1
|
Lv Y, Wang Z, Wei Y, Sun C, Chen M, Qin R, Qin H, Ma C, Ren Y, Wang S. Thermoresponsive dual-network chitosan-based hydrogels with demineralized bone matrix for controlled release of rhBMP9 in the treatment of femoral head osteonecrosis. Carbohydr Polym 2025; 352:123197. [PMID: 39843099 DOI: 10.1016/j.carbpol.2024.123197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties. The average pore diameter of the optimal hydrogel expanded to 45 μm, accompanied by zeta potentials of +34.72 ± 4.13 mV. The loading efficiency notably surpassed 90 %, while the sustained release of recombinant human bone morphogenetic proteins 9 (rhBMP9) was observed to last over 25 days at pH = 6.0 and over 36 days at pH = 7.4. This chitosan-based hydrogel, which sustained rhBMP9 release, significantly enhanced the proliferation and migration of bone marrow mesenchymal stem cells and human umbilical vein endothelial cells and promoted osteogenesis and angiogenesis both in vitro and in vivo. Collectively, our study presents an rhBMP9-loaded chitosan-based composite hydrogel system that offers innovative avenues for the research and clinical application of advanced biomaterials in the treatment of early ONFH.
Collapse
Affiliation(s)
- You Lv
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, 6 Zhenhua East Rd, Lianyungang 221000, China; Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing 210029, China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Zelun Wang
- Department of Emergency Surgery, the Second People's Hospital of Lianyungang, 41 Hailian East Rd, Lianyungang 222002, China
| | - Yifan Wei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing 210029, China
| | - Chang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 Zhongshan East Rd, Nanjing 210002, China
| | - Ming Chen
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, 6 Zhenhua East Rd, Lianyungang 221000, China
| | - Rujie Qin
- Department of Orthopedics, Lianyungang Clinical College of Nanjing Medical University, 6 Zhenhua East Rd, Lianyungang 221000, China
| | - Haonan Qin
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, 1 Huanghe West Rd, Huai'an 223300, China
| | - Cheng Ma
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing 210029, China.
| | - Yongxin Ren
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Nanjing 210029, China.
| | - Shoulin Wang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
2
|
Chen H, Wu X, Lan Y, Zhou X, Zhang Y, Long L, Zhong Y, Hao Z, Zhang W, Xue D. SCUBE3 promotes osteogenic differentiation and mitophagy in human bone marrow mesenchymal stem cells through the BMP2/TGF-β signaling pathway. FASEB J 2024; 38:e70011. [PMID: 39250278 DOI: 10.1096/fj.202400991r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
In clinical settings, addressing large bone defects remains a significant challenge for orthopedic surgeons. The use of genetically modified bone marrow mesenchymal stem cells (BMSCs) has emerged as a highly promising approach for these treatments. Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a multifunctional secreted glycoprotein, the role of which remains unclear in human hBMSCs. This study used various experimental methods to elucidate the potential mechanism by which SCUBE3 influences osteogenic differentiation of hBMSCs in vitro. Additionally, the therapeutic efficacy of SCUBE3, in conjunction with porous GeLMA microspheres, was evaluated in vivo using a mouse bone defect model. Our findings indicate that SCUBE3 levels increase significantly during early osteogenic differentiation of hBMSCs, and that reducing SCUBE3 levels can hinder this differentiation. Overexpressing SCUBE3 elevated osteogenesis gene and protein levels and enhanced calcium deposition. Furthermore, treatment with recombinant human SCUBE3 (rhSCUBE3) protein boosted BMP2 and TGF-β expression, activated mitophagy in hBMSCs, ameliorated oxidative stress, and restored osteogenic function through SMAD phosphorylation. In vivo, GELMA/OE treatment effectively accelerated bone healing in mice. In conclusion, SCUBE3 fosters osteogenic differentiation and mitophagy in hBMSCs by activating the BMP2/TGF-β signaling pathway. When combined with engineered hydrogel cell therapy, it could offer valuable guidance for the clinical management of extensive bone defects.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Xiaoyong Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Yinan Lan
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Xijie Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Zhang
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Long Long
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Yuliang Zhong
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Zhengan Hao
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Weijun Zhang
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - DeTing Xue
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
3
|
Chen H, Peng L, Wang Z, He Y, Zhang X. Influence of METTL3 knockdown on PDLSC osteogenesis in E. coli LPS-induced inflammation. Oral Dis 2024; 30:3225-3238. [PMID: 37807890 DOI: 10.1111/odi.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of METTL3 knockdown on osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in the weak inflammation microenvironments, as well as the underlying mechanisms. MATERIALS AND METHODS PDLSCs were stimulated by lipopolysaccharide from Escherichia coli (E. coli LPS), followed by quantification of METTL3. METTL3 expression was assessed using RT-qPCR and Western blot analysis in periodontitis. METTL3 knockdown PDLSCs were stimulated with or without E. coli LPS. The evaluation included proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules. Bioinformatics analysis and Western blot determined the association between METTL3 and the PI3K/Akt pathway. RESULTS METTL3 was overexpressed in periodontitis. METTL3 knockdown in PDLSCs reduced proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules in both environments. Bioinformatics analysis suggested a link between METTL3 and the PI3K/Akt pathway. METTL3 knockdown inhibited PI3K/Akt signaling pathway activation. CONCLUSION METTL3 knockdown might inhibit osteogenesis in PDLSCs through the inactivation of PI3K/Akt signaling pathway. Concomitant findings might shed novel light on the roles and potential mechanisms of METTL3 in the LPS-stimulated inflammatory microenvironments of PDLSCs.
Collapse
Affiliation(s)
- Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Meng C, Luo X, Li J, Zhang Y, Lv Z, Hou C, Liu K, Liu F. Mineralised collagen regulated the secretion of adrenomedullin by macrophages to activate the PI3K/AKT signalling pathway to promote bone defect repair. Int J Biol Macromol 2024; 269:131800. [PMID: 38679262 DOI: 10.1016/j.ijbiomac.2024.131800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Biomaterials can affect the osteogenic process by regulating the function of macrophages and transforming the bone immune microenvironment. Mineralised collagen (MC) is an artificial bone that is highly consistent to the microstructure of the native osseous matrix. The studies have confirmed that MC can achieve effective regeneration of bone defects, but the potential mechanism of MC regulating osteogenesis is still unclear. This study confirmed that MC regulate the high expression of adrenomedullin (ADM) in macrophages and promote the osteogenic differentiation, proliferation and migration of BMSCs. Moreover, ADM activated the PI3K/Akt pathway, while the inhibition of PI3K/Akt hindered the proliferation, migration and osteogenic differentiation of BMSCs promoted by ADM. Additionally, the rat mandibular defect model confirmed that ADM promote the repair of mandibular defects, and the inhibition of PI3K/Akt pathway hinders the osteogenic effect of ADM. Our study suggests that MC regulates ADM secretion by macrophages, creates an ideal bone immune microenvironment, activates the PI3K/AKT signalling pathway, and promotes osteogenesis.
Collapse
Affiliation(s)
- Chunxiu Meng
- Liaocheng People's Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Xin Luo
- Liaocheng People's Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Jun Li
- Liaocheng People's Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Yujue Zhang
- Liaocheng People's Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Zhaoyong Lv
- Liaocheng People's Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China
| | - Caiyao Hou
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Kun Liu
- Liaocheng People's Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China.
| | - Fengzhen Liu
- Liaocheng People's Hospital, Liaocheng Hospital Affiliated Shandong First Medical University, Liaocheng 252000, China.
| |
Collapse
|
5
|
Shang Y, Zhu Q, Ding J, Zhao L, Zhang F, Lu J, Feng Y, Wang J, Liu Z, Kuang M, Li C. Bioactive peptide relieves glucocorticoid-induced osteoporosis by giant macrocyclic encapsulation. J Control Release 2024; 369:75-87. [PMID: 38458570 DOI: 10.1016/j.jconrel.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Bioactive peptides play a crucial role in the field of regenerative medicine and tissue engineering. However, their application in vivo and clinic is hindered by their poor stability, short half-life, and low retention rate. Herein, we propose a novel strategy for encapsulating bioactive peptides using giant macrocycles. Platelet-derived growth factor (PDGF) bioactive mimicking peptide Nap-FFGVRKKP (P) was selected as the representative of a bioactive peptide. Quaterphen[4]arene (4) exhibited extensive host-guest complexation with P, and the binding constant was (1.16 ± 0.10) × 107 M-1. In vitro cell experiments confirmed that P + 4 could promote the proliferation of BMSCs by 2.27 times. Even with the addition of the inhibitor dexamethasone (Dex), P + 4 was still able to save 76.94% of the cells in the control group. Compared to the Dex group, the bone mass of the mice with osteoporosis in the P + 4 group was significantly increased. The mean trabecular thickness (Tb.Th) increased by 17.03%, and the trabecular bone volume fraction (BV/TV) values increased by 40.55%. This supramolecular bioactive peptide delivery strategy provides a general approach for delivering bioactive peptides and opens up new opportunities for the development of peptide-based drugs.
Collapse
Affiliation(s)
- Yuna Shang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingrun Zhu
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiaming Ding
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Liang Zhao
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Fan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiayi Lu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yinyin Feng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiayu Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhixue Liu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Mingjie Kuang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China.
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
6
|
Du J, Wang Y, Wu C, Zhang X, Zhang X, Xu X. Targeting bone homeostasis regulation: potential of traditional Chinese medicine flavonoids in the treatment of osteoporosis. Front Pharmacol 2024; 15:1361864. [PMID: 38628649 PMCID: PMC11018902 DOI: 10.3389/fphar.2024.1361864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis is a systemic metabolic disease characterized by disrupted bone formation/resorption and homeostasis. Flavonoids extracted from traditional Chinese medicinal plants regulate bone homeostasis by intervening in differentiating bone marrow mesenchymal stem cells, balancing the bone immune system, inhibiting oxidative stress response, and reversing iron overload. The target molecules and signaling pathways, such as Wnt/β-catenin and OPG/RANKL/RANK, directly affect osteoblast/osteoclast activity, exhibiting significant potential in the treatment of OP. Therefore, this study presents a systematic review of the recent literature to provide comprehensive information on the traditional Chinese medicine flavonoids involved in the regulation of bone homeostasis. Also, the molecular mechanisms and pharmacological uses of these metabolites are summarized, and their clinical translation and development potential are discussed.
Collapse
Affiliation(s)
- Jiazhe Du
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chengliang Wu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xilin Xu
- Department of Orthopedics, The Third Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Feng S, Feng Q, Dong L, Lv Q, Mei S, Zhang Y. Periostin/Bone Morphogenetic Protein 1 axis axis regulates proliferation and osteogenic differentiation of sutured mesenchymal stem cells and affects coronal suture closure in the TWIST1 +/- mouse model of craniosynostosis. J Orthop Surg Res 2024; 19:146. [PMID: 38369459 PMCID: PMC10875791 DOI: 10.1186/s13018-024-04604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of coronal suture craniosynostosis is often attributed to the dysregulated cellular dynamics, particularly the excessive proliferation and abnormal osteogenic differentiation of suture cells. Despite its clinical significance, the molecular mechanims of this condition remain inadequately understood. This study is dedicated to exploring the influence of the Periostin/Bone Morphogenetic Protein 1 (BMP1) axis on the growth and osteogenic maturation of Suture Mesenchymal Stem Cells (SMSCs), which are pivotal in suture homeostasis. METHODS Neonatal TWIST Basic Helix-Loop-Helix Transcription Factor 1 heterozygous (TWIST1+/-) mice, aged one day, were subjected to adenoviral vector-mediated Periostin upregulation. To modulate Periostin/BMP1 levels in SMSCs, we employed siRNA and pcDNA 3.1 vectors. Histological and molecular characterizations, including hematoxylin and eosin staining, Western blot, and immunohistochemistry were employed to study suture closure phenotypes and protein expression patterns. Cellular assays, encompassing colony formation, 5-ethynyl-2'deoxyuridine, and wound healing tests were conducted to analyze SMSC proliferation and migration. Osteogenic differentiation was quantified using Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) staining, while protein markers of proliferation and differentiation were evaluated by Western blotting. The direct interaction between Periostin and BMP1 was validated through co-immunoprecipitation assays. RESULTS In the TWIST1+/- model, an upregulation of Periostin coupled with a downregulation of BMP1 was observed. Augmenting Periostin expression mitigated craniosynostosis. In vitro, overexpression of Periostin or BMP1 knockdown suppressed SMSC proliferation, migration, and osteogenic differentiation. Periostin knockdown manifested an inverse biological impact. Notably, the suppressive influence of Periostin overexpression on SMSCs was effectively counteracted by upregulating BMP1. There was a direct interaction between Periostin and BMP1. CONCLUSION These findings underscore the significance of the Periostin/BMP1 axis in regulating craniosynostosis and SMSC functions, providing new insights into the molecular mechanisms of craniosynostosis and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- ShuBin Feng
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - Qiang Feng
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - LiuJian Dong
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - Qiang Lv
- Department of Neurosurgery, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, Zhengzhou City, 450018, Henan Province, China
| | - ShiYue Mei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, No.33, Longhu Outer Ring East Road, Zhengdong New District, Zhengzhou City, 450018, Henan Province, China
| | - YaoDong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Henan Children's Hospital, No.33, Longhu Outer Ring East Road, Zhengdong New District, Zhengzhou City, 450018, Henan Province, China.
| |
Collapse
|
8
|
Cai L, Lv Y, Yan Q, Guo W. Cytokines: The links between bone and the immune system. Injury 2024; 55:111203. [PMID: 38043143 DOI: 10.1016/j.injury.2023.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 12/05/2023]
Abstract
Osteoporosis results from an imbalance in a highly balanced physiological process called bone remodeling, in which osteoclast-mediated bone resorption and osteoblast-mediated bone formation play important roles. Osteoimmunology is a newly discovered interdisciplinary research field that focuses on the relationship between bone and the immune system. Specifically, bone and the immune system interact through cytokines, immune cells secrete cytokines, and cytokines finely regulate bone metabolism by mediating the differentiation and activity of osteoclasts and osteoblasts. Therefore, understanding the influence of cytokines on bone metabolism is conducive for the development of novel targeted drugs against immune-related bone diseases. This review summarizes the pathophysiological functions of various common cytokines in bone and discusses the potential clinical value of multiple cytokines in immune-mediated bone diseases.
Collapse
Affiliation(s)
- Liping Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Department of Endocrinology, Rheumatology and Immunology, Anyang People's Hospital, Anyang, Henan 455000, China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qihui Yan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
9
|
Kim C. Extracellular Signal-Regulated Kinases Play Essential but Contrasting Roles in Osteoclast Differentiation. Int J Mol Sci 2023; 24:15342. [PMID: 37895023 PMCID: PMC10607827 DOI: 10.3390/ijms242015342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bone homeostasis is regulated by the balanced actions of osteoblasts that form the bone and osteoclasts (OCs) that resorb the bone. Bone-resorbing OCs are differentiated from hematopoietic monocyte/macrophage lineage cells, whereas osteoblasts are derived from mesenchymal progenitors. OC differentiation is induced by two key cytokines, macrophage colony-stimulating factor (M-CSF), a factor essential for the proliferation and survival of the OCs, and receptor activator of nuclear factor kappa-B ligand (RANKL), a factor for responsible for the differentiation of the OCs. Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases, play an essential role in regulating the proliferation, differentiation, and function of OCs. ERKs have been known to play a critical role in the differentiation and activation of OCs. In most cases, ERKs positively regulate OC differentiation and function. However, several reports present conflicting conclusions. Interestingly, the inhibition of OC differentiation by ERK1/2 is observed only in OCs differentiated from RAW 264.7 cells. Therefore, in this review, we summarize the current understanding of the conflicting actions of ERK1/2 in OC differentiation.
Collapse
Affiliation(s)
- Chaekyun Kim
- BK21 Program in Biomedical Science & Engineering, Laboratory for Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
10
|
Ho A, Ngala B, Yamada C, Garcia C, Duarte C, Akkaoui J, Ciolac D, Nusbaum A, Kochen W, Efremova D, Groppa S, Nathanson L, Bissel S, Oblak A, Kacena MA, Movila A. IL-34 exacerbates pathogenic features of Alzheimer's disease and calvaria osteolysis in triple transgenic (3x-Tg) female mice. Biomed Pharmacother 2023; 166:115435. [PMID: 37666180 DOI: 10.1016/j.biopha.2023.115435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Hallmark features of Alzheimer's disease (AD) include elevated accumulation of aggregated Aβ40 and Aβ42 peptides, hyperphosphorylated Tau (p-Tau), and neuroinflammation. Emerging evidence indicated that interleukin-34 (IL-34) contributes to AD and inflammatory osteolysis via the colony-stimulating factor-1 receptor (CSF-1r). In addition, CSF-1r is also activated by macrophage colony-stimulating factor-1 (M-CSF). While the role of M-CSF in bone physiology and pathology is well addressed, it remains controversial whether IL-34-mediated signaling promotes osteolysis, neurodegeneration, and neuroinflammation in relation to AD. In this study, we injected 3x-Tg mice with mouse recombinant IL-34 protein over the calvaria bone every other day for 42 days. Then, behavioral changes, brain pathology, and calvaria osteolysis were evaluated using various behavioral maze and histological assays. We demonstrated that IL-34 administration dramatically elevated AD-like anxiety and memory loss, pathogenic amyloidogenesis, p-Tau, and RAGE expression in female 3x-Tg mice. Furthermore, IL-34 delivery promoted calvaria inflammatory osteolysis compared to the control group. In addition, we also compared the effects of IL-34 and M-CSF on macrophages, microglia, and RANKL-mediated osteoclastogenesis in relation to AD pathology in vitro. We observed that IL-34-exposed SIM-A9 microglia and 3x-Tg bone marrow-derived macrophages released significantly elevated amounts of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, compared to M-CSF treatment in vitro. Furthermore, IL-34, but not M-CSF, elevated RANKL-primed osteoclastogenesis in the presence of Aβ40 and Aβ42 peptides in bone marrow derived macrophages isolated from female 3x-Tg mice. Collectively, our data indicated that IL-34 elevates AD-like features, including behavioral changes and neuroinflammation, as well as osteoclastogenesis in female 3x-Tg mice.
Collapse
Affiliation(s)
- Anny Ho
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Bidii Ngala
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Garcia
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carolina Duarte
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Juliet Akkaoui
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Dumitru Ciolac
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Amilia Nusbaum
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William Kochen
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Daniela Efremova
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Stanislav Groppa
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Stephanie Bissel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa A Kacena
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandru Movila
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| |
Collapse
|
11
|
Xu J, Yu L, Liu F, Wan L, Deng Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol 2023; 14:1222129. [PMID: 37475866 PMCID: PMC10355373 DOI: 10.3389/fimmu.2023.1222129] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
The complicated connections and cross talk between the skeletal system and the immune system are attracting more attention, which is developing into the field of Osteoimmunology. In this field, cytokines that are among osteoblasts and osteoclasts play a critical role in bone remodeling, which is a pathological process in the pathogenesis and development of osteoporosis. Those cytokines include the tumor necrosis factor (TNF) family, the interleukin (IL) family, interferon (IFN), chemokines, and so on, most of which influence the bone microenvironment, osteoblasts, and osteoclasts. This review summarizes the effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis, aiming to providing the latest reference to the role of immunology in osteoporosis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linxin Yu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Longbiao Wan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Deng
- Hubei Provincial Hospital of Traditional Chinese Medicine (TCM), Wuhan, China
| |
Collapse
|
12
|
Roy N, Park CY. IL-34: a novel differentiation therapy for AML? Blood 2023; 141:3130-3132. [PMID: 37383007 DOI: 10.1182/blood.2023020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Affiliation(s)
- Nainita Roy
- New York University Grossman School of Medicine
| | | |
Collapse
|
13
|
Huang J, Zhou H, He L, Zhong L, Zhou D, Yin Z. The promotive role of USP1 inhibition in coordinating osteogenic differentiation and fracture healing during nonunion. J Orthop Surg Res 2023; 18:152. [PMID: 36859264 PMCID: PMC9979441 DOI: 10.1186/s13018-023-03594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Nonunion is a failure of fracture healing and a major complication after fractures. Ubiquitin-specific protease 1 (USP1) is a deubiquitinase that involved in cell differentiation and cell response to DNA damage. Herein we investigated the expression, function and mechanism of USP1 in nonunion. METHODS AND RESULTS Clinical samples were used to detect the USP1 expression in nonunion. ML323 was selected to inhibit USP1 expression throughout the study. Rat models and mouse embryonic osteoblasts cells (MC3T3-E1) were used to investigate the effects of USP1 inhibition on fracture healing and osteogenesis in vivo and in vitro, respectively. Histological changes were examined by micro-computerized tomography (Micro-CT), hematoxylin & eosin (H&E) staining and Masson staining. Alkaline phosphatase (ALP) activity detection and alizarin red staining were used for osteogenic differentiation observation. The expression of related factors was detected by quantitative real-time PCR, western blot or immunohistochemistry (IHC). It was shown that USP1 was highly expressed in nonunion patients and nonunion rats. USP1 inhibition by ML323 promoted fracture healing in nonunion rats and facilitated the expression of osteogenesis-related factors and the signaling of PI3K/Akt pathway. In addition, USP1 inhibition accelerated osteogenic differentiation and promoting PI3K/Akt signaling in MC3T3-E1 cells. CONCLUSIONS USP1 inhibition plays a promotive role in coordinating osteogenic differentiation and fracture healing during nonunion. PI3K/Akt may be the downstream pathway of USP1.
Collapse
Affiliation(s)
- Jun Huang
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Hongxiang Zhou
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Liang He
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Lin Zhong
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Ding Zhou
- The Microscopic Repair and Reconstruction Department of Hand and Foot, Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Zongsheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
14
|
Tian Z, Hao Y, Wang M, Li Y, Cui K, Hou P, Wang X, Lv D, Shi J. Understanding the mechanism of twenty-five ingredient decoction for setting a fracture in the treatment of fractures based on network pharmacology. Medicine (Baltimore) 2023; 102:e32864. [PMID: 36749277 PMCID: PMC9901973 DOI: 10.1097/md.0000000000032864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To study the mechanism of 25 ingredient decoction for setting a fracture (TDSF) in fracture treatment using network pharmacology. The TCMSP, BATMAN-TCM, HERB, and Uniprot protein databases were used to identify the active ingredients and targets of TDSF. Fracture-related targets were collected from the gene cards and the online mendelian inheritance in man databases. The acquisition of common genes of active compounds of TDSF and disease fractures was carried out using the Venny software. The Cytoscape 3.7.1 software and String database were used to construct a network diagram of drug-active ingredient-target-disease and the main core targets were obtained by protein interaction analysis. The Metascape platform was used to perform gene oncology functional and Kyoto encyclopedia of genes and genomes pathway enrichment analyses for common drug-disease targets. A total of 311 active ingredients and 348 targets were associated with TDSF, with 5197 targets related to fractures and 224 common targets between the 2 keywords. Key targets included serine/threonine protein kinase 1, tumor necrosis factor, interleukin 6, tumor protein 53, and vascular endothelial growth factor. Important roles of the following pathway were identified: cancer, lipid, and atherosclerosis; AGE-RAGE signaling pathway in diabetic complications; chemical carcinogenesis - receptor activation; PI3K -Akt signaling pathway; platinum drug resistance; cAMP signaling pathway; transcriptional mis regulation in cancer; serotonergic synapse; and malaria. TDSF mainly treats fractures by acting on multiple targets, such as serine/threonine protein kinase 1, tumor necrosis factor, interleukin 6, tumor protein 53, and vascular endothelial growth factor, and regulating the PI3K/AKT and cAMP signaling pathways.
Collapse
Affiliation(s)
- Zenghui Tian
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Yanke Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Mingliang Wang
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, P.R. China
- * Correspondence: Mingliang Wang, Rizhao Hospital of Traditional Chinese Medicine, Rizhao 276800, P.R. China (e-mail: )
| | - Yingying Li
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Kaiying Cui
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Pengfei Hou
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Xiaoying Wang
- Jinan Vocational College of Nursing, Jinan, P.R. China
| | - Dengwan Lv
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Jie Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| |
Collapse
|
15
|
Li Z, Wu Z, Xi X, Zhao F, Liu H, Liu D. Cellular communication network factor 1 interlinks autophagy and ERK signaling to promote osteogenesis of periodontal ligament stem cells. J Periodontal Res 2022; 57:1169-1182. [PMID: 36199215 DOI: 10.1111/jre.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the effects of cellular communication network factor 1 (CCN1), a critical matricellular protein, on alveolar bone regeneration, and to elucidate the underlying molecular mechanism. BACKGROUND In the process of orthodontic tooth movement, bone deposition on the tension side of human periodontal ligament stem cells (hPDLSCs) ensured high efficiency and long-term stability of the treatment. The matricellular protein CCN1 is responsive to mechanical stimulation, exhibiting important tasks in bone homoeostasis. However, the role and mechanism of CCN1 on alveolar bone remodeling of hPDLSCs remains unclear. METHODS The expression and distribution of CCN1 in rat periodontal ligament were detected by immunofluorescence staining and immunohistochemical staining. ELISA verified the secretion of CCN1 triggered by stretch loading. To examine the mineralization ability of hPDLSCs induced by CCN1, Western blotting, qRT-PCR, ARS, and ALP staining were performed. CCK-8 and cell migration assay were performed to detect the cell proliferation rate and the wound healing. PI3K/Akt, MAPK, and autophagy activation were examined via Western blotting and immunofluorescence. RESULTS Mechanical stimuli induced the release of CCN1 into extracellular environment by hPDLSCs. Knockdown of CCN1 attenuated the osteogenesis of hPDLSCs while rhCCN1 enhanced the expression of Runx2, Col 1, ALPL, and promoted the mineralization nodule formation. CCN1 activated PI3K/Akt and ERK signaling, and blockage of PI3K/Akt signaling reversed the accelerated cell migration triggered by CCN1. The enhanced osteogenesis induced by CCN1 was abolished by ERK signaling inhibitor PD98059 or autophagy inhibitor 3-MA. Further investigation demonstrated PD98059 abrogated the activation of autophagy. CONCLUSION This study demonstrated that CCN1 promotes osteogenesis in hPDLSCs via autophagy and MAPK/ERK pathway.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xun Xi
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fang Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hong Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
16
|
Lu X, Li W, Wang H, Cao M, Jin Z. The role of the Smad2/3/4 signaling pathway in osteogenic differentiation regulation by ClC-3 chloride channels in MC3T3-E1 cells. J Orthop Surg Res 2022; 17:338. [PMID: 35794618 PMCID: PMC9258226 DOI: 10.1186/s13018-022-03230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background ClC-3 chloride channels promote osteogenic differentiation. Transforming growth factor-β1 (TGF-β1) and its receptors are closely related to ClC-3 chloride channels, and canonical TGF-β1 signaling is largely mediated by Smad proteins. The current study aimed to explore the role of the Smad2/3/4 signaling pathway in the mechanism by which ClC-3 chloride channels regulate osteogenic differentiation in osteoblasts. Methods First, real-time PCR and western blotting were used to detect the expression of Smad and mitogen-activated protein kinase (MAPK) proteins in response to ClC-3 chloride channels. Second, immunocytochemistry, coimmunoprecipitation (Co-IP) and immunofluorescence analyses were conducted to assess formation of the Smad2/3/4 complex and its translocation to the nucleus. Finally, markers of osteogenic differentiation were determined by real-time PCR, western blotting, ALP assays and Alizarin Red S staining. Results ClC-3 chloride channels knockdown led to increased expression of Smad2/3 but no significant change in p38 or Erk1/2. Furthermore, ClC-3 chloride channels knockdown resulted in increases in the formation of the Smad2/3/4 complex and its translocation to the nucleus. In contrast, the inhibition of TGF-β1 receptors decreased the expression of Smad2, Smad3, p38, and Erk1/2 and the formation of the Smad2/3/4 complex. Finally, the expression of osteogenesis-related markers were decreased upon ClC-3 and Smad2/3/4 knockdown, but the degree to which these parameters were altered was decreased upon the knockdown of ClC-3 and Smad2/3/4 together compared to independent knockdown of ClC-3 or Smad2/3/4. Conclusions The Smad2/3 proteins respond to changes in ClC-3 chloride channels. The Smad2/3/4 signaling pathway inhibits osteogenic differentiation regulation by ClC-3 chloride channels in MC3T3-E1 cells.
Collapse
|
17
|
Liu J, Yao Y, Huang J, Sun H, Pu Y, Tian M, Zheng M, He H, Li Z. Comprehensive analysis of lncRNA-miRNA-mRNA networks during osteogenic differentiation of bone marrow mesenchymal stem cells. BMC Genomics 2022; 23:425. [PMID: 35672672 PMCID: PMC9172120 DOI: 10.1186/s12864-022-08646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plays crucial role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), involving in regulation of competing endogenous RNA (ceRNA) mechanisms and conduction of signaling pathways. However, its mechanisms are poorly understood. This study aimed to investigate lncRNAs, miRNAs and mRNAs expression profiles in rat BMMSCs (rBMMSCs) osteogenic differentiation, screen the potential key lncRNA-miRNA-mRNA networks, explore the putative functions and identify the key molecules, as the basis of studying potential mechanism of rBMMSCs osteogenic differentiation driven by lncRNA, providing molecular targets for the management of bone defect. Methods High-throughput RNA sequencing (RNA-seq) was used to determine lncRNAs, miRNAs, and mRNAs expression profiles at 14-day rBMMSCs osteogenesis. The pivotal lncRNA-miRNA and miRNA-mRNA networks were predicted from sequencing data and bioinformatic analysis, and the results were exported by Cytoscape 3.9.0 software. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for functional exploration. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to validate lncRNAs, miRNAs and mRNAs. Results rBMMSCs were identified, and the osteogenic and adipogenic differentiation ability were detected. A total of 8634 lncRNAs were detected by RNA-seq, and 1524 differential expressed lncRNAs, of which 812 up-regulated and 712 down-regulated in osteo-inductive groups compared with control groups. 30 up-regulated and 61 down-regulated miRNAs, 91 miRNAs were differentially expressed in total. 2453 differentially expressed mRNAs including 1272 up-expressed and 1181 down-expressed were detected. 10 up-regulated lncRNAs were chosen to predict 21 down-regulated miRNAs and 650 up-regulated mRNAs. 49 lncRNA-miRNA and 1515 miRNA–mRNA interactive networks were constructed. GO analysis showed the most important enrichment in cell component and molecular function were “cytoplasm” and “protein binding”, respectively. Biological process related to osteogenic differentiation such as “cell proliferation”, “wound healing”, “cell migration”, “osteoblast differentiation”, “extracellular matrix organization” and “response to hypoxia” were enriched. KEGG analysis showed differentially expressed genes were mainly enriched in “PI3K-Akt signaling pathway”, “Signaling pathway regulating pluripotency of stem cells”, “cGMP-PKG signaling pathway”, “Axon guidance” and “Calcium signaling pathway”. qRT-PCR verified that lncRNA Tug1, lncRNA AABR07011996.1, rno-miR-93-5p, rno-miR-322-5p, Sgk1 and Fzd4 were consistent with the sequencing results, and 4 lncRNA-miRNA-mRNA networks based on validations were constructed, and enrichment pathways were closely related to “PI3K-Akt signaling pathway”, “Signaling pathway regulating pluripotency of stem cells” and “Wnt signaling pathway”. Conclusions lncRNAs, miRNAs and mRNAs expression profiles provide clues for future studies on their roles for BMMSCs osteogenic differentiation. Furthermore, lncRNA–miRNA–mRNA networks give more information on potential new mechanisms and targets for management on bone defect. Supplementary information The online version contains supplementary material available at 10.1186/s12864-022-08646-x.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Affiliated Stomatological Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Yuan Yao
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Affiliated Stomatological Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Jinyong Huang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Hao Sun
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Yixuan Pu
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Mengting Tian
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Meijie Zheng
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Huiyu He
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.
| | - Zheng Li
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.
| |
Collapse
|