1
|
Persello A, Dupas T, Vergnaud A, Blangy-Letheule A, Aillerie V, Erraud A, Guilloux Y, Denis M, Lauzier B. Changes in transcriptomic landscape with macronutrients intake switch are independent from O-GlcNAcylation levels in heart throughout postnatal development in rats. Heliyon 2024; 10:e30526. [PMID: 38737268 PMCID: PMC11087977 DOI: 10.1016/j.heliyon.2024.e30526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Background Dietary intake and metabolism variations are associated with molecular changes and more particularly in the transcriptome. O-GlcNAcylation is a post-translational modification added and removed respectively by OGT and OGA. The UDP-GlcNAc, the substrate of OGT, is produced by UAP1 and UAP1L1. O-GlcNAcylation is qualified as a metabolic sensor and is involved in the modulation of gene expression. We wanted to unveil if O-GlcNAcylation is linking metabolic transition to transcriptomic changes and to highlight modifications of O-GlcNAcylation during the postnatal cardiac development. Methods Hearts were harvested from rats at birth (D0), before (D12) and after suckling to weaning transition with normal (D28) or delayed weaning diet from D12 to D28 (D28F). O-GlcNAcylation levels and proteins expression were evaluated by Western blot. Cardiac transcriptomes were evaluated via 3'SRP analysis. Results Cardiac O-GlcNAcylation levels and nucleocytoplasmic OGT (ncOGT) were decreased at D28 while full length OGA (OGA) was increased. O-GlcNAcylation levels did not changed with delayed weaning diet while ncOGT and OGA were respectively increased and decreased. Uapl1 was the only O-GlcNAcylation-related gene identified as differentially expressed throughout postnatal development. Conclusion Macronutrients switch promotes changes in the transcriptome landscape that are independent from O-GlcNAcylation levels. UAP1 and UAP1L1 are not the main regulator element of O-GlcNAcylation throughout postnatal development.
Collapse
Affiliation(s)
- Antoine Persello
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Thomas Dupas
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Amandine Vergnaud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | | | - Virginie Aillerie
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Angélique Erraud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Yannick Guilloux
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000, Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Benjamin Lauzier
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| |
Collapse
|
2
|
Olney KC, de Ávila C, Todd KT, Tallant LE, Barnett JH, Gibson KA, Hota P, Pandiane AS, Durgun PC, Serhan M, Wang R, Lind ML, Forzani E, Gades NM, Thomas LF, Fryer JD. Commonly disrupted pathways in brain and kidney in a pig model of systemic endotoxemia. J Neuroinflammation 2024; 21:9. [PMID: 38178237 PMCID: PMC10765757 DOI: 10.1186/s12974-023-03002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Sepsis is a life-threatening state that arises due to a hyperactive inflammatory response stimulated by infection and rarely other insults (e.g., non-infections tissue injury). Although changes in several proinflammatory cytokines and signals are documented in humans and small animal models, far less is known about responses within affected tissues of large animal models. We sought to understand the changes that occur during the initial stages of inflammation by administering intravenous lipopolysaccharide (LPS) to Yorkshire pigs and assessing transcriptomic alterations in the brain, kidney, and whole blood. Robust transcriptional alterations were found in the brain, with upregulated responses enriched in inflammatory pathways and downregulated responses enriched in tight junction and blood vessel functions. Comparison of the inflammatory response in the pig brain to a similar mouse model demonstrated some overlapping changes but also numerous differences, including oppositely dysregulated genes between species. Substantial changes also occurred in the kidneys following LPS with several enriched upregulated pathways (cytokines, lipids, unfolded protein response, etc.) and downregulated gene sets (tube morphogenesis, glomerulus development, GTPase signal transduction, etc.). We also found significant dysregulation of genes in whole blood that fell into several gene ontology categories (cytokines, cell cycle, neutrophil degranulation, etc.). We observed a strong correlation between the brain and kidney responses, with significantly shared upregulated pathways (cytokine signaling, cell death, VEGFA pathways) and downregulated pathways (vasculature and RAC1 GTPases). In summary, we have identified a core set of shared genes and pathways in a pig model of systemic inflammation.
Collapse
Affiliation(s)
- Kimberly C Olney
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Camila de Ávila
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Kennedi T Todd
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Lauren E Tallant
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA
| | - J Hudson Barnett
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA
| | - Katelin A Gibson
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | - Piyush Hota
- Division of Nephrology & Hypertension, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA
| | | | - Pinar Cay Durgun
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Michael Serhan
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Ran Wang
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Mary Laura Lind
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Erica Forzani
- School of Engineering of Matter, Transport & Energy, Arizona State University, Tempe, AZ, USA
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Leslie F Thomas
- Division of Nephrology & Hypertension, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA.
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, AZ, USA.
- MD/PhD Training Program, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
3
|
Varabyou A, Sommer MJ, Erdogdu B, Shinder I, Minkin I, Chao KH, Park S, Heinz J, Pockrandt C, Shumate A, Rincon N, Puiu D, Steinegger M, Salzberg SL, Pertea M. CHESS 3: an improved, comprehensive catalog of human genes and transcripts based on large-scale expression data, phylogenetic analysis, and protein structure. Genome Biol 2023; 24:249. [PMID: 37904256 PMCID: PMC10614308 DOI: 10.1186/s13059-023-03088-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
CHESS 3 represents an improved human gene catalog based on nearly 10,000 RNA-seq experiments across 54 body sites. It significantly improves current genome annotation by integrating the latest reference data and algorithms, machine learning techniques for noise filtering, and new protein structure prediction methods. CHESS 3 contains 41,356 genes, including 19,839 protein-coding genes and 158,377 transcripts, with 14,863 protein-coding transcripts not in other catalogs. It includes all MANE transcripts and at least one transcript for most RefSeq and GENCODE genes. On the CHM13 human genome, the CHESS 3 catalog contains an additional 129 protein-coding genes. CHESS 3 is available at http://ccb.jhu.edu/chess .
Collapse
Affiliation(s)
- Ales Varabyou
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA.
| | - Markus J Sommer
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Beril Erdogdu
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Ida Shinder
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Cross Disciplinary Graduate Program in Biomedical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ilia Minkin
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Kuan-Hao Chao
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sukhwan Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, South Korea
| | - Jakob Heinz
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Christopher Pockrandt
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Alaina Shumate
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Natalia Rincon
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Daniela Puiu
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins School of Medicine and Whiting School of Engineering, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Ghosh B, Chengala PP, Shah S, Chen D, Karnam V, Wilmsen K, Yeung-Luk B, Sidhaye VK. Cigarette smoke-induced injury induces distinct sex-specific transcriptional signatures in mice tracheal epithelial cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L467-L476. [PMID: 37605829 PMCID: PMC10639008 DOI: 10.1152/ajplung.00104.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
The airway epithelial barrier is crucial for defending against respiratory insults and diseases. Disruption of epithelial integrity contributes to respiratory diseases, and sex-specific differences in susceptibility and severity have been observed. However, sex-specific differences in the context of respiratory diseases are often overlooked, especially in murine models. In this study, we investigated the in vitro transcriptomics of male and female murine tracheal epithelial cells (mTECs) in response to chronic cigarette smoke (CS) exposure using an International Organization for Standardization (ISO) puff regimen. Our findings reveal sex-specific differences in the baseline characteristics of airway epithelial cells. Female mTECs demonstrated stronger barrier function and higher ciliary function compared with males. The barrier function was disrupted in both males and females following chronic CS, but the difference was more significant in females due to their higher baseline. Female mice exhibited transcriptional signatures suggesting dedifferentiation with increased basal cells and markers of cellular senescence. Pathway analysis indicated potential protective roles of planar cell polarity (PCP) in preventing dedifferentiation in male mice exposed to CS. We also observed sex-specific differences in the DNA damage response and antioxidant levels, suggesting distinct mechanisms underlying cellular stress. Understanding these sex-specific mechanisms could facilitate the development of targeted therapeutic strategies for lung diseases associated with environmental insults. Recognizing sex-based differences in disease susceptibility and treatment response can lead to personalized care and improved outcomes. Clinical trials should consider sex as a biological variable to develop effective interventions that address the unique differences between men and women in respiratory diseases.NEW & NOTEWORTHY The study underscores the importance of considering sex-specific differences in the airway epithelium in respiratory diseases such as COPD. Differences in gene expression between males and females at baseline and in response to chronic injury in the airway epithelium could have implications on disease susceptibility, both in COPD and other respiratory diseases. Therefore, understanding these differences is crucial for developing targeted therapies to treat respiratory diseases based on a sex-specific manner.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Pratulya Pragadaraju Chengala
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Sonya Shah
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Daniel Chen
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Vaishnavi Karnam
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Kai Wilmsen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Venkataramana K Sidhaye
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Pinto BJ, O’Connor B, Schatz MC, Zarate S, Wilson MA. Concerning the eXclusion in human genomics: the choice of sex chromosome representation in the human genome drastically affects the number of identified variants. G3 (BETHESDA, MD.) 2023; 13:jkad169. [PMID: 37497639 PMCID: PMC10542555 DOI: 10.1093/g3journal/jkad169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Over the past 30 years, a community of scientists has pieced together every base pair of the human reference genome from telomere to telomere. Interestingly, most human genomics studies omit more than 5% of the genome from their analyses. Under "normal" circumstances, omitting any chromosome(s) from an analysis of the human genome would be a cause for concern, with the exception being sex chromosomes. Sex chromosomes in eutherians share an evolutionary origin as an ancestral pair of autosomes. In humans, they share 3 regions of high-sequence identity (∼98-100%), which, along with the unique transmission patterns of the sex chromosomes, introduce technical artifacts in genomic analyses. However, the human X chromosome bears numerous important genes, including more "immune response" genes than any other chromosome, which makes its exclusion irresponsible when sex differences across human diseases are widespread. To better characterize the possible effect of the inclusion/exclusion of the X chromosome on variants called, we conducted a pilot study on the Terra cloud platform to replicate a subset of standard genomic practices using both the CHM13 reference genome and the sex chromosome complement-aware reference genome. We compared the quality of variant calling, expression quantification, and allele-specific expression using these 2 reference genome versions across 50 human samples from the Genotype-Tissue Expression consortium annotated as females. We found that after correction, the whole X chromosome (100%) can generate reliable variant calls, allowing for the inclusion of the whole genome in human genomics analyses as a departure from the status quo of omitting the sex chromosomes from empirical and clinical genomics studies.
Collapse
Affiliation(s)
- Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85282, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | | | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Samantha Zarate
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85282, USA
- The Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85282, USA
| |
Collapse
|
6
|
Pinto BJ, Gamble T, Smith CH, Wilson MA. A lizard is never late: Squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution. J Hered 2023; 114:445-458. [PMID: 37018459 PMCID: PMC10445521 DOI: 10.1093/jhered/esad023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012 and 2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.
Collapse
Affiliation(s)
- Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
- Bell Museum of Natural History, University of Minnesota, St Paul, MN, United States
| | - Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ, United States
| |
Collapse
|
7
|
Pinto BJ, Gamble T, Smith CH, Wilson MA. A lizard is never late: squamate genomics as a recent catalyst for understanding sex chromosome and microchromosome evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524006. [PMID: 37034614 PMCID: PMC10081179 DOI: 10.1101/2023.01.20.524006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In 2011, the first high-quality genome assembly of a squamate reptile (lizard or snake) was published for the green anole. Dozens of genome assemblies were subsequently published over the next decade, yet these assemblies were largely inadequate for answering fundamental questions regarding genome evolution in squamates due to their lack of contiguity or annotation. As the "genomics age" was beginning to hit its stride in many organismal study systems, progress in squamates was largely stagnant following the publication of the green anole genome. In fact, zero high-quality (chromosome-level) squamate genomes were published between the years 2012-2017. However, since 2018, an exponential increase in high-quality genome assemblies has materialized with 24 additional high-quality genomes published for species across the squamate tree of life. As the field of squamate genomics is rapidly evolving, we provide a systematic review from an evolutionary genomics perspective. We collated a near-complete list of publicly available squamate genome assemblies from more than half-a-dozen international and third-party repositories and systematically evaluated them with regard to their overall quality, phylogenetic breadth, and usefulness for continuing to provide accurate and efficient insights into genome evolution across squamate reptiles. This review both highlights and catalogs the currently available genomic resources in squamates and their ability to address broader questions in vertebrates, specifically sex chromosome and microchromosome evolution, while addressing why squamates may have received less historical focus and has caused their progress in genomics to lag behind peer taxa.
Collapse
Affiliation(s)
- Brendan J Pinto
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
| | - Tony Gamble
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
- Department of Biological Sciences, Marquette University, Milwaukee WI USA
- Bell Museum of Natural History, University of Minnesota, St Paul, MN USA
| | - Chase H Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ USA
- Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ USA
| |
Collapse
|
8
|
Pinto BJ, O’Connor B, Schatz MC, Zarate S, Wilson MA. Concerning the eXclusion in human genomics: The choice of sex chromosome representation in the human genome drastically affects number of identified variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529542. [PMID: 36865318 PMCID: PMC9980147 DOI: 10.1101/2023.02.22.529542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Over the past 30 years, a community of scientists have pieced together every base pair of the human reference genome from telomere-to-telomere. Interestingly, most human genomics studies omit more than 5% of the genome from their analyses. Under 'normal' circumstances, omitting any chromosome(s) from analysis of the human genome would be reason for concern-the exception being the sex chromosomes. Sex chromosomes in eutherians share an evolutionary origin as an ancestral pair of autosomes. In humans, they share three regions of high sequence identity (~98-100%), which-along with the unique transmission patterns of the sex chromosomes-introduce technical artifacts into genomic analyses. However, the human X chromosome bears numerous important genes-including more "immune response" genes than any other chromosome-which makes its exclusion irresponsible when sex differences across human diseases are widespread. To better characterize the effect that including/excluding the X chromosome may have on variants called, we conducted a pilot study on the Terra cloud platform to replicate a subset of standard genomic practices using both the CHM13 reference genome and sex chromosome complement-aware (SCC-aware) reference genome. We compared quality of variant calling, expression quantification, and allele-specific expression using these two reference genome versions across 50 human samples from the Genotype-Tissue-Expression consortium annotated as females. We found that after correction, the whole X chromosome (100%) can generate reliable variant calls-allowing for the inclusion of the whole genome in human genomics analyses as a departure from the status quo of omitting the sex chromosomes from empirical and clinical genomics studies.
Collapse
Affiliation(s)
- Brendan J. Pinto
- School of Life Sciences, Arizona State University, Tempe AZ 85282 USA
- Center for Evolution and Medicine, Arizona State University, Tempe AZ 85282 USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI 53233 USA
| | | | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Samantha Zarate
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe AZ 85282 USA
- Center for Evolution and Medicine, Arizona State University, Tempe AZ 85282 USA
- The Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe AZ 85282 USA
| |
Collapse
|
9
|
Escape from X-inactivation in twins exhibits intra- and inter-individual variability across tissues and is heritable. PLoS Genet 2023; 19:e1010556. [PMID: 36802379 PMCID: PMC9942974 DOI: 10.1371/journal.pgen.1010556] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/06/2022] [Indexed: 02/23/2023] Open
Abstract
X-chromosome inactivation (XCI) silences one X in female cells to balance sex-differences in X-dosage. A subset of X-linked genes escape XCI, but the extent to which this phenomenon occurs and how it varies across tissues and in a population is as yet unclear. To characterize incidence and variability of escape across individuals and tissues, we conducted a transcriptomic study of escape in adipose, skin, lymphoblastoid cell lines and immune cells in 248 healthy individuals exhibiting skewed XCI. We quantify XCI escape from a linear model of genes' allelic fold-change and XIST-based degree of XCI skewing. We identify 62 genes, including 19 lncRNAs, with previously unknown patterns of escape. We find a range of tissue-specificity, with 11% of genes escaping XCI constitutively across tissues and 23% demonstrating tissue-restricted escape, including cell type-specific escape across immune cells of the same individual. We also detect substantial inter-individual variability in escape. Monozygotic twins share more similar escape than dizygotic twins, indicating that genetic factors may underlie inter-individual differences in escape. However, discordant escape also occurs within monozygotic co-twins, suggesting environmental factors also influence escape. Altogether, these data indicate that XCI escape is an under-appreciated source of transcriptional differences, and an intricate phenotype impacting variable trait expressivity in females.
Collapse
|
10
|
Inkster AM, Wong MT, Matthews AM, Brown CJ, Robinson WP. Who's afraid of the X? Incorporating the X and Y chromosomes into the analysis of DNA methylation array data. Epigenetics Chromatin 2023; 16:1. [PMID: 36609459 PMCID: PMC9825011 DOI: 10.1186/s13072-022-00477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Many human disease phenotypes manifest differently by sex, making the development of methods for incorporating X and Y-chromosome data into analyses vital. Unfortunately, X and Y chromosome data are frequently excluded from large-scale analyses of the human genome and epigenome due to analytical complexity associated with sex chromosome dosage differences between XX and XY individuals, and the impact of X-chromosome inactivation (XCI) on the epigenome. As such, little attention has been given to considering the methods by which sex chromosome data may be included in analyses of DNA methylation (DNAme) array data. RESULTS With Illumina Infinium HumanMethylation450 DNAme array data from 634 placental samples, we investigated the effects of probe filtering, normalization, and batch correction on DNAme data from the X and Y chromosomes. Processing steps were evaluated in both mixed-sex and sex-stratified subsets of the analysis cohort to identify whether including both sexes impacted processing results. We found that identification of probes that have a high detection p-value, or that are non-variable, should be performed in sex-stratified data subsets to avoid over- and under-estimation of the quantity of probes eligible for removal, respectively. All normalization techniques investigated returned X and Y DNAme data that were highly correlated with the raw data from the same samples. We found no difference in batch correction results after application to mixed-sex or sex-stratified cohorts. Additionally, we identify two analytical methods suitable for XY chromosome data, the choice between which should be guided by the research question of interest, and we performed a proof-of-concept analysis studying differential DNAme on the X and Y chromosome in the context of placental acute chorioamnionitis. Finally, we provide an annotation of probe types that may be desirable to filter in X and Y chromosome analyses, including probes in repetitive elements, the X-transposed region, and cancer-testis gene promoters. CONCLUSION While there may be no single "best" approach for analyzing DNAme array data from the X and Y chromosome, analysts must consider key factors during processing and analysis of sex chromosome data to accommodate the underlying biology of these chromosomes, and the technical limitations of DNA methylation arrays.
Collapse
Affiliation(s)
- Amy M Inkster
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada.
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada.
| | - Martin T Wong
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| | - Allison M Matthews
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver, V6T 1Z7, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Genetics, University of British Columbia, 4500 Oak St, Vancouver, V6H 3N1, Canada
| |
Collapse
|
11
|
Olney KC, Plaisier SB, Phung TN, Silasi M, Perley L, O'Bryan J, Ramirez L, Kliman HJ, Wilson MA. Sex differences in early and term placenta are conserved in adult tissues. Biol Sex Differ 2022; 13:74. [PMID: 36550527 PMCID: PMC9773522 DOI: 10.1186/s13293-022-00470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pregnancy complications vary based on the fetus's genetic sex, which may, in part, be modulated by the placenta. Furthermore, developmental differences early in life can have lifelong health outcomes. Yet, sex differences in gene expression within the placenta at different timepoints throughout pregnancy and comparisons to adult tissues remains poorly characterized. METHODS Here, we collect and characterize sex differences in gene expression in term placentas (≥ 36.6 weeks; 23 male XY and 27 female XX). These are compared with sex differences in previously collected first trimester placenta samples and 42 non-reproductive adult tissues from GTEx. RESULTS We identify 268 and 53 sex-differentially expressed genes in the uncomplicated late first trimester and term placentas, respectively. Of the 53 sex-differentially expressed genes observed in the term placentas, 31 are also sex-differentially expressed genes in the late first trimester placentas. Furthermore, sex differences in gene expression in term placentas are highly correlated with sex differences in the late first trimester placentas. We found that sex-differential gene expression in the term placenta is significantly correlated with sex differences in gene expression in 42 non-reproductive adult tissues (correlation coefficient ranged from 0.892 to 0.957), with the highest correlation in brain tissues. Sex differences in gene expression were largely driven by gene expression on the sex chromosomes. We further show that some gametologous genes (genes with functional copies on X and Y) will have different inferred sex differences if the X-linked gene expression in females is compared to the sum of the X-linked and Y-linked gene expression in males. CONCLUSIONS We find that sex differences in gene expression are conserved in late first trimester and term placentas and that these sex differences are conserved in adult tissues. We demonstrate that there are sex differences associated with innate immune response in late first trimester placentas but there is no significant difference in gene expression of innate immune genes between sexes in healthy full-term placentas. Finally, sex differences are predominantly driven by expression from sex-linked genes.
Collapse
Affiliation(s)
- Kimberly C Olney
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Seema B Plaisier
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Tanya N Phung
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Michelle Silasi
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mercy Hospital St. Louis, St. Louis, MO, 63141, USA
| | - Lauren Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jane O'Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lucia Ramirez
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA
| | - Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Melissa A Wilson
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85282, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85282, USA.
- The Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85282, USA.
| |
Collapse
|
12
|
Phung TN, Olney KC, Pinto BJ, Silasi M, Perley L, O’Bryan J, Kliman HJ, Wilson MA. X chromosome inactivation in the human placenta is patchy and distinct from adult tissues. HGG ADVANCES 2022; 3:100121. [PMID: 35712697 PMCID: PMC9194956 DOI: 10.1016/j.xhgg.2022.100121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
In humans, one of the X chromosomes in genetic females is inactivated by a process called X chromosome inactivation (XCI). Variation in XCI across the placenta may contribute to observed sex differences and variability in pregnancy outcomes. However, XCI has predominantly been studied in human adult tissues. Here, we sequenced and analyzed DNA and RNA from two locations from 30 full-term pregnancies. Implementing an allele-specific approach to examine XCI, we report evidence that XCI in the human placenta is patchy, with large patches of either maternal or paternal X chromosomes inactivated. Further, using similar measurements, we show that this is in contrast to adult tissues, which generally exhibit mosaic X inactivation, where bulk samples exhibit both maternal and paternal X chromosome expression. Further, by comparing skewed samples in placenta and adult tissues, we identify genes that are uniquely inactivated or expressed in the placenta compared with adult tissues, highlighting the need for tissue-specific maps of XCI.
Collapse
Affiliation(s)
- Tanya N. Phung
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
| | - Kimberly C. Olney
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
| | - Brendan J. Pinto
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Michelle Silasi
- Department of Maternal-Fetal Medicine, Mercy Hospital St. Louis, St. Louis, MO 63141, USA
| | - Lauren Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jane O’Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Harvey J. Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Melissa A. Wilson
- Center for Evolution and Medicine, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
- The Biodesign Center for Mechanisms of Evolution, Arizona State University, PO Box 874501, Tempe, AZ 85282, USA
| |
Collapse
|
13
|
Kelley CM, Ginsberg SD, Liang WS, Counts SE, Mufson EJ. Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders. Brain Commun 2022; 4:fcac162. [PMID: 35813880 PMCID: PMC9263888 DOI: 10.1093/braincomms/fcac162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
The posterior cingulate cortex, a key hub of the default mode network, underlies autobiographical memory retrieval and displays hypometabolic changes early in Alzheimer disease. To obtain an unbiased understanding of the molecular pathobiology of the aged posterior cingulate cortex, we performed RNA sequencing (RNA-seq) on tissue obtained from 26 participants of the Rush Religious Orders Study (11 males/15 females; aged 76-96 years) with a pre-mortem clinical diagnosis of no cognitive impairment and post-mortem neurofibrillary tangle Braak Stages I/II, III, and IV. Transcriptomic data were gathered using next-generation sequencing of RNA extracted from posterior cingulate cortex generating an average of 60 million paired reads per subject. Normalized expression of RNA-seq data was calculated using a global gene annotation and a microRNA profile. Differential expression (DESeq2, edgeR) using Braak staging as the comparison structure isolated genes for dimensional scaling, associative network building and functional clustering. Curated genes were correlated with the Mini-Mental State Examination and semantic, working and episodic memory, visuospatial ability, and a composite Global Cognitive Score. Regulatory mechanisms were determined by co-expression networks with microRNAs and an overlap of transcription factor binding sites. Analysis revealed 750 genes and 12 microRNAs significantly differentially expressed between Braak Stages I/II and III/IV and an associated six groups of transcription factor binding sites. Inputting significantly different gene/network data into a functional annotation clustering model revealed elevated presynaptic, postsynaptic and ATP-related expression in Braak Stages III and IV compared with Stages I/II, suggesting these pathways are integral for cognitive resilience seen in unimpaired elderly subjects. Principal component analysis and Kruskal-Wallis testing did not associate Braak stage with cognitive function. However, Spearman correlations between genes and cognitive test scores followed by network analysis revealed upregulation of classes of synaptic genes positively associated with performance on the visuospatial perceptual orientation domain. Upregulation of key synaptic genes suggests a role for these transcripts and associated synaptic pathways in cognitive resilience seen in elders despite Alzheimer disease pathology and dementia.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie S Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
- Department of Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| |
Collapse
|
14
|
Carey SB, Lovell JT, Jenkins J, Leebens-Mack J, Schmutz J, Wilson MA, Harkess A. Representing sex chromosomes in genome assemblies. CELL GENOMICS 2022; 2. [PMID: 35720975 PMCID: PMC9205529 DOI: 10.1016/j.xgen.2022.100132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sex chromosomes have evolved hundreds of independent times across eukaryotes. As genome sequencing, assembly, and scaffolding techniques rapidly improve, it is now feasible to build fully phased sex chromosome assemblies. Despite technological advances enabling phased assembly of whole chromosomes, there are currently no standards for representing sex chromosomes when publicly releasing a genome. Furthermore, most computational analysis tools are unable to efficiently investigate their unique biology relative to autosomes. We discuss a diversity of sex chromosome systems and consider the challenges of representing sex chromosome pairs in genome assemblies. By addressing these issues now as technologies for full phasing of chromosomal assemblies are maturing, we can collectively ensure that future genome analysis toolkits can be broadly applied to all eukaryotes with diverse types of sex chromosome systems. Here we provide best practice guidelines for presenting a genome assembly that contains sex chromosomes. These guidelines can also be applied to other non-recombining genomic regions, such as S-loci in plants and mating-type loci in fungi and algae.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.,US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Melissa A Wilson
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
15
|
Fisher JL, Jones EF, Flanary VL, Williams AS, Ramsey EJ, Lasseigne BN. Considerations and challenges for sex-aware drug repurposing. Biol Sex Differ 2022; 13:13. [PMID: 35337371 PMCID: PMC8949654 DOI: 10.1186/s13293-022-00420-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/06/2022] [Indexed: 01/09/2023] Open
Abstract
Sex differences are essential factors in disease etiology and manifestation in many diseases such as cardiovascular disease, cancer, and neurodegeneration [33]. The biological influence of sex differences (including genomic, epigenetic, hormonal, immunological, and metabolic differences between males and females) and the lack of biomedical studies considering sex differences in their study design has led to several policies. For example, the National Institute of Health's (NIH) sex as a biological variable (SABV) and Sex and Gender Equity in Research (SAGER) policies to motivate researchers to consider sex differences [204]. However, drug repurposing, a promising alternative to traditional drug discovery by identifying novel uses for FDA-approved drugs, lacks sex-aware methods that can improve the identification of drugs that have sex-specific responses [7, 11, 14, 33]. Sex-aware drug repurposing methods either select drug candidates that are more efficacious in one sex or deprioritize drug candidates based on if they are predicted to cause a sex-bias adverse event (SBAE), unintended therapeutic effects that are more likely to occur in one sex. Computational drug repurposing methods are encouraging approaches to develop for sex-aware drug repurposing because they can prioritize sex-specific drug candidates or SBAEs at lower cost and time than traditional drug discovery. Sex-aware methods currently exist for clinical, genomic, and transcriptomic information [1, 7, 155]. They have not expanded to other data types, such as DNA variation, which has been beneficial in other drug repurposing methods that do not consider sex [114]. Additionally, some sex-aware methods suffer from poorer performance because a disproportionate number of male and female samples are available to train computational methods [7]. However, there is development potential for several different categories (i.e., data mining, ligand binding predictions, molecular associations, and networks). Low-dimensional representations of molecular association and network approaches are also especially promising candidates for future sex-aware drug repurposing methodologies because they reduce the multiple hypothesis testing burden and capture sex-specific variation better than the other methods [151, 159]. Here we review how sex influences drug response, the current state of drug repurposing including with respect to sex-bias drug response, and how model organism study design choices influence drug repurposing validation.
Collapse
Affiliation(s)
- Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Emma F. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Victoria L. Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Elizabeth J. Ramsey
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
16
|
Borden ES, Adams AC, Buetow KH, Wilson MA, Bauman JE, Curiel-Lewandrowski C, Chow HHS, LaFleur BJ, Hastings KT. Shared Gene Expression and Immune Pathway Changes Associated with Progression from Nevi to Melanoma. Cancers (Basel) 2021; 14:cancers14010003. [PMID: 35008167 PMCID: PMC8749980 DOI: 10.3390/cancers14010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Melanoma is a deadly skin cancer, and the incidence of melanoma is rising. Chemoprevention, using small molecule drugs to prevent the development of cancer, is a key strategy that could reduce the burden of melanoma on society. The long-term goal of our study is to develop a gene signature biomarker of progression from nevi to melanoma. We found that a small number of genes can distinguish nevi from melanoma and identified shared genes and immune-related pathways that are associated with progression from nevi to melanoma across independent datasets. This study demonstrates (1) a novel approach to aid melanoma chemoprevention trials by using a gene signature as a surrogate endpoint and (2) the feasibility of determining a gene signature biomarker of melanoma progression. Abstract There is a need to identify molecular biomarkers of melanoma progression to assist the development of chemoprevention strategies to lower melanoma incidence. Using datasets containing gene expression for dysplastic nevi and melanoma or melanoma arising in a nevus, we performed differential gene expression analysis and regularized regression models to identify genes and pathways that were associated with progression from nevi to melanoma. A small number of genes distinguished nevi from melanoma. Differential expression of seven genes was identified between nevi and melanoma in three independent datasets. C1QB, CXCL9, CXCL10, DFNA5 (GSDME), FCGR1B, and PRAME were increased in melanoma, and SCGB1D2 was decreased in melanoma, compared to dysplastic nevi or nevi that progressed to melanoma. Further supporting an association with melanomagenesis, these genes demonstrated a linear change in expression from benign nevi to dysplastic nevi to radial growth phase melanoma to vertical growth phase melanoma. The genes associated with melanoma progression showed significant enrichment of multiple pathways related to the immune system. This study demonstrates (1) a novel application of bioinformatic approaches to aid clinical trials of melanoma chemoprevention and (2) the feasibility of determining a gene signature biomarker of melanomagenesis.
Collapse
Affiliation(s)
- Elizabeth S. Borden
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA; (E.S.B.); (A.C.A.)
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Anngela C. Adams
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA; (E.S.B.); (A.C.A.)
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Kenneth H. Buetow
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (K.H.B.); (M.A.W.)
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (K.H.B.); (M.A.W.)
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Julie E. Bauman
- Department of Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ 85724, USA; (J.E.B.); (C.C.-L.); (H.-H.S.C.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Clara Curiel-Lewandrowski
- Department of Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ 85724, USA; (J.E.B.); (C.C.-L.); (H.-H.S.C.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - H.-H. Sherry Chow
- Department of Medicine, University of Arizona College of Medicine Tucson, Tucson, AZ 85724, USA; (J.E.B.); (C.C.-L.); (H.-H.S.C.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | - Karen Taraszka Hastings
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA; (E.S.B.); (A.C.A.)
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-602-827-2106
| |
Collapse
|
17
|
Wilson MA. The Y chromosome and its impact on health and disease. Hum Mol Genet 2021; 30:R296-R300. [PMID: 34328177 PMCID: PMC8490013 DOI: 10.1093/hmg/ddab215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
The Y chromosome is the most gene-deficient chromosome in the human genome (though not the smallest chromosome) and has largely been sequestered away from large-scale studies of the effects of genetics on human health. Here I review the literature, focusing on the last 2 years, for recent evidence of the role of the Y chromosome in protecting from or contributing to disease. Although many studies have focused on Y chromosome gene copy number and variants in fertility, the role of the Y chromosome in human health is now known to extend too many other conditions including the development of multiple cancers and Alzheimer's disease. I further include the discussion of current technology and methods for analyzing Y chromosome variation. The true role of the Y chromosome and associated genetic variants in human disease will only become clear when the Y chromosome is integrated into larger studies of human genetic variation, rather than being analyzed in isolation.
Collapse
Affiliation(s)
- Melissa A Wilson
- School of Life Sciences, Center for Evolution and Medicine, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85282 USA
| |
Collapse
|
18
|
Olney KC, Gibson JD, Natri HM, Underwood A, Gadau J, Wilson MA. Lack of parent-of-origin effects in Nasonia jewel wasp: A replication and extension study. PLoS One 2021; 16:e0252457. [PMID: 34111141 PMCID: PMC8191985 DOI: 10.1371/journal.pone.0252457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/16/2021] [Indexed: 11/28/2022] Open
Abstract
In diploid cells, the paternal and maternal alleles are, on average, equally expressed. There are exceptions from this: a small number of genes express the maternal or paternal allele copy exclusively. This phenomenon, known as genomic imprinting, is common among eutherian mammals and some plant species; however, genomic imprinting in species with haplodiploid sex determination is not well characterized. Previous work reported no parent-of-origin effects in the hybrids of closely related haplodiploid Nasonia vitripennis and Nasonia giraulti jewel wasps, suggesting a lack of epigenetic reprogramming during embryogenesis in these species. Here, we replicate the gene expression dataset and observations using different individuals and sequencing technology, as well as reproduce these findings using the previously published RNA sequence data following our data analysis strategy. The major difference from the previous dataset is that they used an introgression strain as one of the parents and we found several loci that resisted introgression in that strain. Our results from both datasets demonstrate a species-of-origin effect, rather than a parent-of-origin effect. We present a reproducible workflow that others may use for replicating the results. Overall, we reproduced the original report of no parent-of-origin effects in the haplodiploid Nasonia using the original data with our new processing and analysis pipeline and replicated these results with our newly generated data.
Collapse
Affiliation(s)
- Kimberly C. Olney
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Joshua D. Gibson
- Department of Biology, Georgia Southern University, Statesboro, GA, United States of America
| | - Heini M. Natri
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Avery Underwood
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
| | - Juergen Gadau
- Institut fuer Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States of America
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
- * E-mail:
| |
Collapse
|
19
|
Haupt S, Caramia F, Klein SL, Rubin JB, Haupt Y. Sex disparities matter in cancer development and therapy. Nat Rev Cancer 2021; 21:393-407. [PMID: 33879867 PMCID: PMC8284191 DOI: 10.1038/s41568-021-00348-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Curing cancer through precision medicine is the paramount aim of the new wave of molecular and genomic therapies. Currently, whether patients with non-reproductive cancers are male or female according to their sex chromosomes is not adequately considered in patient standard of care. This is a matter of consequence because there is growing evidence that these cancer types generally initiate earlier and are associated with higher overall incidence and rates of death in males compared with females. Gender, in contrast to sex, refers to a chosen sexual identity. Hazardous lifestyle choices (notably tobacco smoking) differ in prevalence between genders, aligned with disproportionate cancer risk. These add to underlying genetic predisposition and influences of sex steroid hormones. Together, these factors affect metabolism, immunity and inflammation, and ultimately the fidelity of the genetic code. To accurately understand how human defences against cancer erode, it is crucial to establish the influence of sex. Our Perspective highlights evidence from basic and translational research indicating that including genetic sex considerations in treatments for patients with cancer will improve outcomes. It is now time to adopt the challenge of overhauling cancer medicine based on optimized treatment strategies for females and males.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Franco Caramia
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joshua B Rubin
- Department of Pediatrics and Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Ygal Haupt
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
20
|
Carey SB, Jenkins J, Lovell JT, Maumus F, Sreedasyam A, Payton AC, Shu S, Tiley GP, Fernandez-Pozo N, Healey A, Barry K, Chen C, Wang M, Lipzen A, Daum C, Saski CA, McBreen JC, Conrad RE, Kollar LM, Olsson S, Huttunen S, Landis JB, Burleigh JG, Wickett NJ, Johnson MG, Rensing SA, Grimwood J, Schmutz J, McDaniel SF. Gene-rich UV sex chromosomes harbor conserved regulators of sexual development. SCIENCE ADVANCES 2021; 7:7/27/eabh2488. [PMID: 34193417 PMCID: PMC8245031 DOI: 10.1126/sciadv.abh2488] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss Ceratodon purpureus to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.
Collapse
Affiliation(s)
- Sarah B Carey
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, 78026 Versailles, France
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam C Payton
- Department of Biology, University of Florida, Gainesville, FL, USA
- RAPiD Genomics, Gainesville, FL, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Adam Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher A Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Jordan C McBreen
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Roth E Conrad
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Leslie M Kollar
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Sanna Olsson
- Department of Forest Ecology and Genetics, INIA-CIFOR, Madrid, Spain
| | - Sanna Huttunen
- Department of Biology and Biodiversity Unit, University of Turku, Turku, Finland
| | - Jacob B Landis
- L.H. Bailey Hortorium and Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | | - Norman J Wickett
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, USA
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Stefan A Rensing
- Plant Cell Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg im Breisgau, Germany
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
21
|
Richmond PA, Kaye AM, Kounkou GJ, Av-Shalom TV, Wasserman WW. Demonstrating the utility of flexible sequence queries against indexed short reads with FlexTyper. PLoS Comput Biol 2021; 17:e1008815. [PMID: 33750951 PMCID: PMC8016220 DOI: 10.1371/journal.pcbi.1008815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/01/2021] [Accepted: 02/17/2021] [Indexed: 11/26/2022] Open
Abstract
Across the life sciences, processing next generation sequencing data commonly relies upon a computationally expensive process where reads are mapped onto a reference sequence. Prior to such processing, however, there is a vast amount of information that can be ascertained from the reads, potentially obviating the need for processing, or allowing optimized mapping approaches to be deployed. Here, we present a method termed FlexTyper which facilitates a “reverse mapping” approach in which high throughput sequence queries, in the form of k-mer searches, are run against indexed short-read datasets in order to extract useful information. This reverse mapping approach enables the rapid counting of target sequences of interest. We demonstrate FlexTyper’s utility for recovering depth of coverage, and accurate genotyping of SNP sites across the human genome. We show that genotyping unmapped reads can correctly inform a sample’s population, sex, and relatedness in a family setting. Detection of pathogen sequences within RNA-seq data was sensitive and accurate, performing comparably to existing methods, but with increased flexibility. We present two examples of ways in which this flexibility allows the analysis of genome features not well-represented in a linear reference. First, we analyze contigs from African genome sequencing studies, showing how they distribute across families from three distinct populations. Second, we show how gene-marking k-mers for the killer immune receptor locus allow allele detection in a region that is challenging for standard read mapping pipelines. The future adoption of the reverse mapping approach represented by FlexTyper will be enabled by more efficient methods for FM-index generation and biology-informed collections of reference queries. In the long-term, selection of population-specific references or weighting of edges in pan-population reference genome graphs will be possible using the FlexTyper approach. FlexTyper is available at https://github.com/wassermanlab/OpenFlexTyper. In the past 15 years, next generation sequencing technology has revolutionized our capacity to process and analyze DNA sequencing data. From agriculture to medicine, this technology is enabling a deeper understanding of the blueprint of life. Next generation sequencing data is composed of short sequences of DNA, referred to as “reads”, which are often shorter than 200 base pairs making them many orders of magnitude smaller than the entirety of a human genome. Gaining insights from this data has typically leveraged a reference-guided mapping approach, where the reads are aligned to a reference genome and then post-processed to gain actionable information such as presence or absence of genomic sequence, or variation between the reference genome and the sequenced sample. Many experts in the field of genomics have concluded that selecting a single, linear reference genome for mapping reads against is limiting, and several current research endeavors are focused on exploring options for improved analysis methods to unlock the full utility of sequencing data. Among these improvements are the usage of sex-matched genomes, population-specific reference genomes, and emergent graph-based reference pan-genomes. However, advanced methods that use raw DNA sequencing data to inform the choice of reference genome and guide the alignment of reads to enriched reference genomes are needed. Here we develop a method termed FlexTyper, which creates a searchable index of the short read data and enables flexible, user-guided queries to provide valuable insights without the need for reference-guided mapping. We demonstrate the utility of our method by identifying sample ancestry and sex in human whole genome sequencing data, detecting viral pathogen reads in RNA-seq data, African-enriched genome regions absent from the global reference, and killer-cell immune receptor alleles that are complex to discern using standard read mapping. We anticipate early adoption of FlexTyper within analysis pipelines as a pre-mapping component, and further envision the bioinformatics and genomics community will leverage the tool for creative uses of sequence queries from unmapped data.
Collapse
Affiliation(s)
- Phillip Andrew Richmond
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Alice Mary Kaye
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Godfrain Jacques Kounkou
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Tamar Vered Av-Shalom
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
22
|
Cechova M. Probably Correct: Rescuing Repeats with Short and Long Reads. Genes (Basel) 2020; 12:48. [PMID: 33396198 PMCID: PMC7823596 DOI: 10.3390/genes12010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Ever since the introduction of high-throughput sequencing following the human genome project, assembling short reads into a reference of sufficient quality posed a significant problem as a large portion of the human genome-estimated 50-69%-is repetitive. As a result, a sizable proportion of sequencing reads is multi-mapping, i.e., without a unique placement in the genome. The two key parameters for whether or not a read is multi-mapping are the read length and genome complexity. Long reads are now able to span difficult, heterochromatic regions, including full centromeres, and characterize chromosomes from "telomere to telomere". Moreover, identical reads or repeat arrays can be differentiated based on their epigenetic marks, such as methylation patterns, aiding in the assembly process. This is despite the fact that long reads still contain a modest percentage of sequencing errors, disorienting the aligners and assemblers both in accuracy and speed. Here, I review the proposed and implemented solutions to the repeat resolution and the multi-mapping read problem, as well as the downstream consequences of reference choice, repeat masking, and proper representation of sex chromosomes. I also consider the forthcoming challenges and solutions with regards to long reads, where we expect the shift from the problem of repeat localization within a single individual to the problem of repeat positioning within pangenomes.
Collapse
Affiliation(s)
- Monika Cechova
- Genetics and Reproductive Biotechnologies, Veterinary Research Institute, Central European Institute of Technology (CEITEC), 621 00 Brno, Czech Republic
| |
Collapse
|
23
|
Lopes-Ramos CM, Quackenbush J, DeMeo DL. Genome-Wide Sex and Gender Differences in Cancer. Front Oncol 2020; 10:597788. [PMID: 33330090 PMCID: PMC7719817 DOI: 10.3389/fonc.2020.597788] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Despite their known importance in clinical medicine, differences based on sex and gender are among the least studied factors affecting cancer susceptibility, progression, survival, and therapeutic response. In particular, the molecular mechanisms driving sex differences are poorly understood and so most approaches to precision medicine use mutational or other genomic data to assign therapy without considering how the sex of the individual might influence therapeutic efficacy. The mandate by the National Institutes of Health that research studies include sex as a biological variable has begun to expand our understanding on its importance. Sex differences in cancer may arise due to a combination of environmental, genetic, and epigenetic factors, as well as differences in gene regulation, and expression. Extensive sex differences occur genome-wide, and ultimately influence cancer biology and outcomes. In this review, we summarize the current state of knowledge about sex-specific genetic and genome-wide influences in cancer, describe how differences in response to environmental exposures and genetic and epigenetic alterations alter the trajectory of the disease, and provide insights into the importance of integrative analyses in understanding the interplay of sex and genomics in cancer. In particular, we will explore some of the emerging analytical approaches, such as the use of network methods, that are providing a deeper understanding of the drivers of differences based on sex and gender. Better understanding these complex factors and their interactions will improve cancer prevention, treatment, and outcomes for all individuals.
Collapse
Affiliation(s)
- Camila M. Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|