1
|
Ma YY, Li X, Yu ZY, Luo T, Tan CR, Bai YD, Xu G, Sun BD, Bu XL, Liu YH, Jin WS, Gao YQ, Zhou XF, Liu J, Wang YJ. Oral antioxidant edaravone protects against cognitive deficits induced by chronic hypobaric hypoxia at high altitudes. Transl Psychiatry 2024; 14:415. [PMID: 39362869 PMCID: PMC11450176 DOI: 10.1038/s41398-024-03133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Chronic hypobaric hypoxia at high altitudes can impair cognitive functions, especially causing deficits in learning and memory, which require therapeutic intervention. Here, we showed that mice subjected to hypobaric hypoxia (simulating an altitude of 5000 m) for one month experienced significant cognitive impairment, accompanied by increased biomarker levels of oxidative stress in the brain and blood. Oral administration of a novel formulation of edaravone, a free radical scavenger approved for the treatment of ischaemic stroke and amyotrophic lateral sclerosis, significantly alleviated oxidative stress and cognitive impairments caused by chronic hypobaric hypoxia. Furthermore, oral edaravone treatment also mitigated neuroinflammation and restored hippocampal neural stem cell exhaustion. Additionally, periostin (Postn) is vital in the cognitive deficits caused by chronic hypobaric hypoxia and may be a molecular target of edaravone. In conclusion, our results suggest that oxidative stress plays a crucial role in the cognitive deficits caused by chronic hypobaric hypoxia and that oral edaravone is a potential medicine for protecting against cognitive deficits caused by chronic hypobaric hypoxia in high-altitude areas.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Xin Li
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse, 857000, China
| | - Zhong-Yuan Yu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Tong Luo
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
| | - Cheng-Rong Tan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Yu-Di Bai
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Gang Xu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude and Frigidzone Medical Support, PLA, Chongqing, 400038, China
| | - Bin-Da Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude and Frigidzone Medical Support, PLA, Chongqing, 400038, China
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Wang-Sheng Jin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China
| | - Yu-Qi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude and Frigidzone Medical Support, PLA, Chongqing, 400038, China
| | - Xin-Fu Zhou
- Suzhou Auzone Biotech, Suzhou, 215123, China
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Juan Liu
- Department of Special Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Center for Hyperbaric Oxygen Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400042, China.
| |
Collapse
|
2
|
Yao D, Li S, You M, Chen Y, Yan S, Li B, Wang Y. Developmental exposure to nonylphenol leads to depletion of the neural precursor cell pool in the hippocampal dentate gyrus. Chem Biol Interact 2024; 401:111187. [PMID: 39111523 DOI: 10.1016/j.cbi.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Developmental exposure to nonylphenol (NP) results in irreversible impairments of the central nervous system (CNS). The neural precursor cell (NPC) pool located in the subgranular zone (SGZ), a substructure of the hippocampal dentate gyrus, is critical for the development of hippocampal circuits and some hippocampal functions such as learning and memory. However, the effects of developmental exposure to NP on this pool remain unclear. Thus, our aim was to clarify the impacts of developmental exposure to NP on this pool and to explore the potential mechanisms. Animal models of developmental exposure to NP were created by treating Wistar rats with NP during pregnancy and lactation. Our data showed that developmental exposure to NP decreased Sox2-and Ki67-positive cells in the SGZ of offspring. Inhibited activation of Shh signaling and decreased levels of its downstream mediators, E2F1 and cyclins, were also observed in pups developmentally exposed to NP. Moreover, we established the in vitro model in the NE-4C cells, a neural precursor cell line, to further investigate the effect of NP exposure on NPCs and the underlying mechanisms. Purmorphamine, a small purine-derived hedgehog agonist, was used to specifically modulate the Shh signaling. Consistent with the in vivo results, exposure to NP reduced cell proliferation by inhibiting the Shh signaling in NE-4C cells, and purmorphamine alleviated this reduction in cell proliferation by restoring this signaling. Altogether, our findings support the idea that developmental exposure to NP leads to inhibition of the NPC proliferation and the NPC pool depletion in the SGZ located in the dentate gyrus. Furthermore, we also provided the evidence that suppressed activation of Shh signaling may contribute to the effects of developmental exposure to NP on the NPC pool.
Collapse
Affiliation(s)
- Dianqi Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Yin Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyu Yan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Bing Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, Liaoning, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
3
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
4
|
Luo J, Luo Y, Zhao M, Liu Y, Liu J, Du Z, Gong H, Wang L, Zhao J, Wang X, Gu Z, Zhao W, Liu T, Fan X. Fullerenols Ameliorate Social Deficiency and Rescue Cognitive Dysfunction of BTBR T +Itpr3 tf/J Autistic-Like Mice. Int J Nanomedicine 2024; 19:6035-6055. [PMID: 38911505 PMCID: PMC11192297 DOI: 10.2147/ijn.s459511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Background Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects social interaction and communication and can cause stereotypic behavior. Fullerenols, a type of carbon nanomaterial known for its neuroprotective properties, have not yet been studied for their potential in treating ASD. We aimed to investigate its role in improving autistic behaviors in BTBR T+Itpr3tf/J (BTBR) mice and its underlying mechanism, which could provide reliable clues for future ASD treatments. Methods Our research involved treating C57BL/6J (C57) and BTBR mice with either 0.9% NaCl or fullerenols (10 mg/kg) daily for one week at seven weeks of age. We then conducted ASD-related behavioral tests in the eighth week and used RNA-seq to screen for vital pathways in the mouse hippocampus. Additionally, we used real-time quantitative PCR (RT-qPCR) to verify related pathway genes and evaluated the number of stem cells in the hippocampal dentate gyrus (DG) by Immunofluorescence staining. Results Our findings revealed that fullerenols treatment significantly improved the related ASD-like behaviors of BTBR mice, manifested by enhanced social ability and improved cognitive deficits. Immunofluorescence results showed that fullerenols treatment increased the number of DCX+ and SOX2+/GFAP+ cells in the DG region of BTBR mice, indicating an expanded neural progenitor cell (NPC) pool of BTBR mice. RNA-seq analysis of the mouse hippocampus showed that VEGFA was involved in the rescued hippocampal neurogenesis by fullerenols treatment. Conclusion In conclusion, our findings suggest that fullerenols treatment improves ASD-like behavior in BTBR mice by upregulating VEGFA, making nanoparticle- fullerenols a promising drug for ASD treatment.
Collapse
Affiliation(s)
- Jing Luo
- School of Life Sciences, Chongqing University, Chongqing, 401331, People’s Republic of China
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Maoru Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Yulong Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Jinghui Zhao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Xiaqing Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Wenhui Zhao
- School of Life Sciences, Chongqing University, Chongqing, 401331, People’s Republic of China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, People’s Republic of China
| |
Collapse
|
5
|
Fu Y, Zhang YL, Liu RQ, Xu MM, Xie JL, Zhang XL, Xie GM, Han YT, Zhang XM, Zhang WT, Zhang J, Zhang J. Exosome lncRNA IFNG-AS1 derived from mesenchymal stem cells of human adipose ameliorates neurogenesis and ASD-like behavior in BTBR mice. J Nanobiotechnology 2024; 22:66. [PMID: 38368393 PMCID: PMC10874555 DOI: 10.1186/s12951-024-02338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND The transplantation of exosomes derived from human adipose-derived mesenchymal stem cells (hADSCs) has emerged as a prospective cellular-free therapeutic intervention for the treatment of neurodevelopmental disorders (NDDs), as well as autism spectrum disorder (ASD). Nevertheless, the efficacy of hADSC exosome transplantation for ASD treatment remains to be verified, and the underlying mechanism of action remains unclear. RESULTS The exosomal long non-coding RNAs (lncRNAs) from hADSC and human umbilical cord mesenchymal stem cells (hUCMSC) were sequenced and 13,915 and 729 lncRNAs were obtained, respectively. The lncRNAs present in hADSC-Exos encompass those found in hUCMSC-Exos and are associated with neurogenesis. The biodistribution of hADSC-Exos in mouse brain ventricles and organoids was tracked, and the cellular uptake of hADSC-Exos was evaluated both in vivo and in vitro. hADSC-Exos promote neurogenesis in brain organoid and ameliorate social deficits in ASD mouse model BTBR T + tf/J (BTBR). Fluorescence in situ hybridization (FISH) confirmed lncRNA Ifngas1 significantly increased in the prefrontal cortex (PFC) of adult mice after hADSC-Exos intraventricular injection. The lncRNA Ifngas1 can act as a molecular sponge for miR-21a-3p to play a regulatory role and promote neurogenesis through the miR-21a-3p/PI3K/AKT axis. CONCLUSION We demonstrated hADSC-Exos have the ability to confer neuroprotection through functional restoration, attenuation of neuroinflammation, inhibition of neuronal apoptosis, and promotion of neurogenesis both in vitro and in vivo. The hADSC-Exos-derived lncRNA IFNG-AS1 acts as a molecular sponge and facilitates neurogenesis via the miR-21a-3p/PI3K/AKT signaling pathway, thereby exerting a regulatory effect. Our findings suggest a potential therapeutic avenue for individuals with ASD.
Collapse
Affiliation(s)
- Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Yuan-Lin Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
- Department of Pathology, Air Force Medical Center, Beijing, 100142, China
| | - Rong-Qi Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200010, China
| | - Meng-Meng Xu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Jun-Ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Xing-Liao Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Guang-Ming Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Yao-Ting Han
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200010, China
| | - Xin-Min Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200010, China
| | - Wan-Ting Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200010, China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200010, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200092, China.
| | - Jun Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200092, China.
| |
Collapse
|
6
|
Zhou M, Qiu W, Ohashi N, Sun L, Wronski ML, Kouyama-Suzuki E, Shirai Y, Yanagawa T, Mori T, Tabuchi K. Deep-Learning-Based Analysis Reveals a Social Behavior Deficit in Mice Exposed Prenatally to Nicotine. Cells 2024; 13:275. [PMID: 38334667 PMCID: PMC10855062 DOI: 10.3390/cells13030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Cigarette smoking during pregnancy is known to be associated with the incidence of attention-deficit/hyperactive disorder (ADHD). Recent developments in deep learning algorithms enable us to assess the behavioral phenotypes of animal models without cognitive bias during manual analysis. In this study, we established prenatal nicotine exposure (PNE) mice and evaluated their behavioral phenotypes using DeepLabCut and SimBA. We optimized the training parameters of DeepLabCut for pose estimation and succeeded in labeling a single-mouse or two-mouse model with high fidelity during free-moving behavior. We applied the trained network to analyze the behavior of the mice and found that PNE mice exhibited impulsivity and a lessened working memory, which are characteristics of ADHD. PNE mice also showed elevated anxiety and deficits in social interaction, reminiscent of autism spectrum disorder (ASD). We further examined PNE mice by evaluating adult neurogenesis in the hippocampus, which is a pathological hallmark of ASD, and demonstrated that newborn neurons were decreased, specifically in the ventral part of the hippocampus, which is reported to be related to emotional and social behaviors. These results support the hypothesis that PNE is a risk factor for comorbidity with ADHD and ASD in mice.
Collapse
Affiliation(s)
- Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Wen Qiu
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Nobuhiko Ohashi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Lihao Sun
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Marie-Louis Wronski
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
7
|
Jiang P, Zhou L, Zhao L, Fei X, Wang Z, Liu T, Tang Y, Li D, Gong H, Luo Y, Li S, Yang H, Liao H, Fan X. Puerarin attenuates valproate-induced features of ASD in male mice via regulating Slc7a11-dependent ferroptosis. Neuropsychopharmacology 2024; 49:497-507. [PMID: 37491673 PMCID: PMC10789763 DOI: 10.1038/s41386-023-01659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Autism spectrum disorder (ASD) is a complicated, neurodevelopmental disorder characterized by social deficits and stereotyped behaviors. Accumulating evidence suggests that ferroptosis is involved in the development of ASD, but the underlying mechanism remains elusive. Puerarin has an anti-ferroptosis function. Here, we found that the administration of puerarin from P12 to P15 ameliorated the autism-associated behaviors in the VPA-exposed male mouse model of autism by inhibiting ferroptosis in neural stem cells of the hippocampus. We highlight the role of ferroptosis in the hippocampus neurogenesis and confirm that puerarin treatment inhibited iron overload, lipid peroxidation accumulation, and mitochondrial dysfunction, as well as enhanced the expression of ferroptosis inhibitory proteins, including Nrf2, GPX4, Slc7a11, and FTH1 in the hippocampus of VPA mouse model of autism. In addition, we confirmed that inhibition of xCT/Slc7a11-mediated ferroptosis occurring in the hippocampus is closely related to puerarin-exerted therapeutic effects. In conclusion, our study suggests that puerarin targets core symptoms and hippocampal neurogenesis reduction through ferroptosis inhibition, which might be a potential drug for autism intervention.
Collapse
Affiliation(s)
- Peiyan Jiang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lianyu Zhou
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Linyang Zhao
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Xinghang Fei
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Zhifei Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Yexi Tang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, 400037, Chongqing, China
| | - Dabing Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China
| | - Song Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Hui Yang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, China
| | - Huiling Liao
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
8
|
Yu C, Yuan H, Xu Y, Luo Y, Wu ZH, Zhong JJ, Xiao JH. Hyaluronan delays human amniotic epithelial stem cell senescence by regulating CD44 isoform switch to activate AKT/mTOR signals. Biomed Pharmacother 2024; 170:116100. [PMID: 38159379 DOI: 10.1016/j.biopha.2023.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
The replicative senescence of human amniotic epithelial stem cells (hAECs) is a major concern towards its clinical application. This study found that a 300-kDa hyaluronic acid (HA) could effectively delay the replicative senescence of hAECs, as indicated by the downregulation of cellular senescence markers and alteration of the cell cycle, and substantially improve the differentiation capacities of hAECs. HA was confirmed to regulate the CD44 isoform switch by upregulating the CD44s and downregulating the CD44v, thus exerting an anti-aging effect. We further found that HA induced the upregulation of hyaluronan synthase (HAS) 2, resulting in the activation of epithelial splicing regulatory protein 1 (ESRP1) and alternative splicing of CD44 mRNA, thereby promoting CD44s expression and inhibiting CD44v expression. Knockdown of HAS2 blocked ESRP1 expression and attenuated the anti-aging effects of HA. Hermes-1, a specific blocker of CD44, caused partial loss of the anti-aging effect of HA, upregulated senescence markers, and downregulated stemness markers. Furthermore, CD44s receptor activation was shown to initiate the AKT/mTOR downstream signaling. Conclusively, the study suggested that HA delayed hAEC senescence by regulating CD44 isoform switch to activate the AKT/mTOR signaling pathway, and there is potential for the clinical application of hAECs in combination with HA.
Collapse
Affiliation(s)
- Chao Yu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Huan Yuan
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Yan Xu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Zuo-Hui Wu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Department of Ultrasonography, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China.
| | - Jian-Jiang Zhong
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Department of Ultrasonography, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China.
| |
Collapse
|
9
|
Zhang L, Xu X, Ma L, Wang X, Jin M, Li L, Ni H. Zinc Water Prevents Autism-Like Behaviors in the BTBR Mice. Biol Trace Elem Res 2023; 201:4779-4792. [PMID: 36602746 PMCID: PMC10415509 DOI: 10.1007/s12011-022-03548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
This study aims to explore the effects of zinc water on autism-like behavior, convulsion threshold, and neurogenesis in ASD model animals. This study used the young BTBR ASD mouse model to explore the effect of a 6-week zinc water supplementation on ASD-like behaviors such as repetitive behavior and social communication disorder, seizure threshold, and the correlation with excitability regulation. The mice were divided into four groups of normal controls (B6) and models (BTBR) who did and did not receive zinc supplementation in water (B6, B6 + zinc, BTBR, and BTBR + zinc). For morphological changes in the hippocampus, we selected two indicators: hippocampal mossy fiber sprouting and neurogenesis. ASD-like behavior testing, seizure threshold determination, Timm staining, and neurogenesis-related assays-represented by Ki67 and DCX-were performed after 6 weeks of zinc supplementation. Our results show that zinc water can prevent autism-like behavior, reduce susceptibility to convulsions, and increase the proliferation of hippocampal progenitor cells in BTBR mice but has less effect on mossy fiber sprouting and neural progenitor cell differentiation. Zinc water reduces autism-like behavior in a partially inherited autism model mice-BTBR-which may be associated with hippocampal neural precursor cell proliferation and reversed hyperexcitability.
Collapse
Affiliation(s)
- Li Zhang
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xiaowen Xu
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Liya Ma
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xinxin Wang
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Meifang Jin
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Lili Li
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Luo Y, Lv K, Du Z, Zhang D, Chen M, Luo J, Wang L, Liu T, Gong H, Fan X. Minocycline improves autism-related behaviors by modulating microglia polarization in a mouse model of autism. Int Immunopharmacol 2023; 122:110594. [PMID: 37441807 DOI: 10.1016/j.intimp.2023.110594] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with few pharmacological treatments. Minocycline, a tetracycline derivative that inhibits microglial activation, has been well-identified with anti-inflammatory properties and neuroprotective effects. A growing body of research suggests that ASD is associated with neuroinflammation, abnormal neurotransmitter levels, and neurogenesis. Thus, we hypothesized that minocycline could improve autism-related behaviors by inhibiting microglia activation and altering neuroinflammation. To verify our hypothesis, we used a mouse model of autism, BTBR T + Itpr3tf/J (BTBR). As expected, minocycline administration rescued the sociability and repetitive, stereotyped behaviors of BTBR mice while having no effect in C57BL/6J mice. We also found that minocycline improved neurogenesis and inhibited microglia activation in the hippocampus of BTBR mice. In addition, minocycline treatment inhibited Erk1/2 phosphorylation in the hippocampus of BTBR mice. Our findings show that minocycline administration alleviates ASD-like behaviors in BTBR mice and improves neurogenesis, suggesting that minocycline supplementation might be a potential strategy for improving ASD symptoms.
Collapse
Affiliation(s)
- Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Keyi Lv
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China; School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Mei Chen
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Jing Luo
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Lian Wang
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
11
|
Chen J, Zhu T, Yu D, Yan B, Zhang Y, Jin J, Yang Z, Zhang B, Hao X, Chen Z, Yan C, Yu J. Moderate Intensity of Treadmill Exercise Rescues TBI-Induced Ferroptosis, Neurodegeneration, and Cognitive Impairments via Suppressing STING Pathway. Mol Neurobiol 2023; 60:4872-4896. [PMID: 37193866 PMCID: PMC10415513 DOI: 10.1007/s12035-023-03379-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Traumatic brain injury (TBI) is a universal leading cause of long-term neurological disability and causes a huge burden to an ever-growing population. Moderate intensity of treadmill exercise has been recognized as an efficient intervention to combat TBI-induced motor and cognitive disorders, yet the underlying mechanism is still unclear. Ferroptosis is known to be highly implicated in TBI pathophysiology, and the anti-ferroptosis effects of treadmill exercise have been reported in other neurological diseases except for TBI. In addition to cytokine induction, recent evidence has demonstrated the involvement of the stimulator of interferon genes (STING) pathway in ferroptosis. Therefore, we examined the possibility that treadmill exercise might inhibit TBI-induced ferroptosis via STING pathway. In this study, we first found that a series of ferroptosis-related characteristics, including abnormal iron homeostasis, decreased glutathione peroxidase 4 (Gpx4), and increased lipid peroxidation, were detected at 44 days post TBI, substantiating the involvement of ferroptosis at the chronic stage following TBI. Furthermore, treadmill exercise potently decreased the aforementioned ferroptosis-related changes, suggesting the anti-ferroptosis role of treadmill exercise following TBI. In addition to alleviating neurodegeneration, treadmill exercise effectively reduced anxiety, enhanced spatial memory recovery, and improved social novelty post TBI. Interestingly, STING knockdown also obtained the similar anti-ferroptosis effects after TBI. More importantly, overexpression of STING largely reversed the ferroptosis inactivation caused by treadmill exercise following TBI. To conclude, moderate-intensity treadmill exercise rescues TBI-induced ferroptosis and cognitive deficits at least in part via STING pathway, broadening our understanding of neuroprotective effects induced by treadmill exercise against TBI.
Collapse
Affiliation(s)
- Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Tong Zhu
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Dongyu Yu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Bing Yan
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Yuxiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Jungong Jin
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Zhuojin Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Bao Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
| | - Zhennan Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China
| | - Chunxia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- The Key Laboratory of Forensic Medicine (Xi'an Jiaotong University), National Health Commission of China, Xi'an, 710061, Shaanxi, China.
- Academy of Bio-Evidence Science, The Science and Technology Innovation Port in Western China, Xi'an Jiao Tong University, Xi-Xian New Area, 710115, Shaanxi, China.
| | - Jun Yu
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
12
|
Ilchibaeva T, Tsybko A, Lipnitskaya M, Eremin D, Milutinovich K, Naumenko V, Popova N. Brain-Derived Neurotrophic Factor (BDNF) in Mechanisms of Autistic-like Behavior in BTBR Mice: Crosstalk with the Dopaminergic Brain System. Biomedicines 2023; 11:biomedicines11051482. [PMID: 37239153 DOI: 10.3390/biomedicines11051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Disturbances in neuroplasticity undoubtedly play an important role in the development of autism spectrum disorders (ASDs). Brain neurotransmitters and brain-derived neurotrophic factor (BDNF) are known as crucial players in cerebral and behavioral plasticity. Such an important neurotransmitter as dopamine (DA) is involved in the behavioral inflexibility of ASD. Additionally, much evidence from human and animal studies implicates BDNF in ASD pathogenesis. Nonetheless, crosstalk between BDNF and the DA system has not been studied in the context of an autistic-like phenotype. For this reason, the aim of our study was to compare the effects of either the acute intracerebroventricular administration of a recombinant BDNF protein or hippocampal adeno-associated-virus-mediated BDNF overexpression on autistic-like behavior and expression of key DA-related and BDNF-related genes in BTBR mice (a widely recognized model of autism). The BDNF administration failed to affect autistic-like behavior but downregulated Comt mRNA in the frontal cortex and hippocampus; however, COMT protein downregulation in the hippocampus and upregulation in the striatum were insignificant. BDNF administration also reduced the receptor TrkB level in the frontal cortex and midbrain and the BDNF/proBDNF ratio in the striatum. In contrast, hippocampal BDNF overexpression significantly diminished stereotypical behavior and anxiety; these alterations were accompanied only by higher hippocampal DA receptor D1 mRNA levels. The results indicate an important role of BDNF in mechanisms underlying anxiety and repetitive behavior in ASDs and implicates BDNF-DA crosstalk in the autistic-like phenotype of BTBR mice.
Collapse
Affiliation(s)
- Tatiana Ilchibaeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Anton Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Marina Lipnitskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Dmitry Eremin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Kseniya Milutinovich
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Vladimir Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Nina Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Liu C, Liu J, Gong H, Liu T, Li X, Fan X. Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Curr Neuropharmacol 2023; 21:2266-2282. [PMID: 36545727 PMCID: PMC10556385 DOI: 10.2174/1570159x21666221220155455] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a cluster of heterogeneous neurodevelopmental conditions with atypical social communication and repetitive sensory-motor behaviors. The formation of new neurons from neural precursors in the hippocampus has been unequivocally demonstrated in the dentate gyrus of rodents and non-human primates. Accumulating evidence sheds light on how the deficits in the hippocampal neurogenesis may underlie some of the abnormal behavioral phenotypes in ASD. In this review, we describe the current evidence concerning pre-clinical and clinical studies supporting the significant role of hippocampal neurogenesis in ASD pathogenesis, discuss the possibility of improving hippocampal neurogenesis as a new strategy for treating ASD, and highlight the prospect of emerging pro-neurogenic therapies for ASD.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
14
|
García-Gómez L, Castillo-Fernández I, Perez-Villalba A. In the pursuit of new social neurons. Neurogenesis and social behavior in mice: A systematic review. Front Cell Dev Biol 2022; 10:1011657. [PMID: 36407114 PMCID: PMC9672322 DOI: 10.3389/fcell.2022.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Social behaviors have become more relevant to our understanding of the human nervous system because relationships with our peers may require and modulate adult neurogenesis. Here, we review the pieces of evidence we have to date for the divergence of social behaviors in mice by modulation of adult neurogenesis or if social behaviors and the social environment can drive a change in neurogenic processes. Social recognition and memory are deeply affected by antimitotic drugs and irradiation, while NSC transgenic mice may run with lower levels of social discrimination. Interestingly, social living conditions can create a big impact on neurogenesis. Social isolation and social defeat reduce the number of new neurons, while social dominance and enrichment of the social environment increase their number. These new “social neurons” trigger functional modifications with amazing transgenerational effects. All of these suggest that we are facing two bidirectional intertwined variables, and the great challenge now is to understand the cellular and genetic mechanisms that allow this relationship to be used therapeutically.
Collapse
|
15
|
Repair of Retinal Degeneration by Human Amniotic Epithelial Stem Cell-Derived Photoreceptor-like Cells. Int J Mol Sci 2022; 23:ijms23158722. [PMID: 35955866 PMCID: PMC9369429 DOI: 10.3390/ijms23158722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The loss of photoreceptors is a major event of retinal degeneration that accounts for most cases of untreatable blindness globally. To date, there are no efficient therapeutic approaches to treat this condition. In the present study, we aimed to investigate whether human amniotic epithelial stem cells (hAESCs) could serve as a novel seed cell source of photoreceptors for therapy. Here, a two–step treatment with combined Wnt, Nodal, and BMP inhibitors, followed by another cocktail of retinoic acid, taurine, and noggin induced photoreceptor–like cell differentiation of hAESCs. The differentiated cells demonstrated the morphology and signature marker expression of native photoreceptor cells and, intriguingly, bore very low levels of major histocompatibility complex (MHC) class II molecules and a high level of non–classical MHC class I molecule HLA–G. Importantly, subretinal transplantation of the hAESCs–derived PR–like cells leads to partial restoration of visual function and retinal structure in Royal College of Surgeon (RCS) rats, the classic preclinical model of retinal degeneration. Together, our results reveal hAESCs as a potential source of functional photoreceptor cells; the hAESCs–derived photoreceptor–like cells could be a promising cell–replacement candidate for therapy of retinal degeneration diseases.
Collapse
|
16
|
Chaplygina AV, Zhdanova DY, Kovalev VI, Poltavtseva RA, Medvinskaya NI, Bobkova NV. Cell Therapy as a Way to Correct Impaired Neurogenesis in the Adult Brain in a Model of Alzheimer’s Disease. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Liu J, Gao Z, Liu C, Liu T, Gao J, Cai Y, Fan X. Alteration of Gut Microbiota: New Strategy for Treating Autism Spectrum Disorder. Front Cell Dev Biol 2022; 10:792490. [PMID: 35309933 PMCID: PMC8929512 DOI: 10.3389/fcell.2022.792490] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is defined as a complex heterogeneous disorder and characterized by stereotyped behavior and deficits in communication and social interactions. The emerging microbial knowledge has pointed to a potential link between gut microbiota dysbiosis and ASD. Evidence from animal and human studies showed that shifts in composition and activity of the gut microbiota may causally contribute to the etiopathogenesis of core symptoms in the ASD individuals with gastrointestinal tract disturbances and act on microbiota-gut-brain. In this review, we summarized the characterized gut bacterial composition of ASD and the involvement of gut microbiota and their metabolites in the onset and progression of ASD; the possible underlying mechanisms are also highlighted. Given this correlation, we also provide an overview of the microbial-based therapeutic interventions such as probiotics, antibiotics, fecal microbiota transplantation therapy, and dietary interventions and address their potential benefits on behavioral symptoms of ASD. The precise contribution of altering gut microbiome to treating core symptoms in the ASD needs to be further clarified. It seemed to open up promising avenues to develop microbial-based therapies in ASD.
Collapse
Affiliation(s)
- Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Zhanyuan Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5th of Cadet Brigade, Third Military Medical University (Army Medical University), Army Medical University, Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Yun Cai, ; Xiaotang Fan,
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Yun Cai, ; Xiaotang Fan,
| |
Collapse
|
18
|
Bicker F, Nardi L, Maier J, Vasic V, Schmeisser MJ. Criss-crossing autism spectrum disorder and adult neurogenesis. J Neurochem 2021; 159:452-478. [PMID: 34478569 DOI: 10.1111/jnc.15501] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) comprises a group of multifactorial neurodevelopmental disorders primarily characterized by deficits in social interaction and repetitive behavior. Although the onset is typically in early childhood, ASD poses a lifelong challenge for both patients and caretakers. Adult neurogenesis (AN) is the process by which new functional neurons are created from neural stem cells existing in the post-natal brain. The entire event is based on a sequence of cellular processes, such as proliferation, specification of cell fate, maturation, and ultimately, synaptic integration into the existing neural circuits. Hence, AN is implicated in structural and functional brain plasticity throughout life. Accumulating evidence shows that impaired AN may underlie some of the abnormal behavioral phenotypes seen in ASD. In this review, we approach the interconnections between the molecular pathways related to AN and ASD. We also discuss existing therapeutic approaches targeting such pathways both in preclinical and clinical studies. A deeper understanding of how ASD and AN reciprocally affect one another could reveal important converging pathways leading to the emergence of psychiatric disorders.
Collapse
Affiliation(s)
- Frank Bicker
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jannik Maier
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
19
|
Xie R, Wang Z, Liu T, Xiao R, Lv K, Wu C, Luo Y, Cai Y, Fan X. AAV Delivery of shRNA Against TRPC6 in Mouse Hippocampus Impairs Cognitive Function. Front Cell Dev Biol 2021; 9:688655. [PMID: 34327201 PMCID: PMC8313999 DOI: 10.3389/fcell.2021.688655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Transient Receptor Potential Canonical 6 (TRPC6) has been suggested to be involved in synapse function and contribute to hippocampal-dependent cognitive processes. Gene silencing of TRPC6 was performed by injecting adeno-associated virus (AAV) expressing TRPC6-specific shRNA (shRNA-TRPC6) into the hippocampal dentate gyrus (DG). Spatial learning, working memory and social recognition memory were impaired in the shRNA-TRPC6 treated mice compared to control mice after 4 weeks. In addition, gene ontology (GO) analysis of RNA-sequencing revealed that viral intervention of TRPC6 expression in DG resulted in the enrichment of the process of synaptic transmission and cellular compartment of synaptic structure. KEGG analysis showed PI3K-Akt signaling pathway were significantly down-regulated. Furthermore, the shRNA-TRPC6 treatment reduced dendritic spines of DG granule neurons, in terms of spine loss, the thin and mushroom types predominated. Accompanying the spine loss, the levels of PSD95, pAkt and CREB in the hippocampus were decreased in the shRNA-TRPC6 treated animals. Taken together, our results suggest that knocking down TRPC6 in the DG have a disadvantageous effect on cognitive processes.
Collapse
Affiliation(s)
- Ruxin Xie
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhongke Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Xiao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Keyi Lv
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Wu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Luo
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
20
|
Murray HE, Zafar A, Qureshi KM, Paget MB, Bailey CJ, Downing R. The potential role of multifunctional human amniotic epithelial cells in pancreatic islet transplantation. J Tissue Eng Regen Med 2021; 15:599-611. [PMID: 34216434 DOI: 10.1002/term.3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Pancreatic islet cell transplantation has proven efficacy as a treatment for type 1 diabetes mellitus, chiefly in individuals who are refractory to conventional insulin replacement therapy. At present its clinical use is restricted, firstly by the limited access to suitable donor organs but also due to factors associated with the current clinical transplant procedure which inadvertently impair the long-term functionality of the islet graft. Of note, the physical, biochemical, inflammatory, and immunological stresses to which islets are subjected, either during pretransplant processing or following implantation are detrimental to their sustained viability, necessitating repeated islet infusions to attain adequate glucose control. Progressive decline in functional beta (β)-cell mass leads to graft failure and the eventual re-instatement of exogenous insulin treatment. Strategies which protect and/or preserve optimal islet function in the peri-transplant period would improve clinical outcomes. Human amniotic epithelial cells (HAEC) exhibit both pluripotency and immune-privilege and are ideally suited for use in replacement and regenerative therapies. The HAEC secretome exhibits trophic, anti-inflammatory, and immunomodulatory properties of relevance to islet graft survival. Facilitated by β-cell supportive 3D cell culture systems, HAEC may be integrated with islets bringing them into close spatial arrangement where they may exert paracrine influences that support β-cell function, reduce hypoxia-induced islet injury, and alter islet alloreactivity. The present review details the potential of multifunctional HAEC in the context of islet transplantation, with a focus on the innate capabilities that may counter adverse events associated with the current clinical transplant protocol to achieve long-term islet graft function.
Collapse
Affiliation(s)
- Hilary E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Ali Zafar
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Khalid M Qureshi
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Michelle B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Clifford J Bailey
- Diabetes Research, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Richard Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
21
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|
22
|
Zhong H, Xiao R, Ruan R, Liu H, Li X, Cai Y, Zhao J, Fan X. Neonatal curcumin treatment restores hippocampal neurogenesis and improves autism-related behaviors in a mouse model of autism. Psychopharmacology (Berl) 2020; 237:3539-3552. [PMID: 32803366 DOI: 10.1007/s00213-020-05634-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE Autism spectrum disorders (ASDs) are highly prevalent neurodevelopmental disorders characterized by deficits in social communication and interaction, repetitive stereotyped behaviors, and cognitive impairments. Curcumin has been indicated to be neuroprotective against neurological and psychological disorders. However, the role of curcumin in autistic phenotypes remains unclear. OBJECTIVES In the current study, we evaluated the effects of neonatal curcumin treatment on behavior and hippocampal neurogenesis in BTBRT+ltpr3tf/J (BTBR) mice, a model of autism. METHODS C57BL/6J (C57) and BTBR mouse pups were treated with 0.1% dimethyl sulfoxide (DMSO) or curcumin (20 mg/kg) from postnatal day 6 (P6) to P8. Neural progenitor cells (NPCs) in the hippocampal dentate gyrus (DG) were evaluated on P8, and neurogenesis was measured on P24 by immunofluorescence. A battery of behavioral tests was carried out when the mice were 8 weeks of age. RESULTS Neonatal curcumin treatment improved autism-related symptoms in BTBR mice, enhancing sociability, reducing repetitive behaviors, and ameliorating cognitive impairments. Furthermore, the suppression of hippocampal neurogenesis in BTBR mice was greatly rescued after neonatal curcumin treatment, leading to an increase in neurogenic processes and an increase in NPC proliferation concomitant with an expansion of the NPC pool on P8, and NPC differentiation towards the neuronal lineage was promoted in the DG of BTBR mice on P24. CONCLUSIONS Our findings suggest that neonatal curcumin treatment elicits a therapeutic response through the restoration of hippocampal neurogenesis in BTBR mice and thus may represent a promising novel pharmacological strategy for ASD treatment.
Collapse
Affiliation(s)
- Hongyu Zhong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Rui Xiao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ruotong Ruan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Hui Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Yun Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China. .,Institute of Brain and Intelligence, Chongqing, 400038, China.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW During the last decades, the field of regenerative medicine has been rapidly evolving. Major progress has been made in the development of biological substitutes applying the principles of cell transplantation, material science, and bioengineering. RECENT FINDINGS Among other sources, amniotic-derived products have been used for decades in various fields of medicine as a biomaterial for the wound care and tissue replacement. Moreover, human amniotic epithelial and mesenchymal cells have been intensively studied for their immunomodulatory capacities. Amniotic cells possess two major characteristics that have already been widely exploited. The first is their ability to modulate and suppress the innate and adaptive immunities, making them a true asset for chronic inflammatory disorders and for the induction of tolerance in transplantation models. The second is their multilineage differentiation capacity, offering a source of cells for tissue engineering. The latter combined with the use of amniotic membrane as a scaffold offers all components necessary to create an optimal environment for cell and tissue regeneration. This review summarizes beneficial properties of hAM and its derivatives and discusses their potential in regenerative medicine.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|