1
|
Huang R, Pang Q, Zheng L, Lin J, Li H, Wan L, Wang T. Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage. Neural Regen Res 2025; 20:1015-1030. [PMID: 38989934 PMCID: PMC11438341 DOI: 10.4103/nrr.nrr-d-23-01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 07/12/2024] Open
Abstract
Cholesterol is an important component of plasma membranes and participates in many basic life functions, such as the maintenance of cell membrane stability, the synthesis of steroid hormones, and myelination. Cholesterol plays a key role in the establishment and maintenance of the central nervous system. The brain contains 20% of the whole body's cholesterol, 80% of which is located within myelin. A huge number of processes (e.g., the sterol regulatory element-binding protein pathway and liver X receptor pathway) participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis, intracellular transport, and efflux. Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences. Therefore, we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases. Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype, with high mortality and morbidity. Historical cholesterol levels are associated with the risk of intracerebral hemorrhage. Moreover, secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation, such as neuroinflammation, demyelination, and multiple types of programmed cell death. Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage. In this paper, we review normal cholesterol metabolism in the central nervous system, the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage, and the links between cholesterol metabolism and cell death. We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiuyu Pang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lexin Zheng
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaxi Lin
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hanxi Li
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lingbo Wan
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Tao Wang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Islam MA, Khairnar R, Fleishman J, Reznik SE, Ragolia L, Gobbooru S, Kumar S. Female C57BL/6 mice exhibit protection against nonalcoholic fatty liver disease and diabesity accompanied by differential regulation of hepatic lipocalin prostaglandin D 2 synthase. Mol Cell Endocrinol 2024; 595:112404. [PMID: 39505230 DOI: 10.1016/j.mce.2024.112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Affiliation(s)
- Md Asrarul Islam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Rhema Khairnar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Louis Ragolia
- NYU Grossman Long Island School of Medicine, Mineola, NY, 11501, USA
| | - Shruthi Gobbooru
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
3
|
Zhu Y, Lin S, Zhang Y, Yu J, Fu J, Li Y, Shan C, Cai J, Liu W, Tao T. Altered bile acids profile is a risk factor for hyperandrogenism in lean women with PCOS: a case control study. Sci Rep 2024; 14:26215. [PMID: 39482365 PMCID: PMC11528117 DOI: 10.1038/s41598-024-77645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
The levels of fasting-state serum bile acids (BAs) in individuals with polycystic ovary syndrome (PCOS) differ from those of control subjects. However, there is a lack of research on the BAs profile in lean women with PCOS and whether these changes are linked to the host metabolism. Therefore, our objective was to investigate the synthesis and metabolism of serum BAs in lean women with PCOS and assess the correlation between BAs and clinical characteristics. This study employed a cross-sectional design of lean women with PCOS (n = 240) in comparison to a control group (n = 80) consisting of healthy lean women. The findings revealed significant increases in the levels of non-12-OH BAs and chenodeoxycholic acid (CDCA)% (both P < 0.05) in lean women with PCOS. Additionally, a positive correlation was observed between CDCA% and total testosterone (T) (r = 0.130, P = 0.044) and free androgen index (FAI) (r = 0.153, P = 0.019). Furthermore, a decreased ratio of cholic acid/chenodeoxycholic acid (CA/CDCA) (P < 0.001) was observed in lean women with PCOS, suggesting the depletion or downregulation of CYP8B1. Receiver operating characteristic curve analysis indicated that the combination of CDCA/CA and DHEAS could potentially be used as a characteristic factor for PCOS in lean women. It is possible that enzymatic modifications in the liver could play a role in regulating hyperandrogenism in this specific subgroup of lean women with PCOS.
Collapse
Affiliation(s)
- Yuchen Zhu
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Lin
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yu
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - JiaRong Fu
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yushan Li
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Shan
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Cai
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Tao
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zhu D, Arnold M, Samuelson BA, Wu JZ, Mueller A, Sinclair DA, Kane AE. Sex dimorphism and tissue specificity of gene expression changes in aging mice. Biol Sex Differ 2024; 15:89. [PMID: 39482778 PMCID: PMC11529319 DOI: 10.1186/s13293-024-00666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Aging is a complex process that involves all tissues in an organism and shows sex dimorphism. While transcriptional changes in aging have been well characterized, the majority of studies have focused on a single sex and sex differences in gene expression in aging are poorly understood. In this study, we explore sex dimorphism in gene expression in aging mice across three tissues. METHODS We collected gastrocnemius muscle, liver and white adipose tissue from young (6 months, n = 14) and old (24 months, n = 14) female and male C57BL/6NIA mice and performed RNA-seq. To investigate sex dimorphism in aging, we considered two levels of comparisons: (a) differentially expressed genes between females and males in the old age group and (b) comparisons between females and males across the aging process. We utilized differential expression analysis and gene feature selection to investigate candidate genes. Gene set enrichment analysis was performed to identify candidate molecular pathways. Furthermore, we performed a co-expression network analysis and chose the gene module(s) associated with aging independent of sex or tissue-type. RESULTS We identified both tissue-specific and tissue-independent genes associated with sex dimorphism in aged mice. Unique differentially expressed genes between old males and females across tissues were mainly enriched for pathways related to specific tissue function. We found similar results when exploring sex differences in the aging process, with the exception that in the liver genes enriched for lipid metabolism and digestive system were identified in both females and males. Combining enriched pathways across analyses, we identified amino acid metabolism, digestive system, and lipid metabolism as the core mechanisms of sex dimorphism in aging. Although the vast majority of age-related genes were sex and tissue specific, we identified 127 hub genes contributing to aging independent of sex and tissue that were enriched for the immune system and signal transduction. CONCLUSIONS There are clear sex differences in gene expression in aging across liver, muscle and white adipose. Core pathways, including amino acid metabolism, digestive system and lipid metabolism, contribute to sex differences in aging.
Collapse
Affiliation(s)
- Dantong Zhu
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Matt Arnold
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
| | | | - Judy Z Wu
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Amber Mueller
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
- Cell Press, Cambridge, MA, 02139, USA
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
| | - Alice E Kane
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98115, USA.
| |
Collapse
|
5
|
Liu Z, You C. The bile acid profile. Clin Chim Acta 2024; 565:120004. [PMID: 39419312 DOI: 10.1016/j.cca.2024.120004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
As a large and structurally diverse family of small molecules, bile acids play a crucial role in regulating lipid, glucose, and energy metabolism. In the human body, bile acids share a similar chemical structure with many isomers, exhibit little difference in polarity, and possess various physiological activities. The types and contents of bile acids present in different diseases vary significantly. Therefore, comprehensive and accurate detection of the content of various types of bile acids in different biological samples can not only provide new insights into the pathogenesis of diseases but also facilitate the exploration of novel strategies for disease diagnosis, treatment, and prognosis. The detection of disease-induced changes in bile acid profiles has emerged as a prominent research focus in recent years. Concurrently, targeted metabolomics methods utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS) have progressively established themselves as the predominant technology for the separation and detection of bile acids. Bile acid profiles will increasingly play an important role in diagnosis and guidance in the future as the relationship between disease and changes in bile acid profiles becomes clearer. This highlights the growing diagnostic value of bile acid profiles and their potential to guide clinical decision-making. This review aims to explore the significance of bile acid profiles in clinical diagnosis from four perspectives: the synthesis and metabolism of bile acids, techniques for detecting bile acid profiles, changes in bile acid profiles associated with diseases, and the challenges and future prospects of applying bile acid profiles in clinical settings.
Collapse
Affiliation(s)
- Zhenhua Liu
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Chongge You
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
6
|
Prajapati M, Chiu L, Zhang JZ, Chong GS, DaSilva NA, Bartnikas TB. Bile from the hemojuvelin-deficient mouse model of iron excess is enriched in iron and ferritin. Metallomics 2024; 16:mfae043. [PMID: 39313333 PMCID: PMC11459263 DOI: 10.1093/mtomcs/mfae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Iron is an essential nutrient but is toxic in excess. Iron deficiency is the most prevalent nutritional deficiency and typically linked to inadequate intake. Iron excess is also common and usually due to genetic defects that perturb expression of hepcidin, a hormone that inhibits dietary iron absorption. Our understanding of iron absorption far exceeds that of iron excretion, which is believed to contribute minimally to iron homeostasis. Prior to the discovery of hepcidin, multiple studies showed that excess iron undergoes biliary excretion. We recently reported that wild-type mice raised on an iron-rich diet have increased bile levels of iron and ferritin, a multi-subunit iron storage protein. Given that genetic defects leading to excessive iron absorption are much more common causes of iron excess than dietary loading, we set out to determine if an inherited form of iron excess known as hereditary hemochromatosis also results in bile iron loading. We employed mice deficient in hemojuvelin, a protein essential for hepcidin expression. Mutant mice developed bile iron and ferritin excess. While lysosomal exocytosis has been implicated in ferritin export into bile, knockdown of Tfeb, a regulator of lysosomal biogenesis and function, did not impact bile iron or ferritin levels. Bile proteomes differed between female and male mice for wild-type and hemojuvelin-deficient mice, suggesting sex and iron excess impact bile protein content. Overall, our findings support the notion that excess iron undergoes biliary excretion in genetically determined iron excess.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Jared Z Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Grace S Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Nicholas A DaSilva
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
7
|
Shen S, Han G, Dong Z, Wu S, Ma S, Ding Z, Zhao Y, Wan X. Accumulation of rare earth elements in human gallstones: a perspective from dietary and human health. BMC Gastroenterol 2024; 24:324. [PMID: 39333954 PMCID: PMC11437671 DOI: 10.1186/s12876-024-03426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Gallstone disease poses a global threat to human health and is strongly linked to environmental factors. However, there is currently no data on the presence of rare earth elements (REEs) in human gallstones. This paper investigates the concentration and distribution of REEs in gallstones for the first time, aiming to explore the environmental implications on human health. METHODS A total of 25 gallstone samples were collected in Shanghai and the content of REEs was measured by Inductively coupled plasma-Mass Spectrometry (ICP-MS) to explore the distribution of REEs in gallstones. RESULTS The concentration of REEs in gallstones ranged from 4.89 to 190.8 ng/g (mean 39.21). In most of the gallstone analyses, REEs have been detected and generally attributed to environmental exposure or food contamination. The Y/Ho ratio of gallstones was lower than that of continental rocks, similar to that in the blood, indicating limited fractionation during fluid transport processes in the gallbladder. CONCLUSIONS The upper continental crust (UCC)-normalized REEs pattern in gallstones showed depletion of light REEs, while most showed enrichment of heavy REEs. Positive Gd anomalies were found in most samples, while few samples suggested anthropogenic influence. Whether exogenous inputs or in vivo biofractionation lead to changes in REEs fractionated patterns require further analyses.
Collapse
Affiliation(s)
- Shuang Shen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Central Lab, School of Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Guilin Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, 100083, China.
- Frontiers Science Center for Deep-time Digital Earth, Institute of Earth Scineces, University of Geosciences (Beijing), 100083, Beijing, China.
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shan Wu
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shunrong Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, 100083, China
- Frontiers Science Center for Deep-time Digital Earth, Institute of Earth Scineces, University of Geosciences (Beijing), 100083, Beijing, China
| | - Ziyang Ding
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, 100083, China
- Frontiers Science Center for Deep-time Digital Earth, Institute of Earth Scineces, University of Geosciences (Beijing), 100083, Beijing, China
| | - Ye Zhao
- Nu Instruments, Wrexham Industrial Estate, 74 Clywedog Road South, 13 9XS, Wresham, LL, UK
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
8
|
James D, Poveda C, Walton GE, Elmore JS, Linden B, Gibson J, Griffin BA, Robertson MD, Lewis MC. Do high-protein diets have the potential to reduce gut barrier function in a sex-dependent manner? Eur J Nutr 2024; 63:2035-2054. [PMID: 38662018 PMCID: PMC11377480 DOI: 10.1007/s00394-024-03407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Impaired gut barrier function is associated with systemic inflammation and many chronic diseases. Undigested dietary proteins are fermented in the colon by the gut microbiota which produces nitrogenous metabolites shown to reduce barrier function in vitro. With growing evidence of sex-based differences in gut microbiotas, we determined whether there were sex by dietary protein interactions which could differentially impact barrier function via microbiota modification. METHODS Fermentation systems were inoculated with faeces from healthy males (n = 5) and females (n = 5) and supplemented with 0.9 g of non-hydrolysed proteins sourced from whey, fish, milk, soya, egg, pea, or mycoprotein. Microbial populations were quantified using fluorescence in situ hybridisation with flow cytometry. Metabolite concentrations were analysed using gas chromatography, solid phase microextraction coupled with gas chromatography-mass spectrometry and ELISA. RESULTS Increased protein availability resulted in increased proteolytic Bacteroides spp (p < 0.01) and Clostridium coccoides (p < 0.01), along with increased phenol (p < 0.01), p-cresol (p < 0.01), indole (p = 0.018) and ammonia (p < 0.01), varying by protein type. Counts of Clostridium cluster IX (p = 0.03) and concentration of p-cresol (p = 0.025) increased in males, while females produced more ammonia (p = 0.02), irrespective of protein type. Further, we observed significant sex-protein interactions affecting bacterial populations and metabolites (p < 0.005). CONCLUSIONS Our findings suggest that protein fermentation by the gut microbiota in vitro is influenced by both protein source and the donor's sex. Should these results be confirmed through human studies, they could have major implications for developing dietary recommendations tailored by sex to prevent chronic illnesses.
Collapse
Affiliation(s)
- Daniel James
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK.
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - J Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| | - Brandon Linden
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - John Gibson
- Food and Feed Innovations, Woodstock, Newcastle Rd, Woore, N Shropshire, CW3 95N, UK
| | - Bruce A Griffin
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - M Denise Robertson
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Marie C Lewis
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6DZ, UK
| |
Collapse
|
9
|
Sudo K, Delmas-Eliason A, Soucy S, Barrack KE, Liu J, Balasubramanian A, Shu CJ, James MJ, Hegner CL, Dionne HD, Rodriguez-Palacios A, Krause HM, O'Toole GA, Karpen SJ, Dawson PA, Schultz D, Sundrud MS. Quantifying Forms and Functions of Enterohepatic Bile Acid Pools in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:101392. [PMID: 39179177 PMCID: PMC11490680 DOI: 10.1016/j.jcmgh.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUNDS & AIMS Bile acids (BAs) are core gastrointestinal metabolites with dual functions in lipid absorption and cell signaling. BAs circulate between the liver and distal small intestine (i.e., ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with host intestinal cells in vivo remain poorly understood. Because ileal absorption is rate-limiting in determining which BAs in the intestinal lumen gain access to host intestinal cells and receptors, and at what concentrations, we hypothesized that defining the rates and routes of ileal BA absorption in vivo would yield novel insights into the physiological forms and functions of mouse enterohepatic BA pools. METHODS Using ex vivo mass spectrometry, we quantified 88 BA species and metabolites in the intestinal lumen and superior mesenteric vein of individual wild-type mice, and cage-mates lacking the ileal BA transporter, Asbt/Slc10a2. RESULTS Using these data, we calculated that the pool of BAs circulating through ileal tissue (i.e., the ileal BA pool) in fasting C57BL/6J female mice is ∼0.3 μmol/g. Asbt-mediated transport accounted for ∼80% of this pool and amplified size. Passive permeability explained the remaining ∼20% and generated diversity. Compared with wild-type mice, the ileal BA pool in Asbt-deficient mice was ∼5-fold smaller, enriched in secondary BA species and metabolites normally found in the colon, and elicited unique transcriptional responses on addition to exvivo-cultured ileal explants. CONCLUSIONS This study defines quantitative traits of the mouse enterohepatic BA pool and reveals how aberrant BA metabolism can impinge directly on host intestinal physiology.
Collapse
Affiliation(s)
- Koichi Sudo
- Center for Digestive Health, Dartmouth Health, Lebanon, New Hampshire
| | - Amber Delmas-Eliason
- Department of Immunology and Microbiology, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida
| | - Shannon Soucy
- Department of Biomedical Data Science, Geisel School of Medicine, Hanover, New Hampshire
| | - Kaitlyn E Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Akshaya Balasubramanian
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | | | | | - Courtney L Hegner
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida
| | - Henry D Dionne
- Center for Digestive Health, Dartmouth Health, Lebanon, New Hampshire
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia; Stravitz-Sanyal Liver Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, Virginia
| | - Paul A Dawson
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Mark S Sundrud
- Center for Digestive Health, Dartmouth Health, Lebanon, New Hampshire; Department of Immunology and Microbiology, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida; Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Dartmouth Cancer Center, Lebanon, New Hampshire.
| |
Collapse
|
10
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Bay B, Fuh MM, Rohde J, Worthmann A, Goßling A, Arnold N, Koester L, Lorenz T, Blaum C, Kirchhof P, Blankenberg S, Seiffert M, Brunner FJ, Waldeyer C, Heeren J. Sex differences in lipidomic and bile acid plasma profiles in patients with and without coronary artery disease. Lipids Health Dis 2024; 23:197. [PMID: 38926753 PMCID: PMC11201360 DOI: 10.1186/s12944-024-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Lipids, including phospholipids and bile acids, exert various signaling effects and are thought to contribute to the development of coronary artery disease (CAD). Here, we aimed to compare lipidomic and bile acid profiles in the blood of patients with and without CAD stratified by sex. METHODS From 2015 to 2022, 3,012 patients who underwent coronary angiography were recruited in the INTERCATH cohort. From the overall cohort, subgroups were defined using patient characteristics such as CAD vs. no CAD, 1st vs. 3rd tertile of LDL-c, and female vs. male sex. Hereafter, a matching algorithm based on age, BMI, hypertension status, diabetes mellitus status, smoking status, the Mediterranean diet score, and the intake of statins, triglycerides, HDL-c and hs-CRP in a 1:1 ratio was implemented. Lipidomic analyses of stored blood samples using the Lipidyzer platform (SCIEX) and bile acid analysis using liquid chromatography with tandem mass spectrometry (LC‒MS/MS) were carried out. RESULTS A total of 177 matched individuals were analyzed; the median ages were 73.5 years (25th and 75th percentile: 64.1, 78.2) and 71.9 years (65.7, 77.2) for females and males with CAD, respectively, and 67.6 years (58.3, 75.3) and 69.2 years (59.8, 76.8) for females and males without CAD, respectively. Further baseline characteristics, including cardiovascular risk factors, were balanced between the groups. Women with CAD had decreased levels of phosphatidylcholine and diacylglycerol, while no differences in bile acid profiles were detected in comparison to those of female patients without CAD. In contrast, in male patients with CAD, decreased concentrations of the secondary bile acid species glycolithocholic and lithocholic acid, as well as altered levels of specific lipids, were detected compared to those in males without CAD. Notably, male patients with low LDL-c and CAD had significantly greater concentrations of various phospholipid species, particularly plasmalogens, compared to those in high LDL-c subgroup. CONCLUSIONS We present hypothesis-generating data on sex-specific lipidomic patterns and bile acid profiles in CAD patients. The data suggest that altered lipid and bile acid composition might contribute to CAD development and/or progression, helping to understand the different disease trajectories of CAD in women and men. REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04936438 , Unique identifier: NCT04936438.
Collapse
Affiliation(s)
- Benjamin Bay
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Julia Rohde
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alina Goßling
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Arnold
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Lukas Koester
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thiess Lorenz
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Blaum
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Stefan Blankenberg
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Moritz Seiffert
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
- Department of Cardiology and Angiology, BG University Hospital Bergmannsheil, Ruhr- University Bochum, Bochum, Germany
| | - Fabian J Brunner
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Center for Population Health Innovation (POINT), University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Christoph Waldeyer
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
12
|
Cuffaro F, Russo E, Amedei A. Endometriosis, Pain, and Related Psychological Disorders: Unveiling the Interplay among the Microbiome, Inflammation, and Oxidative Stress as a Common Thread. Int J Mol Sci 2024; 25:6473. [PMID: 38928175 PMCID: PMC11203696 DOI: 10.3390/ijms25126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms, including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort, EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological manifestations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroinflammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms. In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving into the complex relationship between EM pain and psychological comorbidities. It subsequently addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common links among these abovementioned conditions. Furthermore, the review explores how dietary and nutritional interventions may influence the composition and function of the microbiome, reduce inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
13
|
Lee SH, Suh JH, Heo MJ, Choi JM, Yang Y, Jung HJ, Gao Z, Yu Y, Jung SY, Kolonin MG, Cox AR, Hartig SM, Eltzschig HK, Ju C, Moore DD, Kim KH. The Hepatokine Orosomucoid 2 Mediates Beneficial Metabolic Effects of Bile Acids. Diabetes 2024; 73:701-712. [PMID: 38320268 PMCID: PMC11043061 DOI: 10.2337/db23-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
Bile acids (BAs) are pleiotropic regulators of metabolism. Elevated levels of hepatic and circulating BAs improve energy metabolism in peripheral organs, but the precise mechanisms underlying the metabolic benefits and harm still need to be fully understood. In the current study, we identified orosomucoid 2 (ORM2) as a liver-secreted hormone (i.e., hepatokine) induced by BAs and investigated its role in BA-induced metabolic improvements in mouse models of diet-induced obesity. Contrary to our expectation, under a high-fat diet (HFD), our Orm2 knockout (Orm2-KO) exhibited a lean phenotype compared with C57BL/6J control, partly due to the increased energy expenditure. However, when challenged with a HFD supplemented with cholic acid, Orm2-KO eliminated the antiobesity effect of BAs, indicating that ORM2 governs BA-induced metabolic improvements. Moreover, hepatic ORM2 overexpression partially replicated BA effects by enhancing insulin sensitivity. Mechanistically, ORM2 suppressed interferon-γ/STAT1 activities in inguinal white adipose tissue depots, forming the basis for anti-inflammatory effects of BAs and improving glucose homeostasis. In conclusion, our study provides new insights into the molecular mechanisms of BA-induced liver-adipose cross talk through ORM2 induction. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sung Ho Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, Korea
| | - Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Mi Jeong Heo
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jong Min Choi
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Yang Yang
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Hyun-Jung Jung
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Aaron R. Cox
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | - Sean M. Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
14
|
Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 2024; 21:348-364. [PMID: 38383804 PMCID: PMC11558780 DOI: 10.1038/s41575-024-00896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-Bjӧrkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
15
|
Majait S, Meessen ECE, Davids M, Chahid Y, Olde Damink SW, Schaap FG, Kemper EM, Nieuwdorp M, Soeters MR. Age-Dependent Differences in Postprandial Bile-Acid Metabolism and the Role of the Gut Microbiome. Microorganisms 2024; 12:764. [PMID: 38674708 PMCID: PMC11052118 DOI: 10.3390/microorganisms12040764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Ageing changes the impact of nutrition, whereby inflammation has been suggested to play a role in age-related disabilities such as diabetes and cardiovascular disease. The aim of this study was to investigate differences in postprandial bile-acid response and its effect on energy metabolism between young and elderly people. Nine young, healthy men and nine elderly, healthy men underwent a liquid mixed-meal test. Postprandial bile-acid levels, insulin, glucose, GLP-1, C4, FGF19 and lipids were measured. Appetite, body composition, energy expenditure and gut microbiome were also measured. The elderly population showed lower glycine conjugated CDCA and UDCA levels and higher abundances of Ruminiclostridium, Marvinbryantia and Catenibacterium, but lower food intake, decreased fat free mass and increased cholesterol levels. Aging is associated with changes in postprandial bile-acid composition and microbiome, diminished hunger and changes in body composition and lipid levels. Further studies are needed to determine if these changes may contribute to malnutrition and sarcopenia in elderly.
Collapse
Affiliation(s)
- Soumia Majait
- Department of Pharmacy and Clinical Pharmacy, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (S.M.); (Y.C.)
| | - Emma C. E. Meessen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (M.D.); (M.N.)
| | - Youssef Chahid
- Department of Pharmacy and Clinical Pharmacy, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (S.M.); (Y.C.)
| | - Steven W. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.W.O.D.); (F.G.S.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Frank G. Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.W.O.D.); (F.G.S.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Ellis Marleen Kemper
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (M.D.); (M.N.)
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
16
|
Chen T, Wang L, Xie G, Kristal BS, Zheng X, Sun T, Arnold M, Louie G, Li M, Wu L, Mahmoudiandehkordi S, Sniatynski MJ, Borkowski K, Guo Q, Kuang J, Wang J, Nho K, Ren Z, Kueider‐Paisley A, Blach C, Kaddurah‐Daouk R, Jia W. Serum Bile Acids Improve Prediction of Alzheimer's Progression in a Sex-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306576. [PMID: 38093507 PMCID: PMC10916590 DOI: 10.1002/advs.202306576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Indexed: 03/07/2024]
Abstract
Sex disparities in serum bile acid (BA) levels and Alzheimer's disease (AD) prevalence have been established. However, the precise link between changes in serum BAs and AD development remains elusive. Here, authors quantitatively determined 33 serum BAs and 58 BA features in 4 219 samples collected from 1 180 participants from the Alzheimer's Disease Neuroimaging Initiative. The findings revealed that these BA features exhibited significant correlations with clinical stages, encompassing cognitively normal (CN), early and late mild cognitive impairment, and AD, as well as cognitive performance. Importantly, these associations are more pronounced in men than women. Among participants with progressive disease stages (n = 660), BAs underwent early changes in men, occurring before AD. By incorporating BA features into diagnostic and predictive models, positive enhancements are achieved for all models. The area under the receiver operating characteristic curve improved from 0.78 to 0.91 for men and from 0.76 to 0.83 for women for the differentiation of CN and AD. Additionally, the key findings are validated in a subset of participants (n = 578) with cerebrospinal fluid amyloid-beta and tau levels. These findings underscore the role of BAs in AD progression, offering potential improvements in the accuracy of AD prediction.
Collapse
Affiliation(s)
- Tianlu Chen
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lu Wang
- School of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong Kong999077China
| | | | - Bruce S. Kristal
- Division of Sleep and Circadian DisordersDepartment of MedicineBrigham and Women's HospitalBostonMA02115USA
- Division of Sleep MedicineHarvard Medical SchoolBostonMA02115USA
| | - Xiaojiao Zheng
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Tao Sun
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Matthias Arnold
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNC27710USA
- Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental Health85764NeuherbergGermany
| | - Gregory Louie
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNC27710USA
| | - Mengci Li
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Lirong Wu
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | | | - Matthew J. Sniatynski
- Division of Sleep and Circadian DisordersDepartment of MedicineBrigham and Women's HospitalBostonMA02115USA
- Division of Sleep MedicineHarvard Medical SchoolBostonMA02115USA
| | - Kamil Borkowski
- West Coast Metabolomics CenterGenome CenterUniversity of California DavisDavisCA95616USA
| | - Qihao Guo
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Junliang Kuang
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Jieyi Wang
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer Disease CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Zhenxing Ren
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | | | - Colette Blach
- Duke Molecular Physiology InstituteDuke UniversityDurhamNC27708USA
| | - Rima Kaddurah‐Daouk
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNC27710USA
- Duke Institute of Brain SciencesDuke UniversityDurhamNC27708USA
- Department of MedicineDuke UniversityDurhamNC27708USA
| | - Wei Jia
- Center for Translational MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
- School of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong Kong999077China
| | | |
Collapse
|
17
|
Fitzinger J, Rodriguez-Blanco G, Herrmann M, Borenich A, Stauber R, Aigner E, Mangge H. Gender-Specific Bile Acid Profiles in Non-Alcoholic Fatty Liver Disease. Nutrients 2024; 16:250. [PMID: 38257143 PMCID: PMC10821077 DOI: 10.3390/nu16020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is increasing worldwide. A main cause is the obesogenic, so-called Western lifestyle. NAFLD follows a long, unperceived course, and ends potentially fatally. Early diagnosis of aggressive subtypes saves lives. So far, non-invasive means of detection are limited. A better understanding of the pathogenic interplay among insulin resistance, immune inflammation, microbiome, and genetic background is important. Metabolomics may give insight into these interlaced processes. METHODS In this study, we measured bile acids (BA) in the plasma of adult NAFLD and alcohol-associated liver disease (ALD) patients and healthy controls with targeted mass spectrometry. We focused on gender-related bile acid production pathology in NAFLD and ALD. RESULTS Compared to healthy controls, women with NAFLD had significantly higher concentrations of total BA, total primary BA, total cholic (CA), total chenodeoxycholic (CDCA), total glycine-conjugated, and total non-12-a-OH BA. Concerning subtypes, glycocholic (GCA) and glycochenodeoxycholic (GCDCA), BA were elevated in women with NAFLD. In contrast, men with NAFLD had no significantly altered total BA fractions. However, the subtypes GCA, glycodeoxycholic (GDCA), glycolithocholic (GLCA), lithocholic (LCA), taurolithocholic (TLCA), and tauroursodeoxycholic acid (TUDCA) were elevated, while CA was significantly decreased. In NAFLD, except ursodeoxycholic acid (UDC), all total BA correlated significantly positively in both sexes with the ELF score, while in ALD, only males showed significant correlations exceptive for total UDC BA. In NAFLD, total BA, total primary BA, total secondary BA, total free secondary BA, total CA, total CDCA, total taurine conjugated, total glycine conjugated, total 12-a-OH, and total non-12-a-OH were significantly higher in cases of a high enhanced liver fibrosis (ELF) score above 9.8. In ALD, total UDC was additionally elevated. Between NAFLD with and without NASH, we found no significant differences. CONCLUSION Our data show gender-specific bile acid profiles in NAFLD and markedly different BA patterns in ALD. Women with NAFLD had more severe cholestasis. Men may better compensate fat storage-driven bile acid dynamics, indicated by higher levels of taurine-conjugated BA, which associate with beneficial metabolic functions.
Collapse
Affiliation(s)
- Julia Fitzinger
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| | - Giovanny Rodriguez-Blanco
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| | - Andrea Borenich
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria;
| | - Rudolf Stauber
- Division of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria;
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria; (J.F.); (M.H.)
| |
Collapse
|
18
|
Usselman CW, Lindsey ML, Robinson AT, Habecker BA, Taylor CE, Merryman WD, Kimmerly D, Bender JR, Regensteiner JG, Moreau KL, Pilote L, Wenner MM, O'Brien M, Yarovinsky TO, Stachenfeld NS, Charkoudian N, Denfeld QE, Moreira-Bouchard JD, Pyle WG, DeLeon-Pennell KY. Guidelines on the use of sex and gender in cardiovascular research. Am J Physiol Heart Circ Physiol 2024; 326:H238-H255. [PMID: 37999647 PMCID: PMC11219057 DOI: 10.1152/ajpheart.00535.2023] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
In cardiovascular research, sex and gender have not typically been considered in research design and reporting until recently. This has resulted in clinical research findings from which not only all women, but also gender-diverse individuals have been excluded. The resulting dearth of data has led to a lack of sex- and gender-specific clinical guidelines and raises serious questions about evidence-based care. Basic research has also excluded considerations of sex. Including sex and/or gender as research variables not only has the potential to improve the health of society overall now, but it also provides a foundation of knowledge on which to build future advances. The goal of this guidelines article is to provide advice on best practices to include sex and gender considerations in study design, as well as data collection, analysis, and interpretation to optimally establish rigor and reproducibility needed to inform clinical decision-making and improve outcomes. In cardiovascular physiology, incorporating sex and gender is a necessary component when optimally designing and executing research plans. The guidelines serve as the first guidance on how to include sex and gender in cardiovascular research. We provide here a beginning path toward achieving this goal and improve the ability of the research community to interpret results through a sex and gender lens to enable comparison across studies and laboratories, resulting in better health for all.
Collapse
Affiliation(s)
- Charlotte W Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Merry L Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, United States
- Research Service, Nashville Veterans Affairs Medical Center, Nashville, Tennessee, United States
| | - Austin T Robinson
- Neurovascular Physiology Laboratory, School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Chloe E Taylor
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Derek Kimmerly
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey R Bender
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Judith G Regensteiner
- Divisions of General Internal Medicine and Cardiology, Department of Medicine, Ludeman Family Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, Colorado, United States
| | - Louise Pilote
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Myles O'Brien
- School of Physiotherapy and Department of Medicine, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Timur O Yarovinsky
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, New Haven, Connecticut, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Quin E Denfeld
- School of Nursing and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Jesse D Moreira-Bouchard
- Q.U.E.E.R. Lab, Programs in Human Physiology, Department of Health Sciences, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston, Massachusetts, United States
| | - W Glen Pyle
- IMPART Team Canada Network, Dalhousie Medicine, Saint John, New Brunswick, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kristine Y DeLeon-Pennell
- School of Medicine, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
19
|
Ismail A, Kennedy L, Francis H. Sex-Dependent Differences in Cholestasis: Why Estrogen Signaling May Be a Key Pathophysiological Driver. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1355-1362. [PMID: 37422150 PMCID: PMC10548272 DOI: 10.1016/j.ajpath.2023.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are cholestatic liver diseases that have significant clinical impact with debilitating symptoms and mortality. While PBC is predominantly seen in perimenopausal and postmenopausal women, men who are diagnosed with PBC have worse clinical outcomes and all-cause mortality. In contrast, 60% to 70% of patients with PSC are men; the data indicate that female sex may be an independent factor against PSC-related complications. These findings suggest a sex-dependent biological basis for these differences. Estrogen has been implicated in the pathogenesis of intrahepatic cholestasis of pregnancy and may induce cholestasis through a variety of interactions. However, it is unclear why some sexual dimorphic features may provide a protective effect despite known estrogen models that induce cholestasis. This article provides a brief introductory background and discusses the sexual dimorphism in clinical presentation in PSC and PBC. It also explores the role of estrogen signaling in pathogenesis and how it relates to intrahepatic cholestasis of pregnancy. Studies have already targeted certain molecules involved in estrogen signaling, and this review discusses these studies that identify estrogen-related receptor, estrogen receptor-α, estrogen receptor-β, farnesoid X receptor, and mast cells as possible targets, in addition to long noncoding RNA H19-induced cholestasis and sexual dimorphism. It also explores these interactions and their role in the pathogenesis of PBC and PSC.
Collapse
Affiliation(s)
- AbdiGhani Ismail
- Division of Internal Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
20
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
21
|
Alfhili MA, Alotaibi GA, Alfaifi M, Almoghrabi Y, Alsughayyir J. Association of Platelet-Monocyte Ratio with Dyslipidemia in Saudi Arabia: A Large, Population-Based Study. Life (Basel) 2023; 13:1685. [PMID: 37629542 PMCID: PMC10455526 DOI: 10.3390/life13081685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Abnormal lipid metabolism predisposes to cardiovascular disease. However, dyslipidemia is often asymptomatic leading to its underdiagnosis. Therefore, it is of utmost importance to identify biomarkers that reflect an abnormal lipid profile and trigger the specific investigation of lipid metabolism. The platelet-monocyte ratio (PMR) is a severely understudied index whose association with disturbed lipid markers remains unknown. METHODS A cross-sectional study of the association between PMR and comprehensive lipid profile including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), TC/HDL, LDL/HDL, and TG/HDL in 14,269 Saudi subjects was designed. Prevalence, risk measures, association, and the diagnostic performance (i.e., area under the curve (AUC)) were evaluated. RESULTS Median PMR was significantly elevated in subjects with high TC (p < 0.01), TG, TC/HDL, LDL/HDL, TG/HDL, and LDL and reduced in those with low HDL (all p < 0.0001) compared to normal subjects. The increase in PMR was abolished when only males with high TC were considered. Except for TC and LDL, all other abnormal markers were significantly more prevalent when PMR was lower (higher for HDL) than a certain cutoff specific for each parameter. Moreover, the odds of having PMR readings above or below the selected cutoffs are significantly higher with all lipid abnormalities. PMR was also weakly but significantly and differentially correlated with all forms of dyslipidemia (p < 0.0001). Notably, the highest diagnostic accuracy of PMR was observed for reduced HDL (AUC = 0.608, p < 0.0001) and elevated TG/HDL (AUC = 0.596, p < 0.0001). CONCLUSIONS PMR is a novel, inexpensive, and readily available index that is associated with all forms of dyslipidemia, suggesting its potential use in related disorders.
Collapse
Affiliation(s)
- Mohammad A. Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Ghada A. Alotaibi
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Yousef Almoghrabi
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Research and Development, Al Borg Diagnostics, Jeddah 23523, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
22
|
Yeoh BS, Golonka RM, Saha P, Kandalgaonkar MR, Tian Y, Osman I, Patterson AD, Gewirtz AT, Joe B, Vijay-Kumar M. Urine-based Detection of Congenital Portosystemic Shunt in C57BL/6 Mice. FUNCTION 2023; 4:zqad040. [PMID: 37575479 PMCID: PMC10413929 DOI: 10.1093/function/zqad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Sporadic occurrence of congenital portosystemic shunt (PSS) at a rate of ∼1 out of 10 among C57BL/6 J mice, which are widely used in biomedical research, results in aberrancies in serologic, metabolic, and physiologic parameters. Therefore, mice with PSS should be identified as outliers in research. Accordingly, we sought methods to, reliably and efficiently, identify PSS mice. Serum total bile acids ≥ 40 µm is a bona fide biomarker of PSS in mice but utility of this biomarker is limited by its cost and invasiveness, particularly if large numbers of mice are to be screened. This led us to investigate if assay of urine might serve as a simple, inexpensive, noninvasive means of PSS diagnosis. Metabolome profiling uncovered that Krebs cycle intermediates, that is, citrate, α-ketoglutarate, and fumarate, were strikingly and distinctly elevated in the urine of PSS mice. We leveraged the iron-chelating and pH-lowering properties of such metabolites as the basis for 3 urine-based PSS screening tests: urinary iron-chelation assay, pH strip test, and phenol red assay. Our findings demonstrate the feasibility of using these colorimetric assays, whereby their readout can be assessed by direct observation, to diagnose PSS in an inexpensive, rapid, and noninvasive manner. Application of our urinary PSS screening protocols can aid biomedical research by enabling stratification of PSS mice, which, at present, likely confound numerous ongoing studies.
Collapse
Affiliation(s)
- Beng San Yeoh
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M Golonka
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Mrunmayee R Kandalgaonkar
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Islam Osman
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bina Joe
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
23
|
Shen Y, Jiang B, Zhang C, Wu Q, Li L, Jiang P. Combined Inhibition of the TGF-β1/Smad Pathway by Prevotella copri and Lactobacillus murinus to Reduce Inflammation and Fibrosis in Primary Sclerosing Cholangitis. Int J Mol Sci 2023; 24:11010. [PMID: 37446187 DOI: 10.3390/ijms241311010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic disease characterized by inflammation and fibrosis of the bile ducts. Cholestasis may lead to hepatic inflammation and fibrosis, and amelioration of cholestasis may allow recovery from inflammatory and fibrotic pathological damage. Prevotella copri (P. copri) interventions have been reported to significantly improve cholestasis and liver fibrosis in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced PSC mouse models. Even though P. copri treatment alone cannot bring about recovery from DDC-induced inflammation, it increases the abundance of Lactobacillus murinus (L. murinus) compared with DDC treatment, which has been reported to have anti-inflammatory effects. The abundance of L. murinus still not recovering to a normal level may underlie hepatic inflammation in P. copri + DDC mice. Separate or combined interventions of P. copri and L. murinus were used to investigate the molecular mechanism underlying the improvement in PSC inflammation and fibrosis. P. copri and L. murinus significantly reduced the hepatic inflammatory cell aggregation and inflammatory factor expression as well as the hepatic collagen content and fibrin factor expression in the PSC mice. Further analysis of phosphorylation and dephosphorylation levels revealed that treating the PSC mice with the P. copri and L. murinus combined intervention inhibited the activity of the DDC-activated TGF-β1/Smad pathway, thereby reducing liver inflammation and fibrosis. The combination of P. copri and L. murinus inhibits the TGF-β1/Smad pathway and reduces inflammation and fibrosis in PSC.
Collapse
Affiliation(s)
- Yu Shen
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Baorong Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Chenchen Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| |
Collapse
|
24
|
Wahlang B. RISING STARS: Sex differences in toxicant-associated fatty liver disease. J Endocrinol 2023; 258:e220247. [PMID: 37074385 PMCID: PMC10330380 DOI: 10.1530/joe-22-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
25
|
Ma Y, Wang H, Yang J, Xin M, Wu X. Gentamicin alleviates cholestatic liver injury by decreasing gut microbiota-associated bile salt hydrolase activity in rats. Eur J Pharmacol 2023; 951:175790. [PMID: 37179041 DOI: 10.1016/j.ejphar.2023.175790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Intrahepatic cholestasis lacks effective therapeutic drugs. The gut microbiota-associated bile salt hydrolases (BSH) may be a potential therapeutic target. In this study, oral administration of gentamicin (GEN) decreased the serum and hepatic levels of total bile acid in 17α-ethynylestradiol (EE)-induced cholestatic male rats, significantly improved the serum levels of hepatic biomarkers and reversed the histopathological changes in the liver. In healthy male rats, the serum and hepatic levels of total bile acid were also decreased by GEN, the ratio of primary to secondary bile acids, and conjugated to unconjugated bile acids was significantly increased, and the urinary excretion of total bile acid was elevated. 16S rDNA sequencing of the ileal contents revealed that GEN treatment substantially reduced the abundance of Lactobacillus and Bacteroides both of which expressed BSH. Consistently, BSH activity analysis by the generation of d5-chenodeoxycholic acid from d5-taurochenodeoxycholic acid in situ showed BSH was significantly inhibited in the ileal contents of rats treated with GEN. This finding led to an increased proportion of hydrophilic conjugated bile acids and facilitated the urinary excretion of total bile acids, thereby decreasing serum and hepatic total bile acids and reversing liver injury related to cholestasis. Our results provide important evidence that BSH can be a potential drug target for treating cholestasis.
Collapse
Affiliation(s)
- Yanrong Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Huan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Jinru Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Mingyan Xin
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Xinan Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
26
|
Gaur A, Nayak P, Ghosh S, Sengupta T, Sakthivadivel V. Aluminum as a Possible Cause Toward Dyslipidemia. Indian J Occup Environ Med 2023; 27:112-119. [PMID: 37600652 PMCID: PMC10434801 DOI: 10.4103/ijoem.ijoem_349_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/24/2022] [Indexed: 08/22/2023] Open
Abstract
Aluminum, the third most abundant metal present in the earth's crust, is present almost in all daily commodities we use, and exposure to it is unavoidable. The interference of aluminum with various biochemical reactions in the body leads to detrimental health effects, out of which aluminum-induced neurodegeneration is widely studied. However, the effect of aluminum in causing dyslipidemia cannot be neglected. Dyslipidemia is a global health problem, which commences to the cosmic of non-communicable diseases. The interference of aluminum with various iron-dependent enzymatic activities in the tri-carboxylic acid cycle and electron transport chain results in decreased production of mitochondrial adenosine tri-phosphate. This ultimately contributes to oxidative stress and iron-mediated lipid peroxidation. This mitochondrial dysfunction along with modulation of α-ketoglutarate and L-carnitine perturbs lipid metabolism, leading to the atypical accumulation of lipids and dyslipidemia. Respiratory chain disruption because of the accumulation of reduced nicotinamide adenine di-nucleotide as a consequence of oxidative stress and the stimulatory effect of aluminum exposure on glycolysis causes many health issues including fat accumulation, obesity, and other hepatic disorders. One major factor contributing to dyslipidemia and enhanced pro-inflammatory responses is estrogen. Aluminum, being a metalloestrogen, modulates estrogen receptors, and in this world of industrialization and urbanization, we could corner down to metals, particularly aluminum, in the development of dyslipidemia. As per PRISMA guidelines, we did a literature search in four medical databases to give a holistic view of the possible link between aluminum exposure and various biochemical events leading to dyslipidemia.
Collapse
Affiliation(s)
- Archana Gaur
- Department of Physiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Prasunpriya Nayak
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sutirtha Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Trina Sengupta
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Varatharajan Sakthivadivel
- Department of General Medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| |
Collapse
|
27
|
Manaig YJY, Mármol-Sánchez E, Castelló A, Esteve-Codina A, Sandrini S, Savoini G, Agazzi A, Sánchez A, Folch JM. Exon-intron split analysis reveals posttranscriptional regulatory signals induced by high and low n-6/n-3 polyunsaturated fatty acid ratio diets in piglets. J Anim Sci 2023; 101:skad271. [PMID: 37561402 PMCID: PMC10503648 DOI: 10.1093/jas/skad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Polyunsaturated fatty acids (PUFA), such as omega-6 (n-6) and omega-3 (n-3), play a vital role in nutrient metabolism, inflammatory response, and gene regulation. microRNAs (miRNA), which can potentially degrade targeted messenger RNAs (mRNA) and/or inhibit their translation, might play a relevant role in PUFA-related changes in gene expression. Although differential expression analyses can provide a comprehensive picture of gene expression variation, they are unable to disentangle when in the mRNA life cycle the regulation of expression is taking place, including any putative functional miRNA-driven repression. To capture this, we used an exon-intron split analysis (EISA) approach to account for posttranscriptional changes in response to extreme values of n-6/n-3 PUFA ratio. Longissimus dorsi muscle samples of male and female piglets from sows fed with n-6/n-3 PUFA ratio of 13:1 (SOY) or 4:1 (LIN), were analyzed in a bidirectional contrast (LIN vs. SOY, SOY vs. LIN). Our results allowed the identification of genes showing strong posttranscriptional downregulation signals putatively targeted by significantly upregulated miRNA. Moreover, we identified genes primarily involved in the regulation of lipid-related metabolism and immune response, which may be associated with the pro- and anti-inflammatory functions of the n-6 and n-3 PUFA, respectively. EISA allowed us to uncover regulatory networks complementing canonical differential expression analyses, thus providing a more comprehensive view of muscle metabolic changes in response to PUFA concentration.
Collapse
Affiliation(s)
- Yron Joseph Yabut Manaig
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi 26900, Italy
| | - Emilio Mármol-Sánchez
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 11418, Sweden
- Centre for Palaeogenetics, Stockholm 10691, Sweden
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Anna Esteve-Codina
- Functional Genomics, CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Silvia Sandrini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi 26900, Italy
| | - Giovanni Savoini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi 26900, Italy
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi 26900, Italy
| | - Armand Sánchez
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Josep M Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| |
Collapse
|
28
|
Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Competition between enzymatic and non-enzymatic electrochemical determination of cholesterol. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117169] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Giannini C, Mastromauro C, Scapaticci S, Gentile C, Chiarelli F. Role of bile acids in overweight and obese children and adolescents. Front Endocrinol (Lausanne) 2022; 13:1011994. [PMID: 36531484 PMCID: PMC9747777 DOI: 10.3389/fendo.2022.1011994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Bile acids (BAs) are amphipathic molecules synthetized in the liver. They are primarily involved in the digestion of nutrients. Apart from their role in dietary lipid absorption, BAs have progressively emerged as key regulators of systemic metabolism and inflammation. In the last decade, it became evident that BAs are particularly important for the regulation of glucose, lipid, and energy metabolism. Indeed, the interest in role of BA in metabolism homeostasis is further increased due to the global public health increase in obesity and related complications and a large number of research postulating that there is a close mutual relationship between BA and metabolic disorders. This strong relationship seems to derive from the role of BAs as signaling molecules involved in the regulation of a wide spectrum of metabolic pathways. These actions are mediated by different receptors, particularly nuclear farnesoid X receptor (FXR) and Takeda G protein coupled receptor 5 (TGR5), which are probably the major effectors of BA actions. These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in BA, lipid and carbohydrate metabolism, energy expenditure, and inflammation. The large correlation between BAs and metabolic disorders offers the possibility that modulation of BAs could be used as a therapeutic approach for the treatment of metabolic diseases, including obesity itself. The aim of this review is to describe the main physiological and metabolic actions of BA, focusing on its signaling pathways, which are important in the regulation of metabolism and might provide new BA -based treatments for metabolic diseases.
Collapse
Affiliation(s)
- Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | | | | |
Collapse
|
30
|
Qin R, Tian G, Liu J, Cao L. The gut microbiota and endometriosis: From pathogenesis to diagnosis and treatment. Front Cell Infect Microbiol 2022; 12:1069557. [PMID: 36506023 PMCID: PMC9729346 DOI: 10.3389/fcimb.2022.1069557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Endometriosis is a common gynecological disease, that often leads to pain and infertility. At present, the specific pathogenesis of endometriosis has not been clarified, but it may be closely related to an imbalance of sex hormones in the body, ectopic hyperplasia stimulated by immune inflammation, and invasion and escape based on tumor characteristics. Gut microbiota is associated with many inflammatory diseases. With the further study of the gut microbiota, people are paying increasing attention to its relationship with endometriosis. Studies have shown that there is an association between the gut microbiota and endometriosis. The specific ways and mechanisms by which the gut microbiota participates in endometriosis may involve estrogen, immune inflammation, and tumor characteristics, among others. Therefore, in the future, regulating gut microbiota disorders in various ways can help in the treatment of endometriosis patients. This study reviewed the research on the gut microbiota and endometriosis in order to provide ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Rui Qin
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Gengren Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lu Cao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Lu Cao,
| |
Collapse
|
31
|
Wang R, Yuan T, Sun J, Yang M, Chen Y, Wang L, Wang Y, Chen W, Peng D. Paeoniflorin alleviates 17α-ethinylestradiol-induced cholestasis via the farnesoid X receptor-mediated bile acid homeostasis signaling pathway in rats. Front Pharmacol 2022; 13:1064653. [PMID: 36479204 PMCID: PMC9719974 DOI: 10.3389/fphar.2022.1064653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/07/2022] [Indexed: 08/18/2024] Open
Abstract
Cholestasis, characterized by disturbance of bile formation, is a common pathological condition that can induce several serious liver diseases. As a kind of trigger, estrogen-induced cholestasis belongs to drug-induced cholestasis. Paeoniflorin is the most abundant bioactive constituent in Paeonia lactiflora Pall., Paeonia suffruticosa Andr., or Paeonia veitchii Lynch, a widely used herbal medicine for treating hepatic disease over centuries in China. However, the pharmacologic effect and mechanism of paeoniflorin on estrogen-induced cholestasis remain unclear. In this experiment, the pharmacological effect of paeoniflorin on EE-induced cholestasis in rats was evaluated comprehensively for the first time. Ultra-high-performance liquid chromatography coupled with Q-Exactive orbitrap mass spectrometer was used to monitor the variation of bile acid levels and composition. It was demonstrated that paeoniflorin alleviated 17α-ethinylestradiol (EE)-induced cholestasis dose-dependently, characterized by a decrease of serum biochemical indexes, recovery of bile flow, amelioration of hepatic and ileal histopathology, and reduction of oxidative stress. In addition, paeoniflorin intervention restored EE-disrupted bile acid homeostasis in enterohepatic circulation. Further mechanism studies using western blot, quantitative Real-Time PCR, and immunohistochemical showed that paeoniflorin could upregulate hepatic efflux transporters expression but downregulate hepatic uptake transporter expression. Meanwhile, paeoniflorin reduced bile acids synthesis by repressing cholesterol 7α-hydroxylase in hepatocytes. Paeoniflorin affected the above transporters and enzyme via activation of a nuclear receptor, farnesoid X receptor (FXR), which was recognized as a vital regulator for maintaining bile acid homeostasis. In conclusion, paeoniflorin alleviated EE-induced cholestasis and maintained bile acid homeostasis via FXR-mediated regulation of bile acids transporters and synthesis enzyme. The findings indicated that paeoniflorin might exert a potential therapeutic medicine for estrogen-induced cholestasis.
Collapse
Affiliation(s)
- Rulin Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Tengteng Yuan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Jing Sun
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Menghuan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Yunna Chen
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
- College of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Yanyan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| |
Collapse
|
32
|
Majsterek M, Wierzchowska-Opoka M, Makosz I, Kreczyńska L, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B. Bile Acids in Intrahepatic Cholestasis of Pregnancy. Diagnostics (Basel) 2022; 12:2746. [PMID: 36359589 PMCID: PMC9688989 DOI: 10.3390/diagnostics12112746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2023] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common, reversible, and closely related to pregnancy condition characterized by elevated levels of bile acids (BAs) in blood serum and an increased risk of adverse perinatal outcomes. Due to the complex interactions between the mother and the fetus in metabolism and transplacental BAs transport, ICP is classified as a fetal-maternal disease. The disease is usually mild in pregnant women, but it can be fatal to the fetus, leading to numerous complications, including intrauterine death. The pathophysiology of the disease is based on inflammatory mechanisms caused by elevated BA levels. Although ICP cannot be completely prevented, its early diagnosis and prompt management significantly reduce the risk of fetal complications, the most serious of which is unexpected intrauterine death. It is worth emphasizing that all diagnostics and management of ICP during pregnancy are based on BA levels. Therefore, it is important to standardize the criteria for diagnosis, as well as recommendations for management depending on the level of BAs, which undoubtedly determines the impact on the fetus. The purpose of this review is to present the potential and importance of BAs in the detection and rules of medical procedure in ICP.
Collapse
Affiliation(s)
| | | | | | | | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | | |
Collapse
|
33
|
Kopacz A, Kloska D, Fichna J, Klimczyk D, Kopec M, Jozkowicz A, Piechota-Polanczyk A. The lack of transcriptionally active Nrf2 triggers colon dysfunction in female mice - The role of estrogens. Free Radic Biol Med 2022; 192:141-151. [PMID: 36155082 DOI: 10.1016/j.freeradbiomed.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM The proper functioning of the gastrointestinal system relies on an intricate crosstalk between a plethora of cell types and signaling pathways. Recently we identified that the lack of NRF2 transcriptional activity (NRF2 tKO) triggers significant colon microscopical alterations, still they do not affect the general functioning of mice. Therefore, in this study, we aimed to address the gender-dependent impact of NRF2 transcriptional deficiency on colon function, and relate them to an established model of inflammatory bowel disease (IBD). METHODS In the study we subjected 3- and 6-month old mice deficient in IL-10 and NRF2 transcriptional activity and wild-type counterparts to tests assessing colon functionality, and histological analyses. To address the role of estrogens, we attempted to rescue the phenotype by the delivery of 17β-estradiol through subcutaneous implants. RESULTS In females, NRF2 transcriptional abrogation, like IL-10 deficiency, triggers a functional and microscopic phenotype, that resembles IBD. The females are significantly more affected by the dysfunctional phenotype, and the functional impairmentdecreases with age. We found that NRF2 transcriptional activity influences 17β-estradiol level and the estrogen receptors expression and location. Exogenous delivery of 17β-estradiol normalized colon motility in the NRF2 tKO mice, which is related to enhanced ERβ signaling. CONCLUSIONS Summing up, in this study, we underline that NRF2 transcriptional deficiency or the lack of IL-10 results in pronounced GI functional decline in young females. Mechanistically, we show that the impaired distal colon motility is dependent on ERβ signaling. Targeting estrogen signaling seems a promising therapeutic strategy to counteract colonic dysfunction.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Dominika Klimczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Kopec
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Piechota-Polanczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
34
|
Ma W, Zhang Y, Pan L, Wang S, Xie K, Deng S, Wang R, Guo C, Qin P, Wu X, Wu Y, Zhao Y, Feng Y, Hu F. Association of Egg Consumption with Risk of All-Cause and Cardiovascular Disease Mortality: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. J Nutr 2022; 152:2227-2237. [PMID: 35524693 DOI: 10.1093/jn/nxac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/18/2021] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recent studies have reported conflicting associations between egg consumption and the risk of all-cause or cardiovascular disease (CVD) mortality, including ischemic heart disease (IHD) mortality and stroke mortality. With accumulating evidence, up-to-date evidence about the association should be synthesized. OBJECTIVES We aimed to assess the association of the risk of all-cause and CVD mortality with egg consumption. METHODS We searched the PubMed, Embase, and Web of Science databases through 3 November, 2021 for observational studies conducted in participants ≥18 y of age and which provided ORs, RRs, or HRs and 95% CIs for ≥3 egg consumption categories or for increased intake of egg addressing the associations of interest. A random-effects model was used to pool the reported risk estimates. Restricted cubic splines were used to examine the dose-response association. RESULTS Twenty-four articles with 48 reports (25 for all-cause mortality, 11 for CVD mortality, 6 for IHD mortality, and 6 for stroke mortality) involving 11,890,695 participants were included. Intake of each 1-egg/d increment was associated with increased risk of all-cause mortality (RR: 1.06; 95% CI: 1.02, 1.10; P = 0.008), but the association was restricted to women, Americans, and studies with adjustments for hyperlipidemia. Egg consumption was linearly associated with CVD mortality only in participants >60 y of age, Americans, studies with follow-up duration ≥15 y, and studies with adjustments for hyperlipidemia (P ≤ 0.018). No significant association was found between egg consumption and IHD or stroke mortality (P ≥ 0.080). CONCLUSIONS Egg consumption was linearly associated with a modestly increased risk of all-cause mortality and, in older participants, Americans, and studies with longer follow-up or adjustments for hyperlipidemia, CVD mortality. These findings suggest that it may be prudent to avoid high egg consumption.
Collapse
Affiliation(s)
- Wancheng Ma
- Department of Non-communicable Disease Prevention and Control, Shenzhen Luohu Center for Chronic Disease Control, Shenzhen, China
| | - Yanyan Zhang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Luohu Center for Chronic Disease Control, Shenzhen, China
| | - Li Pan
- Department of Comprehensive Ward, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Sijia Wang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Luohu Center for Chronic Disease Control, Shenzhen, China
| | - Kui Xie
- Department of Non-communicable Disease Prevention and Control, Shenzhen Luohu Center for Chronic Disease Control, Shenzhen, China
| | - Shan Deng
- Department of Non-communicable Disease Prevention and Control, Shenzhen Luohu Center for Chronic Disease Control, Shenzhen, China
| | - Rui Wang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Luohu Center for Chronic Disease Control, Shenzhen, China
| | - Chunjiang Guo
- Department of Non-communicable Disease Prevention and Control, Shenzhen Luohu Center for Chronic Disease Control, Shenzhen, China
| | - Pei Qin
- Department of Medical Record Management, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Xiaoyan Wu
- Department of Cardiovascular and Cerebrovascular Disease Prevention and Control, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Yuying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Yifei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Fulan Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
35
|
Impact of Blueberry Consumption on the Human Fecal Bileacidome: A Pilot Study of Bile Acid Modulation by Freeze-Dried Blueberry. Nutrients 2022; 14:nu14183857. [PMID: 36145234 PMCID: PMC9501813 DOI: 10.3390/nu14183857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Cholesterol-derived bile acids (BAs) affect numerous physiological functions such as glucose homeostasis, lipid metabolism and absorption, intestinal inflammation and immunity, as well as intestinal microbiota diversity. Diet influences the composition of the BA pool. In the present study, we analyzed the impact of a dietary supplementation with a freeze-dried blueberry powder (BBP) on the fecal BA pool composition. The diet of 11 men and 13 women at risk of metabolic syndrome was supplemented with 50 g/day of BBP for 8 weeks, and feces were harvested before (pre) and after (post) BBP consumption. BAs were profiled using liquid chromatography coupled with tandem mass spectrometry. No significant changes in total BAs were detected when comparing pre- vs. post-BBP consumption samples. However, post-BBP consumption samples exhibited significant accumulations of glycine-conjugated BAs (p = 0.04), glycochenodeoxycholic (p = 0.01), and glycoursodeoxycholic (p = 0.01) acids, as well as a significant reduction (p = 0.03) in the secondary BA levels compared with pre-BBP feces. In conclusion, the fecal bileacidome is significantly altered after the consumption of BBP for 8 weeks. While additional studies are needed to fully understand the underlying mechanisms and physiological implications of these changes, our data suggest that the consumption of blueberries can modulate toxic BA elimination.
Collapse
|
36
|
Durník R, Šindlerová L, Babica P, Jurček O. Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery. Molecules 2022; 27:molecules27092961. [PMID: 35566302 PMCID: PMC9103499 DOI: 10.3390/molecules27092961] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs′ properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.
Collapse
Affiliation(s)
- Robin Durník
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Lenka Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Ondřej Jurček
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
37
|
Wang K, Wang L, Liu L, Zhou P, Mo S, Luo S, Zhang Y, Wang K, Yuan Y, Yin Z, Zhang Y. Longitudinal association of egg intake frequency with cardiovascular disease in Chinese adults. Nutr Metab Cardiovasc Dis 2022; 32:908-917. [PMID: 35168825 DOI: 10.1016/j.numecd.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Reducing dietary cholesterol is generally acceptable for the prevention of cardiovascular disease (CVD). Eggs are nutrient-dense and common food items across the world, while rich in cholesterol. The potential effects of egg intake on cardiovascular health remain uncertainty and have been under debate in past decades. METHODS AND RESULTS A nationwide cohort of 20,688 participants aged 16-110 years without CVD at baseline were derived from the China Family Panel Studies. Egg consumption was assessed by a semi-quantitative food frequency questionnaire. We adopted stratified Cox proportional hazards model with random intercepts for provinces to evaluate associations of egg intake with CVD incidence. During a median follow-up of 6.0 years, we identified 2395 total CVD incidence and mean egg consumption was 3 times/week. Egg intakes were associated lower risks of CVD incidence in the multivariate-adjusted model. Compared with the non-consumers, the corresponding HRs (95% confidence interval) for total CVD events were 0.84 (0.74-0.94) for 1-2 times per week, 0.78 (0.69-0.88) for 3-6/week, and 0.83 (0.72-0.95) for ≥7/week. Similar relationships were found in hypertension. Approximately non-linear relationships were observed between egg consumption with total CVD and hypertension incidence, identifying the lowest risk in 3-6 times/week. Subgroup analyses estimated lower risks of total CVD and hypertension in females only, with significant effect modification by sex (P for interaction = 0.008 and 0.020). CONCLUSION Egg consumption may be associated with lower risks of CVD incidence among Chinese adults. Our findings could have implications in CVD prevention and might be considered in the development of dietary guidelines.
Collapse
Affiliation(s)
- Ke Wang
- Department of Nursing, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lu Wang
- Department of Nursing, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Linjiong Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Siqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuanyuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Kai Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yang Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhouxin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
38
|
Sex-specific alterations in hepatic cholesterol metabolism in low birth weight adult guinea pigs. Pediatr Res 2022; 91:1078-1089. [PMID: 34230622 DOI: 10.1038/s41390-021-01491-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Intrauterine growth restriction and low birth weight (LBW) have been widely reported as an independent risk factor for adult hypercholesterolaemia and increased hepatic cholesterol in a sex-specific manner. However, the specific impact of uteroplacental insufficiency (UPI), a leading cause of LBW in developed world, on hepatic cholesterol metabolism in later life, is ill defined and is clinically relevant in understanding later life liver metabolic health trajectories. METHODS Hepatic cholesterol, transcriptome, cholesterol homoeostasis regulatory proteins, and antioxidant markers were studied in UPI-induced LBW and normal birth weight (NBW) male and female guinea pigs at 150 days. RESULTS Hepatic free and total cholesterol were increased in LBW versus NBW males. Transcriptome analysis of LBW versus NBW livers revealed that "cholesterol metabolism" was an enriched pathway in LBW males but not in females. Microsomal triglyceride transfer protein and cytochrome P450 7A1 protein, involved in hepatic cholesterol efflux and catabolism, respectively, and catalase activity were decreased in LBW male livers. Superoxide dismutase activity was reduced in LBW males but increased in LBW females. CONCLUSIONS UPI environment is associated with a later life programed hepatic cholesterol accumulation via impaired cholesterol elimination in a sex-specific manner. These programmed alterations could underlie later life cholesterol-induced hepatic lipotoxicity in LBW male offspring. IMPACT Low birth weight (LBW) is a risk factor for increased hepatic cholesterol. Uteroplacental insufficiency (UPI) resulting in LBW increased hepatic cholesterol content, altered hepatic expression of cholesterol metabolism-related genes in young adult guinea pigs. UPI-induced LBW was also associated with markers of a compromised hepatic cholesterol elimination process and failing antioxidant system in young adult guinea pigs. These changes, at the current age studied, were sex-specific, only being observed in LBW males and not in LBW females. These programmed alterations could lead to further hepatic damage and greater predisposition to liver diseases in UPI-induced LBW male offspring as they age.
Collapse
|
39
|
Smith BJ, Piceno Y, Zydek M, Zhang B, Syriani LA, Terdiman JP, Kassam Z, Ma A, Lynch SV, Pollard KS, El-Nachef N. Strain-resolved analysis in a randomized trial of antibiotic pretreatment and maintenance dose delivery mode with fecal microbiota transplant for ulcerative colitis. Sci Rep 2022; 12:5517. [PMID: 35365713 PMCID: PMC8976058 DOI: 10.1038/s41598-022-09307-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/16/2022] [Indexed: 01/04/2023] Open
Abstract
Fecal microbiota transplant is a promising therapy for ulcerative colitis. Parameters maximizing effectiveness and tolerability are not yet clear, and it is not known how import the transmission of donor microbes to patients is. Here (clinicaltrails.gov: NCT03006809) we have tested the effects of antibiotic pretreatment and compared two modes of maintenance dose delivery, capsules versus enema, in a randomized, pilot, open-label, 2 × 2 factorial design with 22 patients analyzed with mild to moderate UC. Clinically, the treatment was well-tolerated with favorable safety profile. Of patients who received antibiotic pretreatment, 6 of 11 experienced remission after 6 weeks of treatment, versus 2 of 11 non-pretreated patients (log odds ratio: 1.69, 95% confidence interval: −0.25 to 3.62). No significant differences were found between maintenance dosing via capsules versus enema. In exploratory analyses, microbiome turnover at both the species and strain levels was extensive and significantly more pronounced in the pretreated patients. Associations were also revealed between taxonomic turnover and changes in the composition of primary and secondary bile acids. Together these findings suggest that antibiotic pretreatment contributes to microbiome engraftment and possibly clinical effectiveness, and validate longitudinal strain tracking as a powerful way to monitor the dynamics and impact of microbiota transfer.
Collapse
Affiliation(s)
- Byron J Smith
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Martin Zydek
- Division of Gastroenterology, University of California, San Francisco, CA, USA
| | - Bing Zhang
- Division of Gastroenterology, University of California, San Francisco, CA, USA.,Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lara Aboud Syriani
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Jonathan P Terdiman
- Division of Gastroenterology, University of California, San Francisco, CA, USA
| | | | - Averil Ma
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Susan V Lynch
- Division of Gastroenterology, University of California, San Francisco, CA, USA.,Benioff Center for Microbiome Medicine, University of California, San Francisco, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA. .,Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Najwa El-Nachef
- Division of Gastroenterology, University of California, San Francisco, CA, USA.
| |
Collapse
|
40
|
Nelson NG, Wu L, Maier MT, Lam D, Cheang R, Alba D, Huang A, Neumann DA, Hill T, Vagena E, Barsh GS, Medina MW, Krauss RM, Koliwad SK, Xu AW. A gene-diet interaction controlling relative intake of dietary carbohydrates and fats. Mol Metab 2022; 58:101442. [PMID: 35051651 PMCID: PMC9710720 DOI: 10.1016/j.molmet.2022.101442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Preference for dietary fat vs. carbohydrate varies markedly across free-living individuals. It is recognized that food choice is under genetic and physiological regulation, and that the central melanocortin system is involved. However, how genetic and dietary factors interact to regulate relative macronutrient intake is not well understood. METHODS We investigated how the choice for food rich in carbohydrate vs. fat is influenced by dietary cholesterol availability and agouti-related protein (AGRP), the orexigenic component of the central melanocortin system. We assessed how macronutrient intake and different metabolic parameters correlate with plasma AGRP in a cohort of obese humans. We also examined how both dietary cholesterol levels and inhibiting de novo cholesterol synthesis affect carbohydrate and fat intake in mice, and how dietary cholesterol deficiency during the postnatal period impacts macronutrient intake patterns in adulthood. RESULTS In obese human subjects, plasma levels of AGRP correlated inversely with consumption of carbohydrates over fats. Moreover, AgRP-deficient mice preferred to consume more calories from carbohydrates than fats, more so when each diet lacked cholesterol. Intriguingly, inhibiting cholesterol biosynthesis (simvastatin) promoted carbohydrate intake at the expense of fat without altering total caloric consumption, an effect that was remarkably absent in AgRP-deficient mice. Finally, feeding lactating C57BL/6 dams and pups a cholesterol-free diet prior to weaning led the offspring to prefer fats over carbohydrates as adults, indicating that altered cholesterol metabolism early in life programs adaptive changes to macronutrient intake. CONCLUSIONS Together, our study illustrates a specific gene-diet interaction in modulating food choice.
Collapse
Affiliation(s)
- Nnamdi G. Nelson
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA
| | - Lili Wu
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA,Department of Integrated Medicine, Guangxi Medical University Cancer
Hospital, Nanning, Guangxi 530021, China
| | - Matthew T. Maier
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA
| | - Diana Lam
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA
| | - Rachel Cheang
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA
| | - Diana Alba
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA,Department of Medicine, University of California, San Francisco, San
Francisco, CA 94143, USA
| | - Alyssa Huang
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA,Department of Pediatrics, University of California, San Francisco, San
Francisco, CA 94143, USA
| | - Drexel A. Neumann
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA
| | - Tess Hill
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA
| | - Eirini Vagena
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA
| | - Gregory S. Barsh
- Department of Genetics, Stanford University School of Medicine, Stanford,
CA 94305, USA
| | - Marisa W. Medina
- Department of Pediatrics, University of California, San Francisco, San
Francisco, CA 94143, USA
| | - Ronald M. Krauss
- Department of Medicine, University of California, San Francisco, San
Francisco, CA 94143, USA,Department of Pediatrics, University of California, San Francisco, San
Francisco, CA 94143, USA
| | - Suneil K. Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA,Department of Medicine, University of California, San Francisco, San
Francisco, CA 94143, USA,Corresponding author. Diabetes Center, University of California, San
Francisco, San Francisco, CA 94143, USA.
| | - Allison W. Xu
- Diabetes Center, University of California, San Francisco, San Francisco,
CA 94143, USA,Department of Anatomy, University of California, San Francisco, San
Francisco, CA 94143, USA,Corresponding author. Diabetes Center, University of California, San
Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
Liang J, Zhang B, Hu Y, Na Z, Li D. Effects of steroid hormones on lipid metabolism in sexual dimorphism: A Mendelian randomization study. Front Endocrinol (Lausanne) 2022; 13:1119154. [PMID: 36726474 PMCID: PMC9886494 DOI: 10.3389/fendo.2022.1119154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Although the role of steroid hormones in lipid levels has been partly discussed in the context of separate sexes, the causal relationship between steroid hormones and lipid metabolism according to sex has not been elucidated because of the limitations of observational studies. We assessed the relationship between steroid hormones and lipid metabolism in separate sexes using a two-sample Mendelian randomization (MR) study. METHODS Instrumental variables for dehydroepiandrosterone sulfate (DHEAS), progesterone, estradiol, and androstenedione were selected. MR analysis was performed using inverse-variance weighted, MR-Egger, weighted median, and MR pleiotropy residual sum and outlier tests. Cochran's Q test, the MR-Egger intercept test, and leave-one-out analysis were used for sensitivity analyses. RESULTS The results showed that the three steroid hormones affected lipid metabolism and exhibited sex differences. In males, DHEAS was negatively correlated with total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein B (P = 0.007; P = 0.006; P = 0.041, respectively), and progesterone was negatively correlated with TC and LDL-C (P = 0.019; P = 0.038, respectively). In females, DHEAS was negatively correlated with TC (P = 0.026) and androstenedione was negatively correlated with triglycerides and apolipoprotein A (P = 0.022; P = 0.009, respectively). No statistically significant association was observed between the estradiol levels and lipid metabolism in male or female participants. CONCLUSIONS Our findings identified sex-specific causal networks between steroid hormones and lipid metabolism. Steroid hormones, including DHEAS, progesterone, and androstenedione, exhibited beneficial effects on lipid metabolism in both sexes; however, the specific lipid profiles affected by steroid hormones differed between the sexes.
Collapse
Affiliation(s)
- Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bowen Zhang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yannan Hu
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
- *Correspondence: Da Li, ; Zhijing Na,
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Da Li, ; Zhijing Na,
| |
Collapse
|
42
|
Xu Q, Hu L, Chen S, Fu X, Gong P, Huang Z, Miao W, Jin C, Jin Y. Parental exposure 3-methylcholanthrene disturbed the enterohepatic circulation in F1 generation of mice. CHEMOSPHERE 2022; 286:131681. [PMID: 34346331 DOI: 10.1016/j.chemosphere.2021.131681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/03/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
3-methylcholanthrene (3 MC) is an environmental compound belonging to the PAHs and is reportedly thought to be a risk factor for the prevalence of hepatic function disorder. Here, a dose of 0.5 mg/kg of 3 MC was given to 4-week-old male and female mice (F0) in their diet for 6 weeks. After exposure, then the mice were mated between different groups. The first filial (F1) generation offspring of exposed or unexposed parental mice were sacrificed at the age of 5 weeks (F1-5 W), and the potential effects on the F0 and F1 offspring were evaluated. The results showed that the total bile acids (TBAs) in the serum and feces in F0 females and female F1-5 W individuals born from female mice exposed to 3 MC decreased, while the TBAs in the liver increased. The transcriptional levels of major genes participating in synthesis, regulation, transportation and apical uptake was also altered correspondingly. In addition, the transcription of some genes related to inflammation was enhanced in these mice. Further investigation revealed that in addition to distinct changes in the mucus secretion, tight junction proteins and ion transport were induced, and antimicrobial peptides were also disrupted in the intestine of F0 mice and F1-5 W female offspring of maternal mice exposed to 3 MC. Our results suggested that exposure to 3 MC, but not male exposure, had the potential to interfere with BAs metabolism, affecting gut barrier function. Females were more seriously affected than males.
Collapse
Affiliation(s)
- Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Siqi Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xiaoyong Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Ping Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Zeyao Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Wenyu Miao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
43
|
Lindsey ML, Brunt KR, Kirk JA, Kleinbongard P, Calvert JW, de Castro Brás LE, DeLeon-Pennell KY, Del Re DP, Frangogiannis NG, Frantz S, Gumina RJ, Halade GV, Jones SP, Ritchie RH, Spinale FG, Thorp EB, Ripplinger CM, Kassiri Z. Guidelines for in vivo mouse models of myocardial infarction. Am J Physiol Heart Circ Physiol 2021; 321:H1056-H1073. [PMID: 34623181 PMCID: PMC8834230 DOI: 10.1152/ajpheart.00459.2021] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Despite significant improvements in reperfusion strategies, acute coronary syndromes all too often culminate in a myocardial infarction (MI). The consequent MI can, in turn, lead to remodeling of the left ventricle (LV), the development of LV dysfunction, and ultimately progression to heart failure (HF). Accordingly, an improved understanding of the underlying mechanisms of MI remodeling and progression to HF is necessary. One common approach to examine MI pathology is with murine models that recapitulate components of the clinical context of acute coronary syndrome and subsequent MI. We evaluated the different approaches used to produce MI in mouse models and identified opportunities to consolidate methods, recognizing that reperfused and nonreperfused MI yield different responses. The overall goal in compiling this consensus statement is to unify best practices regarding mouse MI models to improve interpretation and allow comparative examination across studies and laboratories. These guidelines will help to establish rigor and reproducibility and provide increased potential for clinical translation.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Keith R Brunt
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Saint John, New Brunswick, Canada
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - John W Calvert
- Carlyle Fraser Heart Center of Emory University Hospital Midtown, Atlanta, Georgia
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Nikolaos G Frangogiannis
- Division of Cardiology, Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Richard J Gumina
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, Florida
| | - Steven P Jones
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Victoria, Australia
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and the Columbia Veteran Affairs Medical Center, Columbia, South Carolina
| | - Edward B Thorp
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
Roth K, Yang Z, Agarwal M, Liu W, Peng Z, Long Z, Birbeck J, Westrick J, Liu W, Petriello MC. Exposure to a mixture of legacy, alternative, and replacement per- and polyfluoroalkyl substances (PFAS) results in sex-dependent modulation of cholesterol metabolism and liver injury. ENVIRONMENT INTERNATIONAL 2021; 157:106843. [PMID: 34479135 PMCID: PMC8490327 DOI: 10.1016/j.envint.2021.106843] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Epidemiological studies have shown Per- and polyfluoroalkyl substances (PFAS) to be associated with diseases of dysregulated lipid and sterol homeostasis such as steatosis and cardiometabolic disorders. However, the majority of mechanistic studies rely on single chemical exposures instead of identifying mechanisms related to the toxicity of PFAS mixtures. OBJECTIVES The goal of the current study is to investigate mechanisms linking exposure to a PFAS mixture with alterations in lipid metabolism, including increased circulating cholesterol and bile acids. METHODS Male and female wild-type C57BL/6J mice were fed an atherogenic diet used in previous studies of pollutant-accelerated atherosclerosis and exposed to water containing a mixture of 5 PFAS representing legacy, replacement, and alternative subtypes (i.e., PFOA, PFOS, PFNA, PFHxS, and GenX), each at a concentration of 2 mg/L, for 12 weeks. Changes at the transcriptome and metabolome level were determined by RNA-seq and high-resolution mass spectrometry, respectively. RESULTS We observed increased circulating cholesterol, sterol metabolites, and bile acids due to PFAS exposure, with some sexual dimorphic effects. PFAS exposure increased hepatic injury, demonstrated by increased liver weight, hepatic inflammation, and plasma alanine aminotransferase levels. Females displayed increased lobular and portal inflammation compared to the male PFAS-exposed mice. Hepatic transcriptomics analysis revealed PFAS exposure modulated multiple metabolic pathways, including those related to sterols, bile acids, and acyl carnitines, with multiple sex-specific differences observed. Finally, we show that hepatic and circulating levels of PFOA were increased in exposed females compared to males, but this sexual dimorphism was not the same for other PFAS examined. DISCUSSION Exposure of mice to a mixture of PFAS results in PFAS-mediated modulation of cholesterol levels, possibly through disruption of enterohepatic circulation.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Manisha Agarwal
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Wendy Liu
- Department of Pathology, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Zheyun Peng
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Ze Long
- Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Johnna Birbeck
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI 48202, USA
| | - Wanqing Liu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Wayne State University, Detroit, MI 48202, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
45
|
Zhang Y, Zhang M, Zhu Z, Yang H, Wei W, Li B. Bisphenol A regulates apolipoprotein A1 expression through estrogen receptors and DNA methlylation and leads to cholesterol disorder in rare minnow testis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:105999. [PMID: 34678657 DOI: 10.1016/j.aquatox.2021.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is a well-known plasticizer that widely distributed in the aquatic environment. BPA has many adverse effects on reproduction. However, few studies have investigated the mechanism of BPA affecting reproduction from the perspective of lipid metabolism. Apolipoprotein A1 (ApoA1) is the major component of high-density lipoprotein (HDL), and plays critical roles in reverse cholesterol transport (RCT). In this study, in order to investigate the effect and molecular mechanism of BPA on testicular ApoA1 and the role of ApoA1 in BPA induced abnormal spermatogenesis, adult male rare minnow Gobiocypris rarus were exposed to 15 μg/L of BPA for 1, 3 and 5 weeks. Results showed that BPA could significantly affect testicular ApoA1 mRNA and protein levels, testicular cholesterol levels, plasmatic sex hormone levels and the integrity of sperm head membrane. The main mechanism of BPA regulating ApoA1 expression is to alter Esr recruitment and CpG sites DNA methylation in ApoA1 promoter. The induced ApoA1 up-regulated high density lipoprotein cholesterol levels and enhanced RCT, and finally decreased the testicular free cholesterol levels. This is likely a key mechanism by which BPA induces sex hormone disorder and sperm head membrane damage. The present study reveals the mechanism by which BPA interferes with spermatogenesis from the perspective of cholesterol transport.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Meng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
46
|
Zu Y, Yang J, Zhang C, Liu D. The Pathological Mechanisms of Estrogen-Induced Cholestasis: Current Perspectives. Front Pharmacol 2021; 12:761255. [PMID: 34819862 PMCID: PMC8606790 DOI: 10.3389/fphar.2021.761255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Estrogens are steroid hormones with a wide range of biological activities. The excess of estrogens can lead to decreased bile flow, toxic bile acid (BA) accumulation, subsequently causing intrahepatic cholestasis. Estrogen-induced cholestasis (EIC) may have increased incidence during pregnancy, and within women taking oral contraception and postmenopausal hormone replacement therapy, and result in liver injury, preterm birth, meconium-stained amniotic fluid, and intrauterine fetal death in pregnant women. The main pathogenic mechanisms of EIC may include deregulation of BA synthetic or metabolic enzymes, and BA transporters. In addition, impaired cell membrane fluidity, inflammatory responses and change of hepatocyte tight junctions are also involved in the pathogenesis of EIC. In this article, we review the role of estrogens in intrahepatic cholestasis, and outlined the mechanisms of EIC, providing a greater understanding of this disease.
Collapse
Affiliation(s)
- Yue Zu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Kim R, Lee JY, Park S, Han K, Shin CM. Cholecystectomy and subsequent risk of Parkinson's disease: a nationwide retrospective cohort study. NPJ Parkinsons Dis 2021; 7:100. [PMID: 34785689 PMCID: PMC8595409 DOI: 10.1038/s41531-021-00245-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Growing evidence has suggested that the gut-brain axis plays an important role in the pathogenesis of Parkinson's disease (PD), and that this role is mediated by the interactions between bile acids (BAs) and intestinal microbiota. Given that cholecystectomy can lead to alterations in BAs and gut microbiota, we investigated whether cholecystectomy is linked to a higher risk of PD. We constructed a cohort of patients with an operation code of cholecystectomy from 2010 to 2015 (n = 161,838) and age- and sex-matched control subjects without cholecystectomy (n = 286,135) using the National Health Insurance Service database. Incident PD was traced over a maximum observation period of 7 years. We identified 1404 incident PD cases during 1,631,265 person-years of follow-up. The cholecystectomy group showed an elevated risk of PD compared to the control group, even after adjusting for potential confounding factors (adjusted hazard ratio [HR] 1.14, 95% confidence interval [CI] 1.02-1.27). When the data were split by sex, the risk elevation was significant in men (adjusted HR 1.22, 95% CI 1.06-1.41), but not in women (adjusted HR 1.03, 95% CI 0.88-1.22). Our results provide evidence that cholecystectomy is associated with an increased risk of developing PD. This association differed between men and women, suggesting sex-specific effects of cholecystectomy on the risk of PD.
Collapse
Affiliation(s)
- Ryul Kim
- grid.411605.70000 0004 0648 0025Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Sanghyun Park
- grid.411947.e0000 0004 0470 4224Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyungdo Han
- grid.263765.30000 0004 0533 3568Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
48
|
Lefebvre P, Staels B. Hepatic sexual dimorphism - implications for non-alcoholic fatty liver disease. Nat Rev Endocrinol 2021; 17:662-670. [PMID: 34417588 DOI: 10.1038/s41574-021-00538-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The liver is often thought of as a single functional unit, but both its structural and functional architecture make it highly multivalent and adaptable. In any given physiological situation, the liver can maintain metabolic homeostasis, conduct appropriate inflammatory responses, carry out endobiotic and xenobiotic transformation and synthesis reactions, as well as store and release multiple bioactive molecules. Moreover, the liver is a very resilient organ. This resilience means that chronic liver diseases can go unnoticed for decades, yet culminate in life-threatening clinical complications once the adaptive capacity of the liver is overwhelmed. Non-alcoholic fatty liver disease (NAFLD) predisposes individuals to cirrhosis and increases liver-related and cardiovascular disease-related mortality. This Review discusses the accumulating evidence of sexual dimorphism in NAFLD, which is currently rarely considered in preclinical and clinical studies. Increased awareness of the mechanistic causes of hepatic sexual dimorphism could lead to improved understanding of the biological processes that are dysregulated in NAFLD, to the identification of relevant therapeutic targets and to improved risk stratification of patients with NAFLD undergoing therapeutic intervention.
Collapse
Affiliation(s)
- Philippe Lefebvre
- Université Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France.
| | - Bart Staels
- Université Lille, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
49
|
Bile Acid Receptors and the Gut-Liver Axis in Nonalcoholic Fatty Liver Disease. Cells 2021; 10:cells10112806. [PMID: 34831031 PMCID: PMC8616422 DOI: 10.3390/cells10112806] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has been significantly increased due to the global epidemic of obesity. The disease progression from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) is closely linked to inflammation, insulin resistance, and dysbiosis. Although extensive efforts have been aimed at elucidating the pathological mechanisms of NAFLD disease progression, current understanding remains incomplete, and no effective therapy is available. Bile acids (BAs) are not only important physiological detergents for the absorption of lipid-soluble nutrients in the intestine but also metabolic regulators. During the last two decades, BAs have been identified as important signaling molecules involved in lipid, glucose, and energy metabolism. Dysregulation of BA homeostasis has been associated with NAFLD disease severity. Identification of nuclear receptors and G-protein-coupled receptors activated by different BAs not only significantly expanded the current understanding of NAFLD/NASH disease progression but also provided the opportunity to develop potential therapeutics for NAFLD/NASH. In this review, we will summarize the recent studies with a focus on BA-mediated signaling pathways in NAFLD/NASH. Furthermore, the therapeutic implications of targeting BA-mediated signaling pathways for NAFLD will also be discussed.
Collapse
|
50
|
Francavilla A, Gagliardi A, Piaggeschi G, Tarallo S, Cordero F, Pensa RG, Impeduglia A, Caviglia GP, Ribaldone DG, Gallo G, Grioni S, Ferrero G, Pardini B, Naccarati A. Faecal miRNA profiles associated with age, sex, BMI, and lifestyle habits in healthy individuals. Sci Rep 2021; 11:20645. [PMID: 34667192 PMCID: PMC8526833 DOI: 10.1038/s41598-021-00014-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
For their stability and detectability faecal microRNAs represent promising molecules with potential clinical interest as non-invasive diagnostic and prognostic biomarkers. However, there is no evidence on how stool miRNA profiles change according to an individual’s age, sex, and body mass index (BMI) or how lifestyle habits influence the expression levels of these molecules. We explored the relationship between the stool miRNA levels and common traits (sex, age, BMI, and menopausal status) or lifestyle habits (physical activity, smoking status, coffee, and alcohol consumption) as derived by a self-reported questionnaire, using small RNA-sequencing data of samples from 335 healthy subjects. We detected 151 differentially expressed miRNAs associated with one variable and 52 associated with at least two. Differences in miR-638 levels were associated with age, sex, BMI, and smoking status. The highest number of differentially expressed miRNAs was associated with BMI (n = 92) and smoking status (n = 84), with several miRNAs shared between them. Functional enrichment analyses revealed the involvement of the miRNA target genes in pathways coherent with the analysed variables. Our findings suggest that miRNA profiles in stool may reflect common traits and lifestyle habits and should be considered in relation to disease and association studies based on faecal miRNA expression.
Collapse
Affiliation(s)
- Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Amedeo Gagliardi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | | | - Ruggero G Pensa
- Department of Computer Science, University of Turin, Turin, Italy
| | | | - Gian Paolo Caviglia
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Gaetano Gallo
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy. .,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|