1
|
Gakhar D, Joshi H, Makkar D, Taneja N, Arora A, Rakha A. Machine learning reveals the rules governing the efficacy of mesenchymal stromal cells in septic preclinical models. Stem Cell Res Ther 2024; 15:289. [PMID: 39256841 PMCID: PMC11389403 DOI: 10.1186/s13287-024-03873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Mesenchymal Stromal Cells (MSCs) are the preferred candidates for therapeutics as they possess multi-directional differentiation potential, exhibit potent immunomodulatory activity, are anti-inflammatory, and can function like antimicrobials. These capabilities have therefore encouraged scientists to undertake numerous preclinical as well as a few clinical trials to access the translational potential of MSCs in disease therapeutics. In spite of these efforts, the efficacy of MSCs has not been consistent-as is reflected in the large variation in the values of outcome measures like survival rates. Survival rate is a resultant of complex cascading interactions that not only depends upon upstream experimental factors like dosage, time of infusion, type of transplant, etc.; but is also dictated, post-infusion, by intrinsic host specific attributes like inflammatory microniche including proinflammatory cytokines and alarmins released by the damaged host cells. These complex interdependencies make a researcher's task of designing MSC transfusion experiments challenging. METHODS In order to identify the rules and associated attributes that influence the final outcome (survival rates) of MSC transfusion experiments, we decided to apply machine learning techniques on manually curated data collected from available literature. As sepsis is a multi-faceted condition that involves highly dysregulated immune response, inflammatory environment and microbial invasion, sepsis can be an efficient model to verify the therapeutic effects of MSCs. We therefore decided to implement rule-based classification models on data obtained from studies involving interventions of MSCs in sepsis preclinical models. RESULTS The rules from the generated graph models indicated that survival rates, post-MSC-infusion, are influenced by factors like source, dosage, time of infusion, pre-Interleukin-6 (IL-6)/ Tumour Necrosis Factor- alpha (TNF-α levels, etc. CONCLUSION: This approach provides important information for optimization of MSCs based treatment strategies that may help the researchers design their experiments.
Collapse
Affiliation(s)
- Diksha Gakhar
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Himanshu Joshi
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Diksha Makkar
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Amit Arora
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India.
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India.
| |
Collapse
|
2
|
Gong ZT, Yang HX, Zhu BB, Liu HH, Siri G. Clinical efficacy of Xuebijing injection for the treatment of sepsis: A retrospective cohort study. JOURNAL OF INTEGRATIVE MEDICINE 2024:S2095-4964(24)00376-5. [PMID: 39256145 DOI: 10.1016/j.joim.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/23/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE The objective of this study was to investigate the clinical efficacy and safety of treating sepsis patients with Xuebijing injection (XBJI). METHODS We conducted a retrospective analysis of 418 patients who experienced severe infections and were treated with XBJI from June 2018 to June 2021. Propensity score matching was used to match the patient cases. The study population included 209 pairs of cases (418 individuals), and the analysis included data from before and after a 14-day course of treatment with carbapenem alone, or carbapenem with XBJI. RESULTS There were no significant differences in the 14-day mortality or length of hospital stay (P > 0.05) between the two groups. The combined treatment group had more patients with C-reactive protein that returned to normal levels (compared to baseline) than the non-combined treatment group (14.4% vs 8.1%; odds ratio [OR]: 0.528; 95% confidence interval [CI]: 0.282-0.991; P = 0.026). Similarly, the combined treatment group had higher procalcitonin attainment rate (55.0% vs 39.7%; OR: 0.513; 95% CI: 0.346-0.759; P = 0.001) than the non-combined treatment group. Further, more patients in the combined treatment group achieved normal creatinine levels than in the non-combined treatment group (64.1% vs 54.1%; OR: 0.659; 95% CI: 0.445-0.975; P = 0.037). CONCLUSION The combination of XBJI with carbapenem did not reduce the 14-day mortality rate of patients with severe infection, but it was able to reduce the level of inflammatory factors in patients with sepsis, and had a protective effect on liver and kidney function. Please cite this article as: Gong ZT, Yang HX, Zhu BB, Liu HH, Siri GL. Clinical efficacy of Xuebijing injection for the treatment of sepsis: A retrospective cohort study. J Integr Med. 2024; Epub ahead of print.
Collapse
Affiliation(s)
- Zhao-Tang Gong
- Department of Pharmacy, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia Autonomous Region, China; Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia Autonomous Region, China
| | - Hong-Xin Yang
- Department of Pharmacy, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia Autonomous Region, China
| | - Ben-Ben Zhu
- Department of Pharmacy, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot 010020, Inner Mongolia Autonomous Region, China
| | - Huan-Huan Liu
- Department of Pharmacy, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100010, China
| | - Guleng Siri
- Department of Pharmacy, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, Inner Mongolia Autonomous Region, China; Inner Mongolia Academy of Medical Sciences, Hohhot 010017, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
3
|
Ahangari F, Soudi S, Ghaffari Khaligh S, Mirsanei Z, Soufihasanabad S, Ebadi Asl P, Mahmoud Hashemi S. Combinational therapy of mesenchymal stem cell-derived extracellular vesicles and azithromycin improves clinical and histopathological recovery in CLP sepsis model. Int Immunopharmacol 2024; 139:112732. [PMID: 39053229 DOI: 10.1016/j.intimp.2024.112732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Sepsis is a syndrome that occurs following an infection and marked by severe inflammatory responses, and if not treated in time, it can lead to multi-organ failure syndrome and death. This study examines the effects of a novel combination therapy using azithromycin and mesenchymal stem cell-derived extracellular vesicles (EVs) on a cecal ligation and puncture (CLP) model of sepsis. METHODS Human Wharton's jelly-mesenchymal stem cells were cultured, characterized, and used to extract EVs. The CLP sepsis model was induced in mice, followed by treatments: saline, AZM, EVs, and combination therapy (A+E). Clinical sepsis scores were recorded 24 h post-treatment. Serum, peritoneal fluid, and organ tissues (kidney, liver, lung) were collected and analyzed for biochemical parameters (AST ALT, and creatinine), inflammatory markers, bacterial load, and histopathological changes. RESULTS The A+E combined treatment improved the clinical scores of septic mice. The administration of A+E reduced bacterial loads in the peritoneum of septic mice, contributing to effective control of infection. Inflammatory markers of neutrophils-to-lymphocytes ratio (NLR) and TNF-α serum levels were significantly lower in the combinational therapy group, indicating significant anti-inflammatory effect of this combination. Additionally, combination of AZM and EVs alleviated organ damage mainly within liver, kidneys and lungs. Based on histopathological assessments and biochemical parameters, there was diminished tissue damage as well as reduced inflammation, which is correlated with improved functions of these vital organs. CONCLUSION The combined use of azithromycin and EVs offers a promising therapeutic approach for sepsis by effectively controlling infection and modulating the inflammatory response.
Collapse
Affiliation(s)
- Fatemeh Ahangari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soufihasanabad
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Pedram Ebadi Asl
- Department of Medical Lab Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Jang JH, Choi E, Kim T, Yeo HJ, Jeon D, Kim YS, Cho WH. Navigating the Modern Landscape of Sepsis: Advances in Diagnosis and Treatment. Int J Mol Sci 2024; 25:7396. [PMID: 39000503 PMCID: PMC11242529 DOI: 10.3390/ijms25137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis poses a significant threat to human health due to its high morbidity and mortality rates worldwide. Traditional diagnostic methods for identifying sepsis or its causative organisms are time-consuming and contribute to a high mortality rate. Biomarkers have been developed to overcome these limitations and are currently used for sepsis diagnosis, prognosis prediction, and treatment response assessment. Over the past few decades, more than 250 biomarkers have been identified, a few of which have been used in clinical decision-making. Consistent with the limitations of diagnosing sepsis, there is currently no specific treatment for sepsis. Currently, the general treatment for sepsis is conservative and includes timely antibiotic use and hemodynamic support. When planning sepsis-specific treatment, it is important to select the most suitable patient, considering the heterogeneous nature of sepsis. This comprehensive review summarizes current and evolving biomarkers and therapeutic approaches for sepsis.
Collapse
Affiliation(s)
- Jin Ho Jang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eunjeong Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Taehwa Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye Ju Yeo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Doosoo Jeon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun Seong Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo Hyun Cho
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
5
|
Wu Y, Wang L, Li Y, Cao Y, Wang M, Deng Z, Kang H. Immunotherapy in the context of sepsis-induced immunological dysregulation. Front Immunol 2024; 15:1391395. [PMID: 38835773 PMCID: PMC11148279 DOI: 10.3389/fimmu.2024.1391395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Cao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
6
|
Hum C, Tahir U, Mei SHJ, Champagne J, Fergusson DA, Lalu M, Stewart DJ, Walley K, Marshall J, dos Santos CC, Winston BW, Mendelson AA, Dave C, McIntyre L. Efficacy and Safety of Umbilical Cord-Derived Mesenchymal Stromal Cell Therapy in Preclinical Models of Sepsis: A Systematic Review and Meta-analysis. Stem Cells Transl Med 2024; 13:346-361. [PMID: 38381583 PMCID: PMC11016835 DOI: 10.1093/stcltm/szae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/11/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND In preclinical studies, mesenchymal stromal cells (MSCs), including umbilical cord-derived MSCs (UC-MSCs), demonstrate the ability to modulate numerous pathophysiological processes related to sepsis; however, a systematic synthesis of the literature is needed to assess the efficacy of UC-MSCs for treating sepsis. OBJECTIVE To examine the effects of UC-MSCs on overall mortality (primary outcome) as well as on organ dysfunction, coagulopathy, endothelial permeability, pathogen clearance, and systemic inflammation (secondary outcomes) at prespecified time intervals in preclinical models of sepsis. METHODS A systematic search was conducted on Embase, Ovid MEDLINE, and Web of Science up to June 20, 2023. Preclinical controlled studies using in vivo sepsis models with systemic UC-MSC administration were included. Meta-analyses were conducted and expressed as odds ratios (OR) and ratios of the weighted means with 95% CI for categorical and continuous data, respectively. Risk of bias was assessed with the SYRCLE tool. RESULTS Twenty-six studies (34 experiments, n = 1258 animals) were included in this review. Overall mortality was significantly reduced with UC-MSC treatment as compared to controls (OR: 0.26, 95% CI: 0.18-0.36). At various prespecified time intervals, UC-MSCs reduced surrogate measures of organ dysfunction related to the kidney, liver, and lung; reduced coagulopathy and endothelial permeability; and enhanced pathogen clearance from multiple sites. UC-MSCs also modulated systemic inflammatory mediators. No studies were rated as low risk across all SYCLE domains. CONCLUSIONS These results demonstrate the efficacy of UC-MSC treatment in preclinical sepsis models and highlight their potential as a therapeutic intervention for septic shock.
Collapse
Affiliation(s)
- Christine Hum
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Usama Tahir
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Josee Champagne
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Manoj Lalu
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Ottawa, The Ottawa Hospital, Ottawa, ON, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keith Walley
- Department of Medicine, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - John Marshall
- Department of Surgery (Critical Care), University of Toronto, Toronto, ON, Canada
| | - Claudia C dos Santos
- Keenan Research Centre for Biomedical Science and Interdepartmental Division of Critical Care, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Brent W Winston
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Asher A Mendelson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chintan Dave
- Division of Critical Care Medicine, Department of Medicine, Western University, London, ON, Canada
| | - Lauralyn McIntyre
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine (Division of Critical Care), University of Ottawa, Ottawa, ON, Canada
- Department of Medicine (Critical Care), The Ottawa Hospital, Ottawa Hospital Research Institute, Centre for Transfusion and Critical Care Research, Ottawa, ON, Canada
| |
Collapse
|
7
|
Laterre PF, Sánchez García M, van der Poll T, Wittebole X, Martínez-Sagasti F, Hernandez G, Ferrer R, Caballero J, Cadogan KA, Sullivan A, Zhang B, de la Rosa O, Lombardo E, François B. The safety and efficacy of stem cells for the treatment of severe community-acquired bacterial pneumonia: A randomized clinical trial. J Crit Care 2024; 79:154446. [PMID: 37918129 DOI: 10.1016/j.jcrc.2023.154446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE Evaluate the safety profile of expanded allogeneic adipose-derived mesenchymal stem cell (eASC) for the treatment of severe community-acquired bacterial pneumonia (CABP). MATERIALS AND METHODS Randomized, multicenter, double-blind, placebo-controlled, phase 1b/2a trial. Patients with severe CABP were enrolled to receive intravenous infusions of Cx611 or placebo. The primary objective was safety including hypersensitivity reactions, thromboembolic events, and immunological responses to Cx611. The secondary endpoints included the clinical cure rate, ventilation-free days, and overall survival (Day 90). RESULTS Eighty-three patients were randomized and received infusions (Cx611: n = 42]; placebo: n = 41]. The mean age was similar (Cx611: 61.1 [11.2] years; placebo: 63.4 [10.4] years). The number of AEs and treatment-emergent AEs were similar (243; 184 and 2; 1) in Cx611 and placebo respectively. Hypersensitivity reactions or thromboembolic events were similar (Cx611: n = 9; placebo: n = 12). Each study arm had similar anti-HLA antibody/DSA levels at Day 90. The clinical cure rate (Cx611: 86.7%; placebo: 93.8%), mean number of ventilator-free days (Cx611: 12.2 [10.29] days; placebo: 15.4 [10.75] days), and overall survival (Cx611: 71.5%; placebo: 77.0%) did not differ between study arms. CONCLUSION Cx611 was well tolerated in severe CABP. These data provide insights for future stem cell clinical study designs, endpoints and sample size calculation. TRIAL REGISTRATION NCT03158727 (retrospectively registered: May 09, 2017). Full study protocol: https://clinicaltrials.gov/ProvidedDocs/27/NCT03158727/Prot_000.pdf.
Collapse
Affiliation(s)
| | | | - Tom van der Poll
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam, Netherlands
| | - Xavier Wittebole
- Department of Intensive Care Medicine, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | | | - Gonzalo Hernandez
- Intensive Care Department, Toledo University Hospital, Toledo, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain; Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Jesus Caballero
- Intensive Care Department, Arnau de Vilanova University Hospital, Lleida, Spain; Grup de Recerca Medicina Intensiva, Institut de Recerca Biomèdica de Lleida Fundació Dr Pifarré, IRB Lleida, Lleida, Spain
| | | | | | | | - Olga de la Rosa
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | | - Bruno François
- Intensive care unit and Inserm CIC 1435 & UMR 1092, Limoges University Hospital, Limoges, France.
| |
Collapse
|
8
|
Vélez-Pinto JF, Garcia-Arranz M, García-Bernal D, García Gómez-Heras S, Villarejo-Campos P, García-Hernández AM, Vega-Clemente L, Jiménez-Galanes S, Guadalajara H, Moraleda JM, García-Olmo D. Therapeutic effect of adipose-derived mesenchymal stem cells in a porcine model of abdominal sepsis. Stem Cell Res Ther 2023; 14:365. [PMID: 38087374 PMCID: PMC10717819 DOI: 10.1186/s13287-023-03588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The term sepsis refers to a complex and heterogeneous syndrome. Although great progress has been made in improving the diagnosis and treatment of this condition, it continues to have a huge impact on morbidity and mortality worldwide. Mesenchymal stem cells are a population of multipotent cells that have immunomodulatory properties, anti-apoptotic effects, and antimicrobial activity. We studied these capacities in a porcine model of peritoneal sepsis. METHODS We infused human adipose-derived mesenchymal stem cells (ADSCs) into a porcine model of peritoneal sepsis. Twenty piglets were treated with antibiotics alone (control group) or antibiotics plus peritoneal infusion of ADSCs at a concentration of 2 × 106 cells/kg or 4 × 106 cells/kg (low- and high-dose experimental groups, respectively). The animals were evaluated at different time points to determine their clinical status, biochemical and hematologic parameters, presence of inflammatory cytokines and chemokines in blood and peritoneal fluid, and finally by histologic analysis of the organs of the peritoneal cavity. RESULTS One day after sepsis induction, all animals presented peritonitis with bacterial infection as well as elevated C-reactive protein, haptoglobin, IL-1Ra, IL-6, and IL-1b. Xenogeneic ADSC infusion did not elicit an immune response, and peritoneal administration of the treatment was safe and feasible. One day after infusion, the two experimental groups showed a superior physical condition (e.g., mobility, feeding) and a significant increase of IL-10 and TGF-β in blood and a decrease of IL-1Ra, IL-1b, and IL-6. After 7 days, all animals treated with ADSCs had better results concerning blood biomarkers, and histopathological analysis revealed a lower degree of inflammatory cell infiltration of the organs of the peritoneal cavity. CONCLUSIONS Intraperitoneal administration of ADSCs as an adjuvant therapy for sepsis improves the outcome and diminishes the effects of peritonitis and associated organ damage by regulating the immune system and reducing intra-abdominal adhesions in a clinically relevant porcine model of abdominal sepsis.
Collapse
Affiliation(s)
- J F Vélez-Pinto
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033, Madrid, Spain
| | - M Garcia-Arranz
- New Therapy Laboratory, Health Research Institute of the Jimenez Diaz Foundation (Instituto de Investigacion Sanitaria de la Fundacion Jimenez Diaz), Avda Reyes Católicos 2, 28040, Madrid, Spain.
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
| | - D García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - S García Gómez-Heras
- Department of Basic Health Science, Faculty of Health Sciences, Rey Juan Carlos University, 28922, Alcorcón, Madrid, Spain
| | - P Villarejo-Campos
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033, Madrid, Spain
| | - A M García-Hernández
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - L Vega-Clemente
- New Therapy Laboratory, Health Research Institute of the Jimenez Diaz Foundation (Instituto de Investigacion Sanitaria de la Fundacion Jimenez Diaz), Avda Reyes Católicos 2, 28040, Madrid, Spain
| | - S Jiménez-Galanes
- Department of Surgery, Infanta Elena University Hospital, 28342, Valdemoro, Madrid, Spain
| | - H Guadalajara
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033, Madrid, Spain
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - J M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - D García-Olmo
- Surgery Department, Fundación Jiménez Díaz University Hospital, 28033, Madrid, Spain
- New Therapy Laboratory, Health Research Institute of the Jimenez Diaz Foundation (Instituto de Investigacion Sanitaria de la Fundacion Jimenez Diaz), Avda Reyes Católicos 2, 28040, Madrid, Spain
- Department of Surgery, Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| |
Collapse
|
9
|
Bode C, Weis S, Sauer A, Wendel-Garcia P, David S. Targeting the host response in sepsis: current approaches and future evidence. Crit Care 2023; 27:478. [PMID: 38057824 PMCID: PMC10698949 DOI: 10.1186/s13054-023-04762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Sepsis, a dysregulated host response to infection characterized by organ failure, is one of the leading causes of death worldwide. Disbalances of the immune response play an important role in its pathophysiology. Patients may develop simultaneously or concomitantly states of systemic or local hyperinflammation and immunosuppression. Although a variety of effective immunomodulatory treatments are generally available, attempts to inhibit or stimulate the immune system in sepsis have failed so far to improve patients' outcome. The underlying reason is likely multifaceted including failure to identify responders to a specific immune intervention and the complex pathophysiology of organ dysfunction that is not exclusively caused by immunopathology but also includes dysfunction of the coagulation system, parenchymal organs, and the endothelium. Increasing evidence suggests that stratification of the heterogeneous population of septic patients with consideration of their host response might led to treatments that are more effective. The purpose of this review is to provide an overview of current studies aimed at optimizing the many facets of host response and to discuss future perspectives for precision medicine approaches in sepsis.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pedro Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Viasus D, Nonell L, Restrepo C, Figueroa F, Donado-Mazarrón C, Carratalà J. A Systematic Review of Gene Expression Studies in Critically Ill Patients with Sepsis and Community-Acquired Pneumonia. Biomedicines 2023; 11:2755. [PMID: 37893128 PMCID: PMC10604146 DOI: 10.3390/biomedicines11102755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Sepsis is present in nearly 90% of critically ill patients with community-acquired pneumonia (CAP). This systematic review updates the information on studies that have assessed gene expression profiles in critically ill septic patients with CAP. (2) Methods: We searched for studies that satisfied the following criteria: (a) expression profile in critically ill patients with sepsis due to CAP, (b) presence of a control group, and (c) adult patients. Over-representation analysis was performed with clusterProfiler using the Hallmark and Reactome collections. (3) Results: A total of 4312 differentially expressed genes (DEGs) and sRNAs were included in the enrichment analysis. In the Hallmark collection, genes regulated by nuclear factor kappa B in response to tumor necrosis factor, genes upregulated by signal transducer and activator of transcription 5 in response to interleukin 2 stimulation, genes upregulated in response to interferon-gamma, genes defining the inflammatory response, a subgroup of genes regulated by MYC-version 1 (v1), and genes upregulated during transplant rejection were significantly enriched in critically ill septic patients with CAP. Moreover, 88 pathways were identified in the Reactome database. (4) Conclusions: This study summarizes the reported DEGs in critically ill septic patients with CAP and investigates their functional implications. The results highlight the complexity of immune responses during CAP.
Collapse
Affiliation(s)
- Diego Viasus
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla 081001, Colombia
| | - Lara Nonell
- Departament de Biociències, Universitat de Vic—Universitat Central de Catalunya, 08500 Barcelona, Spain;
| | - Carlos Restrepo
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla 081001, Colombia
| | - Fabian Figueroa
- Department of Medicine, Division of Health Sciences, Universidad del Norte and Hospital Universidad del Norte, Barranquilla 081001, Colombia
| | - Carla Donado-Mazarrón
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, 08907 Barcelona, Spain;
| | - Jordi Carratalà
- Department of Infectious Diseases, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, 08907 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Jain K, Mohan KV, Roy G, Sinha P, Jayaraman V, Kiran, Yadav AS, Phasalkar A, Deepanshu, Pokhrel A, Perumal N, Sinha N, Chaudhary K, Upadhyay P. Reconditioned monocytes are immunomodulatory and regulate inflammatory environment in sepsis. Sci Rep 2023; 13:14977. [PMID: 37696985 PMCID: PMC10495550 DOI: 10.1038/s41598-023-42237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Sepsis is caused by dysregulated immune response to severe infection and hyper inflammation plays a central role in worsening the disease. The immunomodulatory properties of mesenchymal stem cells (MSCs) have been evaluated as a therapeutic candidate for sepsis. Reconditioned monocytes (RM), generated from healthy human peripheral blood mononuclear cells (PBMCs) exhibit both macrophage and MSCs-like properties. RM were administered at different stages of sepsis in a mouse model. It reduced serum levels of IL6, MCP-1, IL-10, improved hypothermia, increased survival, and recovery from 0 to 66% when combined with antibiotics in the mouse model. The reduced human leucocyte antigen DR molecules expression on RM enables their co-culture with PBMCs of sepsis patients which resulted in reduced ROS production, and up-regulated TGF-β while down-regulating IL6, IL8, and IL-10 in-vitro. RM are potentially immunomodulatory, enhance survival in sepsis mouse model and modulate inflammatory behaviour of sepsis patient's PBMCs.
Collapse
Affiliation(s)
- Kshama Jain
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - K Varsha Mohan
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gargi Roy
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prakriti Sinha
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vignesh Jayaraman
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kiran
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Ajit Singh Yadav
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Akshay Phasalkar
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Deepanshu
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Anupa Pokhrel
- Department of Transfusion Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Nagarajan Perumal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nitin Sinha
- Department of Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Kiran Chaudhary
- Department of Transfusion Medicine, Dr. Ram Mahohar Lohia Hospital, Baba Kharak Singh Road, New Delhi, 110001, India
| | - Pramod Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
12
|
Yang S, Zhang K, Hou J, Liu X, Xu D, Chen X, Li S, Hong Y, Zhou C, Wu H, Zheng G, Zeng C, Wu H, Fu J, Wang T. Protective properties of extracellular vesicles in sepsis models: a systematic review and meta-analysis of preclinical studies. J Transl Med 2023; 21:262. [PMID: 37069645 PMCID: PMC10108460 DOI: 10.1186/s12967-023-04121-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Multiple preclinical studies have reported a beneficial effect of extracellular vesicles (EVs), especially mesenchymal stem cells derived EVs (MSC-EVs), in the treatment of sepsis. However, the therapeutic effect of EVs is still not universally recognized. Therefore, we conducted this meta-analysis by summarizing data from all published studies that met certain criteria to systematically review the association between EVs treatment and mortality in animal models of sepsis. METHODS Systematic retrieval of all studies in PubMed, Cochrane and Web of Science that reported the effects of EVs on sepsis models up to September 2022. The primary outcome was animal mortality. After screening the eligible articles according to inclusion and exclusion criteria, the inverse variance method of fixed effect model was used to calculate the joint odds ratio (OR) and 95% confidence interval (CI). Meta-analysis was performed by RevMan version 5.4. RESULTS In total, 17 studies met the inclusion criteria. Meta-analysis of those studies showed that EVs treatment was associated with reduced mortality in animal models of sepsis (OR 0.17 95% CI: 0.11,0.26, P < 0.001). Further subgroup analysis showed that the mode of sepsis induction, the source, dose, time and method of injection, and the species and gender of mice had no significant effect on the therapeutic effect of EVs. CONCLUSION This meta-analysis showed that MSC-EVs treatment may be associated with lower mortality in animal models of sepsis. Subsequent preclinical studies will need to address the standardization of dose, source, and timing of EVs to provide comparable data. In addition, the effectiveness of EVs in treating sepsis must be studied in large animal studies to provide important clues for human clinical trials.
Collapse
Affiliation(s)
- Shujun Yang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Kanglong Zhang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jingyu Hou
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Xin Liu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Daishi Xu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Xuxiang Chen
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Shuangmei Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Yinghui Hong
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Changqing Zhou
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Hao Wu
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Guanghui Zheng
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Chaotao Zeng
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Haidong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Jiaying Fu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
de Farias JO, Rezende TMB. Dental pulp and apical papilla cells senescence: causes, consequences, and prevention. Biogerontology 2023:10.1007/s10522-023-10029-y. [PMID: 37010664 DOI: 10.1007/s10522-023-10029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
Dental pulp under physiological conditions has a defense function, repair capacity, and important mechanisms in pathological processes. In addition, the dental papilla is involved in important defense processes and an essential function in the pulp revascularization process. It is known that dental pulp and apical papilla undergo a natural aging process, in addition to stressful situations such as bruxism, inflammation, and infections. Both aging and stressful situations can lead to cellular senescence. Some evidence indicates that the changes resulting from this cellular state can directly affect the efficiency of cells in these tissues and affect conservative and regenerative clinical treatments. Thus, it is necessary to understand the causes and consequences of cellular senescence in addition to the development of methods for senescence prevention. This review aims to provide an overview of possible causes and consequences of senescence in dental pulp and stem cells from apical papilla and discusses possible methods to prevent this cellular state.
Collapse
Affiliation(s)
- Jade Ormondes de Farias
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n - Asa Norte, Brasília, DF, Brazil
| | - Taia Maria Berto Rezende
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n - Asa Norte, Brasília, DF, Brazil.
- Curso de Odontologia, Universidade Católica de Brasília, QS 07 Lote 01, Brasília, DF, Brazil.
- Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SHAN 916 Módulo B Avenida W5 - Asa Norte, Campus II - Modulo C, Room C - 221, Brasília, DF, 70.790-160, Brazil.
| |
Collapse
|
14
|
Li K, Wang T, Li R, Xue F, Zeng G, Zhang J, Ma Y, Feng L, Kang YJ. Dose-specific efficacy of adipose-derived mesenchymal stem cells in septic mice. Stem Cell Res Ther 2023; 14:32. [PMID: 36804962 PMCID: PMC9940377 DOI: 10.1186/s13287-023-03253-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 02/09/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) therapy for sepsis has been extensively studied in the past decade; however, the treatment regimen and mechanism of action of MSCs remain elusive. Here, we attempted to understand the efficacy and mechanism of action of MSCs on rescuing mice with sepsis. METHODS A mouse model of sepsis was produced by cecal ligation and puncture (CLP). Allogeneic adipose-derived MSCs (ADSCs) were administered by intravenous infusion at 6 h after CLP, and dose-related effects of ADSCs on these mice were determined by survival rate, histopathological changes, biochemical and coagulation parameters, bacterial load, and plasma levels of endotoxin and inflammatory cytokines. The tissue distribution of intravenously infused ADSCs in septic mice was investigated by pre-labeling ADSCs with the lipophilic membrane dye PKH26. RNA sequencing analysis was performed to assess the transcriptional changes in peripheral blood mononuclear cells (PBMCs) and the liver. RESULTS A significant therapeutic effect of ADSCs at a dose of 2 × 107 cells/kg in septic mice was evidenced by a remarkable reduction in mortality (35.89% vs. 8.89% survival rate), blood bacterial burden, systemic inflammation, and multiple organ damage. In contrast, ADSCs at a lower dose (1 × 107 cells/kg) failed to achieve any beneficial outcomes, while ADSCs at a higher dose (4 × 107 cells/kg) caused more early death within 24 h after CLP, retaining a steady survival rate of 21.42% thereafter. PKH26-labeled ADSCs were predominantly localized in the lungs of septic mice after intravenous infusion, with only a smaller proportion of PKH26-positive signals appearing in the liver and spleen. RNA sequencing analysis identified that insufficient phagocytic activity of PBMCs in addition to a hyperactivation of the hepatic immune response was responsible for the ineffectiveness of low-dose ADSCs therapy, and acute death caused by high-dose ADSCs infusion was associated with impaired coagulation signaling in PBMCs and exacerbated hepatic hypoxic injury. CONCLUSIONS Our findings demonstrate a dose-specific effect of ADSCs on the treatment of sepsis due to dose-related interactions between exogenous stem cells and the host's microenvironment. Therefore, a precise dosing regimen is a prerequisite for ADSCs therapy for sepsis.
Collapse
Affiliation(s)
- Kui Li
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Tao Wang
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China ,grid.13291.380000 0001 0807 1581Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, Sichuan University West China Hosipital, Chengdu, Sichuan 610041 China
| | - Rui Li
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Fulai Xue
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Guodan Zeng
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Jingyao Zhang
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Yuan Ma
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China
| | - Li Feng
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, 610041, China.
| | - Y. James Kang
- grid.412901.f0000 0004 1770 1022Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041 China ,grid.267301.10000 0004 0386 9246Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
15
|
Shuster-Hyman H, Siddiqui F, Gallagher D, Gauthier-Fisher A, Librach CL. Time course and mechanistic analysis of human umbilical cord perivascular cell mitigation of lipopolysaccharide-induced systemic and neurological inflammation. Cytotherapy 2023; 25:125-137. [PMID: 36473795 DOI: 10.1016/j.jcyt.2022.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Because of their potent immunomodulatory and anti-inflammatory properties, mesenchymal stromal cells are a major focus in the field of stem cell therapy. However, the precise mechanisms underlying this are not entirely understood. Human umbilical cord perivascular cells (HUCPVCs) are a promising cell therapy candidate. This study was designed to evaluate the time course and mechanisms by which HUCPVCs mitigate lipopolysaccharide (LPS)-induced systemic and neurological inflammation in immunocompetent mice. To explore the underlying mechanisms, the authors investigated the biodistribution and fate of HUCPVCs. METHODS Male C57BL/6 mice were randomly allocated to four groups: control, LPS, HUCPVCs or LPS + HUCPVCs. Quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and cytokine arrays were used to assess changes in pro-inflammatory mediators systemically and in the brain. Depressive-like behavioral changes were evaluated via a forced swim test. Quantum dot (qDot) labeling and immunohistochemistry were used to assess the biodistribution and fate of HUCPVCs and interactions with recipient innate immune cells. RESULTS A single intravenously delivered dose of HUCPVCs significantly reduced the systemic inflammation induced by LPS within the first 24 h after administration. HUCPVC treatment abrogated the upregulated expression of pro-inflammatory genes in the hippocampus and cortex and attenuated depressive-like behavior induced by LPS treatment. Biodistribution analysis revealed that HUCPVC-derived qDots rapidly accumulated in the lungs and demonstrated limited in vivo persistence. Furthermore, qDot signals were associated with major recipient innate immune cells and promoted a shift in macrophages toward a regulatory phenotype in the lungs. CONCLUSIONS Overall, this study demonstrates that HUCPVCs can successfully reduce systemic and neurological inflammation induced by LPS within the first 24 h after administration. Biodistribution and fate analyses suggest a critical role for the innate immune system in the HUCPVC-based immunomodulation mechanism.
Collapse
Affiliation(s)
- Hannah Shuster-Hyman
- CReATe Fertility Center, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Clifford L Librach
- CReATe Fertility Center, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Pathophysiology of Sepsis and Genesis of Septic Shock: The Critical Role of Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2022; 23:ijms23169274. [PMID: 36012544 PMCID: PMC9409099 DOI: 10.3390/ijms23169274] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of sepsis and septic shock remains a major public health issue due to the associated morbidity and mortality. Despite an improvement in the understanding of the physiological and pathological mechanisms underlying its genesis and a growing number of studies exploring an even higher range of targeted therapies, no significant clinical progress has emerged in the past decade. In this context, mesenchymal stem cells (MSCs) appear more and more as an attractive approach for cell therapy both in experimental and clinical models. Pre-clinical data suggest a cornerstone role of these cells and their secretome in the control of the host immune response. Host-derived factors released from infected cells (i.e., alarmins, HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (e.g., LPS, peptidoglycans) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of cytokines/chemokines and growth factors that influence, respectively, immune cell recruitment and stem cell mobilization. However, the way in which MSCs exert their beneficial effects in terms of survival and control of inflammation in septic states remains unclear. This review presents the interactions identified between MSCs and mediators of immunity and tissue repair in sepsis. We also propose paradigms related to the plausible roles of MSCs in the process of sepsis and septic shock. Finally, we offer a presentation of experimental and clinical studies and open the way to innovative avenues of research involving MSCs from a prognostic, diagnostic, and therapeutic point of view in sepsis.
Collapse
|
17
|
Shi Y, Zhang X, Wan Z, Liu X, Chen F, Zhang J, Leng Y. Mesenchymal stem cells against intestinal ischemia-reperfusion injury: a systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther 2022; 13:216. [PMID: 35619154 PMCID: PMC9137086 DOI: 10.1186/s13287-022-02896-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
Background Intestinal ischemia–reperfusion injury (IRI) causes localized and distant tissue lesions. Multiple organ failure is a common complication of severe intestinal IRI, leading to its high rates of morbidity and mortality. Thus far, this is poorly treated, and there is an urgent need for new more efficacious treatments. This study evaluated the beneficial effects of mesenchymal stem cells (MSCs) therapy on intestinal IRI using many animal experiments. Methods We conducted a comprehensive literature search from 4 databases: Pubmed, Embase, Cochrane library, and Web of science. Primary outcomes included the survival rate, Chiu’s score, intestinal levels of IL-6, TNF-α and MDA, as well as serum levels of DAO, D-Lactate, and TNF-α. Statistical analysis was carried out using Review Manager 5.3. Results It included Eighteen eligible researches in the final analysis. We demonstrated that survival rates in animals following intestinal IRI were higher with MSCs treatment compared to vehicle treatment. Besides, MSCs treatment attenuated intestinal injury caused by IRI, characterized by lower Chiu’s score (− 1.96, 95% CI − 2.72 to − 1.19, P < 0.00001), less intestinal inflammation (IL-6 (− 2.73, 95% CI − 4.19 to − 1.27, P = 0.0002), TNF-α (− 3.00, 95% CI − 4.74 to − 1.26, P = 0.0007)) and oxidative stress (MDA (− 2.18, 95% CI − 3.17 to − 1.19, P < 0.0001)), and decreased serum levels of DAO (− 1.39, 95% CI − 2.07 to − 0.72, P < 0.0001), D-Lactate (− 1.54, 95% CI − 2.18 to − 0.90, P < 0.00001) and TNF-α (− 2.42, 95% CI − 3.45 to − 1.40, P < 0.00001). The possible mechanism for MSCs to treat intestinal IRI might be through reducing inflammation, alleviating oxidative stress, as well as inhibiting the apoptosis and pyroptosis of the intestinal epithelial cells. Conclusions Taken together, these studies revealed that MSCs as a promising new treatment for intestinal IRI, and the mechanism of which may be associated with inflammation, oxidative stress, apoptosis, and pyroptosis. However, further studies will be required to confirm these findings. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02896-y.
Collapse
Affiliation(s)
- Yajing Shi
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China
| | - Xiaolan Zhang
- The Department of Anesthesiology, Gansu Provincial Maternity and Child-Care Hospital, No. 143, Qilihe North Street, Qilihe District, Lanzhou, Gansu, China
| | - Zhanhai Wan
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China. .,The Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang Road West, Chengguan District, Lanzhou, Gansu, China.
| | - Xin Liu
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China.,The Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang Road West, Chengguan District, Lanzhou, Gansu, China
| | - Feng Chen
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China
| | - Jianmin Zhang
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China
| | - Yufang Leng
- The First Clinical Medical College, Lanzhou University, No. 199, Donggang Road West, Chengguan District, Lanzhou, Gansu, China. .,The Department of Anesthesiology, The First Hospital of Lanzhou University, No. 1, Donggang Road West, Chengguan District, Lanzhou, Gansu, China.
| |
Collapse
|
18
|
Fazekas B, Alagesan S, Watson L, Ng O, Conroy CM, Català C, Andres MV, Negi N, Gerlach JQ, Hynes SO, Lozano F, Elliman SJ, Griffin MD. Comparison of Single and Repeated Dosing of Anti-Inflammatory Human Umbilical Cord Mesenchymal Stromal Cells in a Mouse Model of Polymicrobial Sepsis. Stem Cell Rev Rep 2022; 18:1444-1460. [PMID: 35013938 PMCID: PMC8747454 DOI: 10.1007/s12015-021-10323-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSCs) ameliorate pre-clinical sepsis and sepsis-associated acute kidney injury (SA-AKI) but clinical trials of single-dose MSCs have not indicated robust efficacy. This study investigated immunomodulatory effects of a novel MSC product (CD362-selected human umbilical cord-derived MSCs [hUC-MSCs]) in mouse endotoxemia and polymicrobial sepsis models. Initially, mice received intra-peritoneal (i.p.) lipopolysaccharide (LPS) followed by single i.p. doses of hUC-MSCs or vehicle. Next, mice underwent cecal ligation and puncture (CLP) followed by intravenous (i.v.) doses of hUC-MSCs at 4 h or 4 and 28 h. Analyses included serum/plasma assays of biochemical indices, inflammatory mediators and the AKI biomarker NGAL; multi-color flow cytometry of peritoneal macrophages (LPS) and intra-renal immune cell subpopulations (CLP) and histology/immunohistochemistry of kidney (CLP). At 72 h post-LPS injections, hUC-MSCs reduced serum inflammatory mediators and peritoneal macrophage M1/M2 ratio. Repeated, but not single, hUC-MSC doses administered at 48 h post-CLP resulted in lower serum concentrations of inflammatory mediators, lower plasma NGAL and reversal of sepsis-associated depletion of intra-renal T cell and myeloid cell subpopulations. Hierarchical clustering analysis of all 48-h serum/plasma analytes demonstrated partial co-clustering of repeated-dose hUC-MSC CLP animals with a Sham group but did not reveal a distinct signature of response to therapy. It was concluded that repeated doses of CD362-selected hUC-MSCs are required to modulate systemic and local immune/inflammatory events in polymicrobial sepsis and SA-AKI. Inter-individual variability and lack of effect of single dose MSC administration in the CLP model are consistent with observations to date from early-phase clinical trials.
Collapse
Affiliation(s)
- Barbara Fazekas
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Olivia Ng
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Orbsen Therapeutics Ltd., Galway, Ireland
| | - Callum M Conroy
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Orbsen Therapeutics Ltd., Galway, Ireland
| | - Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Neema Negi
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Sean O Hynes
- Discipline of Pathology, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Histopathology, Galway University Hospitals, Galway, Ireland
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Department de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | - Matthew D Griffin
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland.
- Department of Nephrology, Saolta University Health Care Group, Galway University Hospitals, Galway, Ireland.
- National University of Ireland Galway, REMEDI, Biomedical Sciences, Corrib Village, Dangan, Galway, H91 TK33, Ireland.
| |
Collapse
|
19
|
Wu X, Darlington DN, Christy BA, Liu B, Keesee JD, Salgado CL, Bynum JA, Cap AP. Intravenous administration of mesenchymal stromal cells leads to a dose-dependent coagulopathy and is unable to attenuate acute traumatic coagulopathy in rats. J Trauma Acute Care Surg 2022; 92:542-552. [PMID: 34797814 PMCID: PMC8860226 DOI: 10.1097/ta.0000000000003476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) express surface tissue factor (TF), which may affect hemostasis and detract from therapeutic outcomes of MSCs if administered intravenously. In this study, we determine a safe dose of MSCs for intravenous (IV) administration and further demonstrate the impact of IV-MSC on acute traumatic coagulopathy (ATC) in rats. METHODS Tissue factor expression of rat bone marrow-derived mesenchymal stromal cell (BMSC) or adipose-derived mesenchymal stromal cell (AMSC) was detected by immunohistochemistry and enzyme-linked immunosorbent assay. The coagulation properties were measured in MSC-treated rat whole blood, and blood samples were collected from rats after IV administration of MSCs. Acute traumatic coagulopathy rats underwent polytrauma and 40% hemorrhage, followed by IV administration of 5 or 10 million/kg BMSCs (BMSC-5, BMSC-10), or vehicle at 1 hour after trauma. RESULTS Rat MSCs expressed TF, and incubation of rat BMSCs or AMSCs with whole blood in vitro led to a significantly shortened clotting time. However, a dose-dependent prolongation of prothrombin time with reduction in platelet counts and fibrinogen was found in healthy rat treated with IV-MSCs. Bone marrow-derived mesenchymal stromal cells at 5 million/kg or less led to minimal effect on hemostasis. Mesenchymal stromal cells were not found in circulation but in the lungs after IV administration regardless of the dosage. Acute traumatic coagulopathy with prolonged prothrombin time was not significantly affected by 5 or 10 million/kg BMSCs. Intravenous administration of 10 million/kg BMSCs led to significantly lower fibrinogen and platelet counts, while significantly higher levels of lactate, wet/dry weight ratio, and leukocyte infiltration in the lung were present compared with BMSC-5 or vehicle. No differences were seen in immune or inflammatory profiles with BMSC treatment in ATC rats, at least in the acute timeframe. CONCLUSION Intravenous administration of MSCs leads to a risk of coagulopathy associated with a dose-dependent reduction in platelet counts and fibrinogen and is incapable of restoring hemostasis of rats with ATC after polytrauma and hemorrhagic shock.
Collapse
|
20
|
Li X, Wen H, Lv J, Luan B, Meng J, Gong S, Wen J, Xin S. Therapeutic efficacy of mesenchymal stem cells for abdominal aortic aneurysm: a meta-analysis of preclinical studies. Stem Cell Res Ther 2022; 13:81. [PMID: 35209940 PMCID: PMC8867868 DOI: 10.1186/s13287-022-02755-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is life-threatening, surgical treatment is currently the only clinically available intervention for the disease. Mesenchymal stem cells (MSCs) have presented eligible immunomodulatory and regenerative abilities which showed favorable therapeutic efficacy in various cardiovascular diseases. However, current evidence summarizing the effectiveness of MSCs for AAA is lacking. Thus, a meta-analysis and systematic review was necessary to be performed to assess the therapeutic efficacy of MSCs for AAA in preclinical studies. Methods Comprehensive literature search restricted in English was conducted in PubMed, Cochrane Library, EBSCO, EMBASE and Web of Science from inception to Oct 2021. The primary outcomes were parameters about aortic diameter change during MSCs intervention. The secondary outcomes included elastin content and expression level of inflammatory cytokines, matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). Data were extracted and analyzed independently by two authors. The meta package with random effects model was used to calculate the pooled effect size and 95% confidence intervals in R (version 4.0.2). Results Meta-analysis of 18 included studies demonstrated that MSCs intervention has significant therapeutic effects on suppressing aortic diameter enlargement compared with the control group (diameter, SMD = − 1.19, 95% CI [− 1.47, − 0.91]; diameter change ratio, SMD = − 1.36, 95% CI [− 1.72, − 1.00]). Subgroup analysis revealed differences between MSCs and control group regarding to cell type, intervention route and cell compatibility. Moreover, the meta-analysis also showed that MSCs intervention had a significant effect on preserving aortic elastin content, reducing MCP-1, TNF-α, IL-6, MMP-2/9 and increasing TIMP-1/2 expression level compared with control group. Conclusion Our results suggested that MSC intervention is effective in AAA by suppressing aortic diameter enlargement, reducing elastin degradation, and modulating local immunoinflammatory reactions. These results are important for the systemic application of MSCs as a potential treatment candidate for AAA in further animal experiments and clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02755-w.
Collapse
Affiliation(s)
- Xintong Li
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, No. 155, Nanjing Street, Heping District, Shenyang, 110001, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China
| | - Hao Wen
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Junyuan Lv
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Boyang Luan
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinze Meng
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, China Medical University, Shenyang, China
| | - Jie Wen
- Department of Ultrasonography, Inner Mongolia Baotou City Central Hospital, Baotou, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, No. 155, Nanjing Street, Heping District, Shenyang, 110001, China. .,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm in Liaoning Province, Shenyang, China.
| |
Collapse
|
21
|
Ge L, Zhao J, Deng H, Chen C, Hu Z, Zeng L. Effect of Bone Marrow Mesenchymal Stromal Cell Therapies in Rodent Models of Sepsis: A Meta-Analysis. Front Immunol 2022; 12:792098. [PMID: 35046951 PMCID: PMC8761857 DOI: 10.3389/fimmu.2021.792098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 12/09/2022] Open
Abstract
Background Multiple preclinical studies have demonstrated that bone‐marrow derived mesenchymal stromal (stem) cells [MSC(M)] positively influence the severity of sepsis symptoms and mortality in rodent models. However, this remains an inconclusive finding. Objective To review the effect of naïve MSC(M) in rodent models of sepsis. Methods The PubMed, EMBASE, and Web of Science databases were searched up to August 31, 2021. Inclusion criteria according to PICOS criteria were as follows: (1) population: rodents; (2) intervention: unmodified MSC(M); (3) comparison: not specified; (4) primary outcome: the effects of MSC(M) cell therapy on the mortality of rodent models of sepsis and endotoxemia; (5) study: experimental studies. Multiple prespecified subgroup and meta-regression analysis were conducted. Following quality assessment, random effects models were used for this meta-analysis.The inverse variance method of the fixed effects model was used to calculate the pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Results twenty-four animal studies met the inclusion criteria. Our results revealed an overall OR difference between animals treated with naïve MSC(M) and controls for mortality rate was 0.34(95% confidence interval: 0.27-0.44; P < 0.0001). Significant heterogeneity among studies was observed. Conclusions The findings of this meta-analysis suggest that naïve MSC(M) therapy decreased mortality in rodent models of sepsis. Additionally, we identified several key knowledge gaps, including the lack of large animal studies and uncertainty regarding the optimal dose of MSC(M) transplantation in sepsis. Before MSC(M) treatment can advance to clinical trials, these knowledge gaps must be addressed.
Collapse
Affiliation(s)
- Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Wang L, Deng Z, Sun Y, Zhao Y, Li Y, Yang M, Yuan R, Liu Y, Qian Z, Zhou F, Kang H. The Study on the Regulation of Th Cells by Mesenchymal Stem Cells Through the JAK-STAT Signaling Pathway to Protect Naturally Aged Sepsis Model Rats. Front Immunol 2022; 13:820685. [PMID: 35197984 PMCID: PMC8858840 DOI: 10.3389/fimmu.2022.820685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Sepsis is the leading cause of death among patients, especially elderly patients, in intensive care units worldwide. In this study, we established a sepsis model using naturally aged rats and injected 5×106 umbilical cord-derived MSCs via the tail vein. Each group of rats was analyzed for survival, examined for biochemical parameters, stained for organ histology, and analyzed for the Th cell subpopulation ratio and inflammatory cytokine levels by flow cytometry. Western blotting was performed to detect the activity of the JAK-STAT signaling pathway. We designed the vitro experiments to confirm the regulatory role of MSCs, and verified the possible mechanism using JAK/STAT inhibitors. It was revealed from the experiments that the 72 h survival rate of sepsis rats treated with MSCs was significantly increased, organ damage and inflammatory infiltration were reduced, the levels of organ damage indicators were decreased, the ratios of Th1/Th2 and Th17/Treg in peripheral blood and spleen were significantly decreased, the levels of pro-inflammatory cytokines such as IL-6 were decreased, the levels of anti-inflammatory cytokines such as IL-10 were increased, and the levels of STAT1 and STAT3 phosphorylation were reduced. These results were validated in in vitro experiments. Therefore, this study confirms that MSCs can control the inflammatory response induced by sepsis by regulating Th cells and inflammatory factors, and that this leads to the reduction of tissue damage, protection of organ functions and ultimately the improvement of survival in aged sepsis model rats. Inhibition of the JAK-STAT signaling pathway was surmised that it may be an important mechanism for their action.
Collapse
Affiliation(s)
- Lu Wang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yan Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Yan Zhao
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Mengmeng Yang
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Rui Yuan
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuyan Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhirong Qian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Feihu Zhou
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongjun Kang
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Critical Care Medicine, the First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Hongjun Kang,
| |
Collapse
|
23
|
Scientific Evidence of Xuebijing Injection in the Treatment of Sepsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6879278. [PMID: 34733343 PMCID: PMC8560249 DOI: 10.1155/2021/6879278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022]
Abstract
Objectives To systematically collate, appraise, and synthesize the current evidence on the Xuebijing injection (XBJI) for sepsis. Methods Eight databases were searched for systematic reviews (SRs) or meta-analyses (MAs) on XBJI for sepsis. Assessing the Methodological Quality of Systematic Reviews-2 (AMSTAR-2), Preferred Reporting Item for Systematic Reviews and Meta-Analyses (PRISMA), and Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methods were used to assess the methodological quality, reporting quality, and evidence quality of the enrolled studies, respectively. Results Out of the 13 studies that were included, all studies were rated critically low quality based on AMSTAR-2 results. Based on the results obtained from PRISMA, all studies were reported to be over 80%, while the GRADE system yielded three outcome measures rated high-quality, 16 were of moderate quality, and the rest were of low or critically low quality. Conclusions The combination of XBJI and Western medicine (WM) showed significant synergy for the treatment of sepsis compared to WM alone. However, this conclusion should be treated with caution since the quality of the SRs/MAs providing the evidence was relatively low.
Collapse
|
24
|
Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021; 233:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil
| | - Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gabriela Muller Reche Bogéa
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
25
|
Marrazzo P, Pizzuti V, Zia S, Sargenti A, Gazzola D, Roda B, Bonsi L, Alviano F. Microfluidic Tools for Enhanced Characterization of Therapeutic Stem Cells and Prediction of Their Potential Antimicrobial Secretome. Antibiotics (Basel) 2021; 10:750. [PMID: 34206190 PMCID: PMC8300685 DOI: 10.3390/antibiotics10070750] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Silvia Zia
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
| | | | - Daniele Gazzola
- Cell Dynamics i.S.r.l., 40129 Bologna, Italy; (A.S.); (D.G.)
| | - Barbara Roda
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| |
Collapse
|
26
|
Bone Marrow Mesenchymal Stromal Cells on Silk Fibroin Scaffolds to Attenuate Polymicrobial Sepsis Induced by Cecal Ligation and Puncture. Polymers (Basel) 2021; 13:polym13091433. [PMID: 33946773 PMCID: PMC8125697 DOI: 10.3390/polym13091433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Suitable scaffolds with appropriate mechanical and biological properties can improve mesenchymal stromal cell (MSC) therapy. Because silk fibroins (SFs) are biocompatible materials, they were electrospun and applied as scaffolds for MSC therapy. Consequently, interferon (IFN)-primed human bone marrow MSCs on SF nanofibers were administered into a polymicrobial sepsis murine model. The IL-6 level gradually decreased from 40 ng/mL at 6 h after sepsis to 35 ng/mL at 24 h after sepsis. The IL-6 level was significantly low as 5 ng/mL in primed MSCs on SF nanofibers, and 15 ng/mL in primed MSCs on the control surface. In contrast to the acute response, inflammation-related factors, including HO-1 and COX-2 in chronic liver tissue, were effectively inhibited by MSCs on both SF nanofibers and the control surface at the 5-day mark after sepsis. An in vitro study indicated that the anti-inflammatory function of MSCs on SF nanofibers was mediated through enhanced COX-2-PGE2 production, as indomethacin completely abrogated PGE2 production and decreased the survival rate of septic mice. Thus, SF nanofiber scaffolds potentiated the anti-inflammatory and immunomodulatory functions of MSCs, and were beneficial as a culture platform for the cell therapy of inflammatory disorders.
Collapse
|
27
|
Therapeutic Applications of Stem Cells and Extracellular Vesicles in Emergency Care: Futuristic Perspectives. Stem Cell Rev Rep 2021; 17:390-410. [PMID: 32839921 PMCID: PMC7444453 DOI: 10.1007/s12015-020-10029-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine (RM) is an interdisciplinary field that aims to repair, replace or regenerate damaged or missing tissue or organs to function as close as possible to its physiological architecture and functions. Stem cells, which are undifferentiated cells retaining self-renewal potential, excessive proliferation and differentiation capacity into offspring or daughter cells that form different lineage cells of an organism, are considered as an important part of the RM approaches. They have been widely investigated in preclinical and clinical studies for therapeutic purposes. Extracellular vesicles (EVs) are the vital mediators that regulate the therapeutic effects of stem cells. Besides, they carry various types of cargo between cells which make them a significant contributor of intercellular communication. Given their role in physiological and pathological conditions in living cells, EVs are considered as a new therapeutic alternative solution for a variety of diseases in which there is a high unmet clinical need. This review aims to summarize and identify therapeutic potential of stem cells and EVs in diseases requiring acute emergency care such as trauma, heart diseases, stroke, acute respiratory distress syndrome and burn injury. Diseases that affect militaries or societies including acute radiation syndrome, sepsis and viral pandemics such as novel coronavirus disease 2019 are also discussed. Additionally, featuring and problematic issues that hamper clinical translation of stem cells and EVs are debated in a comparative manner with a futuristic perspective. Graphical Abstract.
Collapse
|
28
|
Jerkic M, Litvack ML, Gagnon S, Otulakowski G, Zhang H, Rotstein O, Kavanagh BP, Post M, Laffey JG. Embryonic-Derived Myb- Macrophages Enhance Bacterial Clearance and Improve Survival in Rat Sepsis. Int J Mol Sci 2021; 22:ijms22063190. [PMID: 33804806 PMCID: PMC8004006 DOI: 10.3390/ijms22063190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Peritoneal resident macrophages play a key role in combating sepsis in the peritoneal cavity. We sought to determine if peritoneal transplantation of embryonic Myb- "peritoneal-like" macrophages attenuate abdominal fecal sepsis. Directed differentiation of rodent pluripotent stem cells (PSCs) was used in factor-defined media to produce embryonic-derived large "peritoneal-like" macrophages (Ed-LPM) that expressed peritoneal macrophage markers and demonstrated phagocytic capacity. Preclinical in vivo studies determined Ed-LPM efficacy in rodent abdominal fecal sepsis with or without Meropenem. Ex vivo studies explored the mechanism and effects of Ed-LPM on host immune cell number and function, including phagocytosis, reactive oxygen species (ROS) production, efferocytosis and apoptosis. Ed-LPM reduced sepsis severity by decreasing bacterial load in the liver, spleen and lungs. Ed-LPM therapy significantly improved animal survival by ~30% and reduced systemic bacterial burden to levels comparable to Meropenem therapy. Ed-LPM therapy decreased peritoneal TNFα while increasing IL-10 concentrations. Ed-LPMs enhanced peritoneal macrophage phagocytosis of bacteria, increased macrophage production of ROS and restored homeostasis via apoptosis and efferocytosis-induced clearance of neutrophils. In conclusion, Ed-LPM reduced systemic sepsis severity, improved survival and reduced bacterial load by enhancing peritoneal macrophage bacterial phagocytosis and killing and clearance of intra-peritoneal neutrophils. Macrophage therapy may be a potential strategy to address sepsis.
Collapse
Affiliation(s)
- Mirjana Jerkic
- Keenan Research Centre for Biomedical Science, Unity Health Toronto St. Michael’s, University of Toronto, Toronto, ON M5B 1T8, Canada; (M.J.); (S.G.); (H.Z.); (O.R.)
| | - Michael L. Litvack
- Translational Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (M.L.L.); (G.O.); (B.P.K.); (M.P.)
| | - Stéphane Gagnon
- Keenan Research Centre for Biomedical Science, Unity Health Toronto St. Michael’s, University of Toronto, Toronto, ON M5B 1T8, Canada; (M.J.); (S.G.); (H.Z.); (O.R.)
| | - Gail Otulakowski
- Translational Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (M.L.L.); (G.O.); (B.P.K.); (M.P.)
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, Unity Health Toronto St. Michael’s, University of Toronto, Toronto, ON M5B 1T8, Canada; (M.J.); (S.G.); (H.Z.); (O.R.)
| | - Ori Rotstein
- Keenan Research Centre for Biomedical Science, Unity Health Toronto St. Michael’s, University of Toronto, Toronto, ON M5B 1T8, Canada; (M.J.); (S.G.); (H.Z.); (O.R.)
| | - Brian P. Kavanagh
- Translational Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (M.L.L.); (G.O.); (B.P.K.); (M.P.)
- Department of Critical Care Medicine, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
- Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada; (M.L.L.); (G.O.); (B.P.K.); (M.P.)
- Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - John G. Laffey
- Keenan Research Centre for Biomedical Science, Unity Health Toronto St. Michael’s, University of Toronto, Toronto, ON M5B 1T8, Canada; (M.J.); (S.G.); (H.Z.); (O.R.)
- Departments of Anesthesia, Physiology and Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Anesthesia and Critical Care Medicine, Unity Health Toronto St. Michael’s, Toronto, ON M5B 1W8, Canada
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland
- Correspondence: ; Tel.: +1-353-91-495662
| |
Collapse
|
29
|
Chen J, Wang H, Lu X, Yang K, Lu C. Safety and efficacy of stem cell therapy: an overview protocol on published meta-analyses and evidence mapping. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:270. [PMID: 33708897 PMCID: PMC7940926 DOI: 10.21037/atm-20-6892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Stem cell therapy (SCT) is an emerging and promising treatment measure for many conditions (e.g., chronic liver disease, diabetes mellitus, and knee osteoarthritis). Although there are numerous meta-analyses (MAs) concerning SCT, the quality of these MAs and the efficacy and safety data for SCT reported in these MAs remain unknown. Therefore, it is of utmost importance to conduct an overview of existing MAs concerning SCT for evaluating these parameters. Methods We will systematically search PubMed and EMBASE databases from inception to October 2020 for identifying MAs of SCT published in English. Two independent reviewers will select appropriate MAs against the predefined eligibility criteria. The efficacy and safety data of SCT reported in MAs will be descriptively summarized. Following this, the reporting quality and methodological quality of included MAs will be appraised using Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) and A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR-2) tools by two reviewers, respectively. Further, the evidence mapping method will be used to present assessment results. The key information will also be extracted by two independent reviewers. The Spearman’s correlation coefficient will be used to explore the association between reporting quality and methodological quality. The factors influencing the quality will be assessed through linear regression analyses. The sensitivity analysis will also be conducted. Data analyses will be performed using Stata 16.0 and Excel 2016. P<0.05 will be considered statistically significant. Discussion This overview of MAs concerning SCTs will provide comprehensive evidence on the quality of MAs and data of interest reported in MAs. Further, these data can be used to guide clinical practice and future research. Overview registration International Prospective Register of Systematic Reviews (PROSPERO): CRD42020206642.
Collapse
Affiliation(s)
- Jiahui Chen
- First Clinical Medical College, The First Hospital of Lanzhou University, Lanzhou, China
| | - Haibo Wang
- Institute of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaojing Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Cuncun Lu
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
30
|
Sun J, Ding X, Liu S, Duan X, Liang H, Sun T. Adipose-derived mesenchymal stem cells attenuate acute lung injury and improve the gut microbiota in septic rats. Stem Cell Res Ther 2020; 11:384. [PMID: 32894198 PMCID: PMC7487801 DOI: 10.1186/s13287-020-01902-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) may ameliorate sepsis-induced acute lung injury (ALI) and change microorganism populations in the gut microbiota, such as that of Firmicutes and Bacteroidetes. Methods A total of 60 male adult Sprague-Dawley (SD) rats were separated into three groups: the sham control (SC) group, the sepsis induced by cecal ligation and puncture (CLP) group, and the ADMSC treatment (CLP-ADMSCs) group, in which rats underwent the CLP procedure and then received 1 × 106 ADMSCs. Rats were sacrificed 24 h after the SC or CLP procedures. To study the role of ADMSCs during ALI caused by sepsis and examine the impact of ADMSCs on the gut microbiome composition, rat lungs were histologically evaluated using hematoxylin and eosin (H&E) staining, serum levels of pro-inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA), and fecal samples were collected and analyzed using 16S rDNA sequencing. Results The serum levels of inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, were significantly increased in rats after the CLP procedure, but were significantly decreased in rats treated with ADMSCs. Histological evaluation of the rat lungs yielded results consistent with the changes in IL-6 levels among all groups. Treatment with ADMSCs significantly increased the diversity of the gut microbiota in rats with sepsis. The principal coordinates analysis (PCoA) results showed that there was a significant difference between the gut microbiota of the CLP-ADMSCs group and that of the CLP group. In rats with sepsis, the proportion of Escherichia–Shigella (P = 0.01) related to lipopolysaccharide production increased, and the proportion of Akkermansia (P = 0.02) related to the regulation of intestinal mucosal thickness and the maintenance of intestinal barrier function decreased. These changes in the gut microbiota break the energy balance, aggravate inflammatory reactions, reduce intestinal barrier functions, and promote the translocation of intestinal bacteria. Intervention with ADMSCs increased the proportion of beneficial bacteria, reduced the proportion of harmful bacteria, and normalized the gut microbiota. Conclusions Therapeutically administered ADMSCs ameliorate CLP-induced ALI and improves gut microbiota, which provides a potential therapeutic mechanism for ADMSCs in the treatment of sepsis.
Collapse
Affiliation(s)
- Junyi Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.,Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052, China
| | - Xianfei Ding
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.,Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052, China
| | - Shaohua Liu
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China
| | - Xiaoguang Duan
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China
| | - Huoyan Liang
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.,Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, 450052, China
| | - Tongwen Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Henan Key Laboratory of Critical Care Medicine, Henan Engineering Research Center of Critical Care Medicine, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Laroye C, Gibot S, Huselstein C, Bensoussan D. Mesenchymal stromal cells for sepsis and septic shock: Lessons for treatment of COVID-19. Stem Cells Transl Med 2020; 9:1488-1494. [PMID: 32808462 PMCID: PMC7461462 DOI: 10.1002/sctm.20-0239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Sepsis is defined as life‐threatening organ dysfunction caused by a deregulated immune host response to infection. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has highlighted this multifactorial and complex syndrome. The absence of specific treatment neither against SARS‐CoV‐2 nor against acute respiratory distress syndrome (ARDS), the most serious stage of this infection, has emphasized the need to find alternative treatments. Several therapeutics are currently being tested, including mesenchymal stromal cells. These cells, already used in preclinical models of ARDS, sepsis, and septic shock and also in a few clinical trials, appear well‐tolerated and promising, but many questions remain unanswered.
Collapse
Affiliation(s)
- Caroline Laroye
- Unité de Thérapie Cellulaire et banque de Tissus, Université de Lorraine, CHRU de Nancy, Nancy, France.,CNRS, IMoPA, Université de Lorraine, Nancy, France
| | - Sébastien Gibot
- Inserm, DCAC, Université de Lorraine, Nancy, France.,CHRU de Nancy, Service de Réanimation Médicale, Université de Lorraine, Nancy, France
| | | | - Danièle Bensoussan
- Unité de Thérapie Cellulaire et banque de Tissus, Université de Lorraine, CHRU de Nancy, Nancy, France.,CNRS, IMoPA, Université de Lorraine, Nancy, France
| |
Collapse
|