1
|
Zhang W, Rao Y, Wong SH, Wu Y, Zhang Y, Yang R, Tsui SKW, Ker DFE, Mao C, Frith JE, Cao Q, Tuan RS, Wang DM. Transcriptome-Optimized Hydrogel Design of a Stem Cell Niche for Enhanced Tendon Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313722. [PMID: 39417770 DOI: 10.1002/adma.202313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Bioactive hydrogels have emerged as promising artificial niches for enhancing stem cell-mediated tendon repair. However, a substantial knowledge gap remains regarding the optimal combination of niche features for targeted cellular responses, which often leads to lengthy development cycles and uncontrolled healing outcomes. To address this critical gap, an innovative, data-driven materiomics strategy is developed. This approach is based on in-house RNA-seq data that integrates bioinformatics and mathematical modeling, which is a significant departure from traditional trial-and-error methods. It aims to provide both mechanistic insights and quantitative assessments and predictions of the tenogenic effects of adipose-derived stem cells induced by systematically modulated features of a tendon-mimetic hydrogel (TenoGel). The knowledge generated has enabled a rational approach for TenoGel design, addressing key considerations, such as tendon extracellular matrix concentration, uniaxial tensile loading, and in vitro pre-conditioning duration. Remarkably, our optimized TenoGel demonstrated robust tenogenesis in vitro and facilitated tendon regeneration while preventing undesired ectopic ossification in a rat tendon injury model. These findings shed light on the importance of tailoring hydrogel features for efficient tendon repair. They also highlight the tremendous potential of the innovative materiomics strategy as a powerful predictive and assessment tool in biomaterial development for regenerative medicine.
Collapse
Affiliation(s)
- Wanqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shing Hei Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yeung Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanhao Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Yang
- Department of Sports Medicine, Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, 3800, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, 3800, VIC, Australia
| | - Qin Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rocky S Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Mendibil U, Lópiz-Morales Y, Arnaiz B, Ruiz-Hernández R, Martín P, Di-Silvio D, Garcia-Urquia N, Elortza F, Azkargorta M, Olalde B, Abarrategi A. Development of bioactive solid-foam scaffolds from decellularized cartilage with chondrogenic and osteogenic properties. Mater Today Bio 2024; 28:101228. [PMID: 39296356 PMCID: PMC11408866 DOI: 10.1016/j.mtbio.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Full osteochondral regeneration remains a major clinical challenge. Among other experimental cartilage regenerative approaches, decellularized cartilage (DCC) is considered a promising material for generating potentially implantable scaffolds useful as cartilage repair strategy. In this work, we focus on screening and comparing different decellularization methods, aiming to generate DCC potentially useful in biomedical context, and therefore, with biological activity and functional properties in terms of induction of differentiation and regeneration. Data indicates that enzymatic and detergents-based decellularization methods differentially affect ECM components, and that it has consequences in further biological behavior. SDS-treated DCC powder is not useful to be further processed in 2D or 3D structures, because these structures tend to rapidly solubilize, or disaggregate, in physiologic media conditions. Conversely, Trypsin-treated DCC powders can be processed to mechanically stable 2D films and 3D solid-foam scaffolds, presumably due to partial digestion of collagens during decellularization, which would ease crosslinking at DCC during solubilization and processing. In vitro cell culture studies indicate that these structures are biocompatible and induce and potentiate chondrogenic differentiation. In vivo implantation of DCC derived 3D porous scaffolds in rabbit osteochondral defects induce subchondral bone regeneration and fibrocartilage tissue formation after implantation. Therefore, this work defines an optimal cartilage tissue decellularization protocol able to generate DCC powders processable to biocompatible and bioactive 2D and 3D structures. These structures are useful for in vitro cartilage research and in vivo subchondral bone regeneration, while hyaline cartilage regeneration with DCC alone as implantable material remains elusive.
Collapse
Affiliation(s)
- Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | | | - Blanca Arnaiz
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Raquel Ruiz-Hernández
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Pablo Martín
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Desiré Di-Silvio
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Nerea Garcia-Urquia
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | - Felix Elortza
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), CIBERehd, 48160, Derio, Spain
| | - Mikel Azkargorta
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), CIBERehd, 48160, Derio, Spain
| | - Beatriz Olalde
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009, Donostia-San Sebastian, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Song W, Guo Y, Liu W, Yao Y, Zhang X, Cai Z, Yuan C, Wang X, Wang Y, Jiang X, Wang H, Yu W, Li H, Zhu Y, Kong L, He Y. Circadian Rhythm-Regulated ADSC-Derived sEVs and a Triphasic Microneedle Delivery System to Enhance Tendon-to-Bone Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408255. [PMID: 39120049 DOI: 10.1002/adma.202408255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Modulating the inflammatory microenvironment to reconstruct the fibrocartilaginous layer while promoting tendon repair is crucial for enhancing tendon-to-bone healing in rotator cuff repair (RCR), a persistent challenge in orthopedics. Small extracellular vesicles (sEVs) hold significant potential to modulate inflammation, yet the efficient production of highly bioactive sEVs remains a substantial barrier to their clinical application. Moreover, achieving minimally invasive local delivery of sEVs to the tendon-to-bone interface presents significant technical difficulties. Herein, the circadian rhythm of adipose-derived stem cells is modulated to increase the yield and enhance the inflammatory regulatory capacity of sEVs. Circadian rhythm-regulated sEVs (CR-sEVs) enhance the cyclic adenosine monophosphate signaling pathway in macrophage (Mφ) via platelet factor 4 delivery, thereby inhibiting Mφ M1 polarization. Subsequently, a triphasic microneedle (MN) scaffold with a tip, stem, and base is designed for the local delivery of CR-sEVs (CR-sEVs/MN) at the tendon-to-bone junction, incorporating tendon-derived decellularized extracellular matrix in the base to facilitate tendon repair. CR-sEVs/MN mitigates inflammation, promotes fibrocartilage regeneration, and enhances tendon healing, thereby improving biomechanical strength and shoulder joint function in a rat RCR model. Combining CR-sEVs with this triphasic microneedle delivery system presents a promising strategy for enhancing tendon-to-bone healing in clinical settings.
Collapse
Affiliation(s)
- Wei Song
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Ying Guo
- Department of Cardiology, Heart Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Wencai Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yijing Yao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Xuancheng Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Zhuochang Cai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Chenrui Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Xin Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yifei Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Xiping Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Haoyuan Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Weilin Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Haiyan Li
- Chemical and Environmental Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe St., Melbourne, Victoria, 3000, Australia
| | - Yanlun Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Lingzhi Kong
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yaohua He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Orthopedic Surgery, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201500, P. R. China
| |
Collapse
|
4
|
Ching PO, Chen FH, Lin IH, Tran DT, Tayo LL, Yeh ML. Evaluation of Articular Cartilage Regeneration Properties of Decellularized Cartilage Powder/Modified Hyaluronic Acid Hydrogel Scaffolds. ACS OMEGA 2024; 9:33629-33642. [PMID: 39130605 PMCID: PMC11307312 DOI: 10.1021/acsomega.4c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
The articular cartilage has poor intrinsic healing potential, hence, imposing a great challenge for articular cartilage regeneration in osteoarthritis. Tissue regeneration by scaffolds and bioactive materials has provided a healing potential for degenerated cartilage. In this study, decellularized cartilage powder (DCP) and hyaluronic acid hydrogel modified by aldehyde groups and methacrylate (AHAMA) were fabricated and evaluated in vitro for efficacy in articular cartilage regeneration. In vitro tests such as cell proliferation, cell viability, and cell migration showed that DCP/AHAMA has negligible cytotoxic effects. Furthermore, it could provide an enhanced microenvironment for infrapatellar fat pad stem cells (IFPSCs). Mechanical property tests of DCP/AHAMA showed suitable adhesive and compressive strength. IFPSCs under three-dimensional (3D) culture in DCP/AMAHA were used to assess their ability to proliferate and differentiate into chondrocytes using normal and chondroinductive media. Results exhibited increased gene expression of COL2 and ACN and decreased COL1 expression. DCP/AHAMA provides a microenvironment that recapitulates the biomechanical properties of the native cartilage, promotes chondrogenic differentiation, blocks hypertrophy, and demonstrates applicability for cartilage tissue engineering and the potential for clinical biomedical applications.
Collapse
Affiliation(s)
- Paula
Carmela O. Ching
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
- School
of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines
| | - Fang-Hsu Chen
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - I-Hsuan Lin
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Duong-Thuy Tran
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
| | - Lemmuel L. Tayo
- School
of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Manila 1002, Philippines
- Department
of Biology, School of Medicine and Health Sciences, Mapua University, Makati 1205, Philippines
| | - Ming-Long Yeh
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 701, Taiwan
- Medical
Device Innovation Center, National Cheng
Kung University, Tainan 701, Taiwan
| |
Collapse
|
5
|
Iwasaki N, Roldo M, Karali A, Blunn G. In vitro development of a muscle-tendon junction construct using decellularised extracellular matrix: Effect of cyclic tensile loading. BIOMATERIALS ADVANCES 2024; 161:213873. [PMID: 38692180 DOI: 10.1016/j.bioadv.2024.213873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The muscle tendon junction (MTJ) plays a crucial role in transmitting the force generated by muscles to the tendon and then to the bone. Injuries such as tears and strains frequently happen at the MTJ, where the regenerative process is limited due to poor vascularization and the complex structure of the tissue. Current solutions for a complete tear at the MTJ have not been successful and therefore, the development of a tissue-engineered MTJ may provide a more effective treatment. In this study, decellularised extracellular matrix (DECM) derived from sheep MTJ was used to provide a scaffold for the MTJ with the relevant mechanical properties and differentiation cues such as the relase of growth factors. Human mesenchymal stem cells (MSCs) were seeded on DECM and 10 % cyclic strain was applied using a bioreactor. MSCs cultured on DECM showed significantly higher gene and protein expression of MTJ markers such as collagen 22, paxillin and talin, than MSCs in 2D culture. Although collagen 22 protein expression was higher in the cells with strain than without strain, reduced gene expression of other MTJ markers was observed when the strain was applied. DECM combined with 10 % strain enhanced myogenic differentiation, while tenogenic differentiation was reduced when compared to static cultures of MSCs on DECM. For the first time, these results showed that DECM derived from the MTJ can induce MTJ marker gene and protein expression by MSCs, however, the effect of strain on the MTJ development in DECM culture needs further investigation.
Collapse
Affiliation(s)
- Nodoka Iwasaki
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
6
|
Yu C, Chen R, Chen J, Wang T, Wang Y, Zhang X, Wang Y, Wu T, Yu T. Enhancing tendon-bone integration and healing with advanced multi-layer nanofiber-reinforced 3D scaffolds for acellular tendon complexes. Mater Today Bio 2024; 26:101099. [PMID: 38840797 PMCID: PMC11152696 DOI: 10.1016/j.mtbio.2024.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Advancements in tissue engineering are crucial for successfully healing tendon-bone connections, especially in situations like anterior cruciate ligament (ACL) restoration. This study presents a new and innovative three-dimensional scaffold, reinforced with nanofibers, that is specifically intended for acellular tendon complexes. The scaffold consists of a distinct layered arrangement comprising an acellular tendon core, a middle layer of polyurethane/type I collagen (PU/Col I) yarn, and an outside layer of poly (L-lactic acid)/bioactive glass (PLLA/BG) nanofiber membrane. Every layer is designed to fulfill specific yet harmonious purposes. The acellular tendon core is a solid structural base and a favorable environment for tendon cell functions, resulting in considerable tensile strength. The central PU/Col I yarn layer is vital in promoting the tendinogenic differentiation of stem cells derived from tendons and increasing the expression of critical tendinogenic factors. The external PLLA/BG nanofiber membrane fosters the process of bone marrow mesenchymal stem cells differentiating into bone cells and enhances the expression of markers associated with bone formation. Our scaffold's biocompatibility and multi-functional design were confirmed through extensive in vivo evaluations, such as histological staining and biomechanical analyses. These assessments combined showed notable enhancements in ACL repair and healing. This study emphasizes the promise of multi-layered nanofiber scaffolds in orthopedic tissue engineering and also introduces new possibilities for the creation of improved materials for regenerating the tendon-bone interface.
Collapse
Affiliation(s)
- Chenghao Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266000, China
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Renjie Chen
- Beijing Jishuitan Hospital National Center for Orthopaedics, Beijing, 102208, China
| | - Jinli Chen
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266000, China
| | - Tianrui Wang
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266000, China
| | - Yawen Wang
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266000, China
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaopei Zhang
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266000, China
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Tong Wu
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, 266000, China
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Textile & Clothing, Qingdao University, Qingdao, Shandong, 266071, China
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| |
Collapse
|
7
|
Huang S, Rao Y, Zhou M, Blocki AM, Chen X, Wen C, Ker DFE, Tuan RS, Wang DM. Engineering an extracellular matrix-functionalized, load-bearing tendon substitute for effective repair of large-to-massive tendon defects. Bioact Mater 2024; 36:221-237. [PMID: 38481565 PMCID: PMC10933390 DOI: 10.1016/j.bioactmat.2024.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 11/02/2024] Open
Abstract
A significant clinical challenge in large-to-massive rotator cuff tendon injuries is the need for sustaining high mechanical demands despite limited tissue regeneration, which often results in clinical repair failure with high retear rates and long-term functional deficiencies. To address this, an innovative tendon substitute named "BioTenoForce" is engineered, which uses (i) tendon extracellular matrix (tECM)'s rich biocomplexity for tendon-specific regeneration and (ii) a mechanically robust, slow degradation polyurethane elastomer to mimic native tendon's physical attributes for sustaining long-term shoulder movement. Comprehensive assessments revealed outstanding performance of BioTenoForce, characterized by robust core-shell interfacial bonding, human rotator cuff tendon-like mechanical properties, excellent suture retention, biocompatibility, and tendon differentiation of human adipose-derived stem cells. Importantly, BioTenoForce, when used as an interpositional tendon substitute, demonstrated successful integration with regenerative tissue, exhibiting remarkable efficacy in repairing large-to-massive tendon injuries in two animal models. Noteworthy outcomes include durable repair and sustained functionality with no observed breakage/rupture, accelerated recovery of rat gait performance, and >1 cm rabbit tendon regeneration with native tendon-like biomechanical attributes. The regenerated tissues showed tendon-like, wavy, aligned matrix structure, which starkly contrasts with the typical disorganized scar tissue observed after tendon injury, and was strongly correlated with tissue stiffness. Our simple yet versatile approach offers a dual-pronged, broadly applicable strategy that overcomes the limitations of poor regeneration and stringent biomechanical requirements, particularly essential for substantial defects in tendon and other load-bearing tissues.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meng Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anna M. Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Chunyi Wen
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Ministry of Education Key Laboratory for Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
8
|
Huang S, Rao Y, Ju AL, Ker DFE, Blocki AM, Wang DM, Tuan RS. Non-collagenous proteins, rather than the collagens, are key biochemical factors that mediate tenogenic bioactivity of tendon extracellular matrix. Acta Biomater 2024; 176:99-115. [PMID: 38142795 DOI: 10.1016/j.actbio.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Despite the growing clinical use of extracellular matrix (ECM)-based biomaterials for tendon repair, undesired healing outcomes or complications have frequently been reported. A major scientific challenge has been the limited understanding of their functional compositions and mechanisms of action due to the complex nature of tendon ECM. Previously, we have reported a soluble ECM fraction from bovine tendons (tECM) by urea extraction, which exhibited strong, pro-tenogenic bioactivity on human adipose-derived stem cells (hASCs). In this study, to advance our previous findings and gain insights into the biochemical nature of its pro-tenogenesis activity, tECM was fractionated using (i) an enzymatic digestion approach (pepsin, hyaluronidase, and chondroitinase) to yield various enzyme-digested tECM fractions; and (ii) a gelation-based approach to yield collagen matrix-enriched (CM) and non-collagenous matrix-enriched (NCM) fractions. Their tenogenic bioactivity on hASCs was assessed. Our results collectively indicated that non-collagenous tECM proteins, rather than collagens, are likely the important biochemical factors responsible for tECM pro-tenogenesis bioactivity. Mechanistically, RNA-seq analysis revealed that tECM and its non-collagenous portion induced similar transcriptional profiles of hASCs, particularly genes associated with cell proliferation, collagen synthesis, and tenogenic differentiation, which were distinct from transcriptome induced by its collagenous portion. From an application perspective, the enhanced solubility of the non-collagenous tECM, compared to tECM, should facilitate its combination with various water-soluble biomaterials for tissue engineering protocols. Our work provides insight into the molecular characterization of native tendon ECM, which will help to effectively translate their functional components into the design of well-defined, ECM biomaterials for tendon regeneration. STATEMENT OF SIGNIFICANCE: Significant progress has been made in extracellular matrix (ECM)-based biomaterials for tendon repair. However, their effectiveness remains debated, with conflicting research and clinical findings. Understanding the functional composition and mechanisms of action of ECM is crucial for developing safe and effective bioengineered scaffolds. Expanding on our previous work with bovine tendon ECM extracts (tECM) exhibiting strong pro-tenogenesis activity, we fractionated tECM to evaluate its bioactive moieties. Our findings indicate that the non-collagenous matrix within tECM, rather than the collagenous portions, plays a major role in the pro-tenogenesis bioactivity on human adipose-derived stem cells. These insights will drive further optimization of ECM-based biomaterials, including our advanced method for preparing highly soluble, non-collagenous matrix-enriched tendon ECM for effective tendon repair.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| | - Ying Rao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Adler Leigh Ju
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China
| | - Anna M Blocki
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| | - Rocky S Tuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Neuromusculoskeletal Restorative Medicine, Science Park, Hong Kong SAR, China.
| |
Collapse
|
9
|
Gadre M, Kasturi M, Agarwal P, Vasanthan KS. Decellularization and Their Significance for Tissue Regeneration in the Era of 3D Bioprinting. ACS OMEGA 2024; 9:7375-7392. [PMID: 38405516 PMCID: PMC10883024 DOI: 10.1021/acsomega.3c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Three-dimensional bioprinting is an emerging technology that has high potential application in tissue engineering and regenerative medicine. Increasing advancement and improvement in the decellularization process have led to an increase in the demand for using a decellularized extracellular matrix (dECM) to fabricate tissue engineered products. Decellularization is the process of retaining the extracellular matrix (ECM) while the cellular components are completely removed to harvest the ECM for the regeneration of various tissues and across different sources. Post decellularization of tissues and organs, they act as natural biomaterials to provide the biochemical and structural support to establish cell communication. Selection of an effective method for decellularization is crucial, and various factors like tissue density, geometric organization, and ECM composition affect the regenerative potential which has an impact on the end product. The dECM is a versatile material which is added as an important ingredient to formulate the bioink component for constructing tissue and organs for various significant studies. Bioink consisting of dECM from various sources is used to generate tissue-specific bioink that is unique and to mimic different biometric microenvironments. At present, there are many different techniques applied for decellularization, and the process is not standardized and regulated due to broad application. This review aims to provide an overview of different decellularization procedures, and we also emphasize the different dECM-derived bioinks present in the current global market and the major clinical outcomes. We have also highlighted an overview of benefits and limitations of different decellularization methods and various characteristic validations of decellularization and dECM-derived bioinks.
Collapse
Affiliation(s)
- Mrunmayi Gadre
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meghana Kasturi
- Department
of Mechanical Engineering, University of
Michigan, Dearborn, Michigan 48128, United States
| | - Prachi Agarwal
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kirthanashri S. Vasanthan
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
10
|
Tu T, Shi Y, Zhou B, Wang X, Zhang W, Zhou G, Mo X, Wang W, Wu J, Liu W. Type I collagen and fibromodulin enhance the tenogenic phenotype of hASCs and their potential for tendon regeneration. NPJ Regen Med 2023; 8:67. [PMID: 38092758 PMCID: PMC10719373 DOI: 10.1038/s41536-023-00341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Our previous work demonstrated the tendon-derived extracellular matrix (ECM) extracts as vital niches to specifically direct mesenchymal stem cells towards tenogenic differentiation. This study aims to further define the effective ECM molecules capable of teno-lineage induction on human adipose-derived stem cells (hASCs) and test their function for tendon engineering. By detecting the teno-markers expression levels in hASCs exposed to various substrate coatings, collagen I (COL1) and fibromodulin (FMOD) were identified to be the key molecules as a combination and further employed to the modification of poly(L-lactide-co-ε-caprolactone) electrospun nanoyarns, which showed advantages in inducting seeded hASCs for teno-lineage specific differentiation. Under dynamic mechanical loading, modified scaffold seeded with hASCs formed neo-tendon in vitro at the histological level and formed better tendon tissue in vivo with mature histology and enhanced mechanical properties. Primary mechanistic investigation with RNA sequencing demonstrated that the inductive mechanism of these two molecules for hASCs tenogenic differentiation was directly correlated with positive regulation of peptidase activity, regulation of cell-substrate adhesion and regulation of cytoskeletal organization. These biological processes were potentially affected by LOC101929398/has-miR-197-3p/TENM4 ceRNA regulation axis. In summary, COL1 and FMOD in combination are the major bioactive molecules in tendon ECM for likely directing tenogenic phenotype of hASCs and certainly valuable for hASCs-based tendon engineering.
Collapse
Affiliation(s)
- Tian Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Plastic and Aesthetic Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yuan Shi
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China
| | - Boya Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyu Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China.
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- National Tissue Engineering Center of China, Shanghai, 200241, China.
| |
Collapse
|
11
|
Donderwinkel I, Tuan RS, Cameron NR, Frith JE. A systematic investigation of the effects of TGF-β3 and mechanical stimulation on tenogenic differentiation of mesenchymal stromal cells in a poly(ethylene glycol)/gelatin-based hydrogel. J Orthop Translat 2023; 43:1-13. [PMID: 37929240 PMCID: PMC10622696 DOI: 10.1016/j.jot.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Background High post-surgical failure rates following tendon injury generate high medical costs and poor patient recovery. Cell-based tendon tissue engineering has the potential to produce fully functional replacement tissue and provide new strategies to restore tendon function and healing. In this endeavour, the application of mesenchymal stromal cells (MSCs) encapsulated in biomaterial scaffolds has shown great promise. However, a consensus on optimal promotion of tenogenic differentiation of MSCs has yet to be reached, although growth factors and mechanical cues are generally acknowledged as important factors. Methods In this study, we prepared a hydrogel cell culture system consisting of methacrylated poly(d,l-lactic acid-ethylene glycol-d,l-lactic acid) (P(LA-EG-LA)) and gelatin methacrylate (GelMA) to encapsulate human bone marrow-derived MSCs (hBMSCs). We further systematically investigated the influence of static and intermittent cyclic uniaxial strain mechanical stimulation, in combination with transforming growth factor-β3 (TGF-β3) supplementation, on tenogenic differentiation of hBMSCs. Results Increased TGF-β3 concentration upregulated the tenogenic genes Scleraxis (SCX) and collagen type I (COL1A1) but showed no effects on tenascin-c (TNC) and collagen type III (COL3A1) expression. Mechanical stimulation had no observable effect on gene expression, but intermittent cyclic uniaxial strain stimulation improved matrix deposition. Together, these data provide new insights into how TGF-β3 and mechanical stimulation regulate MSC tenogenesis, with TGF-β3 promoting the expression of key tenogenic genes whilst mechanical stimulation aided matrix deposition in the engineered tissue. Furthermore, intermittent cyclic uniaxial strain at 3% elongation and 0.33 Hz for 1 h/day showed improved matrix effects compared to static strain. Conclusion Together, the most promising result for tenogenic differentiation of hBMSCs was identified as treatment with 5 ng/ml TGF-β3 under intermittent cyclic uniaxial strain (3% strain; 0.33 Hz; 1 h/day). This knowledge is of importance for the development of an improved protocol for tenogenic differentiation of MSCs and thereby for tendon tissue engineering. The translational potential of this article Tissue-engineered strategies for tendon repair require a consensus on the differentiation of mesenchymal stromal cells to tenocytes, which is currently lacking. This article provides a systematic investigation of two main tenogenic differentiation conditions to further development of a tenogenic differentiation protocol.
Collapse
Affiliation(s)
- Ilze Donderwinkel
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Neil R. Cameron
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
| | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
12
|
Chung K, Jung M, Jang KM, Park SH, Nam BJ, Kim H, Kim SH. Particulated Costal Allocartilage With Microfracture Versus Microfracture Alone for Knee Cartilage Defects: A Multicenter, Prospective, Randomized, Participant- and Rater-Blinded Study. Orthop J Sports Med 2023; 11:23259671231185570. [PMID: 37457043 PMCID: PMC10345929 DOI: 10.1177/23259671231185570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 07/18/2023] Open
Abstract
Background Microfracture is the first-line treatment for cartilage defects; however, the suboptimal quality of the repaired cartilage remains an issue. Purpose/Hypothesis The aim of this first in-human study was to compare the clinical efficacy and safety of a combination of particulated costal allocartilage and microfracture versus microfracture alone in treating knee cartilage defects. We hypothesized that the particulated costal allocartilage with microfracture would result in superior cartilage repair quality and better clinical outcomes at 48 weeks postoperatively. Study Design Randomized controlled trial; Level of evidence, 1. Methods Patients with cartilage defects were allocated randomly to the treatment group (particulated costal allocartilage with microfracture) and control group (microfracture alone). Magnetic resonance imaging (MRI) outcomes of cartilage repair (the primary outcome measure) were evaluated at the 48-week follow-up using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported clinical outcomes (visual analog scale [VAS] pain score, Knee injury and Osteoarthritis Outcome Score [KOOS], and International Knee Documentation Committee score) and adverse events were evaluated at 12, 24, and 48 weeks postoperatively. Results Overall, 88 patients were included (44 patients each in the treatment and control groups). The total MOCART score at 48 weeks postoperatively was significantly higher in the treatment group than in the control group (P < .001). Among the 9 MOCART variables, 6 were significantly superior in the treatment versus the control group: degree of repair and defect filling (P < .001), integration to the border zone (P < .001), surface (P = .006), structure (P = .011), signal intensity of the repair tissue (P < .001), and subchondral lamina (P = .005). There were significant between-group differences in KOOS-Pain (P = .014), KOOS-Activities of Daily Living (P = .010), KOOS-Sports (P = .029), and KOOS-Symptoms (P = .039) at 12 weeks postoperatively and in VAS pain (P = .012) and KOOS-Pain (P = .005) at 24 weeks postoperatively. At 48 weeks postoperatively, clinical outcomes were comparable between the groups. Conclusion Microfracture augmented with particulated costal allocartilage resulted in superior cartilage repair quality compared with microfracture alone in terms of MRI evaluation of the knee joint cartilage defect at the 48-week follow-up. Functional outcomes were favorable for both treatments at final follow-up. Registration KCT0004936 (Clinical Research Information Service [CRiS] of the Republic of Korea).
Collapse
Affiliation(s)
- Kwangho Chung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Min Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki-Mo Jang
- Department of Orthopedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hoon Park
- Department of Orthopedic Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Bum Joon Nam
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyungjun Kim
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Zhang A, Cheng Z, Chen Y, Shi P, Gan W, Zhang Y. Emerging tissue engineering strategies for annulus fibrosus therapy. Acta Biomater 2023:S1742-7061(23)00337-9. [PMID: 37330029 DOI: 10.1016/j.actbio.2023.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Low back pain is a major public health concern experienced by 80% of the world's population during their lifetime, which is closely associated with intervertebral disc (IVD) herniation. IVD herniation manifests as the nucleus pulposus (NP) protruding beyond the boundaries of the intervertebral disc due to disruption of the annulus fibrosus (AF). With a deepening understanding of the importance of the AF structure in the pathogenesis of intervertebral disc degeneration, numerous advanced therapeutic strategies for AF based on tissue engineering, cellular regeneration, and gene therapy have emerged. However, there is still no consensus concerning the optimal approach for AF regeneration. In this review, we summarized strategies in the field of AF repair and highlighted ideal cell types and pro-differentiation targeting approaches for AF repair, and discussed the prospects and difficulties of implant systems combining cells and biomaterials to guide future research directions. STATEMENT OF SIGNIFICANCE: Low back pain is a major public health concern experienced by 80% of the world's population during their lifetime, which is closely associated with intervertebral disc (IVD) herniation. However, there is still no consensus concerning the optimal approach for annulus fibrosus (AF) regeneration. In this review, we summarized strategies in the field of AF repair and highlighted ideal cell types and pro-differentiation targeting approaches for AF repair, and discussed the prospects and difficulties of implant systems combining cells and biomaterials to guide future research directions.
Collapse
Affiliation(s)
- Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
Jiang Y, Tuan RS. Bioactivity of human adult stem cells and functional relevance of stem cell-derived extracellular matrix in chondrogenesis. Stem Cell Res Ther 2023; 14:160. [PMID: 37316923 DOI: 10.1186/s13287-023-03392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) has been used to treat articular cartilage defects for over two decades. Adult stem cells have been proposed as a solution to inadequate donor cell numbers often encountered in ACI. Multipotent stem/progenitor cells isolated from adipose, bone marrow, and cartilage are the most promising cell therapy candidates. However, different essential growth factors are required to induce these tissue-specific stem cells to initiate chondrogenic differentiation and subsequent deposition of extracellular matrix (ECM) to form cartilage-like tissue. Upon transplantation into cartilage defects in vivo, the levels of growth factors in the host tissue are likely to be inadequate to support chondrogenesis of these cells in situ. The contribution of stem/progenitor cells to cartilage repair and the quality of ECM produced by the implanted cells required for cartilage repair remain largely unknown. Here, we evaluated the bioactivity and chondrogenic induction ability of the ECM produced by different adult stem cells. METHODS Adult stem/progenitor cells were isolated from human adipose (hADSCs), bone marrow (hBMSCs), and articular cartilage (hCDPCs) and cultured for 14 days in monolayer in mesenchymal stromal cell (MSC)-ECM induction medium to allow matrix deposition and cell sheet formation. The cell sheets were then decellularized, and the protein composition of the decellularized ECM (dECM) was analyzed by BCA assay, SDS-PAGE, and immunoblotting for fibronectin (FN), collagen types I (COL1) and III (COL3). The chondrogenic induction ability of the dECM was examined by seeding undifferentiated hBMSCs onto the respective freeze-dried solid dECM followed by culturing in serum-free medium for 7 days. The expression levels of chondrogenic genes SOX9, COL2, AGN, and CD44 were analyzed by q-PCR. RESULTS hADSCs, hBMSCs, and hCDPCs generated different ECM protein profiles and exhibited significantly different chondrogenic effects. hADSCs produced 20-60% more proteins than hBMSCs and hCDPCs and showed a fibrillar-like ECM pattern (FNhigh, COL1high). hCDPCs produced more COL3 and deposited less FN and COL1 than the other cell types. The dECM derived from hBMSCs and hCDPCs induced spontaneous chondrogenic gene expression in hBMSCs. CONCLUSIONS These findings provide new insights on application of adult stem cells and stem cell-derived ECM to enhance cartilage regeneration.
Collapse
Affiliation(s)
- Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
15
|
Huang L, Chen L, Chen H, Wang M, Jin L, Zhou S, Gao L, Li R, Li Q, Wang H, Zhang C, Wang J. Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics (Basel) 2023; 8:246. [PMID: 37366841 DOI: 10.3390/biomimetics8020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
Collapse
Affiliation(s)
- Lvxing Huang
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Le Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hengyi Chen
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Manju Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310000, China
| | - Letian Jin
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Shenghai Zhou
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Lexin Gao
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Ruwei Li
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Quan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hanchang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
16
|
Ozel C, Apaydin E, Sariboyaci AE, Tamayol A, Avci H. A multifunctional sateen woven dressings for treatment of skin injuries. Colloids Surf B Biointerfaces 2023; 224:113197. [PMID: 36822118 DOI: 10.1016/j.colsurfb.2023.113197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Cutaneous wounds with impaired healing such as diabetic ulcers and burns constitute major and rapidly growing threat to healthcare systems worldwide. Accelerating wound healing requires the delivery of biological factors that induce angiogenesis, support cellular proliferation, and modulate inflammation while minimizing infection. In this study, we engineered a dressing made by weaving of composite fibers (CFs) carrying mesenchymal stem cells (MSCs) and a model antibiotic using a scalable sateen textile technique. In this regard, two different sets of CFs carrying MSCs or an antimicrobial agent were used to generate a multifunctional dressing. According to cell viability and metabolic activity as CCK-8 and live/dead with qRT-PCR results, more than %90 the encapsulated MSCs remain viable for 28 days and their expression levels of the wound repair factors including ECM remodeling, angiogenesis and immunomodulatory maintained in MSCs post dressing manufacturing for 14 days. Post 10 days culture of the dressing, MSCs within CFs had 10-fold higher collagen synthesis (p < 0.0001) determined by hydroxyproline assay which indicates the enhanced healing properties. According to in vitro antimicrobial activity results determined by disk diffusion and broth microdilution tests, the first day and the total amount of release gentamicin loaded dressing samples during the 28 days were higher than determined minimal inhibition concentration (MIC) values for S. aureus and K. pneumonia without negatively impacting the viability and functionality of encapsulated MSCs within the dressing. The dressing is also flexible and can conform to skin curvatures making the dressing suitable for the treatment of different skin injuries such as burns and diabetic ulcers.
Collapse
Affiliation(s)
- Ceren Ozel
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Elif Apaydin
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Department of Biochemistry, Institute of Health Sciences, Anadolu University, Eskişehir 26470, Turkey
| | - Ayla Eker Sariboyaci
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06269, USA.
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Department of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey; Translational Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey.
| |
Collapse
|
17
|
Peng B, Du L, Zhang T, Chen J, Xu B. Research progress in decellularized extracellular matrix hydrogels for intervertebral disc degeneration. Biomater Sci 2023; 11:1981-1993. [PMID: 36734099 DOI: 10.1039/d2bm01862d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As one of the most common clinical disorders, low back pain (LBP) influences patient quality of life and causes substantial social and economic burdens. Many factors can result in LBP, the most common of which is intervertebral disc degeneration (IDD). The progression of IDD cannot be alleviated by conservative or surgical treatments, and gene therapy, growth factor therapy, and cell therapy have their own limitations. Recently, research on the use of hydrogel biomaterials for the treatment of IDD has garnered great interest, and satisfactory treatment results have been achieved. This article describes the classification of hydrogels, the methods of decellularized extracellular matrix (dECM) production and the various types of gel formation. The current research on dECM hydrogels for the treatment of IDD is described in detail in this article. First, an overview of the material sources, decellularization methods, and gel formation methods is given. The focus is on research performed over the last three years, which mainly consists of bovine and porcine NP tissues, while for decellularization methods, combinations of several approaches are primarily used. dECM hydrogels have significantly improved mechanical properties after the polymers are cross-linked. The main effects of these gels include induction of stem cell differentiation to intervertebral disc (IVD) cells, good mechanical properties to restore IVD height after polymer cross-linking, and slow release of exosomes. Finally, the challenges and problems still faced by dECM hydrogels for the treatment of IDD are summarised, and potential solutions are proposed. This paper is the first to summarise the research on dECM hydrogels for the treatment of IDD and aims to provide a theoretical reference for subsequent studies.
Collapse
Affiliation(s)
- Bing Peng
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Lilong Du
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| | - Tongxing Zhang
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Beizhengzhong Road, Hunan, 410399, China.
| | - Baoshan Xu
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| |
Collapse
|
18
|
Hwang J, Lee SY, Jo CH. Degenerative tendon matrix induces tenogenic differentiation of mesenchymal stem cells. J Exp Orthop 2023; 10:15. [PMID: 36786947 PMCID: PMC9928997 DOI: 10.1186/s40634-023-00581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
PURPOSE Mesenchymal stem cells (MSCs) react dynamically with the surrounding microenvironment to promote tissue-specific differentiation and hence increase targeted regenerative capacity. Extracellular matrix (ECM) would be the first microenvironment to interact with MSCs injected into the tissue lesion. However, degenerative tissues would have different characteristics of ECM in comparison with healthy tissues. Therefore, the influence of degenerative ECM on tissue-specific differentiation of MSCs and the formation of matrix composition need to be considered for the sophisticated therapeutic application of stem cells for tissue regeneration. METHODS Human degenerative tendon tissues were obtained from patients undergoing rotator cuff repair and finely minced into 2 ~ 3 mm fragments. Different amounts of tendon matrix (0.005 g, 0.01 g, 0.025 g, 0.05 g, 0.1 g, 0.25 g, 0.5 g, 1 g, and 2 g) were co-cultured with bone marrow MSCs (BM MSCs) for 7 days. Six tendon-related markers, scleraxis, tenomodulin, collagen type I and III, decorin, and tenascin-C, osteogenic marker, alkaline phosphatase (ALP), and chondrogenic marker, aggrecan (ACAN), were analyzed by qRT-PCR. Cell viability and senescence-associated beta-galactosidase assays were performed. The connective tissue growth factor was used as a positive control. RESULTS The expressions of six tendon-related markers were significantly upregulated until the amount of tendon matrix exceeded 0.5 g, the point where the mRNA expressions of all six genes analyzed started to decrease. The tendon matrix exerted an inhibitory effect on ACAN expression but had a negligible effect on ALP expression. Cell viability did not change significantly over the culture period. The amount of tendon matrix exceeding 0.01 g significantly increased the SA-βgal activity of BM MSCs. CONCLUSION This study successfully demonstrated tendon ECM-stimulated tenogenesis of BM MSCs through an indirect co-culture system without the use of exogenous growth factors and the alteration of cellular viability. In contrast to the initial hypothesis, the tenogenesis of BM MSCs induced with the degenerative tendon matrix accompanied cellular senescence.
Collapse
Affiliation(s)
- Joongwon Hwang
- grid.31501.360000 0004 0470 5905Department of Translational Medicine, College of Medicine, Seoul National University, Daehak-Ro 103, Jongno-Gu, Seoul, 03080 South Korea ,grid.412479.dDepartment of Orthopedic Surgery, College of Medicine, SMG-SNU Boramae Medical Center, Seoul National University, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 South Korea
| | - Seung Yeon Lee
- grid.412479.dDepartment of Orthopedic Surgery, College of Medicine, SMG-SNU Boramae Medical Center, Seoul National University, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 South Korea
| | - Chris Hyunchul Jo
- Department of Translational Medicine, College of Medicine, Seoul National University, Daehak-Ro 103, Jongno-Gu, Seoul, 03080, South Korea. .,Department of Orthopedic Surgery, College of Medicine, SMG-SNU Boramae Medical Center, Seoul National University, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061, South Korea.
| |
Collapse
|
19
|
Liu C, Li TY, Chen Y, Yang HH, Sun YL. Tendon microstructural disruption promotes tendon-derived stem cells to express chondrogenic genes by activating endoplasmic reticulum stress. J Orthop Res 2023; 41:290-299. [PMID: 35535383 DOI: 10.1002/jor.25362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
The erroneous differentiation of tendon-derived stem cells (TDSCs) into adipocytes, chondrocytes, and osteoblasts is believed to play an important role in the development of tendinopathy. However, the regulatory mechanisms of TDSC differentiation remain unclear. The aim of this study is to investigate the contribution and mechanism of the tendon microstructural disruption to the differentiation of TDSCs. Bovine Achilles tendons were sliced. The tendon slices were stretched with different tensile strains to mimic the tendon structure alteration at various scales. The TDSCs were cultured on the tendon slices. The differentiation of TDSCs and endoplasmic reticulum (ER) stress in the TDSCs were investigated with quantitative reverse transcription polymerase chain reaction, immunostaining and western blot. The effect of ER stress inhibition on chondrogenic differentiation of the TDSCs was further investigated. The structural alteration did not affect the viability of TDSCs. However, the structural alteration of tendon slices with 6.4% strain promoted TDSCs to express the chondrogenic genes. ER stress-related markers, ATF-4 and PERK, were also upregulated. With the inhibition of ER stress, the expression of ATF-4 and the chondrogenic gene SOX9 of TDSCs were inhibited. The study indicated that tendon microdamage could induce the chondrogenic differentiation of TDSCs through triggering ER stress to activate ATF-4 and SOX9 subsequently.
Collapse
Affiliation(s)
- Chang Liu
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology the Second Clinical Medical College, Jinan University), Shenzhen, China.,Dalian Municipal Central Hospital, Dalian, China
| | - Tian-Yu Li
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology the Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Yong Chen
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology the Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Huan-Huan Yang
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology the Second Clinical Medical College, Jinan University), Shenzhen, China
| | - Yu-Long Sun
- Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology the Second Clinical Medical College, Jinan University), Shenzhen, China
| |
Collapse
|
20
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
21
|
Kamaraj M, Giri PS, Mahapatra S, Pati F, Rath SN. Bioengineering strategies for 3D bioprinting of tubular construct using tissue-specific decellularized extracellular matrix. Int J Biol Macromol 2022; 223:1405-1419. [PMID: 36375675 DOI: 10.1016/j.ijbiomac.2022.11.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
The goal of the current study is to develop an extracellular matrix bioink that could mimic the biochemical components present in natural blood vessels. Here, we have used an innovative approach to recycle the discarded varicose vein for isolation of endothelial cells and decellularization of the same sample to formulate the decellularized extracellular matrix (dECM) bioink. The shift towards dECM bioink observed as varicose vein dECM provides the tissue-specific biochemical factors that will enhance the regeneration capability. Interestingly, the encapsulated umbilical cord mesenchymal stem cells expressed the markers of vascular smooth muscle cells because of the cues present in the vein dECM. Further, in vitro immunological investigation of dECM revealed a predominant M2 polarization which could further aid in tissue remodeling. A novel approach was used to fabricate vascular construct using 3D bioprinting without secondary support. The outcomes suggest that this could be a potential approach for patient- and tissue-specific blood vessel regeneration.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Pravin Shankar Giri
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Sandeep Mahapatra
- Vascular & Endovascular Surgery, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Falguni Pati
- BioFabTE Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
22
|
Strecanska M, Danisovic L, Ziaran S, Cehakova M. The Role of Extracellular Matrix and Hydrogels in Mesenchymal Stem Cell Chondrogenesis and Cartilage Regeneration. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122066. [PMID: 36556431 PMCID: PMC9784885 DOI: 10.3390/life12122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Diseases associated with articular cartilage disintegration or loss are still therapeutically challenging. The traditional treatment approaches only alleviate the symptoms while potentially causing serious side effects. The limited self-renewal potential of articular cartilage provides opportunities for advanced therapies involving mesenchymal stem cells (MSCs) that are characterized by a remarkable regenerative capacity. The chondrogenic potential of MSCs is known to be regulated by the local environment, including soluble factors and the less discussed extracellular matrix (ECM) components. This review summarizes the process of chondrogenesis, and also the biological properties of the ECM mediated by mechanotransduction as well as canonical and non-canonical signaling. Our focus is also on the influence of the ECM's physical parameters, molecular composition, and chondrogenic factor affinity on the adhesion, survival, and chondrogenic differentiation of MSCs. These basic biological insights are crucial for a more precise fabrication of ECM-mimicking hydrogels to improve cartilage tissue reconstruction. Lastly, we provide an overview of hydrogel classification and characterization. We also include the results from preclinical models combining MSCs with hydrogels for the treatment of cartilage defects, to support clinical application of this construct. Overall, it is believed that the proper combination of MSCs, hydrogels, and chondrogenic factors can lead to complex cartilage regeneration.
Collapse
Affiliation(s)
- Magdalena Strecanska
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Institute of Medical Biology, Genetics, and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Institute of Medical Biology, Genetics, and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Department of Urology, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovakia
| | - Michaela Cehakova
- National Institute of Rheumatic Diseases, Nabrezie I. Krasku 4, 921 12 Piestany, Slovakia
- Institute of Medical Biology, Genetics, and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-5935-7215
| |
Collapse
|
23
|
Marvin JC, Mochida A, Paredes J, Vaughn B, Andarawis-Puri N. Detergent-Free Decellularization Preserves the Mechanical and Biological Integrity of Murine Tendon. Tissue Eng Part C Methods 2022; 28:646-655. [PMID: 36326204 PMCID: PMC9807253 DOI: 10.1089/ten.tec.2022.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Tissue decellularization has demonstrated widespread applications across numerous organ systems for tissue engineering and regenerative medicine applications. Decellularized tissues are expected to retain structural and/or compositional features of the natural extracellular matrix (ECM), enabling investigation of biochemical factors and cell-ECM interactions that drive tissue homeostasis, healing, and disease. However, the dense collagenous tendon matrix has limited the efficacy of traditional decellularization strategies without the aid of harsh chemical detergents and/or physical agitation that disrupt tissue integrity and denature proteins involved in regulating cell behavior. In this study, we adapted and established the advantages of a detergent-free decellularization method that relies on latrunculin B actin destabilization, alternating hypertonic-hypotonic salt and water incubations, nuclease-assisted elimination of cellular material, and protease inhibitor supplementation under aseptic conditions. Our method maintained the collagen molecular structure (i.e., minimal extent of denaturation), while adequately removing cells and preserving bulk mechanical properties. Furthermore, we demonstrated that decellularized tendon ECM-derived coatings isolated from different mouse strains, injury states (i.e., naive and acutely injured/"provisional"), and anatomical sites harness distinct biochemical cues and robustly maintain tendon cell viability in vitro. Together, our work provides a simple and scalable decellularization method to facilitate mechanistic studies that will expand our fundamental understanding of tendon ECM and cell biology. Impact statement In this study, we present a decellularization method for tendon that does not rely on any detergent or physical processing techniques. We assessed the impact of detergent-free decellularization using tissue, cellular, and molecular level analyses and validated the preservation of gross fiber architecture, collagen molecular structure, and extracellular matrix (ECM)-associated biological cues that are essential for studying physiological cell-ECM interactions. Finally, we demonstrated the applicability of this method for healthy and injured tendon environments, across mouse strains, and for different types of tendons, illustrating the utility of this approach for isolating the contributions of biochemical cues within unique tendon ECM microenvironments.
Collapse
Affiliation(s)
- Jason C. Marvin
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Ai Mochida
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Brenna Vaughn
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
24
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
25
|
Herrera Quijano MA, Sharma N, Morissette Martin P, Séguin CA, Flynn LE. Development of 2-D and 3-D culture platforms derived from decellularized nucleus pulposus. Front Bioeng Biotechnol 2022; 10:937239. [PMID: 36237211 PMCID: PMC9551564 DOI: 10.3389/fbioe.2022.937239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bioscaffolds derived from the extracellular matrix (ECM) have shown the capacity to promote regeneration by providing tissue-specific biological instructive cues that can enhance cell survival and direct lineage-specific differentiation. This study focused on the development and characterization of two-dimensional (2-D) and three-dimensional (3-D) cell culture platforms incorporating decellularized nucleus pulposus (DNP). First, a detergent-free protocol was developed for decellularizing bovine nucleus pulposus (NP) tissues that was effective at removing cellular content while preserving key ECM constituents including collagens, glycosaminoglycans, and the cell-adhesive glycoproteins laminin and fibronectin. Next, novel 2-D coatings were generated using the DNP or commercially-sourced bovine collagen type I (COL) as a non-tissue-specific control. In addition, cryo-milled DNP or COL particles were incorporated within methacrylated chondroitin sulphate (MCS) hydrogels as a 3-D cell culture platform for exploring the effects of ECM particle composition. Culture studies showed that the 2-D coatings derived from the DNP could support cell attachment and growth, but did not maintain or rescue the phenotype of primary bovine NP cells, which de-differentiated when serially passaged in monolayer culture. Similarly, while bovine NP cells remained highly viable following encapsulation and 14 days of culture within the hydrogel composites, the incorporation of DNP particles within the MCS hydrogels was insufficient to maintain or rescue changes in NP phenotype associated with extended in vitro culture based on gene expression patterns. Overall, DNP produced with our new decellularization protocol was successfully applied to generate both 2-D and 3-D bioscaffolds; however, further studies are required to assess if these platforms can be combined with additional components of the endogenous NP microenvironment to stimulate regeneration or lineage-specific cell differentiation.
Collapse
Affiliation(s)
- Marco A. Herrera Quijano
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Nadia Sharma
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
| | - Pascal Morissette Martin
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cheryle A. Séguin
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| | - Lauren E. Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| |
Collapse
|
26
|
Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NY. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials 2022; 289:121786. [DOI: 10.1016/j.biomaterials.2022.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
27
|
Tamayo-Angorrilla M, López de Andrés J, Jiménez G, Marchal JA. The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Transl Res 2022; 247:117-136. [PMID: 34844003 DOI: 10.1016/j.trsl.2021.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
A deeper knowledge of the functional versatility and dynamic nature of the ECM has improved the understanding of cancer biology. Translational Significance: This work provides an in-depth view of the importance of the ECM to develop more mimetic breast cancer models, which aim to recreate the components and architecture of tumor microenvironment. Special focus is placed on decellularized matrices derived from tissue and cell culture, both in procurement and applications, as they have achieved great success in cancer research and pharmaceutical sector. The extracellular matrix (ECM) is increasingly recognized as a master regulator of cell behavior and response to breast cancer (BC) treatment. During BC progression, the mammary gland ECM is remodeled and altered in the composition and organization. Accumulated evidence suggests that changes in the composition and mechanics of ECM, orchestrated by tumor-stromal interactions along with ECM remodeling enzymes, are actively involved in BC progression and metastasis. Understanding how specific ECM components modulate the tumorigenic process has led to an increased interest in the development of biomaterial-based biomimetic ECM models to recapitulate key tumor characteristics. The decellularized ECMs (dECMs) have emerged as a promising in vitro 3D tumor model, whose recent advances in the processing and application could become the biomaterial by excellence for BC research and the pharmaceutical industry. This review offers a detailed view of the contribution of ECM in BC progression, and highlights the application of dECM-based biomaterials as promising personalized tumor models that more accurately mimic the tumorigenic mechanisms of BC and the response to treatment. This will allow the design of targeted therapeutic approaches adapted to the specific characteristics of each tumor that will have a great impact on the precision medicine applied to BC patients.
Collapse
Affiliation(s)
- Marta Tamayo-Angorrilla
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.GRANADA, University Hospitals of Granada- University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
28
|
Rao Y, Zhu C, Suen HC, Huang S, Liao J, Ker DFE, Tuan RS, Wang D. Tenogenic induction of human adipose-derived stem cells by soluble tendon extracellular matrix: composition and transcriptomic analyses. Stem Cell Res Ther 2022; 13:380. [PMID: 35906661 PMCID: PMC9338462 DOI: 10.1186/s13287-022-03038-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022] Open
Abstract
Background Tendon healing is clinically challenging largely due to its inferior regenerative capacity. We have previously prepared a soluble, DNA-free, urea-extracted bovine tendon-derived extracellular matrix (tECM) that exhibits strong pro-tenogenic bioactivity on human adipose-derived stem cells (hASCs). In this study, we aimed to elucidate the mechanism of tECM bioactivity via characterization of tECM protein composition and comparison of transcriptomic profiles of hASC cultures treated with tECM versus collagen type I (Col1) as a control ECM component.
Methods The protein composition of tECM was characterized by SDS-PAGE, hydroxyproline assay, and proteomics analysis. To investigate tECM pro-tenogenic bioactivity and mechanism of action, differentiation of tECM-treated hASC cultures was compared to serum control medium or Col1-treated groups, as assessed via immunofluorescence for tenogenic markers and RNA Sequencing (RNA-Seq).
Results Urea-extracted tECM yielded consistent protein composition, including collagens (20% w/w) and at least 17 non-collagenous proteins (< 100 kDa) based on MS analysis. Compared to current literature, tECM included key tendon ECM components that are functionally involved in tendon regeneration, as well as those that are involved in similar principal Gene Ontology (GO) functions (ECM-receptor interaction and collagen formation) and signaling pathways (ECM-receptor interaction and focal adhesion). When used as a cell culture supplement, tECM enhanced hASC proliferation and tenogenic differentiation compared to the Col1 and FBS treatment groups based on immunostaining of tenogenesis-associated markers. Furthermore, RNA-Seq analysis revealed a total of 584 genes differentially expressed among the three culture groups. Specifically, Col1-treated hASCs predominantly exhibited expression of genes and pathways related to ECM-associated processes, while tECM-treated hASCs expressed a mixture of ECM- and cell activity-associated processes, which may explain in part the enhanced proliferation and tenogenic differentiation of tECM-treated hASCs. Conclusions Our findings showed that urea-extracted tECM contained 20% w/w collagens and is significantly enriched with other non-collagenous tendon ECM components. Compared to Col1 treatment, tECM supplementation enhanced hASC proliferation and tenogenic differentiation as well as induced distinct gene expression profiles. These findings provide insights into the potential mechanism of the pro-tenogenic bioactivity of tECM and support the development of future tECM-based approaches for tendon repair. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03038-0.
Collapse
Affiliation(s)
- Ying Rao
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Chenxian Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Hoi Ching Suen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jinyue Liao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China.
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,Ministry of Education Key Laboratory for Regenerative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China. .,Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Sha Tin, Hong Kong, SAR, China.
| |
Collapse
|
29
|
Bashiri Z, Gholipourmalekabadi M, Falak R, Amiri I, Asgari H, Chauhan NPS, Koruji M. In vitro production of mouse morphological sperm in artificial testis bioengineered by 3D printing of extracellular matrix. Int J Biol Macromol 2022; 217:824-841. [PMID: 35905760 DOI: 10.1016/j.ijbiomac.2022.07.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Since autologous stem cell transplantation is prone to cancer recurrence, in vitro sperm production is regarded a safer approach to fertility preservation. In this study, the spermatogenesis process on testicular tissue extracellular matrix (T-ECM)-derived printing structure was evaluated. Ram testicular tissue was decellularized using a hypertonic solution containing triton and the extracted ECM was used as a bio-ink to print an artificial testis. Following cell adhesion and viability examination, pre-meiotic and post-meiotic cells in the study groups (as testicular suspension and co-culture with Sertoli cells) were confirmed by real-time PCR, flow-cytometry and immunocytochemistry methods. Morphology of differentiated cells was evaluated using transmission electron microscopy (TEM), toluidine blue, Giemsa, and hematoxylin and eosin (H&E) staining. The functionality of Leydig and Sertoli cells was determined by their ability for hormone secretion. The decellularization of testicular tissue fragments was successful and had efficiently removed the cellular debris and preserved the ECM compounds. High cell viability, colonization, and increased expression of pre-meiotic markers in cultured testicular cells on T-ECM-enriched scaffolds confirmed their proliferation. Furthermore, the inoculation of neonatal mouse testicular cells onto T-ECM-enriched scaffolds resulted in the generation of sperm. Morphology evaluation showed that the structure of these cells was quite similar to mature sperm with a specialized tail structure. The hormonal analysis also confirmed production and secretion of testosterone and inhibin B by Leydig and Sertoli cells. T-ECM printed artificial testis is a future milestone that promises for enhancing germ cell maintenance and differentiation, toxicology studies, and fertility restoration to pave the way for new human infertility treatments in the future.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center (IRC), Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Amiri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Endometrium and Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Ning C, Gao C, Li P, Fu L, Chen W, Liao Z, Xu Z, Yuan Z, Guo W, Sui X, Liu S, Guo Q. Dual‐Phase Aligned Composite Scaffolds Loaded with Tendon‐Derived Stem Cells for Achilles Tendon Repair. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao Ning
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Cangjian Gao
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Pinxue Li
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Liwei Fu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Wei Chen
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiyao Liao
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zizheng Xu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Zhiguo Yuan
- Department of Bone and Joint Surgery Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200030 P. R. China
| | - Weimin Guo
- Department of Orthopaedic Surgery Guangdong Provincial Key Laboratory of Orthopedics and Traumatology First Affiliated Hospital Sun Yat‐sen University No. 58 Zhongshan Second Road, Yuexiu District Guangzhou Guangdong 510080 P. R. China
| | - Xiang Sui
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Shuyun Liu
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| | - Quanyi Guo
- Chinese PLA Medical School No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
- Institute of Orthopedics Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics Key Laboratory of Musculoskeletal Trauma and War Injuries PLA No. 28 Fuxing Road, Haidian District Beijing 100853 P. R. China
| |
Collapse
|
31
|
Zhang Q, Hu Y, Long X, Hu L, Wu Y, Wu J, Shi X, Xie R, Bi Y, Yu F, Li P, Yang Y. Preparation and Application of Decellularized ECM-Based Biological Scaffolds for Articular Cartilage Repair: A Review. Front Bioeng Biotechnol 2022; 10:908082. [PMID: 35845417 PMCID: PMC9280718 DOI: 10.3389/fbioe.2022.908082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cartilage regeneration is dependent on cellular-extracellular matrix (ECM) interactions. Natural ECM plays a role in mechanical and chemical cell signaling and promotes stem cell recruitment, differentiation and tissue regeneration in the absence of biological additives, including growth factors and peptides. To date, traditional tissue engineering methods by using natural and synthetic materials have not been able to replicate the physiological structure (biochemical composition and biomechanical properties) of natural cartilage. Techniques facilitating the repair and/or regeneration of articular cartilage pose a significant challenge for orthopedic surgeons. Whereas, little progress has been made in this field. In recent years, with advances in medicine, biochemistry and materials science, to meet the regenerative requirements of the heterogeneous and layered structure of native articular cartilage (AC) tissue, a series of tissue engineering scaffolds based on ECM materials have been developed. These scaffolds mimic the versatility of the native ECM in function, composition and dynamic properties and some of which are designed to improve cartilage regeneration. This review systematically investigates the following: the characteristics of cartilage ECM, repair mechanisms, decellularization method, source of ECM, and various ECM-based cartilage repair methods. In addition, the future development of ECM-based biomaterials is hypothesized.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Yixin Hu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Xuan Long
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lingling Hu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Yu Wu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Ji Wu
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Xiaobing Shi
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Runqi Xie
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Yu Bi
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
| | - Fangyuan Yu
- Senior Department of Orthopedics, Forth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Fangyuan Yu, ; Pinxue Li, ; Yu Yang,
| | - Pinxue Li
- School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Fangyuan Yu, ; Pinxue Li, ; Yu Yang,
| | - Yu Yang
- Department of Orthopedics, The Second People’s Hospital of Guiyang, Guiyang, China
- *Correspondence: Fangyuan Yu, ; Pinxue Li, ; Yu Yang,
| |
Collapse
|
32
|
Donderwinkel I, Tuan RS, Cameron NR, Frith JE. Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells. Acta Biomater 2022; 145:25-42. [PMID: 35470075 DOI: 10.1016/j.actbio.2022.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
Tendons are integral to our daily lives by allowing movement and locomotion but are frequently injured, leading to patient discomfort and impaired mobility. Current clinical procedures are unable to fully restore the native structure of the tendon, resulting in loss of full functionality, and the weakened tissue following repair often re-ruptures. Tendon tissue engineering, involving the combination of cells with biomaterial scaffolds to form new tendon tissue, holds promise to improve patient outcomes. A key requirement for efficacy in promoting tendon tissue formation is the optimal differentiation of the starting cell populations, most commonly adult tissue-derived mesenchymal stem/stromal cells (MSCs), into tenocytes, the predominant cellular component of tendon tissue. Currently, a lack of consensus on the protocols for effective tenogenic differentiation is hampering progress in tendon tissue engineering. In this review, we discuss the current state of knowledge regarding human stem cell differentiation towards tenocytes and tendon tissue formation. Tendon development and healing mechanisms are described, followed by a comprehensive overview of the current protocols for tenogenic differentiation, including the effects of biochemical and biophysical cues, and their combination, on tenogenesis. Lastly, a synthesis of the key features of these protocols is used to design future approaches. The holistic evaluation of current knowledge should facilitate and expedite the development of efficacious stem cell tenogenic differentiation protocols with future impact in tendon tissue engineering. STATEMENT OF SIGNIFICANCE: The lack of a widely-adopted tenogenic differentiation protocol has been a major hurdle in the tendon tissue engineering field. Building on current knowledge on tendon development and tendon healing, this review surveys peer-reviewed protocols to present a holistic evaluation and propose a pathway to facilitate and expedite the development of a consensus protocol for stem cell tenogenic differentiation and tendon tissue engineering.
Collapse
|
33
|
Decellularised Cartilage ECM Culture Coatings Drive Rapid and Robust Chondrogenic Differentiation of Human Periosteal Cells. Bioengineering (Basel) 2022; 9:bioengineering9050203. [PMID: 35621481 PMCID: PMC9137502 DOI: 10.3390/bioengineering9050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
The control of cell behaviour in an effort to create highly homogeneous cultures is becoming an area of intense research, both to elucidate fundamental biology and for regenerative applications. The extracellular matrix (ECM) controls many cellular processes in vivo, and as such is a rich source of cues that may be translated in vitro. Herein, we describe the creation of cell culture coatings from porcine decellularised hyaline cartilage through enzymatic digestion. Surprisingly, heat-mediated sterilisation created a coating with the capacity to rapidly and robustly induce chondrogenic differentiation of human periosteal cells. This differentiation was validated through the alteration of cell phenotype from a fibroblastic to a cuboidal/cobblestone chondrocyte-like appearance. Moreover, chondrogenic gene expression further supported this observation, where cells cultured on heat sterilised ECM-coated plastic displayed higher expression of COL2A1, ACAN and PRG4 (p < 0.05) compared to non-coated plastic cultures. Interestingly, COL2A1 and ACAN expression in this context were sensitive to initial cell density; however, SOX9 expression appeared to be mainly driven by the coating independent of seeding density. The creation of a highly chondrogenic coating may provide a cost-effective solution for the differentiation and/or expansion of human chondrocytes aimed towards cartilage repair strategies.
Collapse
|
34
|
Browe DC, Díaz-Payno PJ, Freeman FE, Schipani R, Burdis R, Ahern DP, Nulty JM, Guler S, Randall LD, Buckley CT, Brama PA, Kelly DJ. Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair. Acta Biomater 2022; 143:266-281. [PMID: 35278686 DOI: 10.1016/j.actbio.2022.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
While some clinical advances in cartilage repair have occurred, osteochondral (OC) defect repair remains a significant challenge, with current scaffold-based approaches failing to recapitulate the complex, hierarchical structure of native articular cartilage (AC). To address this need, we fabricated bilayered extracellular matrix (ECM)-derived scaffolds with aligned pore architectures. By modifying the freeze-drying kinetics and controlling the direction of heat transfer during freezing, it was possible to produce anisotropic scaffolds with larger pores which supported homogenous cellular infiltration and improved sulfated glycosaminoglycan deposition. Neo-tissue organization in vitro could also be controlled by altering scaffold pore architecture, with collagen fibres aligning parallel to the long-axis of the pores within scaffolds containing aligned pore networks. Furthermore, we used in vitro and in vivo assays to demonstrate that AC and bone ECM derived scaffolds could preferentially direct the differentiation of mesenchymal stromal cells (MSCs) towards either a chondrogenic or osteogenic lineage respectively, enabling the development of bilayered ECM scaffolds capable of spatially supporting unique tissue phenotypes. Finally, we implanted these scaffolds into a large animal model of OC defect repair. After 6 months in vivo, scaffold implantation was found to improve cartilage matrix deposition, with collagen fibres preferentially aligning parallel to the long axis of the scaffold pores, resulting in a repair tissue that structurally and compositionally was more hyaline-like in nature. These results demonstrate how scaffold architecture and composition can be spatially modulated to direct the regeneration of complex interfaces such as the osteochondral unit, enabling their use as cell-free, off-the-shelf implants for joint regeneration. STATEMENT OF SIGNIFICANCE: The architecture of the extracellular matrix, while integral to tissue function, is often neglected in the design and evaluation of regenerative biomaterials. In this study we developed a bilayered scaffold for osteochondral defect repair consisting of tissue-specific extracellular matrix (ECM)-derived biomaterials to spatially direct stem/progenitor cell differentiation, with a tailored pore microarchitecture to promote the development of a repair tissue that recapitulates the hierarchical structure of native AC. The use of this bilayered scaffold resulted in improved tissue repair outcomes in a large animal model, specifically the ability to guide neo-tissue organization and therefore recapitulate key aspects of the zonal structure of native articular cartilage. These bilayer scaffolds have the potential to become a new therapeutic option for osteochondral defect repair.
Collapse
|
35
|
Diaz-Payno PJ, Browe D, Freeman FE, Nulty J, Burdis R, Kelly DJ. GREM1 suppresses hypertrophy of engineered cartilage in vitro but not bone formation in vivo. Tissue Eng Part A 2022; 28:724-736. [PMID: 35297694 DOI: 10.1089/ten.tea.2021.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current repair of articular cartilage (AC) often leads to a lower quality tissue with an unstable hypertrophic phenotype, susceptible to endochondral ossification and development of osteoarthritis. Engineering phenotypically stable AC remains a significant challenge in the cartilage engineering field. This motivates new strategies inspired from the extracellular matrix (ECM) proteins unique to phenotypically stable AC. We have previously shown that BMP antagonist gremlin-1 (GREM1) protein, present in permanent but not transient cartilage, suppresses the hypertrophy of chondrogenically primed bone marrow stem cells (BMSCs) in pellet culture. The goal of this study was to assess the effect of GREM1 on the in vitro and in vivo phenotypic stability of porcine BMSC derived cartilage engineered within chondro-permissive scaffolds. In addition, we explored whether GREM1 would synergise with physioxia, a potent chondrogenesis regulator, when engineering cartilage grafts. GREM1 did not influence the expression of chondrogenic markers (SOX-9, COL2A1), but did suppress the expression of hypertrophic markers (MMP13, COL10A1) in vitro. Cartilage engineered with GREM1 contained higher levels of residual cartilage after 4 weeks in vivo, but endochondral bone formation was not prevented. Higher GREM1 levels did not significantly alter the fate of engineered tissues in vitro or in vivo. The combination of physioxia and GREM1 resulted in higher sGAG deposition in vitro and greater retention of cartilage matrix in vivo than physioxia alone, but again did not suppress endochondral ossification. Therefore, while physioxia and GREM1 regulate BMSCs chondrogenesis in vitro and reduce cartilage loss in vivo, their use does not guarantee the development of stable cartilage.
Collapse
Affiliation(s)
- Pedro J Diaz-Payno
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| | - David Browe
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| | - Fiona E Freeman
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| | - Jessica Nulty
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| | - Ross Burdis
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| | - Daniel John Kelly
- University of Dublin Trinity College Department of Mechanical & Manufacturing Engineering, 548636, Dublin, Ireland;
| |
Collapse
|
36
|
Cetik RM, Yabanoglu Ciftci S, Arica B, Baysal I, Akarca Dizakar SO, Erbay Elibol FK, Gencer A, Demir T, Ayvaz M. Evaluation of the Effects of Transforming Growth Factor-Beta 3 (TGF-β3) Loaded Nanoparticles on Healing in a Rat Achilles Tendon Injury Model. Am J Sports Med 2022; 50:1066-1077. [PMID: 35188807 DOI: 10.1177/03635465211073148] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Achilles tendon (AT) midsubstance injuries may heal suboptimally, especially in athletes. Transforming growth factor-beta 3 (TGF-β3) shows promise because of its recently discovered tendinogenic effects. Using poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles (NPs) may enhance the results by a sustained-release effect. HYPOTHESIS The application of TGF-β3 will enhance AT midsubstance healing, and the NP form will achieve better outcomes. STUDY DESIGN Controlled laboratory study. METHODS A total of 80 rats underwent unilateral AT transection and were divided into 4 groups: (1) control (C); (2) empty chitosan film (Ch); (3) chitosan film containing free TGF-β3 (ChT); and (4) chitosan film containing TGF-β3-loaded NPs (ChN). The animals were sacrificed at 3 and 6 weeks. Tendons were evaluated for morphology (length and cross-sectional area [CSA]), biomechanics (maximum load, stress, stiffness, and elastic modulus), histology, immunohistochemical quantification (types I and III collagen [COL1 and COL3]), and gene expression (COL1A1, COL3A1, scleraxis, and tenomodulin). RESULTS Morphologically, at 3 weeks, ChT (15 ± 2.7 mm) and ChN (15.6 ± 1.6 mm) were shorter than C (17.6 ± 1.8 mm) (P = .019 and = .004, respectively). At 6 weeks, the mean CSA of ChN (10.4 ± 1.9 mm2) was similar to that of intact tendons (6.4 ± 1.1 mm2) (P = .230), while the other groups were larger. Biomechanically, at 3 weeks, ChT (42.8 ± 4.9 N) had a higher maximum load than C (27 ± 9.1 N; P = .004) and Ch (29.2 ± 5.7 N; P = .005). At 6 weeks, ChN (26.9 ± 3.9 MPa) had similar maximum stress when compared with intact tendons (34.1 ± 7.8 MPa) (P = .121); the other groups were significantly lower. Histologically, at 6 weeks, the mean Movin score of ChN (4.5 ± 1.5) was lower than that of ChT (6.3 ± 1.8). Immunohistochemically, ChN had higher COL3 (1.469 ± 0.514) at 3 weeks and lower COL1 (1.129 ± 0.368) at 6 weeks. COL1A1 gene expression was higher in ChT and ChN at 3 weeks, but COL3A1 gene expression was higher in ChN. CONCLUSION The application of TGF-β3 had a positive effect on AT midsubstance healing, and the sustained-release NP form improved the outcomes, more specifically accelerating the remodeling process. CLINICAL RELEVANCE This study demonstrated the effectiveness of TGF-β3 on tendon healing on a rat model, which is an important step toward clinical use. The novel method of using PLGA-b-PEG NPs as a drug-delivery system with sustained-release properties had promising results.
Collapse
Affiliation(s)
- Riza Mert Cetik
- Hacettepe University Faculty of Medicine, Department of Orthopedics and Traumatology, Ankara, Turkey
| | | | - Betul Arica
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| | - Ipek Baysal
- Hacettepe University Vocational School of Health Services, Ankara, Turkey
| | | | - Fatma Kubra Erbay Elibol
- TOBB ETÜ University of Economics and Technology, Department of Biomedical Engineering, Ankara, Turkey
| | - Ayse Gencer
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| | - Teyfik Demir
- TOBB ETÜ University of Economics and Technology, Department of Mechanical Engineering, Ankara, Turkey
| | - Mehmet Ayvaz
- Hacettepe University Faculty of Medicine, Department of Orthopedics and Traumatology, Ankara, Turkey
| |
Collapse
|
37
|
Kim M, Ahn J, Lee J, Song S, Lee S, Lee S, Kang KS. Combined Mesenchymal Stem Cells and Cartilage Acellular Matrix Injection Therapy for Osteoarthritis in Goats. Tissue Eng Regen Med 2022; 19:177-187. [PMID: 35023025 PMCID: PMC8782990 DOI: 10.1007/s13770-021-00407-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Human umbilical cord blood-derived MSCs (hUCB-MSCs) have been studied in osteoarthritis (OA) and cartilage regeneration. Our previous study demonstrated that hUCB-MSCs combined with cartilage acellular matrix injection (CAM Inj.) represent potential therapeutic agents for structural improvement and anti-inflammatory effects in a rabbit model of OA. METHODS Based on a previous study, this study has evaluated the safety and efficacy of hUCB-MSCs combined with CAM Inj. in an anterior cruciate ligament transection (ACLT) with medial meniscectomy (MMx) in a goat model. In this study, 27 goats were divided into 5 groups: normal (n = 3), OA (n = 6), OA + CAM Inj. (n = 6), OA + hUCB-MSCs (n = 6), and OA + hUCB-MSCs + CAM Inj. (n = 6). Lameness and radiographic parameters were assessed 6 months after administration, and macroscopic and histological evaluations of the goat articular cartilage were performed 6 months after intervention. RESULTS The results showed significant improvement in lameness score only in the OA + hUCB-MSCs group at 5 months after treatment (*p < 0.05), whereas the K&L score showed significant improvement only in the OA + hUCB-MSCs + CAM Inj. group 6 months after intervention (*p < 0.05). In addition, the gross findings showed significance in OA + CAM Inj. and OA + hUCB-MSCs + CAM Inj. groups 6 months after treatment (*p < 0.05 and **p < 0.01). CONCLUSION In conclusion, treatment with a combination of hUCB-MSCs and CAM Inj. reduced OA symptoms and induced effective cartilage tissue repair in a goat model. We suggest the combination of hUCB-MSCs and CAM Inj. as an alternative therapy for OA.
Collapse
Affiliation(s)
- Mijin Kim
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Jongchan Ahn
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Jusik Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Seongsoo Song
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea.
| | - Kyung-Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea.
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
38
|
Enhancing Stem Cell Therapy for Cartilage Repair in Osteoarthritis-A Hydrogel Focused Approach. Gels 2021; 7:gels7040263. [PMID: 34940323 PMCID: PMC8701810 DOI: 10.3390/gels7040263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Sem cells hold tremendous promise for the treatment of cartilage repair in osteoarthritis. In addition to their multipotency, stem cells possess immunomodulatory effects that can alleviate inflammation and enhance cartilage repair. However, the widely clinical application of stem cell therapy to cartilage repair and osteoarthritis has proven difficult due to challenges in large-scale production, viability maintenance in pathological tissue site and limited therapeutic biological activity. This review aims to provide a perspective from hydrogel-focused approach to address few key challenges in stem cell-based therapy for cartilage repair and highlight recent progress in advanced hydrogels, particularly microgels and dynamic hydrogels systems for improving stem cell survival, retention and regulation of stem cell fate. Finally, progress in hydrogel-assisted gene delivery and genome editing approaches for the development of next generation of stem cell therapy for cartilage repair in osteoarthritis are highlighted.
Collapse
|
39
|
Shengnan Q, Bennett S, Wen W, Aiguo L, Jiake X. The role of tendon derived stem/progenitor cells and extracellular matrix components in the bone tendon junction repair. Bone 2021; 153:116172. [PMID: 34506992 DOI: 10.1016/j.bone.2021.116172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
Fibrocartilage enthesis is the junction between bone and tendon with a typical characteristics of fibrocartilage transition zones. The regeneration of this transition zone is the bottleneck for functional restoration of bone tendon junction (BTJ). Biomimetic approaches, especially decellularized extracellular matrix (ECM) materials, are strategies which aim to mimic the components of tissues to the utmost extent, and are becoming popular in BTJ healing because of their ability not only to provide scaffolds to allow cells to attach and migrate, but also to provide a microenvironment to guide stem/progenitor cells lineage-specific differentiation. However, the cellular and molecular mechanisms of those approaches, especially the ECM proteins, remain unclear. For BTJ reconstruction, fibrocartilage regeneration is the key for good integrity of bone and tendon as well as its mechanical recovery, so the components which can guide stem cells to a chondrogenic commitment in biomimetic approaches might well be the key for fibrocartilage regeneration and eventually for the better BTJ healing. In this review, we firstly discuss the importance of cartilage-like formation in the healing process of BTJ. Next, we explore the possibility of tendon-derived stem/progenitor cells as cell sources for BTJ regeneration due to their multi-differentiation potential. Finally, we summarize the role of extracellular matrix components of BTJ in guiding stem cell fate to a chondrogenic commitment, so as to provide cues for understanding the mechanisms of lineage-specific potential of biomimetic approaches as well as to inspire researchers to incorporate unique ECM components that facilitate BTJ repair into design.
Collapse
Affiliation(s)
- Qin Shengnan
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Wang Wen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Li Aiguo
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.
| | - Xu Jiake
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
40
|
Davidov T, Efraim Y, Hayam R, Oieni J, Baruch L, Machluf M. Extracellular Matrix Hydrogels Originated from Different Organs Mediate Tissue-Specific Properties and Function. Int J Mol Sci 2021; 22:ijms222111624. [PMID: 34769054 PMCID: PMC8583810 DOI: 10.3390/ijms222111624] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/29/2022] Open
Abstract
Porcine extracellular matrix (pECM)-derived hydrogels were introduced, in recent years, aiming to benefit the pECM’s microstructure and bioactivity, while controlling the biomaterial’s physical and mechanical properties. The use of pECM from different tissues, however, offers tissue-specific features that can better serve different applications. In this study, pECM hydrogels derived from cardiac, artery, pancreas, and adipose tissues were compared in terms of composition, structure, and mechanical properties. While major similarities were demonstrated between all the pECM hydrogels, their distinctive attributes were also identified, and their substantial effects on cell-ECM interactions were revealed. Furthermore, through comprehensive protein and gene expression analyses, we show, for the first time, that each pECM hydrogel supports the spontaneous differentiation of induced pluripotent stem cells towards the resident cells of its origin tissue. These findings imply that the origin of ECM should be carefully considered when designing a biomedical platform, to achieve a maximal bioactive impact.
Collapse
|
41
|
Yun HW, Song BR, Shin DI, Yin XY, Truong MD, Noh S, Jin YJ, Kwon HJ, Min BH, Park DY. Fabrication of decellularized meniscus extracellular matrix according to inner cartilaginous, middle transitional, and outer fibrous zones result in zone-specific protein expression useful for precise replication of meniscus zones. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112312. [PMID: 34474863 DOI: 10.1016/j.msec.2021.112312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 11/15/2022]
Abstract
Meniscus is a fibrocartilage composite tissue with three different microstructual zones, inner fibrocartilage, middle transitional, and outer fibrous zone. We hypothesized that decellularized meniscus extracellular matrix (DMECM) would have different characteristics according to zone of origin. We aimed to compare zone-specific DMECM in terms of biochemical characteristics and cellular interactions associated with tissue engineering. Micronized DMECM was fabricated from porcine meniscus divided into three microstructural zones. Characterization of DMECM was done by biochemical and proteomic analysis. Inner DMECM showed the highest glycosaminoglycan content, while middle DMECM showed the highest collagen content among groups. Proteomic analysis showed significant differences among DMECM groups. Inner DMECM showed better adhesion and migration potential to meniscus cells compared to other groups. DMECM resulted in expression of zone-specific differentiation markers when co-cultured with synovial mesenchymal stem cells (SMSCs). SMSCs combined with inner DMECM showed the highest glycosaminoglycan in vivo. Outer DMECM constructs, on the other hand, showed more fibrous tissue features, while middle DMECM constructs showed both inner and outer zone characteristics. In conclusion, DMECM showed different characteristics according to microstructural zones, and such material may be useful for zone-specific tissue engineering of meniscus.
Collapse
Affiliation(s)
- Hee-Woong Yun
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Bo Ram Song
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Dong Il Shin
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Xiang Yun Yin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Minh-Dung Truong
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Sujin Noh
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Young Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea
| | - Hyeon Jae Kwon
- Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Byoung-Hyun Min
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea; Cell Therapy Center, Ajou Medical Center, Suwon, Republic of Korea.
| |
Collapse
|
42
|
Safdari M, Bibak B, Soltani H, Hashemi J. Recent advancements in decellularized matrix technology for bone tissue engineering. Differentiation 2021; 121:25-34. [PMID: 34454348 DOI: 10.1016/j.diff.2021.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022]
Abstract
The native extracellular matrix (ECM) provides a matrix to hold tissue/organ, defines the cellular fate and function, and retains growth factors. Such a matrix is considered as a most biomimetic scaffold for tissue engineering due to the biochemical and biological components, 3D hierarchical structure, and physicomechanical properties. Several attempts have been performed to decellularize allo- or xeno-graft tissues and used them for bone repairing and regeneration. Decellularized ECM (dECM) technology has been developed to create an in vivo-like microenvironment to promote cell adhesion, growth, and differentiation for tissue repair and regeneration. Decellularization is mediated through physical, chemical, and enzymatic methods. In this review, we describe the recent progress in bone decellularization and their applications as a scaffold, hydrogel, bioink, or particles in bone tissue engineering. Furthermore, we address the native dECM limitations and the potential of non-bone dECM, cell-based ECM, and engineered ECM (eECM) for in vitro osteogenic differentiation and in vivo bone regeneration.
Collapse
Affiliation(s)
- Mohammadreza Safdari
- Department of Surgery, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Research Center of Natural Products Safety and Medicinal Plants, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hoseinali Soltani
- Department of General Surgery, Imam Ali Hospital, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Research Center of Natural Products Safety and Medicinal Plants, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
43
|
Characteristics of Biodegradable Gelatin Methacrylate Hydrogel Designed to Improve Osteoinduction and Effect of Additional Binding of Tannic Acid on Hydrogel. Polymers (Basel) 2021; 13:polym13152535. [PMID: 34372138 PMCID: PMC8347985 DOI: 10.3390/polym13152535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/02/2023] Open
Abstract
In this study, a hydrogel using single and double crosslinking was prepared using GelMA, a natural polymer, and the effect was evaluated when the double crosslinked hydrogel and tannic acid were treated. The resulting hydrogel was subjected to physicochemical property evaluation, biocompatibility evaluation, and animal testing. The free radicals generated through APS/TEMED have a scaffold form with a porous structure in the hydrogel, and have a more stable structure through photo crosslinking. The double crosslinked hydrogel had improved mechanical strength and better results in cell compatibility tests than the single crosslinked group. Moreover, in the hydrogel transplanted into the femur of a rat, the double crosslinked group showed an osteoinductive response due to the attachment of bone minerals after 4 and 8 weeks, but the single crosslinked group did not show an osteoinductive response due to rapid degradation. Treatment with a high concentration of tannic acid showed significantly improved mechanical strength through H-bonding. However, cell adhesion and proliferation were limited compared to the untreated group due to the limitation of water absorption capacity, and no osteoinduction reaction was observed. As a result, it was confirmed that the treatment of high-concentration tannic acid significantly improved mechanical strength, but it was not a suitable method for improving bone induction due to the limitation of water absorption.
Collapse
|
44
|
Huang CC. New Designed Decellularized Scaffolds for Scaffold-based Gene Therapy from Elastic Cartilages via Supercritical Carbon Dioxide Fluid and Alkaline/Protease Treatments. Curr Gene Ther 2021; 22:162-167. [PMID: 34148537 DOI: 10.2174/1566523219666210618151843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/26/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Scaffold-based gene therapy provides a promising approach for tissue engineering, which is important and popular, that combines medical applications with engineering materials knowledge. OBJECTIVE The decellularization techniques were employed to remove the cellular components from porcine elastic cartilages, leaving a native decellularized extracellular matrix(dECM) composition and architecture integrity of largely insoluble collagen, elastin, and tightly bound glycosaminoglycans. For newly designed collagen scaffold samples, elastic cartilages was hydrolyzed by protease with different concentrations. In this way, it could gain state completely and clearly. METHODS An extraction process of supercritical carbon dioxide(ScCO2) was used to remove cellular components from porcine elastic cartilage. The dECM scaffolds with collagen must be characterized by Fourier transform infrared spectroscopy(FTIR), thermo-gravimetric analysis (TGA), and scanning electron microscope(SEM). RESULTS The study provided a new treatment combined with supercritical carbon dioxide and alkaline/protease to prepare dECM scaffolds with hole-scaffold microstructures and introduce into a potential application on osteochondral tissue engineering using scaffold-based gene therapy. The new process is simple and efficient. The pore-scaffold microstructures were observed in dECM scaffolds derived from porcine elastic cartilages. The Tdmax values of the resulting dECM scaffolds were observed over 330oC. CONCLUSION A series of new scaffolds were successfully obtained from porcine tissue by using ScCO2 and alkaline/enzyme treatments such as an aqueous mixing solution of NH4OH and papain. The dECM scaffolds with high thermal stability were obtained. The resulting scaffold with clean pore-scaffold microstructure could be a potential application for scaffold-based gene therapy.
Collapse
|
45
|
Wang D, Zhang X, Huang S, Liu Y, Fu BSC, Mak KKL, Blocki AM, Yung PSH, Tuan RS, Ker DFE. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials 2021; 272:120789. [PMID: 33845368 DOI: 10.1016/j.biomaterials.2021.120789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Our body systems are comprised of numerous multi-tissue units. For the musculoskeletal system, one of the predominant functional units is comprised of bone, tendon/ligament, and muscle tissues working in tandem to facilitate locomotion. To successfully treat musculoskeletal injuries and diseases, critical consideration and thoughtful integration of clinical, biological, and engineering aspects are necessary to achieve translational bench-to-bedside research. In particular, identifying ideal biomaterial design specifications, understanding prior and recent tissue engineering advances, and judicious application of biomaterial and fabrication technologies will be crucial for addressing current clinical challenges in engineering multi-tissue units. Using rotator cuff tears as an example, insights relevant for engineering a bone-tendon-muscle multi-tissue unit are presented. This review highlights the tissue engineering strategies for musculoskeletal repair and regeneration with implications for other bone-tendon-muscle units, their derivatives, and analogous non-musculoskeletal tissue structures.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yang Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Bruma Sai-Chuen Fu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Anna Maria Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
46
|
Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Zhang Y, Fu K, Qin KH, Li AJ, Hagag O, Wang EJ, Sabharwal M, Wagstaff W, Reid RR, Lee MJ, Wolf JM, El Dafrawy M, Hynes K, Strelzow J, Ho SH, He TC, Athiviraham A. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:603444. [PMID: 33842441 PMCID: PMC8026885 DOI: 10.3389/fbioe.2021.603444] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
47
|
Peng Y, Qing X, Lin H, Huang D, Li J, Tian S, Liu S, Lv X, Ma K, Li R, Rao Z, Bai Y, Chen S, Lei M, Quan D, Shao Z. Decellularized Disc Hydrogels for hBMSCs tissue-specific differentiation and tissue regeneration. Bioact Mater 2021; 6:3541-3556. [PMID: 33842740 PMCID: PMC8022111 DOI: 10.1016/j.bioactmat.2021.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue specificity, a key factor in the decellularized tissue matrix (DTM), has shown bioactive functionalities in tuning cell fate-e.g., the differentiation of mesenchymal stem cells. Notably, cell fate is also determined by the living microenvironment, including material composition and spatial characteristics. Herein, two neighboring tissues within intervertebral discs, the nucleus pulposus (NP) and annulus fibrosus (AF), were carefully processed into DTM hydrogels (abbreviated DNP-G and DAF-G, respectively) to determine the tissue-specific effects on stem cell fate, such as specific components and different culturing methods, as well as in vivo regeneration. Distinct differences in their protein compositions were identified by proteomic analysis. Interestingly, the fate of human bone marrow mesenchymal stem cells (hBMSCs) also responds to both culturing methods and composition. Generally, hBMSCs cultured with DNP-G (3D) differentiated into NP-like cells, while hBMSCs cultured with DAF-G (2D) underwent AF-like differentiation, indicating a close correlation with the native microenvironments of NP and AF cells, respectively. Furthermore, we found that the integrin-mediated RhoA/LATS/YAP1 signaling pathway was activated in DAF-G (2D)-induced AF-specific differentiation. Additionally, the activation of YAP1 determined the tendency of NP- or AF-specific differentiation and played opposite regulatory effects. Finally, DNP-G and DAF-G specifically promoted tissue regeneration in NP degeneration and AF defect rat models, respectively. In conclusion, DNP-G and DAF-G can specifically determine the fate of stem cells through the integrin-mediated RhoA/LATS/YAP1 signaling pathway, and this tissue specificity is both compositional and spatial, supporting the utilization of tissue-specific DTM in advanced treatments of intervertebral disc degeneration.
Collapse
Key Words
- 2D, two-dimensional
- 3D, three-dimensional
- AF, annulus fibrosus
- Col I–S, collagen type I solution
- DAF, decellularized annulus fibrosus
- DAF-G, decellularized annulus fibrosus hydrogel
- DAF-S, decellularized annulus fibrosus solution
- DNP, decellularized nucleus pulposus
- DNP-G, decellularized nucleus pulposus hydrogel
- DNP-S, decellularized nucleus pulposus solution
- DTM, decellularized tissue matrix
- Decellularized tissue matrix
- Differentiation
- ECM, extracellular matrix
- FAF, fresh annulus fibrosus
- FNP, fresh nucleus pulposus
- IDD, intervertebral disc degeneration
- Intervertebral disc
- MSC, mesenchymal stem cell
- NP, nucleus pulposus
- Tissue specificity
- YAP1
- YAP1, yes-associated protein 1
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Donghua Huang
- Musculoskeletal Tumor Center, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinye Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China
| | - Zilong Rao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China
| | - Ying Bai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510127, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, China
| | - Ming Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| | - Daping Quan
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China,School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510127, China,Corresponding author. School of Chemistry, Sun Yat-sen University, Guangzhou, 510127, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Corresponding author.
| |
Collapse
|
48
|
Nouri Barkestani M, Naserian S, Uzan G, Shamdani S. Post-decellularization techniques ameliorate cartilage decellularization process for tissue engineering applications. J Tissue Eng 2021; 12:2041731420983562. [PMID: 33738088 PMCID: PMC7934046 DOI: 10.1177/2041731420983562] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Due to the current lack of innovative and effective therapeutic approaches, tissue engineering (TE) has attracted much attention during the last decades providing new hopes for the treatment of several degenerative disorders. Tissue engineering is a complex procedure, which includes processes of decellularization and recellularization of biological tissues or functionalization of artificial scaffolds by active cells. In this review, we have first discussed those conventional steps, which have led to great advancements during the last several years. Moreover, we have paid special attention to the new methods of post-decellularization that can significantly ameliorate the efficiency of decellularized cartilage extracellular matrix (ECM) for the treatment of osteoarthritis (OA). We propose a series of post-decellularization procedures to overcome the current shortcomings such as low mechanical strength and poor bioactivity to improve decellularized ECM scaffold towards much more efficient and higher integration.
Collapse
Affiliation(s)
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Université Paris-Saclay, CNRS, Centre de Nanosciences et Nanotechnologies C2N, UMR9001, Palaiseau, France.,CellMedEx, Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,CellMedEx, Saint Maur Des Fossés, France
| |
Collapse
|
49
|
Decellularized bone extracellular matrix in skeletal tissue engineering. Biochem Soc Trans 2021; 48:755-764. [PMID: 32369551 DOI: 10.1042/bst20190079] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms - whole organ, particles, hydrogels - has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.
Collapse
|
50
|
|