1
|
Barnett AM, Mullaney JA, McNabb WC, Roy NC. Culture media and format alter cellular composition and barrier integrity of porcine colonoid-derived monolayers. Tissue Barriers 2024; 12:2222632. [PMID: 37340938 DOI: 10.1080/21688370.2023.2222632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/04/2023] [Indexed: 06/22/2023] Open
Abstract
Intestinal organoid technology has revolutionized our approach to in vitro cell culture due in part to their three-dimensional structures being more like the native tissue from which they were derived with respect to cellular composition and architecture. For this reason, organoids are becoming the new gold standard for undertaking intestinal epithelial cell research. Unfortunately, their otherwise advantageous three-dimensional geometry prevents easy access to the apical epithelium, which is a major limitation when studying interactions between dietary or microbial components and host tissues. To overcome this problem, we developed porcine colonoid-derived monolayers cultured on both permeable Transwell inserts and tissue culture treated polystyrene plates. We found that seeding density and culture format altered the expression of genes encoding markers of specific cell types (stem cells, colonocytes, goblets, and enteroendocrine cells), and barrier maturation (tight junctions). Additionally, we found that changes to the formulation of the culture medium altered the cellular composition of colonoids and of monolayers derived from them, resulting in cultures with an increasingly differentiated phenotype that was similar to that of their tissue of origin.
Collapse
Affiliation(s)
- Alicia M Barnett
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Jane A Mullaney
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Liggins Institute, The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Liggins Institute, The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Liggins Institute, The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Nutrition, The University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Wang J, Wan X, Le Q. Cross-regulation between SOX9 and the canonical Wnt signalling pathway in stem cells. Front Mol Biosci 2023; 10:1250530. [PMID: 37664185 PMCID: PMC10469848 DOI: 10.3389/fmolb.2023.1250530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
SOX9, a member of the SRY-related HMG-box transcription factors, has been reported to critically regulate fetal development and stem cell homeostasis. Wnt signalling is a highly conserved signalling pathway that controls stem cell fate decision and stemness maintenance throughout embryonic development and adult life. Many studies have shown that the interactions between SOX9 and the canonical Wnt signalling pathway are involved in many of the physiological and pathological processes of stem cells, including organ development, the proliferation, differentiation and stemness maintenance of stem cells, and tumorigenesis. In this review, we summarize the already-known molecular mechanism of cross-interactions between SOX9 and the canonical Wnt signalling pathway, outline its regulatory effects on the maintenance of homeostasis in different types of stem cells, and explore its potential in translational stem cell therapy.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Xichen Wan
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Qihua Le
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Center, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Myopia Key Laboratory of Ministry of Health, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Li N, Wang J, Li K, Yang P, Wang Y, Xu C, He N, Ji K, Song H, Zhang M, Du L, Liu Q. Influence of e-waste exposure on DNA damage and DNA methylation in people living near recycling sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88744-88756. [PMID: 37442932 DOI: 10.1007/s11356-023-28591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
The association between long-term exposure to e-waste and poor health is well established, but how e-waste exposure affects DNA methylation is understudied. In this study, we measured the DNA damage levels and the alternation of DNA methylation in peripheral blood mononuclear cells (PBMCs) collected from a population exposed to e-waste. The concentration of 28 PCB congeners in the blood samples of e-waste recycling workers was elevated than those of the reference group. DNA damage levels were significantly higher than that of samples from the reference group by detecting the SCGE, CA, and CBMN assays. Eventually, we found that the methylation level of 1233 gene loci was changed in the exposure group. Bioinformatic analysis of differential genes revealed that the hypermethylated genes were enriched in cell component movement and regulation of cell function, and hypomethylated genes were involved in the cellular metabolic process. Among the 30 genes we tested, 14 genes showed a negative correlation between methylation level and expression level. Therefore, e-waste exposure potentially increased the levels of DNA damage and alters DNA methylation, which would likely impact human health.
Collapse
Affiliation(s)
- Na Li
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Kejun Li
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Ping Yang
- Tianjin Institute of Medical and Pharmaceutical Science, Tianjin, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Molecular Nuclear Medicine, Tianjin, China.
| |
Collapse
|
4
|
Li X, Liu D, Dai Z, You Y, Chen Y, Lei C, Lv Y, Wang Y. Intraperitoneal 5-Azacytidine Alleviates Nerve Injury-Induced Pain in Rats by Modulating DNA Methylation. Mol Neurobiol 2023; 60:2186-2199. [PMID: 36627549 DOI: 10.1007/s12035-022-03196-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
To investigate the role of DNA methylation in modulating chronic neuropathic pain (NPP), identify possible target genes of DNA methylation involved in this process, and preliminarily confirm the medicinal value of the DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AZA) in NPP by targeting gene methylation. Two rat NPP models, chronic constriction injury (CCI) and spinal nerve ligation (SNL), were used. The DNA methylation profiles in the lumbar spinal cord were assayed using an Arraystar Rat RefSeq Promoter Array. The underlying genes with differential methylation were then identified and submitted to Gene Ontology and pathway analysis. Methyl-DNA immunoprecipitation quantitative PCR (MeDIP-qPCR) and quantitative reverse transcription-PCR (RT-qPCR) were used to confirm gene methylation and expression. The protective function of 5-AZA in NPP and gene expression were evaluated via behavioral assays and RT-qPCR, respectively. Analysis of the DNA methylation patterns in the lumbar spinal cord indicated that 1205 differentially methylated fragments in CCI rats were located within DNA promoter regions, including 638 hypermethylated fragments and 567 hypomethylated fragments. The methylation levels of Grm4, Htr4, Adrb2, Kcnf1, Gad2, and Pparg, which are associated with long-term potentiation (LTP) and glutamatergic synapse pathways, were increased with a corresponding decrease in their mRNA expression, in the spinal cords of CCI rats. Moreover, we found that the intraperitoneal injection of 5-AZA (4 mg/kg) attenuated CCI- or SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, the mRNA expression of hypermethylated genes such as Grm4, Htr4, Adrb2, Kcnf1, and Gad2 was reversed after 5-AZA treatment. CCI induced widespread methylation changes in the DNA promoter regions in the lumbar spinal cord. Intraperitoneal 5-AZA alleviated hyperalgesia in CCI and SNL rats, an effect accompanied by the reversed expression of hypermethylated genes. Thus, DNA methylation inhibition represents a promising epigenetic strategy for protection against chronic NPP following nerve injury. Our study lays a theoretical foundation for 5-AZA to become a clinical targeted drug.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - DeZhao Liu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - ZhiSen Dai
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - YiSheng You
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yan Chen
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - ChenXing Lei
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - YouYou Lv
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Ying Wang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China. .,Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Sun LB, Ding AP, Han Y, Song MQ, Shan TD. The lncRNA Tincr Regulates the Abnormal Differentiation of Intestinal Epithelial Stem Cells in the Diabetic State Via the miR-668-3p/Klf3 Axis. Curr Stem Cell Res Ther 2023; 18:105-114. [PMID: 35362387 DOI: 10.2174/1574888x17666220331124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is among the most common chronic diseases, and diabetic enteropathy (DE), which is a complication caused by DM, is a serious health condition. Long noncoding RNAs (lncRNAs) are regulators of DE progression. OBJECTIVE However, the mechanisms of action of multiple lncRNAs involved in DE remain poorly understood. METHODS Reverse transcription-quantitative PCR (RT-qPCR) and in situ hybridization were used to analyze terminal differentiation-induced lncRNA (Tincr) expression in intestinal epithelial cells (IECs) in the DM state. Microarray analysis, bioinformatics analysis, and luciferase reporter assays were used to identify the genes targeted by Tincr. The role of miR-668-3p was then explored by up- and down-regulating its expression in vitro and in vivo. RESULTS In this study, we observed that the level of lncRNA Tincr was increased in IECs in the DM state. More importantly, Tincr was associated with abnormal intestinal epithelial stem cell (IESC) differentiation in DM. Our mechanistic study demonstrated that Tincr is a major marker of Lgr5+ stem cells in DM. In addition, we investigated whether Tincr directly targets miR-668-3p and whether miR-668-3p targets Klf3. Our findings showed that Tincr sponged miR-668-3p, which attenuated abnormal IESC differentiation in DM by regulating Klf3 expression. CONCLUSION This study presents evidence of an essential role for Tincr in IESC differentiation in DM.
Collapse
Affiliation(s)
- Li-Bin Sun
- Department of Oncology and The Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, P.R. China
| | - Ai-Ping Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Yue Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Ming-Quan Song
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| |
Collapse
|
6
|
Koene S, Klerx‐Melis F, Roest AAW, Kleijwegt MC, Bootsma M, Haak MC, van Haeringen MH, Ruivenkamp CAL, Nibbeling EAR, van Haeringen A. Sacral abnormalities including caudal appendage, skeletal dysplasia, and prenatal cardiomyopathy associated with a pathogenic TAB2 variant in a 3-generation family. Am J Med Genet A 2022; 188:3510-3515. [PMID: 36000780 PMCID: PMC9804761 DOI: 10.1002/ajmg.a.62929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 01/31/2023]
Abstract
Haplo-insufficiency of the TGFβ-activated kinase 1 binding protein 2 (TAB2) gene is associated with short stature, facial dysmorphisms, connective tissue abnormalities, hearing loss, and cardiac disease. Skeletal dysplasia and sacral dimples are also found in a minority of patients. Here, we describe a 3-generation family with caudal appendage, other sacral anomalies, and skeletal abnormalities including hypoplasia of the iliac wings and scapulae, fusion of the carpal bones and stenosis of the spinal canal, as well as a remarkable course of prenatally-detected cardiomyopathy with characteristics changing over time. Genetic analysis showed a heterozygous nonsense variant in the TAB2 gene.
Collapse
Affiliation(s)
- Saskia Koene
- Department of Clinical GeneticsLeiden University Medical CentreLeidenThe Netherlands
| | | | | | - Maarten Cornelis Kleijwegt
- Department of Ear Nose and Throat ‐ Head and Neck CancerLeiden University Medical CentreLeidenThe Netherlands
| | - Marianne Bootsma
- Department of CardiologyLeiden University Medical CentreLeidenThe Netherlands
| | - Monique C. Haak
- Department of Prenatal Diagnosis and TherapyLeiden University Medical CentreLeidenThe Netherlands
| | | | | | | | - Arie van Haeringen
- Department of Clinical GeneticsLeiden University Medical CentreLeidenThe Netherlands
| |
Collapse
|
7
|
Biancolin AD, Jeong H, Mak KWY, Yuan Z, Brubaker PL. Disrupted and Elevated Circadian Secretion of Glucagon-Like Peptide-1 in a Murine Model of Type 2 Diabetes. Endocrinology 2022; 163:6649564. [PMID: 35876276 PMCID: PMC9368029 DOI: 10.1210/endocr/bqac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/19/2022]
Abstract
Metabolism and circadian rhythms are intimately linked, with circadian glucagon-like peptide-1 (GLP-1) secretion by the intestinal L-cell entraining rhythmic insulin release. GLP-1 secretion has been explored in the context of obesogenic diets, but never in a rodent model of type 2 diabetes (T2D). There is also considerable disagreement regarding GLP-1 levels in human T2D. Furthermore, recent evidence has demonstrated decreased expression of the β-cell exocytotic protein secretagogin (SCGN) in T2D. To extend these findings to the L-cell, we administered oral glucose tolerance tests at 6 time points in 4-hour intervals to the high-fat diet/streptozotocin (HFD-STZ) mouse model of T2D. This revealed a 10-fold increase in peak GLP-1 secretion with a phase shift of the peak from the normal feeding period into the fasting-phase. This was accompanied by impairments in the rhythms of glucose, glucagon, mucosal clock genes (Arntl and Cry2), and Scgn. Immunostaining revealed that L-cell GLP-1 intensity was increased in the HFD-STZ model, as was the proportion of L-cells that expressed SCGN; however, this was not found in L-cells from humans with T2D, which exhibited decreased GLP-1 staining but maintained their SCGN expression. Gcg expression in isolated L-cells was increased along with pathways relating to GLP-1 secretion and electron transport chain activity in the HFD-STZ condition. Further investigation into the mechanisms responsible for this increase in GLP-1 secretion may give insights into therapies directed toward upregulating endogenous GLP-1 secretion.
Collapse
Affiliation(s)
- Andrew D Biancolin
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Hyerin Jeong
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Kimberly W Y Mak
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Zixuan Yuan
- Departments of Physiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Patricia L Brubaker
- Correspondence: Patricia L. Brubaker, Ph.D., Rm 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
8
|
Ievlev V, Jensen-Cody CC, Lynch TJ, Pai AC, Park S, Shahin W, Wang K, Parekh KR, Engelhardt JF. Sox9 and Lef1 Regulate the Fate and Behavior of Airway Glandular Progenitors in Response to Injury. Stem Cells 2022; 40:778-790. [PMID: 35639980 PMCID: PMC9406614 DOI: 10.1093/stmcls/sxac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/12/2022]
Abstract
Cartilaginous airways of larger mammals and the mouse trachea contain at least 3 well-established stem cell compartments, including basal cells of the surface airway epithelium (SAE) and ductal and myoepithelial cells of the submucosal glands (SMG). Here we demonstrate that glandular Sox9-expressing progenitors capable of SAE repair decline with age in mice. Notably, Sox9-lineage glandular progenitors produced basal and ciliated cells in the SAE, but failed to produce secretory cells. Lef1 was required for glandular Sox9 lineage contribution to SAE repair, and its deletion significantly reduced proliferation following injury. By contrast, in vivo deletion of Sox9 enhanced proliferation of progenitors in both the SAE and SMG shortly following injury, but these progenitors failed to proliferate in vitro in the absence of Sox9, similar to that previously shown for Lef1 deletion. In cystic fibrosis ferret airways, Sox9 expression inversely correlated with Ki67 proliferative marker expression in SMG and the SAE. Using in vitro and ex vivo models, we demonstrate that Sox9 is extinguished as glandular progenitors exit ducts and proliferate on the airway surface and that Sox9 is required for migration and proper differentiation of SMG, but not surface airway, progenitors. We propose a model whereby Wnt/Lef1 and Sox9 signals differentially regulate the proliferative and migratory behavior of glandular progenitors, respectively.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | - Thomas J Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Albert C Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Soo Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Weam Shahin
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Kalpaj R Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Filippello A, Di Mauro S, Scamporrino A, Torrisi SA, Leggio GM, Di Pino A, Scicali R, Di Marco M, Malaguarnera R, Purrello F, Piro S. Molecular Effects of Chronic Exposure to Palmitate in Intestinal Organoids: A New Model to Study Obesity and Diabetes. Int J Mol Sci 2022; 23:ijms23147751. [PMID: 35887100 PMCID: PMC9320247 DOI: 10.3390/ijms23147751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Intestinal cell dysfunctions involved in obesity and associated diabetes could be correlated with impaired intestinal cell development. To date, the molecular mechanisms underlying these dysfunctions have been poorly investigated because of the lack of a good model for studying obesity. The main aim of this study was to investigate the effects of lipotoxicity on intestinal cell differentiation in small intestinal organoid platforms, which are used to analyze the regulation of cell differentiation. Mouse intestinal organoids were grown in the presence/absence of high palmitate concentrations (0.5 mM) for 48 h to simulate lipotoxicity. Palmitate treatment altered the expression of markers involved in the differentiation of enterocytes and goblet cells in the early (Hes1) and late (Muc2) phases of their development, respectively, and it modified enterocytes and goblet cell numbers. Furthermore, the expression of enteroendocrine cell progenitors (Ngn3) and I cells (CCK) markers was also impaired, as well as CCK-positive cell numbers and CCK secretion. Our data indicate, for the first time, that lipotoxicity simultaneously influences the differentiation of specific intestinal cell types in the gut: enterocytes, goblet cells and CCK cells. Through this study, we identified novel targets associated with molecular mechanisms affected by lipotoxicity that could be important for obesity and diabetes therapy.
Collapse
Affiliation(s)
- Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Sebastiano Alfio Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 64, 95123 Catania, Italy; (S.A.T.); (G.M.L.)
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 64, 95123 Catania, Italy; (S.A.T.); (G.M.L.)
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | - Maurizio Di Marco
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| | | | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
- Correspondence: ; Tel.: +39-09-5759-8401
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (A.F.); (S.D.M.); (A.S.); (A.D.P.); (R.S.); (M.D.M.); (S.P.)
| |
Collapse
|
10
|
Zhuang X, Chen B, Huang S, Han J, Zhou G, Xu S, Chen M, Zeng Z, Zhang S. Hypermethylation of miR-145 promoter-mediated SOX9-CLDN8 pathway regulates intestinal mucosal barrier in Crohn's disease. EBioMedicine 2022; 76:103846. [PMID: 35124427 PMCID: PMC8829091 DOI: 10.1016/j.ebiom.2022.103846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
Background Intestinal barrier impairment plays an essential role in the pathogenesis of Crohn's disease (CD), and claudins (CLDNs) dysfunction contributes to intestinal mucosa injury. SOX9, an important transcription factor, is upregulated in the disease-affected colon of patients with CD; however, its precise role in CD remains largely unknown. Our aim was to explore the interaction between SOX9 and CLDNs, and further elucidate the underlying mechanisms in CD. Methods SOX9 expression in patients with CD was evaluated using quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. The regulatory relationship between SOX9 and CLDNs was analyzed via a dual-luciferase reporter assay, chromatin immunoprecipitation, overexpression, and RNA interference methods. MicroRNAs (miRNAs) involved in the SOX9-CLDN pathway were predicted with bioinformatics analysis, and the upstream molecular mechanism was interpreted using MassARRAY methylation detection. Findings Upregulated expression of SOX9 in the disease-affected intestine mucosa was identified in both patients with CD and mice challenged with trinitrobenzene sulfonic acid (TNBS). SOX9 negatively regulated the expression of CLDN8, accompanying reduced intestinal permeability. MiR-145-5p downregulation was found in patients with CD and TNBS-induced colitis mice owing to an aberrant miR-145 promoter hypermethylation, which subsequently interfered the SOX9-CLDN8 pathway. MiR-145-5p agomir treatment alleviated TNBS-induced colitis in wild-type mice by inhibiting Sox9 expression and restoring Cldn8 expression, whereas similar findings were not apparent in the Cldn8−/− mice. Interpretation SOX9 mediates the crosstalk between upstream miR-145-5p and downstream CLDN8, and further impairs intestinal mucosal barrier homeostasis in CD. Targeting the miR-145-5p/SOX9/CLDN8 pathway represents a promising therapeutic strategy for CD. Funding The National Natural Science Foundation of China (#81870374, #81670498, #81630018, #82070538, #8210031148), the Guangdong Science and Technology (#2017A030306021, #2020A1515111087), the Guangzhou Science and Technology Department (#202002030041), and the Fundamental Research Funds for the Central Universities (#19ykzd11).
Collapse
Affiliation(s)
- Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baili Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanshan Huang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Han
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gaoshi Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Sun Y, Zong C, Liu J, Zeng L, Li Q, Liu Z, Li Y, Zhu J, Li L, Zhang C, Zhang W. C-myc promotes miR-92a-2-5p transcription in rat ovarian granulosa cells after cadmium exposure. Toxicol Appl Pharmacol 2021; 421:115536. [PMID: 33865896 DOI: 10.1016/j.taap.2021.115536] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) can induce ovarian injury by microRNAs (miRNAs), however, the molecular mechanism of miRNAs after Cd exposure have not known. In this study, 56-day-old adult female Sprague-Dawley (SD) rats were injection with PMSG, after 48 h, ovarian granulosa cells (GCs) were extracted and cultured for 24 h, then treated with 0, 2.5, 5, 10 and 20 μM Cd for 24 h. The results showed that expression levels of miR-92a-2-5p (upregulated) and Bcl2 (downregulated) changed significantly after Cd exposure. The messenger RNA (mRNA) and protein expression levels of DNMT1, DNMT3A, and DNMT3B had changed, but no obvious differences were found in miR-92a-2-5p single site methylation. The transcription factors C-MYC (upregulated), E2F1 (downregulated), and SP1 (downregulated), which target miRNAs significantly changed after exposure to Cd. The human ovarian GC tumor line (COV434) was used to knocked down C-myc, and the expression of miR-92a-2-5p was downregulated in the COV434-C-myc + 10 μM Cd group compared with COV434 cells. The N6-methyladenosine (m6A) methylation modification levels of long noncoding RNA (lncRNA) MT1JP and lncRNA CDKN2B-AS, which regulate miR-92a-2-5p were detected. In the 10 μM Cd group, m6A methylation levels at MT1JP-84, CDKN2B-AS-257, and CDKN2B-AS-329 were reduced. In summary, after Cd exposure, expression of miR-92a-2-5p, which targets the antiapoptotic gene Bcl2, was upregulated, which may be primarily related to upregulation of C-myc. MiR-92a-2-5p promoter DNA methylation may has no obvious effect on miR-92a-2-5p. Otherwise, the role of m6A methylation modified lncRNA MT1JP and lncRNA CDKN2B-AS in the regulation of miR-92a-2-5p needs further study.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chaowei Zong
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lingfeng Zeng
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China; School Key Discipline of Nutrition and Food Hygiene, Public Health School, Changsha Medical University, Changsha, China
| | - Qingyu Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhangpin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Lingfang Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Fuzhou, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
Shan TD, Yue H, Sun XG, Jiang YP, Chen L. Rspo3 regulates the abnormal differentiation of small intestinal epithelial cells in diabetic state. Stem Cell Res Ther 2021; 12:330. [PMID: 34099046 PMCID: PMC8186182 DOI: 10.1186/s13287-021-02385-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background The complications caused by diabetes mellitus (DM) are the focus of clinical treatment. However, little is known about diabetic enteropathy (DE) and its potential underlying mechanism. Methods Intestinal epithelial cells (IECs) and intestinal epithelial stem cells (IESCs) were harvested from BKS.Cg-Dock7m+/+Leprdb/JNju (DM) mice, and the expression of R-Spondin 3 (Rspo3) was detected by RT-qPCR, Western blotting, immunohistochemistry, and immunofluorescence. The role of Rspo3 in the abnormal differentiation of IECs during DM was confirmed by knockdown experiments. Through miRNA expression profiling, bioinformatics analysis, and RT-qPCR, we further analyzed the differentiation-related miRNAs in the IECs from mice with DM. Results Abnormal differentiation of IECs was observed in the mice with DM. The expression of Rspo3 was upregulated in the IECs from the mice with DM. This phenomenon was associated with Rspo3 overexpression. Additionally, Rspo3 is a major determinant of Lgr5+ stem cell identity in the diabetic state. Microarray analysis, bioinformatics analysis, and luciferase reporter assays revealed that microRNA (miR)-380-5p directly targeted Rspo3. Moreover, miR-380-5p upregulation was observed to attenuate the abnormal differentiation of IECs by regulating Rspo3 expression. Conclusions Together, our results provide definitive evidence of the essential role of Rspo3 in the differentiation of IECs in DM. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02385-8.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, Shandong, 262000, P.R. China.
| | - Han Yue
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, Shandong, 262000, P.R. China
| | - Xue-Guo Sun
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, Shandong, 262000, P.R. China
| | - Yue-Ping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, Shandong, 262000, P.R. China
| | - Li Chen
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiang Su Road, Qingdao, Shandong, 262000, P.R. China
| |
Collapse
|
13
|
Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cisplatin resistance in gastric tumor cells. Genes Environ 2021; 43:21. [PMID: 34099061 PMCID: PMC8182944 DOI: 10.1186/s41021-021-00192-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Combined chemotherapeutic treatment is the method of choice for advanced and metastatic gastric tumors. However, resistance to chemotherapeutic agents is one of the main challenges for the efficient gastric cancer (GC) treatment. Cisplatin (CDDP) is used as an important regimen of chemotherapy for GC which induces cytotoxicity by interfering with DNA replication in cancer cells and inducing their apoptosis. Majority of patients experience cisplatin-resistance which is correlated with tumor metastasis and relapse. Moreover, prolonged and high-dose cisplatin administrations cause serious side effects such as nephrotoxicity, ototoxicity, and anemia. Since, there is a high rate of recurrence after CDDP treatment in GC patients; it is required to clarify the molecular mechanisms associated with CDDP resistance to introduce novel therapeutic methods. There are various cell and molecular processes associated with multidrug resistance (MDR) including drug efflux, detoxification, DNA repair ability, apoptosis alteration, signaling pathways, and epithelial-mesenchymal transition (EMT). MicroRNAs are a class of endogenous non-coding RNAs involved in chemo resistance of GC cells through regulation of all of the MDR mechanisms. In present review we have summarized all of the miRNAs associated with cisplatin resistance based on their target genes and molecular mechanisms in gastric tumor cells. This review paves the way of introducing a miRNA-based panel of prognostic markers to improve the efficacy of chemotherapy and clinical outcomes in GC patients. It was observed that miRNAs are mainly involved in cisplatin response of gastric tumor cells via regulation of signaling pathways, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Zhang Y, Zheng D, Fang Q, Zhong M. Aberrant hydroxymethylation of ANGPTL4 is associated with selective intrauterine growth restriction in monochorionic twin pregnancies. Epigenetics 2020; 15:887-899. [PMID: 32114885 DOI: 10.1080/15592294.2020.1737355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selective intrauterine growth restriction (sIUGR) is a severe complication in monochorionic (MC) twin pregnancies, and it carries increased risks of poor prognosis. Current data suggest that vascular anastomoses and unequal placental sharing may be the key contributor to discordant foetal growth. While MC twins derive from a single zygote and have almost identical genetic information, the precise mechanisms remain unknown. DNA hydroxymethylation is a newly discovered epigenetic feature associated with gene regulation and modification. Here, we investigate discordant hydroxymethylation patterns between two placental shares of sIUGR and analyse the potential role of aberrant hydroxymethylation of angiopoietin-like 4 (ANGPTL4) in placental dysplasia. Hydroxymethylation DNA immunoprecipitation (hMeDIP)-chip and mRNA sequencing were performed to identify hydroxymethylation-associated genes. Real-time qPCR, western blotting, and immunohistochemistry were used to confirm ANGPTL4 expression. The mechanisms regulating ANGPTL4 were investigated by cell migration assay, invasion assay, viability assay, and apoptotic ratio assays, western blotting and hMeDIP-qPCR. Decreased ANGPTL4 was detected in the smaller placental shares of sIUGR. ANGPTL4 knockdown suppressed trophoblast invasiveness and migration, which possibly occurred through hypoxia inducible factor 1α (HIF-1α) and HIF-1 signalling pathway. Hypoxia leads to aberrant expression of ANGPTL4 and HIF-1α, positively correlated with their aberrant hydroxymethylation levels in promoter regions. Aberrant hydroxymethylation of ANGPTL4 may contribute to placental impairment by the HIF-1 signalling pathway in smaller placental shares of sIUGR.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Dezhong Zheng
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University , Guangzhou, China.,Department of Cardiology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Qun Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University , Guangzhou, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
15
|
Gokhman D, Nissim-Rafinia M, Agranat-Tamir L, Housman G, García-Pérez R, Lizano E, Cheronet O, Mallick S, Nieves-Colón MA, Li H, Alpaslan-Roodenberg S, Novak M, Gu H, Osinski JM, Ferrando-Bernal M, Gelabert P, Lipende I, Mjungu D, Kondova I, Bontrop R, Kullmer O, Weber G, Shahar T, Dvir-Ginzberg M, Faerman M, Quillen EE, Meissner A, Lahav Y, Kandel L, Liebergall M, Prada ME, Vidal JM, Gronostajski RM, Stone AC, Yakir B, Lalueza-Fox C, Pinhasi R, Reich D, Marques-Bonet T, Meshorer E, Carmel L. Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nat Commun 2020; 11:1189. [PMID: 32132541 PMCID: PMC7055320 DOI: 10.1038/s41467-020-15020-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Changes in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie human-specific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes associated with face and vocal tract anatomy went through particularly extensive methylation changes. Specifically, we identify widespread hypermethylation in a network of face- and voice-associated genes (SOX9, ACAN, COL2A1, NFIX and XYLT1). We propose that these repression patterns appeared after the split from Neanderthals and Denisovans, and that they might have played a key role in shaping the modern human face and vocal tract.
Collapse
Affiliation(s)
- David Gokhman
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Malka Nissim-Rafinia
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Lily Agranat-Tamir
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- Department of Statistics, The Hebrew University of Jerusalem, 91905, Jerusalem, Israel
| | - Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003, Barcelona, Spain
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1090, Vienna, Austria
| | - Swapan Mallick
- Broad Institute, Cambridge, MA, 02138, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria A Nieves-Colón
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Heng Li
- Broad Institute, Cambridge, MA, 02138, USA
| | | | - Mario Novak
- Institute for Anthropological Research, 10000, Zagreb, Croatia
- Earth Institute and School of Archaeology, University College Dublin, Dublin 4, Ireland
| | | | - Jason M Osinski
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | | | - Pere Gelabert
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003, Barcelona, Spain
| | - Iddi Lipende
- Gombe Stream Research Center, Jane Goodall Institute, Kigoma, Tanzania
| | - Deus Mjungu
- Gombe Stream Research Center, Jane Goodall Institute, Kigoma, Tanzania
| | - Ivanela Kondova
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
| | - Ronald Bontrop
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
| | - Ottmar Kullmer
- Department of Palaeoanthropology and Messel Research, Senckenberg Center of Human Evolution and Paleoecology, Frankfurt am Main, Germany
| | - Gerhard Weber
- Department of Evolutionary Anthropology, University of Vienna, 1090, Vienna, Austria
| | - Tal Shahar
- Department of Neurosurgery, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Mona Dvir-Ginzberg
- Laboratory of Cartilage Biology, Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Marina Faerman
- Laboratory of Bioanthropology and Ancient DNA, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Ellen E Quillen
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, 85287, USA
| | - Alexander Meissner
- Broad Institute, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Yonatan Lahav
- Otolaryngology - Head & Neck Surgery Department, Laryngeal Surgery Unit, Kaplan Medical Center, Rehovot, Israel
- The Hebrew University Medical School, Jerusalem, Israel
| | - Leonid Kandel
- Orthopaedic Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Meir Liebergall
- Orthopaedic Department, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - María E Prada
- I.E.S.O. 'Los Salados'. Junta de Castilla y León, León, Spain
| | - Julio M Vidal
- Junta de Castilla y León, Servicio de Cultura de León, León, Spain
| | - Richard M Gronostajski
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
- Genetics, Genomics and Bioinformatics Program, New York State Center of Excellence in Bioinformatics and Life Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA
| | - Benjamin Yakir
- Department of Statistics, The Hebrew University of Jerusalem, 91905, Jerusalem, Israel
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003, Barcelona, Spain
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1090, Vienna, Austria
| | - David Reich
- Broad Institute, Cambridge, MA, 02138, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Barcelona, Spain
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Liran Carmel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
16
|
Shan TD, Tian ZB, Jiang YP. Downregulation of lncRNA MALAT1 suppresses abnormal proliferation of small intestinal epithelial stem cells through miR‑129‑5p expression in diabetic mice. Int J Mol Med 2020; 45:1250-1260. [PMID: 32124944 DOI: 10.3892/ijmm.2020.4492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/08/2020] [Indexed: 11/05/2022] Open
Abstract
The problems caused by diabetes mellitus (DM) and its related complications are gaining increasing attention. In our previous study, the abnormal proliferation of small intestinal epithelial cells (IECs) were observed in diabetic mice. However, little is known regarding the potential underlying mechanism. In the present study, the abnormal proliferation of IECs in DM and the marked upregulation of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was observed. Additionally, knockdown of MALAT1 significantly reduced abnormal IESC proliferation in DM mice. Bioinformatics analysis and luciferase reporter assays revealed that microRNA (miR)‑129‑5p was directly targeted by MALAT1. Moreover, the results of the bioinformatics prediction and luciferase assays demonstrated that MALAT1 directly interacted with SRY‑box 9 (SOX9). Furthermore, MALAT1 silencing was observed to attenuate the abnormal proliferation of IESCs through the SOX9‑mediated WNT/β‑catenin signaling pathway. Knockdown of MALAT1 downregulated SOX9 expression by binding to miR‑129‑5p, thereby inhibiting the abnormal proliferation of IESCs via the WNT/β‑catenin signaling pathway.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| | - Yue-Ping Jiang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 262000, P.R. China
| |
Collapse
|
17
|
Protocol for DNA Microarrays on Glass Slides. Methods Mol Biol 2020; 1986:17-33. [PMID: 31115883 DOI: 10.1007/978-1-4939-9442-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The DNA microarray is a powerful, flexible, nonbiased discovery technology. Microarrays can be used to assess processes from gene expression to long noncoding RNAs to specific pathologies, as well as many others. This chapter describes the protocol for DNA microarray analysis of differential gene expression using DNA sequences spotted on microscope slides.
Collapse
|
18
|
Wang S, Li C, Yu Y, Qiao J. Decreased expression of microRNA-145 promotes the biological functions of fibroblasts in hypertrophic scar tissues by upregulating the expression of transcription factor SOX-9. Exp Ther Med 2019; 18:3450-3460. [PMID: 31602220 PMCID: PMC6777315 DOI: 10.3892/etm.2019.7972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to determine the expression of microRNA (miRNA or miR)-145 in hypertrophic scars at the tissue and cellular levels, and to investigate its biological functions and mechanism of action. A total of 36 patients who were diagnosed with hypertrophic scar were included in the present study. Reverse transcription-quantitative polymerase chain reaction was used to determine the expression of miR-145 in tissues and fibroblasts. Primary fibroblasts were transfected with negative control miRNA, miR-145 mimics or inhibitor. A Cell Counting Kit-8 assay was performed to determine the level of proliferation of fibroblasts. Flow cytometry was employed for cell cycles determination and apoptosis in fibroblasts. A Matrigel assay was used to evaluate the invasion ability of fibroblasts. Western blotting was used to determine the expression of the transcription factor SOX-9 (SOX-9) protein in fibroblasts. Rescue experiments were performed to examine the effect of SOX-9 on the regulation of fibroblasts by miR-145. The dual luciferase reporter assay was performed to identify the direct interaction between SOX-9 and miR-145. The expression of miR-145 was reduced in hypertrophic tissues and fibroblasts. Overexpression of miR-145 inhibited the proliferation, G1/S phase transition and invasion of fibroblasts, and promoted the apoptosis of fibroblasts. In addition, overexpression of miR-145 inhibited SOX-9 protein expression. By contrast, the expression of SOX-9 reversed the effects of miR-145 on the proliferation, cell cycle, apoptosis and invasion of fibroblasts. The miR-145 seed region was able to bind with the 3′-untranslated region of the SOX-9 mRNA to regulate its expression. The present study demonstrated that miR-145 expression is reduced in hypertrophic scar tissues and negatively associated with SOX-9 expression. In addition, miR-145 inhibits the proliferation, cell cycle and invasion, and promotes the apoptosis of fibroblasts by down-regulating the expression of SOX-9. The current study provides a potential target for the clinical diagnosis and treatment of hypertrophic scars.
Collapse
Affiliation(s)
- Shoujie Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Caiyun Li
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yijia Yu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
19
|
Xue M, Li G, Sun P, Zhang D, Fang X, Li W. MicroRNA-613 induces the sensitivity of gastric cancer cells to cisplatin through targeting SOX9 expression. Am J Transl Res 2019; 11:885-894. [PMID: 30899388 PMCID: PMC6413272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Increasing evidences have suggested that deregulated miRNAs may involve in drug chemoresistance in a lot of human cancers. However, the role of miR-613 in drug chemoresistance of GC cell is still unknown. The expression of miR-613 and Sex-determining region Y (SRY)-box 9 (SOX9) in GC tissues and cell lines was detected by using qRT-PCR. Cell migration and viability were measured by the wound healing assay and CCK-8 assays. Western blot and dual-luciferase reporter were done to identify the target gene of miR-613. We showed that miR-613 expression was downregulated in GC tissues and cell lines. Ectopic expression of miR-613 increased the sensitivity of GC cells to cisplatin. Overexpression of miR-613 suppressed GC cell proliferation, cycle and migration. In addition, we identified SOX9 was a direct target gene of miR-613 in GC cell. We showed that SOX9 expression was upregulated in gastric cancer samples. Moreover, the expression of SOX9 was negatively correlated with miR-613 expression in GC tissues. Furthermore, elevated expression of miR-613 increased the sensitivity of GC cells to cisplatin and suppressed GC cell proliferation and migration by targeting SOX9. These data suggested that miR-613 might function as a chemoresistant suppressor in GC.
Collapse
Affiliation(s)
- Minghui Xue
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, Henan, China
| | - Guangyan Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, Henan, China
| | - Peisheng Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, Henan, China
| | - Dezhong Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, Henan, China
| | - Xiangjie Fang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, Henan, China
| | - Wei Li
- Department of Scientific Research and Postgraduate Education, The First Affiliated Hospital of Xinxiang Medical UniversityWeihui 453100, Henan, China
| |
Collapse
|
20
|
Shan TD, Lv SY, Tian ZB, Liu XS, Liu FG, Sun XG. Knockdown of lncRNA H19 inhibits abnormal differentiation of small intestinal epithelial cells in diabetic mice. J Cell Physiol 2018; 234:837-848. [PMID: 30078183 DOI: 10.1002/jcp.26902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) comprises a group of metabolic diseases characterized by insulin deficiency or resistance and hyperglycemia. We previously reported the presence of abnormal differentiation of small intestinal epithelial cells (IECs) in diabetic mice, but the exact mechanism of this phenomenon has not been thoroughly elucidated to date. In this study, we found that H19 was markedly upregulated in IECs of DM mice. H19 knockdown significantly inhibited abnormal differentiation of IECs in DM mice. Bioinformatics analysis identified miR-141-3p as a candidate for H19. Based on luciferase reporter assays, we found that miR-141-3p directly targeted H19. Luciferase reporter assays also showed that miR-141-3p could directly target β-catenin. Furthermore, H19 might act as an endogenous "sponge" by competing for miR-141-3p binding to regulate miRNA targets in vitro and in vivo. In summary, our findings provide the first evidence supporting the role of H19 in IECs of DM mice, and miR-141-3p targets not only protein-coding genes but also the lncRNA H19.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shao-Yan Lv
- Department of Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zi-Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xi-Shuang Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fu-Guo Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xu-Guo Sun
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Menzel-Severing J, Zenkel M, Polisetti N, Sock E, Wegner M, Kruse FE, Schlötzer-Schrehardt U. Transcription factor profiling identifies Sox9 as regulator of proliferation and differentiation in corneal epithelial stem/progenitor cells. Sci Rep 2018; 8:10268. [PMID: 29980721 PMCID: PMC6035181 DOI: 10.1038/s41598-018-28596-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/26/2018] [Indexed: 02/08/2023] Open
Abstract
Understanding transcription factor (TF) regulation of limbal epithelial stem/progenitor cells (LEPCs) may aid in using non-ocular cells to regenerate the corneal surface. This study aimed to identify and characterize TF genes expressed specifically in LEPCs isolated from human donor eyes by laser capture microdissection. Using a profiling approach, preferential limbal expression was found for SoxE and SoxF genes, particularly for Sox9, which showed predominantly cytoplasmic localization in basal LEPCs and nuclear localization in suprabasal and corneal epithelial cells, indicating nucleocytoplasmic translocation and activation during LEPC proliferation and differentiation. Increased nuclear localization of Sox9 was also observed in activated LEPCs following clonal expansion and corneal epithelial wound healing. Knockdown of SOX9 expression in cultured LEPCs by RNAi led to reduced expression of progenitor cell markers, e.g. keratin 15, and increased expression of differentiation markers, e.g. keratin 3. Furthermore, SOX9 silencing significantly suppressed the proliferative capacity of LEPCs and reduced levels of glycogen synthase kinase 3 beta (GSK-3ß), a negative regulator of Wnt/ß-catenin signaling. Sox9 expression, in turn, was significantly suppressed by treatment of LEPCs with exogenous GSK-3ß inhibitors and enhanced by small molecule inhibitors of Wnt signaling. Our results suggest that Sox9 and Wnt/ß-catenin signaling cooperate in mutually repressive interactions to achieve a balance between quiescence, proliferation and differentiation of LEPCs in the limbal niche. Future molecular dissection of Sox9-Wnt interaction and mechanisms of nucleocytoplasmic shuttling of Sox9 may aid in improving the regenerative potential of LEPCs and the reprogramming of non-ocular cells for corneal surface regeneration.
Collapse
Affiliation(s)
- Johannes Menzel-Severing
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Zenkel
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Naresh Polisetti
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich E Kruse
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
22
|
Epigenetic modification of TLE1 induce abnormal differentiation in diabetic mice intestinal epithelium. Mol Cell Biochem 2017; 438:85-96. [PMID: 28744818 DOI: 10.1007/s11010-017-3116-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
Abstract
The intestinal epithelium cells (IECs) in diabetes mellitus (DM) patients have been proven to be abnormally differentiated. During the differentiation of IECs, epigenetic modification acts as an important regulator. In this study, we aimed to examine the epigenetic alteration of Transducin-like Enhancer of Split 1 (TLE1), a multitask transcriptional co-repressor, contributing to the differentiation homeostasis in IECs of DM mice. The IECs of type 2 diabetic mice model were isolated and collected. Methylation states of whole genomic DNA promoter regions were investigated by microarray. Methylated-specific PCR was used to detect the methylation state of TLE1 promoter in DM mice IECs. The expression of TLE1, Hes1, and differentiated cell markers were measured through real-time PCR, Western blots, and immunohistochemistry; by transfection assay, TLE1 or Hes1 was independently down-regulated in intestinal epithelium cell line, IEC-6. Subsequent modulation on TLE1, Hes1, and differentiated intestinal cell markers were detected. Global gene promoter regions in DM intestinal epithelium were less methylated comparing to normal control. The expression of TLE1 was significantly increased via hypomethylated activation in DM mice IECs. Hes1 was significantly suppressed and the terminal cell markers abnormally expressed in DM mice IECs (P < 0.05). Inhibition or induction on the abundance of TLE1 in IEC-6 cell line resulted in the corresponding dysregulation of Hes1 and intestinal epithelium differentiation (P < 0.05). Demethylation of TLE1 promoter region activates the self-expression in diabetic mice IECs. Subsequently, TLE1, through the transcriptional suppression on expression of Hes1, contributes to the aberrant differentiation of IECs in DM mice.
Collapse
|