahavir Vitreoretinal Services, 18 College Road, Sankara Nethralaya, Chennai, Tamil Nadu 600 006 India
| | - Elon H. C. van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, 18 College Road, Sankara Nethralaya, Chennai, Tamil Nadu 600 006 India
| | - Pooja Mehta
- Srimati Kannuri Santhamma Centre for Vitreo-Retinal Diseases, L. V. Prasad Eye Institute, Hyderabad, Telangana India
| | - Camiel J. F. Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Abhilash Goud
- Srimati Kannuri Santhamma Centre for Vitreo-Retinal Diseases, L. V. Prasad Eye Institute, Hyderabad, Telangana India
| | - Seelam Bharani
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jay Chhablani
- Srimati Kannuri Santhamma Centre for Vitreo-Retinal Diseases, L. V. Prasad Eye Institute, Hyderabad, Telangana India
| |
Collapse
|
35
|
Nwadozi E, Rudnicki M, Haas TL. Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications. Front Cell Dev Biol 2020; 8:77. [PMID: 32117997 PMCID: PMC7033550 DOI: 10.3389/fcell.2020.00077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Pericytes are mural vascular cells found predominantly on the abluminal wall of capillaries, where they contribute to the maintenance of capillary structural integrity and vascular permeability. Generally quiescent cells in the adult, pericyte activation and proliferation occur during both physiological and pathological vascular and tissue remodeling. A considerable body of research indicates that pericytes possess attributes of a multipotent adult stem cell, as they are capable of self-renewal as well as commitment and differentiation into multiple lineages. However, pericytes also display phenotypic heterogeneity and recent studies indicate that lineage potential differs between pericyte subpopulations. While numerous microenvironmental cues and cell signaling pathways are known to regulate pericyte functions, the roles that metabolic pathways play in pericyte quiescence, self-renewal or differentiation have been given limited consideration to date. This review will summarize existing data regarding pericyte metabolism and will discuss the coupling of signal pathways to shifts in metabolic pathway preferences that ultimately regulate pericyte quiescence, self-renewal and trans-differentiation. The association between dysregulated metabolic processes and development of pericyte pathologies will be highlighted. Despite ongoing debate regarding pericyte classification and their functional capacity for trans-differentiation in vivo, pericytes are increasingly exploited as a cell therapy tool to promote tissue healing and regeneration. Ultimately, the efficacy of therapeutic approaches hinges on the capacity to effectively control/optimize the fate of the implanted pericytes. Thus, we will identify knowledge gaps that need to be addressed to more effectively harness the opportunity for therapeutic manipulation of pericytes to control pathological outcomes in tissue remodeling.
Collapse
Affiliation(s)
| | | | - Tara L. Haas
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
36
|
Xu W, Cheng W, Cui X, Xu G. Therapeutic effect against retinal neovascularization in a mouse model of oxygen-induced retinopathy: bone marrow-derived mesenchymal stem cells versus Conbercept. BMC Ophthalmol 2020; 20:7. [PMID: 31906900 PMCID: PMC6945477 DOI: 10.1186/s12886-019-1292-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 12/27/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND To study the therapeutic effect of bone marrow-derived mesenchymal stem cells (BMSC) against retinal neovascularization and to compare with anti-vascular endothelial growth factor (VEGF) therapy. METHODS Neonatal C57BL/6 mice were exposed in hyperoxygen and returned to room air to develop oxygen-induced retinopathy (OIR). Red fluorescent protein-labeled BMSC and Conbercept were intravitreally injected into OIR mice, respectively. Inhibition of neovascularization and apoptosis in OIR mice were assessed through retinal angiography, histopathology and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. RESULTS BMSC were able to migrate and integrate into the host retina, significantly inhibit retinal neovascular tufts and remodel the capillary network after injecton. Treatment with BMSC increased the retinal vascular density, decreased the number of acellular capillaries and inhibited retinal cell death. This effect was not inferior to current anti-VEGF therapy by using Conbercept. CONCLUSIONS Intravitreal injection of BMSC exerts a protective effect against retinal neovascularization and offers a therapeutic strategy for oxygen-induced retinopathy.
Collapse
Affiliation(s)
- Wei Xu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou City, 350005 China
| | - Weijing Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou City, 350005 China
- Fujian Institute of Ophthalmology, Fuzhou, China
| | - Xiaoyuan Cui
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou City, 350005 China
| | - Guoxing Xu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou City, 350005 China
- Fujian Institute of Ophthalmology, Fuzhou, China
| |
Collapse
|
37
|
Puertas-Neyra K, Usategui-Martín R, Coco RM, Fernandez-Bueno I. Intravitreal stem cell paracrine properties as a potential neuroprotective therapy for retinal photoreceptor neurodegenerative diseases. Neural Regen Res 2020; 15:1631-1638. [PMID: 32209762 PMCID: PMC7437593 DOI: 10.4103/1673-5374.276324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retinal degenerations are the leading causes of irreversible visual loss worldwide. Many pathologies included under this umbrella involve progressive degeneration and ultimate loss of the photoreceptor cells, with age-related macular degeneration and inherited and ischemic retinal diseases the most relevant. These diseases greatly impact patients’ daily lives, with accompanying marked social and economic consequences. However, the currently available treatments only delay the onset or slow progression of visual impairment, and there are no cures for these photoreceptor diseases. Therefore, new therapeutic strategies are being investigated, such as gene therapy, optogenetics, cell replacement, or cell-based neuroprotection. Specifically, stem cells can secrete neurotrophic, immunomodulatory, and anti-angiogenic factors that potentially protect and preserve retinal cells from neurodegeneration. Further, neuroprotection can be used in different types of retinal degenerative diseases and at different disease stages, unlike other potential therapies. This review summarizes stem cell-based paracrine neuroprotective strategies for photoreceptor degeneration, which are under study in clinical trials, and the latest preclinical studies. Effective retinal neuroprotection could be the next frontier in photoreceptor diseases, and the development of novel neuroprotective strategies will address the unmet therapeutic needs.
Collapse
Affiliation(s)
- Kevin Puertas-Neyra
- Instituto Universitario de Oftalmobiología Aplicada, Universidad de Valladolid, Valladolid, Spain
| | - Ricardo Usategui-Martín
- Instituto Universitario de Oftalmobiología Aplicada, Universidad de Valladolid, Valladolid, Spain
| | - Rosa M Coco
- Instituto Universitario de Oftalmobiología Aplicada, Universidad de Valladolid; Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León; Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada, Universidad de Valladolid; Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León; Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain
| |
Collapse
|
38
|
Huang H, Kolibabka M, Eshwaran R, Chatterjee A, Schlotterer A, Willer H, Bieback K, Hammes HP, Feng Y. Intravitreal injection of mesenchymal stem cells evokes retinal vascular damage in rats. FASEB J 2019; 33:14668-14679. [DOI: 10.1096/fj.201901500r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hongpeng Huang
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Kolibabka
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rachana Eshwaran
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anupriya Chatterjee
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andrea Schlotterer
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hélène Willer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
39
|
Sheludchenko VM, Budzinskaya MV, Ronzina IA, Smirnova TV. [Effectiveness of new techniques of intraocular stem cells transplantation in the treatment of retinitis pigmentosa]. Vestn Oftalmol 2019; 135:267-271. [PMID: 31691671 DOI: 10.17116/oftalma2019135052267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Retinitis pigmentosa (RP) is a degenerative retinal disease that leads to blindness. Recently, treatment methods based on new technologies have emerged. Among them is stem cells transplantation (SC). PURPOSE To make a systematic evaluation of the results of control clinical studies of cellular technologies for the treatment of RP. MATERIAL AND METHODS The key words - retinitis pigmentosa, stem cells, control study - were used to search literature databases PubMed (250), WOS (172), MEDLINE (32) for the last 5 years. According to preliminary criteria, 88 articles were selected, according to final criteria - 4 articles. A total of 25 patients with RP were found. Control points of the analysis were: baseline, 3 months and 12 months. Methods of analysis (events): visual acuity (VA) and flash electroretinogram (f-ERG). RESULTS There was no VA increase in 15 (60%) of the blind (or with negligible vision of less than 20/1600 ENDRS) patients, and the f-ERG was unrecordable. In 10 patients (40%), VA improved from 0.1 to 0.4 logMAR and the amplitude of f-ERG increased at about 3 months after injection. At 12 months, the effect returned to the baseline values. CONCLUSION The use of SC transplantation technology in RP helps achieve short-term (up to 3 months) positive changes in VA and f-ERG, which depend on the initial stage of RP and do not remain in the final stage. This evokes a question of repeated use of SC transplantation in the same patient.
Collapse
Affiliation(s)
- V M Sheludchenko
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - M V Budzinskaya
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - I A Ronzina
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| | - T V Smirnova
- Research Institute of Eye Diseases, 11A Rossolimo St., Moscow, Russian Federation, 119021
| |
Collapse
|
40
|
Oner A, Gonen ZB, Sevim DG, Smim Kahraman N, Unlu M. Suprachoroidal Adipose Tissue-Derived Mesenchymal Stem Cell Implantation in Patients with Dry-Type Age-Related Macular Degeneration and Stargardt's Macular Dystrophy: 6-Month Follow-Up Results of a Phase 2 Study. Cell Reprogram 2019; 20:329-336. [PMID: 31251672 DOI: 10.1089/cell.2018.0045] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This prospective clinical case series aimed to investigate the safety and efficacy of suprachoroidal adipose tissue-derived mesenchymal stem cell (ADMSC) implantation in patients with dry-type age-related macular degeneration (AMD) and Stargardt's macular dystrophy (SMD). This study included four patients with advanced-stage dry-type AMD and four patients with SMD who underwent suprachoroidal implantation of ADMSCs. The best-corrected visual acuity (BCVA) in the study was 20/200. The worse eye of the patient was operated on. Patients were evaluated on the first day, first week, and first, third, and sixth months postoperatively. BCVA, anterior segment and fundus examination, color photography, fundus autofluorescence, optical coherence tomography, and visual field examination were carried out at each visit. Fundus fluorescein angiography and multifocal electroretinography (mf-ERG) recordings were performed at the end of the first, third, and sixth months and anytime if necessary during the follow-up. All eight patients completed the sixth month follow-up. None of them had any systemic or ocular complications. All of the eight patients experienced visual acuity improvement, visual field improvement, and improvement in mf-ERG recordings. Stem cell treatment with suprachoroidal implantation of ADMSCs seems to be safe and effective in the treatment of dry-type AMD and SMD.
Collapse
Affiliation(s)
- Ayse Oner
- 1 Department of Ophthalmology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | - Zeynep Burcin Gonen
- 2 Genome and Stem Cell Center (GENKOK), Erciyes University , Kayseri, Turkey .,3 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Erciyes University , Kayseri, Turkey
| | | | | | - Metin Unlu
- 5 Department of Ophthalmology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| |
Collapse
|
41
|
Rai P, Rohatgi J, Dhaliwal U. Coping strategy in persons with low vision or blindness - an exploratory study. Indian J Ophthalmol 2019; 67:669-676. [PMID: 31007237 PMCID: PMC6498927 DOI: 10.4103/ijo.ijo_1655_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Purpose: Coping strategies employed by people with visual disability can influence their quality of life (QoL). We aimed to assess coping in patients with low vision or blindness. Methods: In this descriptive cross sectional study, 60 patients (25–65 years) with <6/18 best-corrected vision (BCVA) in the better eye and vision loss since ≥6 months were recruited after the institutional ethics clearance and written informed consent. Age, gender, presence of other chronic illness, BCVA, coping strategies (Proactive Coping Inventory, Hindi version), and vision-related quality of life (VRQoL; Hindi version of IND-VFQ33) were recorded. Range, mean (standard deviation) for continuous and proportion for categorical variables. Pearson correlation looked at how coping varied with age and with VRQoL. The analysis of variance (ANOVA) and t-test compared coping scores across categorical variables. Statistical significance was taken at P < 0.05. Results: Sixty patients fulfilled inclusion criteria. There were 33 (55%) women; 25 (41.7%) had low vision, 5 (8.3%) had economic blindness, and 30 (50.0%) had social blindness; 27 (45.0%) had a co-morbid chronic illness. Total coping score was 142 ± 26.43 (maximum 217). VRQoL score (maximum 100) was 41.9 ± 15.98 for general functioning; 32.1 ± 12.15 for psychosocial impact, and 41.1 ± 17.30 for visual symptoms. Proactive coping, reflective coping, strategic planning, and preventive coping scores correlated positively with VRQoL in general functioning and psychosocial impact. Conclusion: Positive coping strategies are associated with a better QoL. Ophthalmologists who evaluate visual disability should consider coping mechanisms that their patients employ and should refer them for counseling and training in more positive ways of coping.
Collapse
Affiliation(s)
- Puja Rai
- Department of Ophthalmology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi - 95, India
| | - Jolly Rohatgi
- Department of Ophthalmology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi - 95, India
| | - Upreet Dhaliwal
- Department of Ophthalmology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi - 95, India
| |
Collapse
|
42
|
Sihota R, Sen S, Mohanty S, Ahmad M, Ravi A, Gupta V, Bhatla N. Effect of intracameral human cord blood-derived stem cells on lasered rabbit trabecular meshwork. Int Ophthalmol 2019; 39:2757-2766. [PMID: 31140023 DOI: 10.1007/s10792-019-01120-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND This study aimed to investigate the effect of intracameral human cord blood stem cells on lasered rabbit trabecular meshwork. METHODS Immediately following diode laser application to the trabecular meshwork, human cord blood stem cells were injected intracamerally, in one eye of 12 albino rabbits. The other eye of ten rabbits was lasered controls and two eyes were normal controls. Rabbits were killed after 4, 8 and 12 weeks. RESULTS Lasered control rabbit eyes showed significant disruption of trabecular architecture, loss and pleomorphism of trabecular endothelial cells and progressive narrowing of trabecular spaces till 12 weeks. In contrast, lasered eyes, concurrently injected with human cord blood stem cells, showed relatively preserved endothelial cellularity and structure of the trabecular meshwork, at all time points. Human CD34- and CD44-positive cells were identified in 7/8 eyes treated with stem cells, at 4 and 8 weeks, and 2 of 3 at 12 weeks. Many PKH26-labeled human cord blood cells were visible throughout the trabecular area at 4 weeks. They gradually decreased in number by 8 weeks, and at 12 weeks, they appeared to be oriented along trabecular beams. CONCLUSIONS There was a relative preservation of cellularity and architecture of the trabecular meshwork in eyes injected with human cord blood stem cells, as compared to lasered control eyes up to 12 weeks, without significant inflammation. This suggests a probable role for such stem cells in eyes with glaucoma, having trabecular dysfunction.
Collapse
Affiliation(s)
- Ramanjit Sihota
- Glaucoma Research Facility and Clinical Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Seema Sen
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Mohammad Ahmad
- Ocular Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alok Ravi
- Glaucoma Research Facility and Clinical Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Viney Gupta
- Glaucoma Research Facility and Clinical Services, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neerja Bhatla
- Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
43
|
Labrador-Velandia S, Alonso-Alonso ML, Di Lauro S, García-Gutierrez MT, Srivastava GK, Pastor JC, Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures. Exp Eye Res 2019; 185:107671. [PMID: 31108056 DOI: 10.1016/j.exer.2019.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
Through the paracrine effects of stem cells, including the secretion of neurotrophic, immunomodulatory, and anti-apoptotic factors, cell-based therapies offer a new all-encompassing approach to treatment of neurodegenerative diseases. In this study, we used physically separated co-cultures of porcine neuroretina (NR) and human mesenchymal stem cells (MSC) to evaluate the MSC paracrine neuroprotective effects on NR degeneration. NR explants were obtained from porcine eyes and cultured alone or co-cultured with commercially available MSCs from Valladolid (MSCV; Citospin S.L.; Valladolid, Spain), currently used for several approved treatments. Cultures were maintained for 72 h. MSC surface markers were evaluated before and after co-culture with NRs. Culture supernatants were collected and the concentration of brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and glial-derived neurotrophic factor (GDNF) were determined by enzyme-linked immunosorbent assays. NR sections were stained by haematoxylin/eosin or immunostained for terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), glial fibrillary acidic protein, β-tubulin III, and neuronal nuclei marker. NR morphology, morphometry, nuclei count, apoptosis rate, retinal ganglion cells, and glial cell activation were evaluated. Treatment effects were statistically analysed by parametric or non-parametric tests. The MSCs retained stem cell surface markers after co-culture with NR. BDNF and CNTF concentrations in NR-MSCV co-cultures were higher than other experimental conditions at 72 h (p < 0.05), but no GDNF was detected. NR general morphology, total thickness, and cell counts were broadly preserved in co-cultures, and the apoptosis rate determined by TUNEL assay was lower than for NR monocultures (all p < 0.05). Co-cultures with MSCV also protected retinal ganglion cells from degenerative changes and reduced reactive gliosis (both p < 0.05). In this in vitro model of spontaneous NR degeneration, the presence of co-cultured MSCs retarded neuroglial degeneration. This effect was associated with elevated concentrations of the neurotrophic factors BDNF and CNTF. Our data suggest that the paracrine secretion of these, and possibly other molecules, are a potential resource for the treatment of several neuroretinal diseases.
Collapse
Affiliation(s)
- Sonia Labrador-Velandia
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Maria Luz Alonso-Alonso
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Salvatore Di Lauro
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain; Departamento de Oftalmología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | | | - Girish K Srivastava
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain; Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain
| | - José Carlos Pastor
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain; Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain; Departamento de Oftalmología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain; Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Oftared, Instituto de Salud Carlos III, Valladolid, Spain.
| |
Collapse
|
44
|
Intra-Vitreal Administration of Microvesicles Derived from Human Adipose-Derived Multipotent Stromal Cells Improves Retinal Functionality in Dogs with Retinal Degeneration. J Clin Med 2019; 8:jcm8040510. [PMID: 31013950 PMCID: PMC6518198 DOI: 10.3390/jcm8040510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022] Open
Abstract
This study was designed to determine the influence of microvesicles (MVs) derived from multipotent stromal cells isolated from human adipose tissue (hASCs) on retinal functionality in dogs with various types of retinal degeneration. The biological properties of hASC-MVs were first determined using an in vitro model of retinal Muller-like cells (CaMLCs). The in vitro assays included analysis of hASC-MVs influence on cell viability and metabolism. Brain-derived neurotrophic factor (BDNF) expression was also determined. Evaluation of the hASC-MVs was performed under normal and oxidative stress conditions. Preliminary clinical studies were performed on ten dogs with retinal degeneration. The clinical studies included behavioral tests, fundoscopy and electroretinography before and after hASC-MVs intra-vitreal injection. The in vitro study showed that CaMLCs treated with hASC-MVs were characterized by improved viability and mitochondrial potential, both under normal and oxidative stress conditions. Additionally, hASC-MVs under oxidative stress conditions reduced the number of senescence-associated markers, correlating with the increased expression of BDNF. The preliminary clinical study showed that the intra-vitreal administration of hASC-MVs significantly improved the dogs’ general behavior and tracking ability. Furthermore, fundoscopy demonstrated that the retinal blood vessels appeared to be less attenuated, and electroretinography using HMsERG demonstrated an increase in a- and b-wave amplitude after treatment. These results shed promising light on the application of cell-free therapies in veterinary medicine for retinal degenerative disorders treatment.
Collapse
|
45
|
Khavinson V, Trofimova S, Trofimov A, Solomin I. Molecular-Physiological Aspects of Regulatory Effect of Peptide Retinoprotectors. Stem Cell Rev Rep 2019; 15:439-442. [PMID: 30859383 DOI: 10.1007/s12015-019-09882-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Retinal diseases were always difficult problem for clinical ophthalmology. Modern methods of their treatment only decrease risk of complications, however in Russia was created better technology for this purpose: peptide bioregulators, which were made by sequential adding of amino acids one to another, binding with the promoter region of genes, and promoting retinoprotective effect by regulation of their expression, improving the state of the retina.
Collapse
Affiliation(s)
- V Khavinson
- Saint Petersburg Institute of Bioregulation and Gerontlogy, Saint Petersburg, Russia.,Pavlov Institute of Physiology RAS, Saint Petersburg, Russia
| | - S Trofimova
- Saint Petersburg Institute of Bioregulation and Gerontlogy, Saint Petersburg, Russia
| | - A Trofimov
- Saint Petersburg Institute of Bioregulation and Gerontlogy, Saint Petersburg, Russia
| | - I Solomin
- Saint Petersburg Institute of Bioregulation and Gerontlogy, Saint Petersburg, Russia.
| |
Collapse
|
46
|
Perspectives of Autologous Mesenchymal Stem-Cell Transplantation in Macular Hole Surgery: A Review of Current Findings. J Ophthalmol 2019; 2019:3162478. [PMID: 30918717 PMCID: PMC6409040 DOI: 10.1155/2019/3162478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/29/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022] Open
Abstract
The main treatment available for idiopathic macular holes is represented by pars plana vitrectomy with internal limiting membrane peeling. However, late-stage macular holes are affected by a higher risk of surgical failure. Although adjuvant techniques can be employed, a satisfactory functional recovery is difficult to achieve in refractory macular holes. Given their neuroprotective and antiapoptotic properties, mesenchymal stem cells (MSCs) may represent an appealing approach to treat these extreme cases. The purpose of this review is to highlight the findings regarding healing mechanisms exerted by mesenchymal stem cells and preliminary application in cases of refractory macular holes. When compared with MSCs, MSC-derived exosomes may represent a feasible alternative, given their reduced risk of undesired proliferation and easiness of use.
Collapse
|
47
|
Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res 2018; 69:38-56. [PMID: 30419340 DOI: 10.1016/j.preteyeres.2018.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases, such as age-related macular degeneration (AMD), Stargardt's disease, retinitis pigmentosa (RP) and glaucoma. These diseases are all characterized by the degeneration of one or two retinal cell types that cannot regenerate spontaneously in humans. Aberrant retinal pigment epithelial (RPE) cells can be observed through optical coherence tomography (OCT) in AMD patients. In RP patients, the morphological and functional abnormalities of RPE and photoreceptor layers are caused by a genetic abnormality. Stargardt's disease or juvenile macular degeneration, which is characterized by the loss of the RPE and photoreceptors in the macular area, causes central vision loss at an early age. Loss of retinal ganglion cells (RGCs) can be observed in patients with glaucoma. Once the retinal cell degeneration is triggered, no treatments can reverse it. Transplantation-based approaches have been proposed as a universal therapy to target patients with various concomitant diseases. Both the replacement of dead cells and neuroprotection are strategies used to rescue visual function in animal models of retinal degeneration. Diverse retinal cell types derived from pluripotent stem cells, including RPE cells, photoreceptors, RGCs and even retinal organoids with a layered structure, provide unlimited cell sources for transplantation. In addition, mesenchymal stem cells (MSCs) are multifunctional and protect degenerating retinal cells. The aim of this review is to summarize current findings from preclinical and clinical studies. We begin with a brief introduction to retinal degenerative diseases and cell death in diverse diseases, followed by methods for retinal cell generation. Preclinical and clinical studies are discussed, and future concerns about efficacy, safety and immunorejection are also addressed.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China.
| | - Mei-Ling Gao
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Wen-Li Deng
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Kun-Chao Wu
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
48
|
Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. Adult Stem Cells for Regenerative Therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:1-22. [PMID: 30470288 DOI: 10.1016/bs.pmbts.2018.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell therapy has been identified as an effective method to regenerate damaged tissue. Adult stem cells, also known as somatic stem cells or resident stem cells, are a rare population of undifferentiated cells, located within a differentiated organ, in a specialized structure, called a niche, which maintains the microenvironments that regulate the growth and development of adult stem cells. The adult stem cells are self-renewing, clonogenic, and multipotent in nature, and their main role is to maintain the tissue homeostasis. They can be activated to proliferate and differentiate into the required type of cells, upon the loss of cells or injury to the tissue. Adult stem cells have been identified in many tissues including blood, intestine, skin, muscle, brain, and heart. Extensive preclinical and clinical studies have demonstrated the structural and functional regeneration capabilities of these adult stem cells, such as bone marrow-derived mononuclear cells, hematopoietic stem cells, mesenchymal stromal/stem cells, resident adult stem cells, induced pluripotent stem cells, and umbilical cord stem cells. In this review, we focus on the human therapies, utilizing adult stem cells for their regenerative capabilities in the treatment of cardiac, brain, pancreatic, and eye disorders.
Collapse
Affiliation(s)
- Narasimman Gurusamy
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sheeja Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States
| | - Johnson Rajasingh
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States.
| |
Collapse
|
49
|
Lu W, Li X. PDGFs and their receptors in vascular stem/progenitor cells: Functions and therapeutic potential in retinal vasculopathy. Mol Aspects Med 2018; 62:22-32. [DOI: 10.1016/j.mam.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
|
50
|
Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study: bone marrow derived stem cells in the treatment of Retinitis Pigmentosa. Stem Cell Investig 2018; 5:18. [PMID: 30050918 PMCID: PMC6043757 DOI: 10.21037/sci.2018.04.02] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/20/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Seventeen patients with bilateral visual loss due to Retinitis Pigmentosa (RP) underwent autologous bone marrow derived stem cell (BMSC) treatment within the Stem Cell Ophthalmology Treatment Study (SCOTS and SCOTS 2). Both are National Institutes of Health (NIH) and Office of Human Research Protection (OHRP) compliant Institutional Review Board (IRB) approved clinical studies utilizing using autologous BMSC in the treatment of retinal and optic nerve diseases that meet inclusion criteria. METHODS The average age of the patients treated was 48.8 years. The average duration of disease prior to treatment was 27.6 years and ranged from 4 to approximately 60 years. Affected eyes were treated with either retrobulbar, subtenons and intravenous BMSC or retrobulbar, subtenons, intravitreal and intravenous. Follow up was provided a minimum of 6 months. The primary outcome was visual acuity as measured by Snellen or converted to LogMAR. RESULTS Following therapy in SCOTS or SCOTS 2, 11 patients (64.7%) showed improved binocular vision averaging 10.23 lines of Snellen acuity per eye over pre-treatment acuity; 8 patients (35.3%) remaining stable over the follow up period; no patients experiencing loss of overall acuity. In 33 treated eyes, 15 eyes (45.5%) improved an average of 7.9 lines of Snellen acuity, 15 eyes (45.5%) remained stable, and 3 eyes (9%) worsened by an average of 1.7 lines of Snellen acuity. Improvements ranged from 1 to 27 lines of vision. Using the LogMAR Scale and calculating delta as a ratio to pre-treatment vision in improved eyes, acuity improvement ranged from 23% to 90% with an average of 40.9% visual acuity improvement over baseline vision. Evaluation of all patients and eyes capable of LogMAR vision showed an average of 31% improvement in vision over baseline. Findings were of statistical significance (P=0.016). There were no surgical complications. CONCLUSIONS The BMSC protocols of the SCOTS achieved meaningful visual acuity improvements or stability in RP that were of statistical significance. Duration of disease did not appear to affect the ability of eyes to respond. Safety was confirmed. Possible mechanisms by which improvement occurred may include transdifferentiation of BMSC into Neuronal Nuclei (NeuN) positive cells, BMSC paracrine secretions or neurotrophic factors and hormones, transfer of mitochondria, release of messenger RNA or other compounds via exosomes or microvesicles. Given the successful outcome in this otherwise progressive condition, consideration should be given to providing this treatment option.
Collapse
|