1
|
Zhang Y, Hua M, Ma X, Li W, Cao Y, Han X, Huang X, Zhang H. Dipeptidyl peptidase-4 marks distinct subtypes of human adipose stromal/stem cells with different hepatocyte differentiation and immunoregulatory properties. Stem Cell Res Ther 2024; 15:338. [PMID: 39343956 PMCID: PMC11441085 DOI: 10.1186/s13287-024-03950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Human adipose-derived stromal/stem cells (hASCs) play important roles in regenerative medicine and numerous inflammatory diseases. However, their cellular heterogeneity limits the effectiveness of treatment. Understanding the distinct subtypes of hASCs and their phenotypic implications will enable the selection of appropriate subpopulations for targeted approaches in regenerative medicine or inflammatory diseases. METHODS hASC subtypes expressing dipeptidyl peptidase-4 (DPP4) were identified via fluorescence-activated cell sorting (FACS) analysis. DPP4 expression was knocked down in DPP4+ hASCs via DPP4 siRNA. The capacity for proliferation, hepatocyte differentiation, inflammatory factor secretion and T-cell functionality regulation of hASCs from DPP4-, DPP4+, and control siRNA-treated DPP4+ hASCs and DPP4 siRNA-treated DPP4+ hASCs were assessed. RESULTS DPP4+ hASCs and control siRNA-treated DPP4+ hASCs presented a lower proliferative capacity but greater hepatocyte differentiation capacity than DPP4- hASCs and DPP4 siRNA-treated DPP4+ hASCs. Both DPP4+ hASCs and DPP4- hASCs secreted high levels of vascular endothelial growth factor-A (VEGF-A), monocyte chemoattractant protein-1 (MCP-1), and interleukin 6 (IL-6), whereas the levels of other factors, including matrix metalloproteinase (MMP)-1, eotaxin-3, fractalkine (FKN, CX3CL1), growth-related oncogene-alpha (GRO-alpha, CXCL1), monokine induced by interferon-gamma (MIG), macrophage inflammatory protein (MIP)-1beta, and macrophage colony-stimulating factor (M-CSF), were significantly greater in the supernatants of DPP4+ hASCs than in those of DPP4- hASCs. Exposure to hASC subtypes and their conditioned media triggered changes in the secreted cytokine profiles of T cells from healthy donors. The percentage of functional T cells that secreted factors such as MIP-1beta and IL-8 increased when these cells were cocultured with DPP4+ hASCs. The percentage of polyfunctional CD8+ T cells that secreted multiple factors, such as IL-17A, tumour necrosis factor alpha (TNF-α) and TNF-β, decreased when these cells were cocultured with supernatants derived from DPP4+ hASCs. CONCLUSIONS DPP4 may regulate proliferation, hepatocyte differentiation, inflammatory cytokine secretion and T-cell functionality of hASCs. These data provide a key foundation for understanding the important role of hASC subpopulations in the regulation of T cells, which may be helpful for future immune activation studies and allow them to be customized for clinical application.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Mingxi Hua
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xuqing Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Weihong Li
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Yuqi Cao
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xueya Han
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xiaowu Huang
- Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Haiyan Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China.
- Department of Cell Biology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Akabane M, Imaoka Y, Kawashima J, Endo Y, Schenk A, Sasaki K, Pawlik TM. Innovative Strategies for Liver Transplantation: The Role of Mesenchymal Stem Cells and Their Cell-Free Derivatives. Cells 2024; 13:1604. [PMID: 39404368 PMCID: PMC11475694 DOI: 10.3390/cells13191604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Despite being the standard treatment for end-stage liver disease, liver transplantation has limitations like donor scarcity, high surgical costs, and immune rejection risks. Mesenchymal stem cells (MSCs) and their derivatives offer potential for liver regeneration and transplantation. MSCs, known for their multipotency, low immunogenicity, and ease of obtainability, can differentiate into hepatocyte-like cells and secrete bioactive factors that promote liver repair and reduce immune rejection. However, the clinical application of MSCs is limited by risks such as aberrant differentiation and low engraftment rates. As a safer alternative, MSC-derived secretomes and extracellular vesicles (EVs) offer promising therapeutic benefits, including enhanced graft survival, immunomodulation, and reduced ischemia-reperfusion injury. Current research highlights the efficacy of MSC-derived therapies in improving liver transplant outcomes, but further studies are necessary to standardize clinical applications. This review highlights the potential of MSCs and EVs to address key challenges in liver transplantation, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yutaka Endo
- Department of Transplant Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Austin Schenk
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| |
Collapse
|
3
|
Ji G, Zhang Z, Wang X, Guo Q, Zhang E, Li C. Comprehensive evaluation of the mechanism of human adipose mesenchymal stem cells ameliorating liver fibrosis by transcriptomics and metabolomics analysis. Sci Rep 2024; 14:20035. [PMID: 39198546 PMCID: PMC11358327 DOI: 10.1038/s41598-024-70281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Liver fibrosis is a chronic liver disease with progressive wound healing reaction caused by liver injury. Currently, there is no FDA approved drugs for liver fibrosis. Human adipose mesenchymal stem cells (hADSCs) have shown remarkable therapeutic effects in liver diseases. However, few studies have evaluated the therapeutic role of hADSCs in liver fibrosis, and the detailed mechanism of action is unknown. Here, we investigated the in vitro and in vivo anti-fibrosis efficacy of hADSCs and identified important metabolic changes and detailed mechanisms through transcriptomic and metabolomic analyses. We found that hADSCs could inhibit the proliferation of activated hepatic stellate cells (HSCs), promote their apoptosis, and effectively inhibit the expression of pro-fibrotic protein. It can significantly reduce collagen deposition and liver injury, improve liver function and alleviate liver inflammation in cirrhotic mouse models. In addition, transcriptome analysis revealed that the key mechanism of hADSCs against liver fibrosis is the regulation of AGE-RAGE signaling pathway. Metabolic analysis showed that hADSCs influenced changes of metabolites in lipid metabolism. Therefore, our study shows that hADSCs could reduce the activation of hepatic stellate cells and inhibit the progression of liver fibrosis, which has important potential in the treatment of liver fibrosis as well as other refractory chronic liver diseases.
Collapse
Affiliation(s)
- Guibao Ji
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, People's Republic of China
| | - Zilong Zhang
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, People's Republic of China
| | - Xinze Wang
- Department of Trauma and Orthopedics, Wuhan Fourth Hospital, Wuhan, Hubei, People's Republic of China
| | - Qiuxia Guo
- Department of Gastroenterology Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, People's Republic of China
| | - Erlei Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Chuanjiang Li
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Ahmadieh-Yazdi A, Karimi M, Afkhami E, Hajizadeh-Tafti F, Kuchakzadeh F, Yang P, Sheykhhasan M. Unveiling therapeutic potential: Adipose tissue-derived mesenchymal stem cells and their exosomes in the management of diabetes mellitus, wound healing, and chronic ulcers. Biochem Pharmacol 2024; 226:116399. [PMID: 38944396 DOI: 10.1016/j.bcp.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus (DM) is a pervasive global health issue with substantial morbidity and mortality, often resulting in secondary complications, including diabetic wounds (DWs). These wounds, arising from hyperglycemia, diabetic neuropathy, anemia, and ischemia, afflict approximately 15% of diabetic patients, with a considerable 25% at risk of lower limb amputations. The conventional approaches for chronic and diabetic wounds management involves utilizing various therapeutic substances and techniques, encompassing growth factors, skin substitutes and wound dressings. In parallel, emerging cell therapy approaches, notably involving adipose tissue-derived mesenchymal stem cells (ADMSCs), have demonstrated significant promise in addressing diabetes mellitus and its complications. ADMSCs play a pivotal role in wound repair, and their derived exosomes have garnered attention for their therapeutic potential. This review aimed to unravel the potential mechanisms and provide an updated overview of the role of ADMSCs and their exosomes in diabetes mellitus and its associated complications, with a specific focus on wound healing.
Collapse
Affiliation(s)
- Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Afkhami
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Hajizadeh-Tafti
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Kuchakzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
5
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
6
|
Li S, Wang J, Lei D, Peng D, Zong K, Li K, Wu Z, Liu Y, Huang Z. Associations between Ethylene Oxide Exposure and Liver Function in the US Adult Population. TOXICS 2024; 12:551. [PMID: 39195653 PMCID: PMC11358929 DOI: 10.3390/toxics12080551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Ethylene oxide, a reactive epoxy compound, has been widely used in various industries for many years. However, evidence of the combined toxic effects of ethylene oxide exposure on the liver is still lacking. METHODS We analyzed the merged data from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2016. Ultimately, 4141 adults aged 18 and over were selected as the sample. We used linear regression to explore the association between blood ethylene oxide and LFT indicators. RESULTS The weighted linear regression model showed that HbEO is positively correlated with ALP (β = 2.61, 95% CI 1.97, 3.24, p < 0.0001), GGT (β = 5.75, 95% CI 4.46, 7/05, p < 0.0001), ALT (β = 0.50, 95% CI 0.09, 0.90, p = 0.0158), and AST (β = 0.71, 95% CI 0.44, 0.98, p < 0.0001) and negatively correlated with TBIL (β = -0.30, 95% CI -0.43, -0.16, p < 0.0001). CONCLUSIONS Ethylene oxide exposure is significantly associated with changes in liver function indicators among adults in the United States. Future work should further examine these relationships.
Collapse
Affiliation(s)
- Shanshan Li
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Jinzhou Wang
- Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China;
| | - Dengliang Lei
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Dadi Peng
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Kezhen Zong
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Kaili Li
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Zhongjun Wu
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Yanyao Liu
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Zuotian Huang
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| |
Collapse
|
7
|
Hu D, Lai J, Chen Q, Bai L. New advances of NG2-expressing cell subset in marrow mesenchymal stem cells as novel therapeutic tools for liver fibrosis/cirrhosis. Stem Cell Res Ther 2024; 15:199. [PMID: 38971781 PMCID: PMC11227708 DOI: 10.1186/s13287-024-03817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cell (BMMSC)-based therapy has become a major focus for treating liver fibrosis/cirrhosis. However, although these cell therapies promote the treatment of this disease, the heterogeneity of BMMSCs, which causes insufficient efficacy during clinical trials, has not been addressed. In this study, we describe a novel Percoll-Plate-Wait procedure (PPWP) for the isolation of an active cell subset from BMMSC cultures that was characterized by the expression of neuroglial antigen 2 (NG2/BMMSCs). METHODS By using the key method of PPWP and other classical biological techniques we compared NG2/BMMSCs with parental BMMSCs in biological and functional characteristics within a well-defined diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis injury male C57BL/6 mouse model also in a culture system. Of note, the pathological alterations in the model is quite similar to humans'. RESULTS The NG2/BMMSCs revealed more advantages compared to parentalBMMSCs. They exhibited greater proliferation potential than parental BMMSCs, as indicated by Ki-67 immunofluorescence (IF) staining. Moreover, higher expression of SSEA-3 (a marker specific for embryonic stem cells) was detected in NG2/BMMSCs than in parental BMMSCs, which suggested that the "stemness" of NG2/BMMSCs was greater than that of parental BMMSCs. In vivo studies revealed that an injection of NG2/BMMSCs into mice with ongoing DEN-induced liver fibrotic/cirrhotic injury enhanced repair and functional recovery to a greater extent than in mice treated with parental BMMSCs. These effects were associated with the ability of NG2/BMMSCs to differentiate into bile duct cells (BDCs). In particular, we discovered for the first time that NG2/BMMSCs exhibit unique characteristics that differ from those of parental BMMSCs in terms of producing liver sinusoidal endothelial cells (LSECs) to reconstruct injured blood vessels and sinusoidal structures in the diseased livers, which are important for initiating hepatocyte regeneration. This unique potential may also suggest that NG2/BMMSCs could be an novel off-liver progenitor of LSECs. Ex vivo studies revealed that the NG2/BMMSCs exhibited a similar trend to that of their in vivo in terms of functional differentiation responding to the DEN-diseased injured liver cues. Additionally, the obvious core role of NG2/BMMSCs in supporting the functions of BMMSCs in bile duct repair and BDC-mediated hepatocyte regeneration might also be a novel finding. CONCLUSIONS Overall, the PPWP-isolated NG2/BMMSCs could be a novel effective cell subset with increased purity to serve as a new therapeutic tool for enhancing treatment efficacy of BMMSCs and special seed cell source (BDCs, LSECs) also for bioliver engineering.
Collapse
Affiliation(s)
- Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China
- Bioengineering College, Chongqing University, No. 175 Gaotan, ShapingBa Distract, Chongqing, 400044, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China
| | - Quanyu Chen
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China.
- Bioengineering College, Chongqing University, No. 175 Gaotan, ShapingBa Distract, Chongqing, 400044, China.
| |
Collapse
|
8
|
Ghufran H, Azam M, Mehmood A, Umair M, Baig MT, Tasneem S, Butt H, Riazuddin S. Adipose Tissue and Umbilical Cord Tissue: Potential Sources of Mesenchymal Stem Cells for Liver Fibrosis Treatment. J Clin Exp Hepatol 2024; 14:101364. [PMID: 38449506 PMCID: PMC10912848 DOI: 10.1016/j.jceh.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
Background/Aims Mesenchymal stem cells (MSCs) are potential alternatives for liver fibrosis treatment; however, their optimal sources remain uncertain. This study compares the ex-vivo expansion characteristics of MSCs obtained from adipose tissue (AT) and umbilical cord (UC) and assesses their therapeutic potential for liver fibrosis treatment. Methods Since MSCs from early to mid-passage numbers (P2-P6) are preferable for cellular therapy, we investigated the growth kinetics of AT-MSCs and UC-MSCs up to P6 and evaluated their therapeutic effects in a rat model of liver fibrosis induced by diethylnitrosamine. Results Results from the expansion studies demonstrated that both cell types exhibited bona fide characteristics of MSCs, including surface antigens, pluripotent gene expression, and differentiation potential. However, AT-MSCs demonstrated a shorter doubling time (58.2 ± 7.3 vs. 82.3 ± 4.3 h; P < 0.01) and a higher population doubling level (10.1 ± 0.7 vs. 8.2 ± 0.3; P < 0.01) compared to UC-MSCs, resulting in more cellular yield (230 ± 9.0 vs. 175 ± 13.2 million) in less time. Animal studies demonstrated that both MSC types significantly reduced liver fibrosis (P < 0.05 vs. the control group) while also improving liver function and downregulating fibrosis-associated gene expression. Conclusion AT-MSCs and UC-MSCs effectively reduce liver fibrosis. However, adipose cultures display an advantage by yielding a higher number of MSCs in a shorter duration, rendering them a viable choice for scenarios requiring immediate single-dose administration, often encountered in clinical settings.
Collapse
Affiliation(s)
- Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Muhammad Umair
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maria T. Baig
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
9
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wang K, Yang Z, Zhang B, Gong S, Wu Y. Adipose-Derived Stem Cell Exosomes Facilitate Diabetic Wound Healing: Mechanisms and Potential Applications. Int J Nanomedicine 2024; 19:6015-6033. [PMID: 38911504 PMCID: PMC11192296 DOI: 10.2147/ijn.s466034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024] Open
Abstract
Wound healing in diabetic patients is frequently hampered. Adipose-derived stem cell exosomes (ADSC-eoxs), serving as a crucial mode of intercellular communication, exhibit promising therapeutic roles in facilitating wound healing. This review aims to comprehensively outline the molecular mechanisms through which ADSC-eoxs enhance diabetic wound healing. We emphasize the biologically active molecules released by these exosomes and their involvement in signaling pathways associated with inflammation modulation, cellular proliferation, vascular neogenesis, and other pertinent processes. Additionally, the clinical application prospects of the reported ADSC-eoxs are also deliberated. A thorough understanding of these molecular mechanisms and potential applications is anticipated to furnish a theoretical groundwork for combating diabetic wound healing.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zihui Yang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
11
|
Bi G, Zhang X, Li W, Lu X, He X, Li Y, Bai R, Zhang H. Modeling alcohol-associated liver disease in humans using adipose stromal or stem cell-derived organoids. CELL REPORTS METHODS 2024; 4:100778. [PMID: 38749443 PMCID: PMC11133832 DOI: 10.1016/j.crmeth.2024.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Alcohol-associated liver disease (ALD) is a prevalent liver disease, yet research is hampered by the lack of suitable and reliable human ALD models. Herein, we generated human adipose stromal/stem cell (hASC)-derived hepatocellular organoids (hAHOs) and hASC-derived liver organoids (hALOs) in a three-dimensional system using hASC-derived hepatocyte-like cells and endodermal progenitor cells, respectively. The hAHOs were composed of major hepatocytes and cholangiocytes. The hALOs contained hepatocytes and nonparenchymal cells and possessed a more mature liver function than hAHOs. Upon ethanol treatment, both steatosis and inflammation were present in hAHOs and hALOs. The incubation of hALOs with ethanol resulted in increases in the levels of oxidative stress, the endoplasmic reticulum protein thioredoxin domain-containing protein 5 (TXNDC5), the alcohol-metabolizing enzymes ADH1B and ALDH1B1, and extracellular matrix accumulation, similar to those of liver tissues from patients with ALD. These results present a useful approach for understanding the pathogenesis of ALD in humans, thus facilitating the discovery of effective treatments.
Collapse
Affiliation(s)
- Guoyun Bi
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Xuan Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weihong Li
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Xin Lu
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Xu He
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Yaqiong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Rixing Bai
- Department of General Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100070, China
| | - Haiyan Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
12
|
Cuadra B, Silva V, Huang YL, Diaz Y, Rivas C, Molina C, Simon V, Bono MR, Morales B, Rosemblatt M, Silva S, Acuña R, Ezquer F, Ezquer M. The Immunoregulatory and Regenerative Potential of Activated Human Stem Cell Secretome Mitigates Acute-on-Chronic Liver Failure in a Rat Model. Int J Mol Sci 2024; 25:2073. [PMID: 38396750 PMCID: PMC10889754 DOI: 10.3390/ijms25042073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome marked by sudden liver function decline and multiorgan failure, predominantly acute kidney injury (AKY), in patients with chronic liver disease. Unregulated inflammation is a hallmark of ACLF; however, the key drivers of ACLF are not fully understood. This study explores the therapeutic properties of human mesenchymal stem cell (MSC) secretome, particularly focusing on its enhanced anti-inflammatory and pro-regenerative properties after the in vitro preconditioning of the cells. We evaluated the efficacy of the systemic administration of MSC secretome in preventing liver failure and AKI in a rat ACLF model where chronic liver disease was induced using by the administration of porcine serum, followed by D-galN/LPS administration to induce acute failure. After ACLF induction, animals were treated with saline (ACLF group) or MSC-derived secretome (ACLF-secretome group). The study revealed that MSC-secretome administration strongly reduced liver histological damage in the ACLF group, which was correlated with higher hepatocyte proliferation, increased hepatic and systemic anti-inflammatory molecule levels, and reduced neutrophil and macrophage infiltration. Additionally, renal examination revealed that MSC-secretome treatment mitigated tubular injuries, reduced apoptosis, and downregulated injury markers. These improvements were linked to increased survival rates in the ACLF-secretome group, endorsing MSC secretomes as a promising therapy for multiorgan failure in ACLF.
Collapse
Affiliation(s)
- Barbara Cuadra
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Veronica Silva
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Yael Diaz
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Claudio Rivas
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Cristobal Molina
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Valeska Simon
- Departamento de Biología, Facultad de Ciencias, Universidad del Chile, Las Encinas 3370, Ñuñoa, Santiago 7800020, Chile; (V.S.); (M.R.B.)
| | - Maria Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad del Chile, Las Encinas 3370, Ñuñoa, Santiago 7800020, Chile; (V.S.); (M.R.B.)
| | - Bernardo Morales
- Facultad de Ciencias de la Salud, Universidad del Alba, Atrys Chile, Guardia Vieja 339, Providencia, Santiago 7510249, Chile;
| | - Mario Rosemblatt
- Centro de Ciencia & Vida, Av. Del Valle Norte 725, Huechuraba, Santiago 8580702, Chile;
| | - Sebastian Silva
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Rodrigo Acuña
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| |
Collapse
|
13
|
Liu H, Wang X, Deng H, Huang H, Liu Y, Zhong Z, Shen L, Cao S, Ma X, Zhou Z, Chen D, Peng G. Integrated Transcriptome and Metabolomics to Reveal the Mechanism of Adipose Mesenchymal Stem Cells in Treating Liver Fibrosis. Int J Mol Sci 2023; 24:16086. [PMID: 38003277 PMCID: PMC10671340 DOI: 10.3390/ijms242216086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Liver fibrosis (LF) is a late-stage process observed in various chronic liver diseases with bile and retinol metabolism closely associated with it. Adipose-derived mesenchymal stem cells (ADMSCs) have shown significant therapeutic potential in treating LF. In this study, the transplantation of ADMSCs was applied to a CCl4-induced LF model to investigate its molecular mechanism through a multi-omics joint analysis. The findings reveal that ADMSCs effectively reduced levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), gamma-glutamyltransferase (GGT), Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and α-Smooth muscle actin (α-SMA), thereby mitigating liver lesions, preventing liver parenchymal necrosis, and improving liver collagen deposition. Furthermore, 4751 differentially expressed genes (DEGs) and 270 differentially expressed metabolites (DMs) were detected via transcriptome and metabolomics analysis. Conjoint analysis showed that ADMSCs up-regulated the expression of Cyp7a1, Baat, Cyp27a1, Adh7, Slco1a4, Aldh1a1, and Adh7 genes to promote primary bile acids (TCDCA: Taurochenodeoxycholic acid; GCDCA: Glycochenodeoxycholic acid; GCA: glycocholic acid, TCA: Taurocholic acid) synthesis, secretion and retinol metabolism. This suggests that ADMSCs play a therapeutic role in maintaining bile acid (BA) homeostasis and correcting disturbances in retinol metabolism.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Yifan Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Liuhong Shen
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Suizhong Cao
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Xiaoping Ma
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (X.W.); (H.D.); (H.H.); (L.S.); (S.C.); (X.M.); (Y.L.); (Z.Z.); (Z.Z.)
| |
Collapse
|
14
|
Zha B, Xu H, Liu Y, Zha X. Association between mixed urinary metal exposure and liver function: analysis of NHANES data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112564-112574. [PMID: 37833592 DOI: 10.1007/s11356-023-30242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Metals have been reported to affect liver functions; however, the association between mixed metal exposure in the urine and liver functions remains unclear. The present study analyzed data from the National Health and Nutrition Examination Survey (NHANES) program collected in 2005-2018. Weighted multiple linear regression and Bayesian kernel machine regression (BKMR) were used to explore the relationship between mixed urinary metal contents and liver function tests (LFTs). A total of 8158 participants were analyzed in this study. Multiple methods suggested that cadmium (Cd) was significantly positively related to LFTs, while cobalt (Co) was negatively related to LFTs. Meanwhile, some other metals showed a significant relationship with some indicators of LFTs. Urine metal is related to LFTs, with Cd and Co content changes being closely related to LFTs. The metal in urine may represent a marker for predicting liver dysfunction. Further studies are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Bowen Zha
- Department of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100069, People's Republic of China
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Huanchang Xu
- Department of Education, Beijing Luhe Hospital, Capital Medical University, 101149, Beijing, People's Republic of China
| | - Yuqi Liu
- Department of Education, Beijing Luhe Hospital, Capital Medical University, 101149, Beijing, People's Republic of China
| | - Xiaqin Zha
- Department of Blood Purification, University Affiliated Second Hospital, 333000, Nanchang, People's Republic of China.
| |
Collapse
|
15
|
Jin Y, Zhang J, Xu Y, Yi K, Li F, Zhou H, Wang H, Chan HF, Lao YH, Lv S, Tao Y, Li M. Stem cell-derived hepatocyte therapy using versatile biomimetic nanozyme incorporated nanofiber-reinforced decellularized extracellular matrix hydrogels for the treatment of acute liver failure. Bioact Mater 2023; 28:112-131. [PMID: 37250866 PMCID: PMC10209199 DOI: 10.1016/j.bioactmat.2023.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Reactive oxygen species (ROS)-associated oxidative stress, inflammation storm, and massive hepatocyte necrosis are the typical manifestations of acute liver failure (ALF), therefore specific therapeutic interventions are essential for the devastating disease. Here, we developed a platform consisting of versatile biomimetic copper oxide nanozymes (Cu NZs)-loaded PLGA nanofibers (Cu NZs@PLGA nanofibers) and decellularized extracellular matrix (dECM) hydrogels for delivery of human adipose-derived mesenchymal stem/stromal cells-derived hepatocyte-like cells (hADMSCs-derived HLCs) (HLCs/Cu NZs@fiber/dECM). Cu NZs@PLGA nanofibers could conspicuously scavenge excessive ROS at the early stage of ALF, and reduce the massive accumulation of pro-inflammatory cytokines, herein efficiently preventing the deterioration of hepatocytes necrosis. Moreover, Cu NZs@PLGA nanofibers also exhibited a cytoprotection effect on the transplanted HLCs. Meanwhile, HLCs with hepatic-specific biofunctions and anti-inflammatory activity acted as a promising alternative cell source for ALF therapy. The dECM hydrogels further provided the desirable 3D environment and favorably improved the hepatic functions of HLCs. In addition, the pro-angiogenesis activity of Cu NZs@PLGA nanofibers also facilitated the integration of the whole implant with the host liver. Hence, HLCs/Cu NZs@fiber/dECM performed excellent synergistic therapeutic efficacy on ALF mice. This strategy using Cu NZs@PLGA nanofiber-reinforced dECM hydrogels for HLCs in situ delivery is a promising approach for ALF therapy and shows great potential for clinical translation.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huicong Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
16
|
Sadri B, Hassanzadeh M, Bagherifard A, Mohammadi J, Alikhani M, Moeinabadi-Bidgoli K, Madani H, Diaz-Solano D, Karimi S, Mehrazmay M, Mohammadpour M, Vosough M. Cartilage regeneration and inflammation modulation in knee osteoarthritis following injection of allogeneic adipose-derived mesenchymal stromal cells: a phase II, triple-blinded, placebo controlled, randomized trial. Stem Cell Res Ther 2023; 14:162. [PMID: 37316949 DOI: 10.1186/s13287-023-03359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Intra-articular injection of mesenchymal stromal cells (MSCs) with immunomodulatory features and their paracrine secretion of regenerative factors proposed a noninvasive therapeutic modality for cartilage regeneration in knee osteoarthritis (KOA). METHODS Total number of 40 patients with KOA enrolled in two groups. Twenty patients received intra-articular injection of 100 × 106 allogeneic adipose-derived mesenchymal stromal cells (AD-MSCs), and 20 patients as control group received placebo (normal saline). Questionnaire-based measurements, certain serum biomarkers, and some cell surface markers were evaluated for 1 year. Magnetic resonance imaging (MRI) before and 1 year after injection was performed to measure possible changes in the articular cartilage. RESULTS Forty patients allocated including 4 men (10%) and 36 women (90%) with average age of 56.1 ± 7.2 years in control group and 52.8 ± 7.5 years in AD-MSCs group. Four patients (two patients from AD-MSCs group and two patients from the control group) excluded during the study. Clinical outcome measures showed improvement in AD-MSCs group. Hyaluronic acid and cartilage oligomeric matrix protein levels in blood serum decreased significantly in patients who received AD-MSCs (P < 0.05). Although IL-10 level significantly increased after 1 week (P < 0.05), the serum level of inflammatory markers dramatically decreased after 3 months (P < 0.001). Expressions of CD3, CD4, and CD8 have a decreasing trend during 6-month follow-up (P < 0.05), (P < 0.001), and (P < 0.001), respectively. However, the number of CD25+ cells increased remarkably in the treatment group 3 months after intervention (P < 0.005). MRI findings showed a slight increase in the thickness of tibial and femoral articular cartilages in AD-MSCs group. The changes were significant in the medial posterior and medial anterior areas of the tibia with P < 0.01 and P < 0.05, respectively. CONCLUSION Inter-articular injection of AD-MSCs in patients with KOA is safe. Laboratory data, MRI findings, and clinical examination of patients at different time points showed notable articular cartilage regeneration and significant improvement in the treatment group. TRIAL REGISTRATION Iranian registry of clinical trials (IRCT, https://en.irct.ir/trial/46 ), IRCT20080728001031N23. Registered 24 April 2018.
Collapse
Affiliation(s)
- Bahareh Sadri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hassanzadeh
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hoda Madani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Dylana Diaz-Solano
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Unidad de Terapia Celular - Laboratorio de Patología Celular y Molecular, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, 1020-A, Caracas, Venezuela
| | - Shahedeh Karimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mehdi Mohammadpour
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
17
|
Wang Y, Liu T, Jiao G, Lv Y, Piao C, Lu X, Ma H, Wang H. Exosomes from adipose-derived mesenchymal stem cells can attenuate liver injury caused by minimally invasive hemihepatectomy combined with ischemia-reperfusion in minipigs by modulating the endoplasmic reticulum stress response. Life Sci 2023; 321:121618. [PMID: 36966916 DOI: 10.1016/j.lfs.2023.121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
AIMS Hepatic ischemia-reperfusion injury (IRI) impairs postoperative recovery of liver function after liver resection or transplantation. It is crucial to minimize liver injury during surgery in order to improve patient survival and quality of life. The aim of this study was to explore the therapeutic efficacy of exosomes from adipose-derived mesenchymal stem cells (ADSCs-exo) against hepatectomy combined with IRI injury and compare that with the effect of adipose-derived mesenchymal stem cells (ADSCs). MAIN METHOD Minimally invasive hemihepatectomy combined with hepatic IRI was established in minipigs. A single dose of ADSCs-exo, ADSCs or PBS was injected through the portal vein. The histopathological features and function of the liver, and the oxidative stress levels, endoplasmic reticulum (ER) ultrastructure and ER stress (ERS) response were analyzed pre- and postoperatively. KEY FINDINGS ADSCs-exo alleviated the histopathological injuries and ultrastructural changes in the ER, and significantly improved ALP, TP and CAT levels. Furthermore, ADSCs-exo treatment also downregulated ERS-related factors such as GRP78, ATF6, IRE1α/XBP1, PERK/eIF2α/ATF4, JNK and CHOP. The therapeutic effects of ADSCs-exo and ADSCs were similar. SIGNIFICANCE Intravenous administration of a single dose of ADSCs-exo is a novel cell-free therapeutic approach to improve surgery-related liver injury. Our findings provide evidence of the paracrine effect of ADSCs and an experimental basis for treating liver injury with ADSCs-exo instead of ADSCs.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guangming Jiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingguang Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chenxi Piao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haiyang Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
18
|
Luan X, Chen P, Li Y, Yuan X, Miao L, Zhang P, Cao Q, Song X, Di G. TNF-α/IL-1β-licensed hADSCs alleviate cholestatic liver injury and fibrosis in mice via COX-2/PGE2 pathway. Stem Cell Res Ther 2023; 14:100. [PMID: 37095581 PMCID: PMC10127380 DOI: 10.1186/s13287-023-03342-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Adipose tissue-derived stem cell (ADSC) transplantation has been shown to be effective for the management of severe liver disorders. Preactivation of ADSCs enhanced their therapeutic efficacy. However, these effects have not yet been examined in relation to cholestatic liver injury. METHODS In the present study, a cholestatic liver injury model was established by bile duct ligation (BDL) in male C57BL/6 mice. Human ADSCs (hADSCs) with or without tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) pretreatment were administrated into the mice via tail vein injections. The efficacy of hADSCs on BDL-induced liver injury was assessed by histological staining, real-time quantitative PCR (RT-qPCR), Western blot, and enzyme-linked immune sorbent assay (ELISA). In vitro, the effects of hADSC conditioned medium on the activation of hepatic stellate cells (HSCs) were investigated. Small interfering RNA (siRNA) was used to knock down cyclooxygenase-2 (COX-2) in hADSCs. RESULTS TNF-α/IL-1β preconditioning could downregulate immunogenic gene expression and enhance the engraftment efficiency of hADSCs. Compared to control hADSCs (C-hADSCs), TNF-α/IL-1β-pretreated hADSCs (P-hADSCs) significantly alleviated BDL-induced liver injury, as demonstrated by reduced hepatic cell death, attenuated infiltration of Ly6G + neutrophils, and decreased expression of pro-inflammatory cytokines TNF-α, IL-1β, C-X-C motif chemokine ligand 1 (CXCL1), and C-X-C motif chemokine ligand 2 (CXCL2). Moreover, P-hADSCs significantly delayed the development of BDL-induced liver fibrosis. In vitro, conditioned medium from P-hADSCs significantly inhibited HSC activation compared to that from C-hADSCs. Mechanistically, TNF-α/IL-1β upregulated COX-2 expression and increased prostaglandin E2 (PGE2) secretion. The blockage of COX-2 by siRNA transfection reversed the benefits of P-hADSCs for PGE2 production, HSC activation, and liver fibrosis progression. CONCLUSION In conclusion, our results suggest that TNF-α/IL-1β pretreatment enhances the efficacy of hADSCs in mice with cholestatic liver injury, partially through the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yaxin Li
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Pengyu Zhang
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Xiaomin Song
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Lopez-Yus M, García-Sobreviela MP, del Moral-Bergos R, Arbones-Mainar JM. Gene Therapy Based on Mesenchymal Stem Cells Derived from Adipose Tissue for the Treatment of Obesity and Its Metabolic Complications. Int J Mol Sci 2023; 24:7468. [PMID: 37108631 PMCID: PMC10138576 DOI: 10.3390/ijms24087468] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Obesity is a highly prevalent condition often associated with dysfunctional adipose tissue. Stem cell-based therapies have become a promising tool for therapeutic intervention in the context of regenerative medicine. Among all stem cells, adipose-derived mesenchymal stem cells (ADMSCs) are the most easily obtained, have immunomodulatory properties, show great ex vivo expansion capacity and differentiation to other cell types, and release a wide variety of angiogenic factors and bioactive molecules, such as growth factors and adipokines. However, despite the positive results obtained in some pre-clinical studies, the actual clinical efficacy of ADMSCs still remains controversial. Transplanted ADMSCs present a meager rate of survival and proliferation, possibly because of the damaged microenvironment of the affected tissues. Therefore, there is a need for novel approaches to generate more functional ADMSCs with enhanced therapeutic potential. In this context, genetic manipulation has emerged as a promising strategy. In the current review, we aim to summarize several adipose-focused treatments of obesity, including cell therapy and gene therapy. Particular emphasis will be given to the continuum from obesity to metabolic syndrome, diabetes, and underlying non-alcoholic fatty liver disease (NAFLD). Furthermore, we will provide insights into the potential shared adipocentric mechanisms involved in these pathophysiological processes and their remediation using ADMSCs.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Maria Pilar García-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Raquel del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
| | - Jose M. Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
20
|
Huang YL, De Gregorio C, Silva V, Elorza ÁA, Léniz P, Aliaga-Tobar V, Maracaja-Coutinho V, Budini M, Ezquer F, Ezquer M. Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells 2023; 12:cells12040636. [PMID: 36831304 PMCID: PMC9954258 DOI: 10.3390/cells12040636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Verónica Silva
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Álvaro A. Elorza
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Vida, Universidad Andres Bello, Santiago 7610658, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana, Santiago 7610658, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 7610658, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 7610658, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| |
Collapse
|
21
|
Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation for Patients with Decompensated Liver Cirrhosis. J Gastrointest Surg 2023; 27:926-931. [PMID: 36703021 PMCID: PMC10133084 DOI: 10.1007/s11605-022-05528-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/04/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND OR PURPOSE Although human umbilical cord blood-derived mesenchymal stem cell transplantation (HUCB-MSCT) resulted in a good short-term therapeutic effect on patients with decompensated liver cirrhosis (DLC), the long-term survival remained unclear. This study aimed to evaluate the impact of HUCB-MSCT on long-term outcomes in patients with DLC. METHODS This retrospective cohort study included hospitalized patients with decompensated cirrhosis in Liuzhou Hospital of Traditional Chinese Medicine between November 2010 and February 2013. The primary outcome was overall survival (OS). The secondary outcomes were 3-year and 5-year survival rates and the occurrence rate of hepatocellular carcinoma (HCC). RESULTS A total of 201 subjects were enrolled, including 36 patients who underwent HUCB-MSCT (SCT group) and 165 patients who did not (non-SCT group). After PSM (1:2), there were 36 patients in the SCT group and 72 patients in non-SCT group. The 3-year and 5-year survival rates of the two groups were 83.3% vs. 61.8% and 63.9% vs. 43.6%, and median OS time was 92.50 and 50.80 months, respectively. HUCB-MSCT treatment was found to be an independent beneficial factor for patient OS (hazard ratio = 0.47; 95% CI: 0.29-0.76; P = 0.002). There was no significant difference in the occurrence rate of HCC between the two groups (P = 0.410). DISCUSSION OR CONCLUSIONS HUCB-MSCT may improve long-term OS without increasing the occurrence of HCC in patients with DLC. TRIAL REGISTRATION The Chinese Clinical Trial Registry (ChiCTR2100047550).
Collapse
|
22
|
The Osteogenic Potential of Falciform Ligament-Derived Stromal Cells-A Comparative Analysis between Two Osteogenic Induction Programs. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120810. [PMID: 36551016 PMCID: PMC9774535 DOI: 10.3390/bioengineering9120810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal cells (MSCs) have gained special relevance in bone tissue regenerative applications. MSCs have been isolated from different depots, with adipose tissue being acknowledged as one of the most convenient sources, given the wide availability, high cellular yield, and obtainability. Recently, the falciform ligament (FL) has been regarded as a potential depot for adipose tissue-derived stromal cells (FL-ADSCs) isolation. Nonetheless, the osteogenic capability of FL-ADSCs has not been previously characterized. Thus, the present study aimed the detailed characterization of FL-ADSCs' functionality upon osteogenic induction through a classic (dexamethasone-based-DEX) or an innovative strategy with retinoic acid (RA) in a comparative approach with ADSCs from a control visceral region. Cultures were characterized for cell proliferation, metabolic activity, cellular morphology, fluorescent cytoskeletal and mitochondrial organization, and osteogenic activity-gene expression analysis and cytochemical staining. FL-derived populations expressed significantly higher levels of osteogenic genes and cytochemical markers, particularly with DEX induction, as compared to control ADSCs that were more responsive to RA. FL-ADSCs were identified as a potential source for bone regenerative applications, given the heightened osteogenic functionality. Furthermore, data highlighted the importance of the selection of the most adequate osteogenic-inducing program concerning the specificities of the basal cell population.
Collapse
|
23
|
Wu B, Feng J, Guo J, Wang J, Xiu G, Xu J, Ning K, Ling B, Fu Q, Xu J. ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis. Stem Cell Res Ther 2022; 13:494. [PMID: 36195966 PMCID: PMC9531400 DOI: 10.1186/s13287-022-03049-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Hepatic fibrosis is a common pathologic stage in chronic liver disease development, which might ultimately lead to liver cirrhosis. Accumulating evidence suggests that adipose-derived stromal cells (ADSCs)-based therapies show excellent therapeutic potential in liver injury disease owing to its superior properties, including tissue repair ability and immunomodulation effect. However, cell-based therapy still limits to several problems, such as engraftment efficiency and immunoreaction, which impede the ADSCs-based therapeutics development. So, ADSCs-derived extracellular vesicles (EVs), especially for exosomes (ADSC-EXO), emerge as a promise cell-free therapeutics to ameliorate liver fibrosis. The effect and underlying mechanisms of ADSC-EXO in liver fibrosis remains blurred. Methods Hepatic fibrosis murine model was established by intraperitoneal sequential injecting the diethylnitrosamine (DEN) for two weeks and then carbon tetrachloride (CCl4) for six weeks. Subsequently, hepatic fibrosis mice were administrated with ADSC-EXO (10 μg/g) or PBS through tail vein infusion for three times in two weeks. To evaluate the anti-fibrotic capacity of ADSC-EXO, we detected liver morphology by histopathological examination, ECM deposition by serology test and Sirius Red staining, profibrogenic markers by qRT-PCR assay. LX-2 cells treated with TGF-β (10 ng/ml) for 12 h were conducted for evaluating ADSC-EXO effect on activated hepatic stellate cells (HSCs). RNA-seq was performed for further analysis of the underlying regulatory mechanisms of ADSC-EXO in liver fibrosis. Results In this study, we obtained isolated ADSCs, collected and separated ADSCs-derived exosomes. We found that ADSC-EXO treatment could efficiently ameliorate DEN/CCl4-induced hepatic fibrosis by improving mice liver function and lessening hepatic ECM deposition. Moreover, ADSC-EXO intervention could reverse profibrogenic phenotypes both in vivo and in vitro, including HSCs activation depressed and profibrogenic markers inhibition. Additionally, RNA-seq analysis further determined that decreased glutamine synthetase (Glul) of perivenous hepatocytes in hepatic fibrosis mice could be dramatically up-regulated by ADSC-EXO treatment; meanwhile, glutamine and ammonia metabolism-associated key enzyme OAT was up-regulated and GLS2 was down-regulated by ADSC-EXO treatment in mice liver. In addition, glutamine synthetase inhibitor would erase ADSC-EXO therapeutic effect on hepatic fibrosis. Conclusions These findings demonstrated that ADSC-derived exosomes could efficiently alleviate hepatic fibrosis by suppressing HSCs activation and remodeling glutamine and ammonia metabolism mediated by hepatocellular glutamine synthetase, which might be a novel and promising anti-fibrotic therapeutics for hepatic fibrosis disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03049-x.
Collapse
Affiliation(s)
- Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Jiuxing Feng
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, People's Republic of China
| | - Jiaqi Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, People's Republic of China.
| | - Qingchun Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
24
|
Luchetti F, Carloni S, Nasoni MG, Reiter RJ, Balduini W. Tunneling nanotubes and mesenchymal stem cells: New insights into the role of melatonin in neuronal recovery. J Pineal Res 2022; 73:e12800. [PMID: 35419879 PMCID: PMC9540876 DOI: 10.1111/jpi.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Efficient cell-to-cell communication is essential for tissue development, homeostasis, and the maintenance of cellular functions after injury. Tunneling nanotubes (TNTs) have emerged as a new important method of cell-to-cell communication. TNTs are primarily established between stressed and unstressed cells and can transport a variety of cellular components. Mitochondria are important trafficked entities through TNTs. Transcellular mitochondria transfer permits the incorporation of healthy mitochondria into the endogenous network of recipient cells, changing the bioenergetic profile and other functional properties of the recipient and may allow the recipient cells to recuperate from apoptotic processes and return to a normal operating state. Mesenchymal cells (MSCs) can form TNTs and transfer mitochondria and other constituents to target cells. This occurs under both physiological and pathological conditions, leading to changes in cellular energy metabolism and functions. This review summarizes the newly described capacity of melatonin to improve mitochondrial fusion/fission dynamics and promote TNT formation. This new evidence suggests that melatonin's protective effects could be attributed to its ability to prevent mitochondrial damage in injured cells, reduce senescence, and promote anastasis, a natural cell recovery phenomenon that rescues cells from the brink of death. The modulation of these new routes of intercellular communication by melatonin could play a key role in increasing the therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Silvia Carloni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Maria G. Nasoni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Russel J. Reiter
- Department of Cell Systems and AnatomyLong School of Medicine, UT HealthSan AntonioTexasUSA
| | - Walter Balduini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| |
Collapse
|
25
|
Hernandez JC, Yeh DW, Marh J, Choi HY, Kim J, Chopra S, Ding L, Thornton M, Grubbs B, Makowka L, Sher L, Machida K. Activated and nonactivated MSCs increase survival in humanized mice after acute liver injury through alcohol binging. Hepatol Commun 2022; 6:1549-1560. [PMID: 35246968 PMCID: PMC9234635 DOI: 10.1002/hep4.1924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 11/08/2022] Open
Abstract
The ability of the liver to regenerate after injury makes it an ideal organ to study for potential therapeutic interventions. Mesenchymal stem cells (MSCs) possess self-renewal and differentiation properties, as well as anti-inflammatory properties that make them an ideal candidate for therapy of acute liver injury. The primary aim of this study is to evaluate the potential for reversal of hepatic injury using human umbilical cord-derived MSCs. Secondary aims include comparison of various methods of administration as well as comparison of activated versus nonactivated human umbilical cord stem cells. To induce liver injury, humanized mice were fed high-cholesterol high-fat liquid diet with alcohol binge drinking. Mice were then treated with either umbilical cord MSCs, activated umbilical cord MSCs, or a placebo and followed for survival. Blood samples were obtained at the end of the binge drinking and at the time of death to measure alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Histology of all mouse livers was reported at time of death. Activated MSCs that were injected intravenously, intraperitoneally, or both routes had superior survival compared with nonactivated MSCs and with placebo-treated mice. AST and ALT levels were elevated in all mice before treatment and improved in the mice treated with stem cells. Conclusion: Activated stem cells resulted in marked improvement in survival and in recovery of hepatic chemistries. Activated umbilical cord MSCs should be considered an important area of investigation in acute liver injury.
Collapse
Affiliation(s)
- Juan Carlos Hernandez
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Da-Wei Yeh
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Joel Marh
- PrimeGenUS Inc.Santa AnaCaliforniaUSA
| | - Hye Yeon Choi
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Julia Kim
- PrimeGenUS Inc.Santa AnaCaliforniaUSA
| | - Shefali Chopra
- Department of PathologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Li Ding
- Department of Population and PublicHealth Sciences University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Matthew Thornton
- Department of SurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA.,Childrens Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Brendan Grubbs
- Department of SurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA.,Childrens Hospital Los AngelesLos AngelesCaliforniaUSA
| | | | - Linda Sher
- PrimeGenUS Inc.Santa AnaCaliforniaUSA.,Department of SurgeryUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Keigo Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA.,Southern California Research Center for ALPD and CirrhosisLos AngelesCaliforniaUSA
| |
Collapse
|
26
|
Jahnavi S, Garg V, Vasandan AB, SundarRaj S, Kumar A, Prasanna S J. Lineage reprogramming of human adipose mesenchymal stem cells to immune modulatory i-Heps. Int J Biochem Cell Biol 2022; 149:106256. [PMID: 35772664 DOI: 10.1016/j.biocel.2022.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022]
Abstract
Pluripotent stem cell derived-hepatocytes depict fetal -hepatocyte characteristics/maturity and are immunogenic limiting their applications. Attempts have been made to derive hepatocytes from mesenchymal stem cells using developmental cocktails, epigenetic modulators and small molecules. However, achieving a stable terminally differentiated functional state had been a challenge. Inefficient hepatic differentiation could be due to lineage restrictions set during development. Hence a novel lineage reprogramming approach has been utilized to confer competence to adipose-mesenchymal stem cells (ADMSCs) to efficiently respond to hepatogenic cues and achieve a stable functional hepatic state. Lineage reprogramming involved co-transduction of ADMSCs with hepatic endoderm pioneer Transcription factor (TF)-FOXA2, HHEX-a homeobox gene and HNF4α-master TF indispensable for hepatic state maintenance. Lineage priming was evidenced by endogenous HFN4α promoter demethylation and robust responsiveness to minimal hepatic maturation cues. Induced hepatocytes (i-Heps) exhibited mesenchymal-to-epithelial transition and terminal hepatic signatures. Functional characterisation of i-Heps for hepatic drug detoxification systems, xenobiotic uptake/clearance, metabolic status and hepatotropic virus entry validated acquisition of stable hepatic state and junctional maturity Exhaustive analysis of MSC memory in i-Heps indicated loss of MSC-immunophenotype and terminal differentiation to osteogenic/adipogenic lineages. Importantly, i-Heps suppressed phytohemagglutinin-induced T-cell blasts, inhibited allogenic mixed-lymphocyte reactions (MLRs) and secreted immunomodulatory- indoleamine 2,3-dioxygenase in T-cell blast co-cultures akin to native ADMSCs. In a nutshell, the present study identifies a novel cocktail of TFs that reprogram ADMSCs to stable hepatic state. i-Heps exhibit adult hepatocyte functional maturity with robust immune-modulatory abilities rendering suitability for rigorous drug testing, hepatocyte-pathogen interaction studies and transplantation in allogenic settings.
Collapse
Affiliation(s)
- Sowmya Jahnavi
- Manipal Institute of Regenerative Medicine, MAHE, Bangalore, India
| | - Vaishali Garg
- Manipal Institute of Regenerative Medicine, MAHE, Bangalore, India
| | | | - Swathi SundarRaj
- Principal Scientist, Stempeutics Research Pvt. Ltd, Bangalore, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, MAHE, Bangalore, India
| | | |
Collapse
|
27
|
Clinical Application of Induced Hepatocyte-like Cells Produced from Mesenchymal Stromal Cells: A Literature Review. Cells 2022; 11:cells11131998. [PMID: 35805080 PMCID: PMC9265349 DOI: 10.3390/cells11131998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a leading cause of mortality worldwide, resulting in 1.3 million deaths annually. The vast majority of liver disease is caused by metabolic disease (i.e., NASH) and alcohol-induced hepatitis, and to a lesser extent by acute and chronic viral infection. Furthermore, multiple insults to the liver is becoming common due to the prevalence of metabolic and alcohol-related liver diseases. Despite this rising prevalence of liver disease, there are few treatment options: there are treatments for viral hepatitis C and there is vaccination for hepatitis B. Aside from the management of metabolic syndrome, no direct liver therapy has shown clinical efficacy for metabolic liver disease, there is very little for acute alcohol-induced liver disease, and liver transplantation remains the only effective treatment for late-stage liver disease. Traditional pharmacologic interventions have failed to appreciably impact the pathophysiology of alcohol-related liver disease or end-stage liver disease. The difficulties associated with developing liver-specific therapies result from three factors that are common to late-stage liver disease arising from any cause: hepatocyte injury, inflammation, and aberrant tissue healing. Hepatocyte injury results in tissue damage with inflammation, which sensitizes the liver to additional hepatocyte injury and stimulates hepatic stellate cells and aberrant tissue healing responses. In the setting of chronic liver insults, there is progressive scarring, the loss of hepatocyte function, and hemodynamic dysregulation. Regenerative strategies using hepatocyte-like cells that are manufactured from mesenchymal stromal cells may be able to correct this pathophysiology through multiple mechanisms of action. Preclinical studies support their effectiveness and recent clinical studies suggest that cell replacement therapy can be safe and effective in patients with liver disease for whom there is no other option.
Collapse
|
28
|
Wu Z, Yang Q, Ma H. Study the Mechanism of Gualou Niubang Decoction in Treating Plasma Cell Mastitis Based on Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5780936. [PMID: 35757473 PMCID: PMC9217541 DOI: 10.1155/2022/5780936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
Abstract
Objective Explore the potential molecular mechanisms behind the therapeutic functions of Gualou Niubang decoction (GLNBD) in the treatment of plasma cell mastitis (PCM) by network pharmacology and molecular docking. Methods GLNBD is a formula of Chinese traditional medicine consisting of 12 herbs. The potential active ingredients of GLNBD and their target genes were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, and PCM-related target genes were obtained from GeneCards, OMIM, and NCBI databases, using R language to obtain intersection targets; then, the STRING database and Cytoscape software were used to establish protein-protein interaction networks and herb ingredient target networks. DAVID was used to perform GO and KEGG pathway enrichment analyses on the intersection target. PyMoL-2.5.0 and AutoDock Tools-1.5.6 were used to verify the molecular docking. Results 164 ingredients and 58 intersection targets were obtained in the treatment of PCM by GLNBD. Four key active compounds and four key proteins were identified. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that biological functions of potential target genes were associated with negative regulation of the apoptotic process, response to hypoxia, positive regulation of transcription, and DNA-templated, with related pathways involving the pathway in cancer, phosphatidylinositol 3-kinase (PI3K) Akt signaling pathway, and AGE-RAGE signaling pathway in diabetic complications. Moreover, the binding activities of key target genes and essential active compounds of Chinese herbal medicines in GLNBD were further validated by molecular docking. The results showed that the docking results were stable and had good binding ability. Conclusion This study suggested that four potential key active components, including quercetin, luteolin, fisetin, and kaempferol, were identified in GLNBD, which could interact with ALB, EGFR, IL-6, and VEGFA modulating the activation of the pathway in cancer, PI3K-Akt pathway, and AGE-RAGE signaling pathway in diabetic complications.
Collapse
Affiliation(s)
- Zhaojing Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Qing Yang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hongbo Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
29
|
Mikłosz A, Nikitiuk BE, Chabowski A. Using adipose-derived mesenchymal stem cells to fight the metabolic complications of obesity: Where do we stand? Obes Rev 2022; 23:e13413. [PMID: 34985174 PMCID: PMC9285813 DOI: 10.1111/obr.13413] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Obesity is a critical risk factor for the development of metabolic diseases, and its prevalence is increasing worldwide. Stem cell-based therapies have become a promising tool for therapeutic intervention. Among them are adipose-derived mesenchymal stem cells (ADMSCs), secreting numerous bioactive molecules, like growth factors, cytokines, and chemokines. Their unique features, including immunosuppressive and immunomodulatory properties, make them an ideal candidates for clinical applications. Numerous experimental studies have shown that ADMSCs can improve pancreatic islet cell viability and function, ameliorate hyperglycemia, improve insulin sensitivity, restore liver function, counteract dyslipidemia, lower pro-inflammatory cytokines, and reduce oxidative stress in the animal models. These results prompted scientists to use ADMSCs clinically. However, up to date, there have been few clinical studies or ongoing trails using ADMSCs to treat metabolic disorders such as type 2 diabetes mellitus (T2DM) or liver cirrhosis. Most human studies have implemented autologous ADMSCs with minimal risk of cellular rejection. Because the functionality of ADMSCs is significantly reduced in subjects with obesity and/or metabolic syndrome, their efficacy is questioned. ADMSCs transplantation may offer a potential therapeutic approach for the treatment of metabolic complications of obesity, but randomized controlled trials are required to establish their safety and efficacy in humans prior to routine clinical use.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
30
|
New Perspectives to Improve Mesenchymal Stem Cell Therapies for Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23052669. [PMID: 35269830 PMCID: PMC8910533 DOI: 10.3390/ijms23052669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. Many factors may contribute to the susceptibility of patients to this condition, making DILI a global medical problem that has an impact on public health and the pharmaceutical industry. The use of mesenchymal stem cells (MSCs) has been at the forefront of regenerative medicine therapies for many years, including MSCs for the treatment of liver diseases. However, there is currently a huge gap between these experimental approaches and their application in clinical practice. In this concise review, we focus on the pathophysiology of DILI and highlight new experimental approaches conceived to improve cell-based therapy by the in vitro preconditioning of MSCs and/or the use of cell-free products as treatment for this liver condition. Finally, we discuss the advantages of new approaches, but also the current challenges that must be addressed in order to develop safer and more effective procedures that will allow cell-based therapies to reach clinical practice, enhancing the quality of life and prolonging the survival time of patients with DILI.
Collapse
|
31
|
Kang Y, Pei W. Transcriptomic analysis and biological evaluation reveals that LMO3 regulates the osteogenic differentiation of human adipose derived stem cells via PI3K/Akt signaling pathway. J Mol Histol 2022; 53:379-394. [PMID: 35165791 DOI: 10.1007/s10735-021-10047-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
Autologous bone transplantation which is a common treatment method for bone defects needs a large quantity of bone cells. In order to develop new treatments to regenerating bone tissues, this research aimed at identifying the key genes and finding their mechanism in human adipose-derived stem cells (hADSCs) osteogenesis. GSE63754, GSE89330 and GSE72429 were downloaded to perform GO functional and KEGG pathway analyses, construct a competing endogenous RNA (ceRNA) network, construct a PPI network and identify hub genes. The expression level of LMO3 during the osteogenesis of hADSCs was examined by quantitative reverse transcription polymerase chain reaction and western blot. Lentivirus transfection was used to knock down or overexpress LMO3, which enabled us to investigate the effect of LMO3 on osteogenic differentiation of hADSCs. Wortmannin were used to identify the mechanism of the LMO3/PI3K/Akt axis in regulating osteogenic differentiation of hADSCs. Moreover, ectopic bone formation in nude mice was used to investigate the effect of LMO3 on osteogenesis in vivo. In this study, we found the expression of LMO3 was significantly upregulated during the osteogenic differentiation of hADSCs. LMO3 knockdown remarkably suppressed osteogenic differentiation of hADSCs, while LMO3 overexpression promoted osteogenic differentiation of hADSCs both in vitro and in vivo. Moreover, we discovered that the enhancing effect of LMO3 overexpression on osteogenic differentiation was related to the activation of PI3K/Akt signaling pathway. Inhibition of PI3K/Akt signaling pathway with wortmannin effectively blocked the stimulation of osteogenic differentiation induced by LMO3 overexpression. In conclusion, based on transcriptomic analysis, we identified key genes involved in regulating the osteogenic differentiation of hADSCs. In addition, we found that LMO3 might act as a positive modulator of hADSC osteogenic differentiation by mediating PI3K/Akt signaling pathway. Manipulating the expression of LMO3 and its associated pathways might contribute to advances in bone regeneration and tissue engineering.
Collapse
Affiliation(s)
- Yue Kang
- Department of Breast Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - Wenye Pei
- Department of Information Management, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China.
| |
Collapse
|
32
|
Adult Stem Cell Therapy as Regenerative Medicine for End-Stage Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:57-72. [DOI: 10.1007/5584_2022_719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Hong JM, Kim JH, Kim GH, Shin HM, Hwang YI. Xenogeneic Humoral Immune Responses to Human Mesenchymal Stem Cells in Mice. Int J Stem Cells 2021; 15:291-300. [PMID: 34965998 PMCID: PMC9396016 DOI: 10.15283/ijsc21116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/08/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Background and Objectives Many preclinical studies have been conducted using animal disease models to determine the effectiveness of human mesenchymal stem cells (hMSCs) for treating immune and inflammatory diseases based on the belief that hMSCs are not immunogenic across species. However, several researchers have suggested xenogeneic immune responses to hMSCs in animals, still without detailed features. This study aimed to investigate a xenogeneic humoral immune response to hMSCs in mice in detail. Methods and Results Balb/c mice were intraperitoneally injected with adipose tissue-derived or Wharton’s jelly-derived hMSCs. Sera from these mice were titrated for each isotype. To confirm specificity of the antibodies, hMSCs were stained with the sera and subjected to a flow cytometic analysis. Spleens were immunostained for proliferating cell nuclear antigen to verify the germinal center formation. Additionally, splenocytes were subjected to a flow cytometric analysis for surface markers including GL-7, B220, CD4, CD8, CD44, and CD62L. Similar experiments were repeated in C57BL/6 mice. The results showed increased IgG1 and IgG2a titers in the sera from Balb/c mice injected with hMSCs, and the titers were much higher in the secondary sera than in the primary sera. These antibodies were specifically stained the hMSCs. Germinal centers were observed in the spleen, and flow cytometric analysis of the splenocytes showed higher frequencies of centroblasts (B220+ GL7+) and memory T cells (CD62L+ CD44+) both in CD4+ and CD8+ subsets. Similar results were obtained for C57BL/6 mice. Conclusions hMSCs induced a humoral immune response in mice, with characters of T cell-dependent immunity.
Collapse
Affiliation(s)
- Jun-Man Hong
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Hee Kim
- Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, Korea
| | - Gwang-Hoon Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,BK21FOURs Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,BK21FOURs Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Korea
| | - Young-Il Hwang
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Wang L, Zhang Y, Zhong J, Zhang Y, Zhou S, Xu C. Mesenchymal Stem Cell Therapy for Acetaminophen-Related Liver Injury: A Systematic Review and Meta-Analysis of Experimental Studies in Vivo. Curr Stem Cell Res Ther 2021; 17:825-838. [PMID: 34620060 DOI: 10.2174/1574888x16666211007092055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The efficacy of mesenchymal stem cell (MSC) therapy in acetaminophen-induced liver injury has been investigated in animal experiments, but individual studies with a small sample size cannot be used to draw a clear conclusion. Therefore, we conducted a systematic review and meta-analysis of preclinical studies to explore the potential of using MSCs in acetaminophen-induced liver injury. METHODS Eight databases were searched for studies reporting the effects of MSCs on acetaminophen hepatoxicity. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. SYRCLE's risk of bias tool for animal studies was applied to assess the methodological quality. A meta-analysis was performed by using RevMan 5.4 and STATA/SE 16.0 software. RESULTS Eleven studies involving 159 animals were included according to PRISMA statement guidelines. Significant associations were found for MSCs with the levels of alanine transaminase (ALT) (standardized mean difference (SMD) - 2.58, p < 0.0001), aspartate aminotransferase (AST) (SMD - 1.75, p = 0.001), glutathione (GSH) (SMD 3.7, p < 0.0001), superoxide dismutase (SOD) (SMD 1.86, p = 0.022), interleukin 10 (IL-10) (SMD 5.14, p = 0.0002) and tumor necrosis factor-α (TNF-α) (SMD - 4.48, p = 0.011) compared with those in the control group. The subgroup analysis showed that the tissue source of MSCs significantly affected the therapeutic efficacy (p < 0.05). CONCLUSION Our meta-analysis results demonstrate that MSCs could be a potential treatment for acetaminophen-related liver injury.
Collapse
Affiliation(s)
- Li Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Yiwen Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Jiajun Zhong
- Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou. China
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Shuisheng Zhou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| |
Collapse
|
35
|
Mikłosz A, Łukaszuk B, Supruniuk E, Grubczak K, Moniuszko M, Choromańska B, Myśliwiec P, Chabowski A. Does TBC1D4 (AS160) or TBC1D1 Deficiency Affect the Expression of Fatty Acid Handling Proteins in the Adipocytes Differentiated from Human Adipose-Derived Mesenchymal Stem Cells (ADMSCs) Obtained from Subcutaneous and Visceral Fat Depots? Cells 2021; 10:1515. [PMID: 34208471 PMCID: PMC8235367 DOI: 10.3390/cells10061515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022] Open
Abstract
TBC1D4 (AS160) and TBC1D1 are Rab GTPase-activating proteins that play a key role in the regulation of glucose and possibly the transport of long chain fatty acids (LCFAs) into muscle and fat cells. Knockdown (KD) of TBC1D4 increased CD36/SR-B2 and FABPpm protein expressions in L6 myotubes, whereas in murine cardiomyocytes, TBC1D4 deficiency led to a redistribution of CD36/SR-B2 to the sarcolemma. In our study, we investigated the previously unexplored role of both Rab-GAPs in LCFAs uptake in human adipocytes differentiated from the ADMSCs of subcutaneous and visceral adipose tissue origin. To this end we performed a single- and double-knockdown of the proteins (TBC1D1 and TBC1D4). Herein, we provide evidence that AS160 mediates fatty acid entry into the adipocytes derived from ADMSCs. TBC1D4 KD resulted in quite a few alterations to the cellular phenotype, the most obvious of which was the shift of the CD36/SR-B2 transport protein to the plasma membrane. The above translated into an increased uptake of saturated long-chain fatty acid. Interestingly, we observed a tissue-specific pattern, with more pronounced changes present in the adipocytes derived from subADMSCs. Altogether, our data show that in human adipocytes, TBC1D4, but not TBC1D1, deficiency increases LCFAs transport via CD36/SR-B2 translocation.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (B.Ł.); (E.S.); (A.C.)
| | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (B.Ł.); (E.S.); (A.C.)
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (B.Ł.); (E.S.); (A.C.)
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13 Street, 15-269 Bialystok, Poland; (K.G.); (M.M.)
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13 Street, 15-269 Bialystok, Poland; (K.G.); (M.M.)
| | - Barbara Choromańska
- Department of General and Endocrine Surgery, Medical University of Bialystok, M. Sklodowskiej-Curie 24a Street, 15-276 Bialystok, Poland; (B.C.); (P.M.)
| | - Piotr Myśliwiec
- Department of General and Endocrine Surgery, Medical University of Bialystok, M. Sklodowskiej-Curie 24a Street, 15-276 Bialystok, Poland; (B.C.); (P.M.)
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C Street, 15-222 Bialystok, Poland; (B.Ł.); (E.S.); (A.C.)
| |
Collapse
|
36
|
Mughal M, Sindali K, Man J, Roblin P. 'Fat chance': a review of adipose tissue engineering and its role in plastic and reconstructive surgery. Ann R Coll Surg Engl 2021; 103:245-249. [PMID: 33682428 DOI: 10.1308/rcsann.2020.7031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Soft tissue reconstruction remains a continuing challenge for plastic and reconstructive surgeons. Standard methods of reconstruction such as local tissue transfer and free autologous tissue transfer are successful in addressing soft tissue cover, yet they do not come without the additional morbidity of donor sites. Autologous fat transfer has been used in reconstruction of soft tissue defects in different branches of plastic surgery, specifically breast and facial defect reconstruction, while further maintaining a role in body contouring procedures. Current autologous fat transfer techniques come with the drawbacks of donor-site morbidity and, more significantly, resorption of large amounts of fat. Advancement in tissue engineering has led to the use of engineered adipose tissue structures based on adipose-derived stem cells. This enables a mechanically similar reconstruct that is abundantly available. Cosmetic and mechanical similarity with native tissue is the main clinical goal for engineered adipose tissue. Development of novel techniques in the availability of natural tissue is an exciting prospect; however, it is important to investigate the potential of cell sources and culture strategies for clinical applications. We review these techniques and their applications in plastic surgery.
Collapse
Affiliation(s)
- M Mughal
- St Thomas' Hospital, London, UK.,University College London, London, UK
| | | | - J Man
- St Thomas' Hospital, London, UK
| | | |
Collapse
|
37
|
Liu Q, Chen X, Liu C, Pan L, Kang X, Li Y, Du C, Dong S, Xiang AP, Xu Y, Zhang Q. Mesenchymal stem cells alleviate experimental immune-mediated liver injury via chitinase 3-like protein 1-mediated T cell suppression. Cell Death Dis 2021; 12:240. [PMID: 33664231 PMCID: PMC7933182 DOI: 10.1038/s41419-021-03524-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Liver diseases with different pathogenesis share common pathways of immune-mediated injury. Chitinase-3-like protein 1 (CHI3L1) was induced in both acute and chronic liver injuries, and recent studies reported that it possesses an immunosuppressive ability. CHI3L1 was also expressed in mesenchymal stem cells (MSCs), thus we investigates the role of CHI3L1 in MSC-based therapy for immune-mediated liver injury here. We found that CHI3L1 was highly expressed in human umbilical cord MSCs (hUC-MSCs). Downregulating CHI3L1 mitigated the ability of hUC-MSCs to inhibit T cell activation, proliferation and inflammatory cytokine secretion in vitro. Using Concanavalin A (Con A)-induced liver injury mouse model, we found that silencing CHI3L1 significantly abrogated the hUC-MSCs-mediated alleviation of liver injury, accompanying by weakened suppressive effects on infiltration and activation of hepatic T cells, and secretion of pro-inflammatory cytokines. In addition, recombinant CHI3L1 (rCHI3L1) administration inhibited the proliferation and function of activated T cells, and alleviated the Con A-induced liver injury in mice. Mechanistically, gene set enrichment analysis showed that JAK/STAT signalling pathway was one of the most significantly enriched gene pathways in T cells co-cultured with hUC-MSCs with CHI3L1 knockdown, and further study revealed that CHI3L1 secreted by hUC-MSCs inhibited the STAT1/3 signalling in T cells by upregulating peroxisome proliferator-activated receptor δ (PPARδ). Collectively, our data showed that CHI3L1 was a novel MSC-secreted immunosuppressive factor and provided new insights into therapeutic treatment of immune-mediated liver injury.
Collapse
Grants
- This work was supported by the National Key Research and Development Program of China (2017YFA0106100, 2018YFA0107203, 2017YFA010550), National Natural Science Foundation of China (81971526, 81670601, 81760112, 31601184, 81870449, 81970537, 81970109), Guangdong Basic and Applied Basic Research Foundation (2020A1515010272, 2020A1515011385), Key project fund of Guangdong Natural Science Foundation (2017A030311034), Special fund for frontier and key technology innovation of Guangdong (2015B020226004) and National Keypoint Research and Invention program of the thirteenth (2018ZX10723203), the Key Scientific and Technological Projects of Guangdong Province (2019B020236004, 2019B020234001, 2019B020235002, 2017B020230004), Key Scientific and Technological Program of Guangzhou City (201803040011, 201802020023), Pearl River S&T Nova Program of Guangzhou (201906010095), Fundamental Research Funds for the Central Universities (20ykpy149).
Collapse
Affiliation(s)
- Qiuli Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaoyong Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Chang Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Lijie Pan
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Xinmei Kang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Yanli Li
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Cong Du
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China
| | - Shuai Dong
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Andy Peng Xiang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China.
| | - Yan Xu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China.
| |
Collapse
|
38
|
Li Y, Lin Y, Han X, Li W, Yan W, Ma Y, Lu X, Huang X, Bai R, Zhang H. GSK3 inhibitor ameliorates steatosis through the modulation of mitochondrial dysfunction in hepatocytes of obese patients. iScience 2021; 24:102149. [PMID: 33665568 PMCID: PMC7900441 DOI: 10.1016/j.isci.2021.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/30/2020] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Obesity is an important risk factor and a potential treatment target for hepatic steatosis. The maladaptation of hepatic mitochondrial flexibility plays a key role in the hepatic steatosis. Herein, we found that hepatocyte-like cells derived from human adipose stem cell of obese patients exhibited the characteristics of hepatic steatosis and accompanied with lower expression of the subunits of mitochondrial complex I and lower oxidative phosphorylation levels. The GSK3 inhibitor CHIR-99021 promoted the expression of NDUFB8, NDUFB9, the subunits of mitochondrial complex I, the basal oxygen consumption rate, and the fatty acid oxidation of the hepatocytes of obese patients by upregulating the expression of the transcription factor PGC-1α, TFAM, and NRF1 involved in mitochondrial biogenesis. Moreover, CHIR-99021 decreased the lipid droplets size and the triglyceride levels in hepatocytes of obese patients. The results demonstrate that GSK3 inhibition ameliorates hepatic steatosis by elevating the mitochondrial function in hepatocytes of obese patients. Obese patients’ adipose-stem-cell-derived hepatocytes reveal hepatic steatosis Hepatic steatosis is accompanied the mitochondrial dysfunction The mitochondrial dysfunction is governed by the low expression PGC-1α, TFAM, and NRF1 GSK3 inhibitor ameliorates hepatic steatosis via mitochondrial dysfunction modulation
Collapse
Affiliation(s)
- Yaqiong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Yi Lin
- Department of General Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xueya Han
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Weihong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Wenmao Yan
- Department of General Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yuejiao Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xin Lu
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xiaowu Huang
- Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Rixing Bai
- Department of General Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
- Corresponding author
| | - Haiyan Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
- Corresponding author
| |
Collapse
|
39
|
Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human Mesenchymal Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:340-348. [PMID: 32178619 DOI: 10.2174/1574888x15666200316164051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/03/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Spinal Cord Injury (SCI), as a devastating and life-altering neurological disorder, is one of the most serious health issues. Currently, the management of acute SCI includes pharmacotherapy and surgical decompression. Both the approaches have been observed to have adverse physiological effects on SCI patients. Therefore, novel therapeutic targets for the management of SCI are urgently required for developing cell-based therapies. Multipotent stem cells, as a novel strategy for the treatment of tissue injury, may provide an effective therapeutic option against many neurological disorders. Mesenchymal stem cells (MSCs) or multipotent stromal cells can typically self-renew and generate various cell types. These cells are often isolated from bone marrow (BM-MSCs), adipose tissues (AD-MSCs), umbilical cord blood (UCB-MSCs), and placenta (PMSCs). MSCs have remarkable potential for the development of regenerative therapies in animal models and humans with SCI. Herein, we summarize the therapeutic potential of human MSCs in the treatment of SCI.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Liao N, Zhang D, Wu M, Yang H, Liu X, Song J. Enhancing therapeutic effects and in vivo tracking of adipose tissue-derived mesenchymal stem cells for liver injury using bioorthogonal click chemistry. NANOSCALE 2021; 13:1813-1822. [PMID: 33433536 DOI: 10.1039/d0nr07272a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adipose tissue-derived mesenchymal stem cell (ADSC)-based therapy is attractive for liver diseases, but the long-term therapeutic outcome is still far from satisfaction due to the low hepatic engraftment efficiency of ADSC transplantation. Herein, we propose a strategy based on liver sinusoidal endothelial cell (LSEC)-targeting peptide modification and near infrared (NIR) fluorescent probe labeling for enhancing LSEC-barrier-migration ability and in vivo tracking of ADSCs in a liver injury mouse model. RLTRKRGLK (RK), a LSEC-targeted peptide, and indocyanine green (ICG), a FDA approved infrared fluorescent dye, were simultaneously modified on the ADSC surface via a bioorthogonal click reaction. The equipped ADSCs not only exhibited significant binding ability towards LSEC both in vitro and in vivo, but could also be monitored by NIR imaging in vivo. In particular, the RK-modified ADSCs showed remarkable higher hepatic accumulation as compared to unmodified ADSCs, resulting in better therapeutic outcomes. Therefore, this study provides a simple and convenient method for enhancing the homing of transplanted ADSCs to injured liver accompanying with in vivo cell tracking ability, which may shed light on accelerating the clinical translation of the ADSC-based therapy for liver diseases.
Collapse
Affiliation(s)
- Naishun Liao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China.
| | | | | | | | | | | |
Collapse
|
41
|
Asadi M, Lotfi H, Salehi R, Mehdipour A, Zarghami N, Akbarzadeh A, Alizadeh E. Hepatic cell-sheet fabrication of differentiated mesenchymal stem cells using decellularized extracellular matrix and thermoresponsive polymer. Biomed Pharmacother 2020; 134:111096. [PMID: 33338746 DOI: 10.1016/j.biopha.2020.111096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Liver tissue engineering via cell sheet technology would open new doors for treatment of patients with liver failure. Decellularized tissues could provide sufficient extracellular matrix (ECM) to support development of hepatocytes in in vivo niches. Besides, with the potential of temperature responsive polymer (pNIPAAm) as an intelligent surface for controlling the attachment/detachment of cell, we set out to generate three in vitro microenvironments models including I: pNIPAAm hydrogel (pN hydrogel), II: decellularized ECM incorporated into pNIPAAm hydrogel (dECM + pN hydrogel) and III: decellularized ECM scaffold (dECM scaffold) to investigate the structural and function cues of hepatocyte-like cells after differentiation of adipose tissue-derived mesenchymal stem cells (AT-MSCs) on the surface of these models. METHOD dECM scaffold was obtained after decellularization of rat liver, and its efficiency was analyzed. pN hydrogel and dECM + pN hydrogel (1:3 and 2:3 ratios) of were fabricated, and scaffold architecture was characterized. Each well of culturing plates was coated separately with these three constructs and AT-MSCs were instructed to differentiate into hepatocyte-like cells (HLCs). After recellularization, patterns of differentiation, and expression of hepatogenic markers were investigated via biochemical assays and qRT-PCR at different time points. RESULTS Multipotency of AT-MSCs, after their ability for osteogenesis and adipogenesis was documented. Production of dense and intact cell sheets was reported in dECM + pN hydrogel, as opposed to pN hydrogel and dECM scaffold. Also, statistically significant difference of HLCs functionality in dECM + pN hydrogel was confirmed after evaluation of the expression of hepatocyte markers including, alpha-fetoprotein, cytokeratin 18, cytochrome P450-2E1 and phosphoenolpyruvate carboxykinase. CONCLUSION Our results proved dECM + pN hydrogel were able to preserve hepatocyte function in cell sheets owing to the high level of albumin, urea, hepatogenic markers, and glycogenesis potential of HLCs. Accordingly, dECM incorporated in pN hydrogel could remodel microenvironments to guide the AT-MSCs into conducive differentiation and proliferation to give rise to multilayer sheets of cells in their own ECM.
Collapse
Affiliation(s)
- Maryam Asadi
- Drug Applied Research Center, Student Research Committee, and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- PhD of Medical Biotechnology, Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Drug Applied Research Center, and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Sinusoidal Endothelial Cell Progenitor Cells Promote Tumour Progression in Patients with Hepatocellular Carcinoma. Stem Cells Int 2020; 2020:8819523. [PMID: 33312206 PMCID: PMC7719537 DOI: 10.1155/2020/8819523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Objective As sinusoidal endothelial cell progenitor cells (SEPCs) play a significant role in liver regeneration, it is necessary to elucidate whether SEPCs participate in tumour progression of hepatocellular carcinoma (HCC). Methods A total of 45 patients with primary HCC who underwent liver resection were included in this study. The liver tumours were removed from the patients, and partial tissues were prepared to identify SEPCs through double staining of CD133/CD45 and CD133/CD31 at the same location. Blood samples were collected to examine liver function parameters and tumour markers. The demographics and clinicopathological characteristics of the patients were collected for correlation analysis with SEPCs. Results SEPCs were observed in several blood vessels within the HCC nodules of all 45 patients, but no SEPCs were detected in the tumour-adjacent tissues. The number of SEPCs was correlated with the expression levels of HCC tumour markers α-fetoprotein (AFP) and CA199. There was a positive correlation between the expression of SEPC markers and diameter of HCC tumours in differently differentiated specimens (P < 0.01). The expression levels of SEPC markers were significantly higher in patients with poorly differentiated HCC than in patients with moderately and highly differentiated HCC (P < 0.05). Conclusions SEPCs are closely associated with HCC progression; therefore, SEPCs may be considered potential prognostic and metastatic biomarkers and therapeutic candidates for HCC.
Collapse
|
43
|
Philips CA, Augustine P. Still 'dwelling in the possibility' - critical update on stem cell therapy for acute on chronic liver failure. World J Stem Cells 2020; 12:1124-1132. [PMID: 33178396 PMCID: PMC7596449 DOI: 10.4252/wjsc.v12.i10.1124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/29/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cells therapy could improve survival in patients with liver failure. Studies on stem cell therapy and related growth factors in decompensated cirrhosis has been on the forefront but has shown heterogenous results. Recent high-quality studies have shown a lack of efficacy and safety. Patients with acute-on-chronic liver failure (ACLF) are a unique group with high mortality in the short-term associated with rapid onset extrahepatic organ failures. In these patients, there is an urgent need to identify treatments that can improve liver cell function and mass, prevent sepsis/organ failure, ameliorate systemic inflammation, and increase transplant-free survival. Stem cells are a novel treatment in ACLF but with unclear efficacy and safety. In this narrative review, we discuss the basics of liver regeneration in patients with ACLF and update current clinical status of stem cell use in patients with ACLF for improving our understanding of future directions.
Collapse
Affiliation(s)
- Cyriac Abby Philips
- The Liver Unit and Monarch Liver Lab, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682025, Kerala, India
| | - Philip Augustine
- Department of Gastroenterology and Advanced GI Endoscopy, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi 682025, Kerala, India
| |
Collapse
|
44
|
Zhou GP, Jiang YZ, Sun LY, Zhu ZJ. Therapeutic effect and safety of stem cell therapy for chronic liver disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2020; 11:419. [PMID: 32977828 PMCID: PMC7519526 DOI: 10.1186/s13287-020-01935-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Stem cell therapy is becoming an emerging therapeutic option for chronic liver disease (CLD). However, whether stem cell therapy is more effective than conventional treatment remains questionable. We performed a large-scale meta-analysis of randomized controlled trials (RCTs) to evaluate the therapeutic effects and safety of stem cell therapy for CLD. Methods We systematically searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov databases for the period from inception through March 16, 2020. Primary outcomes were all-cause mortality and adverse events related to stem cell therapy. Secondary outcomes included the model for end-stage liver disease score, total bilirubin, albumin, alanine aminotransferase, prothrombin activity, and international normalized ratio. The standardized mean difference (SMD) and odds ratio (OR) with 95% confidence interval (CI) were calculated using a random-effects model. Results Twenty-four RCTs were included and the majority of these studies showed a high risk of bias. The meta-analysis indicated that compared with conventional treatment, stem cell therapy was associated with improved survival and liver function including the model of end-stage liver disease score, total bilirubin, and albumin levels. However, it had no obvious beneficial effects on alanine aminotransferase level, prothrombin activity, and international normalized ratio. Subgroup analyses showed stem cell therapy conferred a short-term survival benefit for patients with acute-on-chronic liver failure (ACLF), a single injection was more effective than multiple injections, hepatic arterial infusion was more effective than intravenous infusion, and bone marrow-derived stem cells were more effective than those derived from the umbilical cord. Thirteen trials reported adverse events related to stem cell therapy, but no serious adverse events were reported. Conclusions Stem cell therapy is a safe and effective therapeutic option for CLD, while patients with ACLF benefit the most in terms of improved short-term survival. A single injection administration of bone marrow-derived stem cells via the hepatic artery has superior therapeutic effects.
Collapse
Affiliation(s)
- Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Yi-Zhou Jiang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.,Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Clinical Center for Pediatric Liver Transplantation, Capital Medical University, No. 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
45
|
Hu C, Zhao L, Zhang L, Bao Q, Li L. Mesenchymal stem cell-based cell-free strategies: safe and effective treatments for liver injury. Stem Cell Res Ther 2020; 11:377. [PMID: 32883343 PMCID: PMC7469278 DOI: 10.1186/s13287-020-01895-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Various hepatoxic factors, such as viruses, drugs, lipid deposition, and autoimmune responses, induce acute or chronic liver injury, and 3.5% of all worldwide deaths result from liver cirrhosis, liver failure, or hepatocellular carcinoma. Liver transplantation is currently limited by few liver donors, expensive surgical costs, and severe immune rejection. Cell therapy, including hepatocyte transplantation and stem cell transplantation, has recently become an attractive option to reduce the overall need for liver transplantation and reduce the wait time for patients. Recent studies showed that mesenchymal stem cell (MSC) administration was a promising therapeutic approach for promoting liver regeneration and repairing liver injury by the migration of cells into liver sites, hepatogenic differentiation, immunoregulation, and paracrine mechanisms. MSCs secrete a large number of molecules into the extracellular space, and soluble proteins, free nucleic acids, lipids, and extracellular vesicles (EVs) effectively repair tissue injury in response to fluctuations in physiological states or pathological conditions. Cell-free-based therapies avoid the potential tumorigenicity, rejection of cells, emboli formation, undesired differentiation, and infection transmission of MSC transplantation. In this review, we focus on the potential mechanisms of MSC-based cell-free strategies for attenuating liver injury in various liver diseases. Secretome-mediated paracrine effects participate in the regulation of the hepatic immune microenvironment and promotion of hepatic epithelial repair. We look forward to completely reversing liver injury through an MSC-based cell-free strategy in regenerative medicine in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases,
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingjian Zhang
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases,
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiongling Bao
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases,
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases,
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
46
|
Heirani-Tabasi A, Mirahmadi M, Mishan MA, Naderi-Meshkin H, Toosi S, Matin MM, Bidkhori HR, Bahrami AR. Comparison the effects of hypoxia-mimicking agents on migration-related signaling pathways in mesenchymal stem cells. Cell Tissue Bank 2020; 21:643-653. [PMID: 32815062 DOI: 10.1007/s10561-020-09851-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
Adipose-derived mesenchymal stem cells (Ad-MSCs) have been designated as the promising agents for clinical applications for easy accessibility, multi-linage differentiation and immunomodulation capacity. Despite this, optimal cell delivery conditions have remained as a clinical challenge and improvement of stem cell homing to the target organs is being considered as a major strategy in cell therapy systemic injection. It has been shown that homing of mesenchymal stem cells are increased when treated with physical or chemical hypoxia-mimicking factors, however, efficiency of different agents remained to be determined. In this study, hypoxia-mimicking agents, including valproic acid (VPA), cobalt chloride (CoCl2) and deferoxamine (DFX) were examined to determine whether they are able to activate signaling molecules involved in migration of Ad-MSCs in vitro. We report that Ad-MSCs treated by DFX resulted in a significantly enhanced mRNA expression of MAPK4 (associated with MAPK signaling pathway), INPP4B (associated with Inositol polyphosphate pathway), VEGF-A and VEGF-C (associated with cytokine-cytokine receptor pathways), IL-8 and its receptor, CXCR2 (associated with IL-8 signaling pathway). While the cells treated with VPA did not show such effects and CoCl2 only upregulated VEGF-A and VEGF-C gene expression. Furthermore, results of wound-healing assays showed migration capacity of Ad-MSCs treated with DFX significantly increased 8 and 24 h of the treatment. This study provides credible evidence around DFX, which might be an effective drug for pharmacological preconditioning of Ad-MSCs to boost their homing capacity and regeneration of damaged tissues though, activation of the migration-related signaling pathways.
Collapse
Affiliation(s)
- Asieh Heirani-Tabasi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Shirin Toosi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Maryam M Matin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran. .,Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran. .,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
47
|
Liu S, Xu X, Liang S, Chen Z, Zhang Y, Qian A, Hu L. The Application of MSCs-Derived Extracellular Vesicles in Bone Disorders: Novel Cell-Free Therapeutic Strategy. Front Cell Dev Biol 2020; 8:619. [PMID: 32793590 PMCID: PMC7387669 DOI: 10.3389/fcell.2020.00619] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is crucial for supporting the body, protecting other organs, providing minerals, and secreting hormone to regulate other organ's function. Bone disorders result in pain and disability, severely affecting human health, reducing the quality of life and increasing costs to society. With the rapid increase in the aging population worldwide, bone disorders have become one major disease. As a result, efficacious therapies of bone disorders have become the focus of attention worldwide. Mesenchymal stem cells (MSCs) have been widely explored as a new therapeutic method for numerous diseases. Recent evidence suggests that the therapeutic effects of MSCs are mainly mediated by their extracellular vesicles (EV). MSCs-derived extracellular vesicles (MSCs-EV) is indicated as a novel cell-free alternative to cell therapy with MSCs in regenerative medicine. Here, we review the current knowledge of EV and highlight the application studies of MSCs-EV in bone disorders by focusing on osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP), and bone fracture. Moreover, we discuss the key issues and perspectives of MSCs-EV as a clinical therapeutic strategy for bone diseases.
Collapse
Affiliation(s)
- Shuyu Liu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Xia Xu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Shujing Liang
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Zhihao Chen
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Yan Zhang
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Airong Qian
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lifang Hu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
48
|
Liu Z, Deng Y, Li T, Zhu F, Zhou X, He Y. The opposite functions of miR-24 in the osteogenesis and adipogenesis of adipose-derived mesenchymal stem cells are mediated by the HOXB7/β-catenin complex. FASEB J 2020; 34:9034-9050. [PMID: 32413244 DOI: 10.1096/fj.202000006rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022]
Abstract
Adipose-derived mesenchymal stem cells (ADMSCs) used in combination with nanoparticles or scaffolds represent promising candidates for bone engineering. Compared to bone marrow-derived MSCs (BMMSCs), ADMSCs show a relatively low capacity for osteogenesis. In the current study, miR-24 was identified as an osteogenesis- and adipogenesis-related miRNA that performs opposing roles (inhibition in osteogenesis and promotion in adipogenesis) during these two differentiation processes. Through bioinformatics analysis and luciferase reporter assays, homeobox protein Hox-B7 (HOXB7) was identified as a potential novel downstream target of miR-24 that contains a miR-24 binding site in the 3'-UTR of its mRNA. Overexpression of HOXB7 could partly halt the inhibitory effect of miR-24 on osteogenesis, and downregulation of HOXB7 could also partly suppress the positive effect of miR-24 on adipogenesis. Furthermore, immunoprecipitation experiments found that HOXB7 and β-catenin formed a functional complex that acted as an essential modulator during osteogenesis and adipogenesis of ADMSCs. After transfecting ADMSCs with an MSNs-PEI-miR-24 agomir or antagomir and loading the cells onto gelatin-chitosan scaffolds, the compounds were assessed for their abilities to repair the critical-sized calvarial defects in rats. Comprehensive evaluation, including micro-CT, sequential fluorescent labeling, and immunohistochemistry analysis, revealed that silencing miR-24 distinctly promoted in vivo bone remolding, whereas overexpression of miR-24 significantly repressed bone formation. Taken together, our findings demonstrated opposite roles for the miR-24/HOXB7/β-catenin signaling pathway in the osteogenesis and adipogenesis of ADMSCs, which may provide a novel mechanism for determining the balance between these two biological processes.
Collapse
Affiliation(s)
- Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yiwen Deng
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Li
- Department of Orthopedics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengshuo Zhu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| | - Xiaojun Zhou
- Department of Orthopedics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
49
|
Cao Y, Ji C, Lu L. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:562. [PMID: 32775363 PMCID: PMC7347778 DOI: 10.21037/atm.2020.02.119] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver fibrosis represents a common outcome of most chronic liver diseases. Advanced fibrosis leads to cirrhosis for which no effective treatment is available except liver transplantation. Because of the limitations of liver transplantation, alternative therapeutic strategies are an urgent need to find. Recently, mesenchymal stem cells (MSCs) based therapy has been suggested as an attractive therapeutic option for liver fibrosis and cirrhosis, based on the promising results from preclinical and clinical studies. Although the precise mechanisms of MSC transplantation are still not fully understood, accumulating evidence has indicated that MSCs eliminate the progression of fibrosis due to their immune-modulatory properties. In this review, we summarise the properties of MSCs and their clinical application in the treatment of liver fibrosis and cirrhosis. We also discuss the mechanisms involved in MSC-dependent regulation of immune microenvironment in the context of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing 210029, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
50
|
Proteomic Analysis of Exosomes from Adipose-Derived Mesenchymal Stem Cells: A Novel Therapeutic Strategy for Tissue Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6094562. [PMID: 32190672 PMCID: PMC7073480 DOI: 10.1155/2020/6094562] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Exosomes are extracellular membranous nanovesicles that mediate local and systemic cell-to-cell communication by transporting functional molecules, such as proteins, into target cells, thereby affecting the behavior of receptor cells. Exosomes originating from adipose-derived mesenchymal stem cells (ADSCs) are considered a multipotent and abundant therapeutic tool for tissue injury. To investigate ADSC-secreted exosomes and their potential function in tissue repair, we isolated exosomes from the supernatants of ADSCs via ultracentrifugation, characterized them via transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis. Then, we determined their protein profile via proteomic analysis. Results showed that extracellular vesicles, which have an average diameter of 116 nm, exhibit a cup-shaped morphology and express exosomal markers. A total of 1,185 protein groups were identified in the exosomes. Gene Ontology analysis indicated that exosomal proteins are mostly derived from cells mainly involved in protein binding. Protein annotation via the Cluster of Orthologous Groups system indicated that most proteins were involved in general function prediction, posttranslational modification, protein turnover, and chaperoning. Further, pathway analysis revealed that most of the proteins obtained participated in metabolic pathways, focal adhesion, regulation of the actin cytoskeleton, and microbial metabolism. Some tissue repair-related signaling pathways were also discovered. The identified molecules might serve as potential therapeutic targets for future studies.
Collapse
|