1
|
Fang Z, Tang S, Su Y, Liu X, Liu S, Yi J, Wang Z, Dai JS. 3D Printed Multi-Cavity Soft Actuator with Integrated Motion and Sensing Functionalities via Bio-Inspired Interweaving Foldable Endomysium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409060. [PMID: 39587985 DOI: 10.1002/advs.202409060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/07/2024] [Indexed: 11/27/2024]
Abstract
The human muscle bundle generates versatile movements with synchronous neurosensory, enabling human to undertake complex tasks, which inspires researches into functional integration of motions and sensing in actuators for robots. Although soft actuators have developed diverse motion capabilities utilizing the inherent compliance, the simultaneous-sensing approaches typically involve adding sensing components or embedding certain-signal-field substrates, resulting in structural complexity and discrepant deformations between the actuation parts with high-dimensional motions and the sensing parts with heterogeneous stiffnesses. Inspired by the muscle-bundle multifiber mechanism, a multicavity functional integration (McFI) approach is proposed for soft pneumatic actuators to simultaneously realize multidimensional motions and sensing by separating and coordinating active and passive cavities. A bio-inspired interweaving foldable endomysium (BIFE) is introduced to construct and reinforce the multicavity chamber with optimized purposive foldability, enabling 3D printing single-material fabrication. Performing elongation, contraction, and bidirectional bending, the McFI actuator senses its spatial position, orientation, and axial force, based on the kinematic and sensing models built on multi-cavity pressures. Two McFI-actuator-driven robots are built: a soft crawling robot with path reconstruction and a narrow-maneuverable soft gripper with object exteroception, validating the practicality in stand-alone use of the actuator and the potential for intelligent soft robotic innovation of the McFI approach.
Collapse
Affiliation(s)
- Zhonggui Fang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Shaowu Tang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Yinyin Su
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Xiaohuang Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Sicong Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Juan Yi
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Zheng Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| | - Jian S Dai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518000, China
| |
Collapse
|
2
|
Iwamoto M, Atsumi N, Kato D. Antagonistic Feedback Control of Muscle Length Changes for Efficient Involuntary Posture Stabilization. Biomimetics (Basel) 2024; 9:618. [PMID: 39451824 PMCID: PMC11506834 DOI: 10.3390/biomimetics9100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Simultaneous and cooperative muscle activation results in involuntary posture stabilization in vertebrates. However, the mechanism through which more muscles than joints contribute to this stabilization remains unclear. We developed a computational human body model with 949 muscle action lines and 22 joints and examined muscle activation patterns for stabilizing right upper or lower extremity motions at a neutral body posture (NBP) under gravity using actor-critic reinforcement learning (ACRL). Two feedback control models (FCM), muscle length change (FCM-ML) and joint angle differences, were applied to ACRL with a normalized Gaussian network (ACRL-NGN) or deep deterministic policy gradient. Our findings indicate that among the six control methods, ACRL-NGN with FCM-ML, utilizing solely antagonistic feedback control of muscle length change without relying on synergy pattern control or categorizing muscles as flexors, extensors, agonists, or synergists, achieved the most efficient involuntary NBP stabilization. This finding suggests that vertebrate muscles are fundamentally controlled without categorization of muscles for targeted joint motion and are involuntarily controlled to achieve the NBP, which is the most comfortable posture under gravity. Thus, ACRL-NGN with FCM-ML is suitable for controlling humanoid muscles and enables the development of a comfortable seat design.
Collapse
Affiliation(s)
- Masami Iwamoto
- Human Science Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan; (N.A.); (D.K.)
| | | | | |
Collapse
|
3
|
Torell F, Dimitriou M. Local muscle pressure stimulates the principal receptors for proprioception. Cell Rep 2024; 43:114699. [PMID: 39213153 DOI: 10.1016/j.celrep.2024.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/11/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Proprioception plays a crucial role in motor coordination and self-perception. Muscle spindles are the principal receptors for proprioception. They are believed to encode muscle stretch and signal limb position and velocity. Here, we applied percutaneous pressure to a small area of extensor muscles at the forearm while recording spindle afferent responses, skeletal muscle activity, and hand kinematics. Three levels of sustained pressure were applied on the spindle-bearing muscle when the hand was relaxed and immobile ("isometric" condition) and when the participant's hand moved rhythmically at the wrist. As hypothesized to occur due to compression of the spindle capsule, we show that muscle pressure is an "adequate" stimulus for human spindles in isometric conditions and that pressure enhances spindle responses during stretch. Interestingly, release of sustained pressure in isometric conditions lowered spindle firing below baseline rates. Our findings urge a re-evaluation of muscle proprioception in sensorimotor function and various neuromuscular pathologies.
Collapse
Affiliation(s)
- Frida Torell
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden
| | - Michael Dimitriou
- Department of Medical and Translational Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
4
|
Kleiser B, Zimmer M, Ateş F, Marquetand J. Characterizing Mechanical Changes in the Biceps Brachii Muscle in Mild Facioscapulohumeral Muscular Dystrophy Using Shear Wave Elastography. Diagnostics (Basel) 2024; 14:1985. [PMID: 39272769 PMCID: PMC11394530 DOI: 10.3390/diagnostics14171985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
There is no general consensus on evaluating disease progression in facioscapulohumeral muscular dystrophy (FSHD). Recently, shear wave elastography (SWE) has been proposed as a noninvasive diagnostic tool to assess muscle stiffness in vivo. Therefore, this study aimed to characterize biceps brachii (BB) muscle mechanics in mild-FSHD patients using SWE. Eight patients with mild FSHD, the BB were assessed using SWE, surface electromyography (sEMG), elbow moment measurements during rest, maximum voluntary contraction (MVC), and isometric ramp contractions at 25%, 50%, and 75% MVC across five elbow positions (60°, 90°, 120°, 150°, and 180° flexion). The mean absolute percentage deviation (MAPD) was analyzed as a measure of force control during ramp contractions. The shear elastic modulus of the BB in FSHD patients increased from flexed to extended elbow positions (e.g., p < 0.001 at 25% MVC) and with increasing contraction intensity (e.g., p < 0.001 at 60°). MAPD was highly variable, indicating significant deviation from target values during ramp contractions. SWE in mild FSHD is influenced by contraction level and joint angle, similar to findings of previous studies in healthy subjects. Moreover, altered force control could relate to the subjective muscle weakness reported by patients with dystrophies.
Collapse
Affiliation(s)
- Benedict Kleiser
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
- MEG-Center, University of Tübingen, Otfried-Müller-Str. 47, 72076 Tübingen, Germany
| | - Manuela Zimmer
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | - Filiz Ateş
- Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
| | - Justus Marquetand
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
- Department of Neural Dynamics and Magnetoencephalography, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
- MEG-Center, University of Tübingen, Otfried-Müller-Str. 47, 72076 Tübingen, Germany
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Espino CM, Nagaraja C, Ortiz S, Dayton JR, Murali AR, Ma Y, Mann EL, Garlapalli S, Wohlgemuth RP, Brashear SE, Smith LR, Wilkinson KA, Griffith TN. Differential encoding of mammalian proprioception by voltage-gated sodium channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609982. [PMID: 39253497 PMCID: PMC11383322 DOI: 10.1101/2024.08.27.609982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Animals that require purposeful movement for survival are endowed with mechanosensory neurons called proprioceptors that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we have identified distinct and nonredundant roles for two voltage-gated sodium channels (NaVs), NaV1.1 and NaV1.6, in mammalian proprioception. Deletion of NaV1.6 in somatosensory neurons (NaV1.6cKO mice) causes severe motor deficits accompanied by complete loss of proprioceptive transmission, which contrasts with our previous findings using similar mouse models to target NaV1.1 (NaV1.1cKO). In NaV1.6cKO animals, loss of proprioceptive feedback caused non-cell-autonomous impairments in proprioceptor end-organs and skeletal muscle that were absent in NaV1.1cKO mice. We attribute the differential contribution of NaV1.1 and NaV1.6 in proprioceptor function to distinct cellular localization patterns. Collectively, these data provide the first evidence that NaV subtypes uniquely shape neurotransmission within a somatosensory modality.
Collapse
Affiliation(s)
- Cyrrus M. Espino
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Chetan Nagaraja
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Serena Ortiz
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Jacquelyn R. Dayton
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Akash R. Murali
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Yanki Ma
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, USA
| | - Emari L. Mann
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Postbaccalaureate Research Education Program at UC Davis, University of California, Davis, Davis, CA, USA
| | - Snigdha Garlapalli
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Undergraduate Program in Psychology, University of California, Davis, Davis, CA, USA
| | - Ross P. Wohlgemuth
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Sarah E. Brashear
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Lucas R. Smith
- Department of Physiology, Neurobiology, and Behavior, University of California, Davis, Davis, CA, USA
| | | | - Theanne N. Griffith
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
6
|
Scarano S, Caronni A, Carraro E, Ferrari Aggradi CR, Rota V, Malloggi C, Tesio L, Sansone VA. In Myotonic Dystrophy Type 1 Head Repositioning Errors Suggest Impaired Cervical Proprioception. J Clin Med 2024; 13:4685. [PMID: 39200827 PMCID: PMC11355930 DOI: 10.3390/jcm13164685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Myotonic dystrophy type 1 (DM1) is a rare multisystemic genetic disorder with motor hallmarks of myotonia, muscle weakness and wasting. DM1 patients have an increased risk of falling of multifactorial origin, and proprioceptive and vestibular deficits can contribute to this risk. Abnormalities of muscle spindles in DM1 have been known for years. This observational cross-sectional study was based on the hypothesis of impaired cervical proprioception caused by alterations in the neck spindles. Methods: Head position sense was measured in 16 DM1 patients and 16 age- and gender-matched controls. A head-to-target repositioning test was requested from blindfolded participants. Their head was passively rotated approximately 30° leftward or rightward and flexed or extended approximately 25°. Participants had to replicate the imposed positions. An optoelectronic system was adopted to measure the angular differences between the reproduced and the imposed positions (joint position error, JPE, °) concerning the intended (sagittal, horizontal) and unintended (including the frontal) planar projections. In DM1 patients, JPEs were correlated with clinical and balance measures. Static balance in DM1 patients was assessed through dynamic posturography. Results: The accuracy and precision of head repositioning in the intended sagittal and horizontal error components did not differ between DM1 and controls. On the contrary, DM1 patients showed unintended side-bending to the left and the right: the mean [95%CI] of frontal JPE was -1.29° [-1.99°, -0.60°] for left rotation and 0.98° [0.28°, 1.67°] for right rotation. The frontal JPE of controls did not differ significantly from 0° (left rotation: 0.17° [-0.53°, 0.87°]; right rotation: -0.22° [-0.91°, 0.48°]). Frontal JPE differed between left and right rotation trials (p < 0.001) only in DM1 patients. No correlation was found between JPEs and measures from dynamic posturography and clinical scales. Conclusions: Lateral head bending associated with head rotation may reflect a latent impairment of neck proprioception in DM1 patients.
Collapse
Affiliation(s)
- Stefano Scarano
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (S.S.); (V.A.S.)
- IRCCS Istituto Auxologico Italiano, Department of Neurorehabilitation Sciences, Ospedale San Luca, 20122 Milan, Italy; (V.R.); (C.M.); (L.T.)
| | - Antonio Caronni
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (S.S.); (V.A.S.)
- IRCCS Istituto Auxologico Italiano, Department of Neurorehabilitation Sciences, Ospedale San Luca, 20122 Milan, Italy; (V.R.); (C.M.); (L.T.)
| | - Elena Carraro
- The NeMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, 20162 Milan, Italy; (E.C.); (C.R.F.A.)
| | - Carola Rita Ferrari Aggradi
- The NeMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, 20162 Milan, Italy; (E.C.); (C.R.F.A.)
| | - Viviana Rota
- IRCCS Istituto Auxologico Italiano, Department of Neurorehabilitation Sciences, Ospedale San Luca, 20122 Milan, Italy; (V.R.); (C.M.); (L.T.)
| | - Chiara Malloggi
- IRCCS Istituto Auxologico Italiano, Department of Neurorehabilitation Sciences, Ospedale San Luca, 20122 Milan, Italy; (V.R.); (C.M.); (L.T.)
| | - Luigi Tesio
- IRCCS Istituto Auxologico Italiano, Department of Neurorehabilitation Sciences, Ospedale San Luca, 20122 Milan, Italy; (V.R.); (C.M.); (L.T.)
| | - Valeria Ada Sansone
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (S.S.); (V.A.S.)
- The NeMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, 20162 Milan, Italy; (E.C.); (C.R.F.A.)
| |
Collapse
|
7
|
Karacan I, Türker KS. Exploring neuronal mechanisms of osteosarcopenia in older adults. J Physiol 2024. [PMID: 39119811 DOI: 10.1113/jp285666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Until recently, research on the pathogenesis and treatment of osteoporosis and sarcopenia has primarily focused on local and systemic humoral mechanisms, often overlooking neuronal mechanisms. However, there is a growing body of literature on the neuronal regulation of bone and skeletal muscle structure and function, which may provide insights into the pathogenesis of osteosarcopenia. This review aims to integrate these neuronal regulatory mechanisms to form a comprehensive understanding and inspire future research that could uncover novel strategies for preventing and treating osteosarcopenia. Specifically, the review explores the functional adaptation of weight-bearing bone to mechanical loading throughout evolutionary development, from Wolff's law and Frost's mechanostat theory to the mosaic hypothesis, which emphasizes neuronal regulation. The recently introduced bone osteoregulation reflex points to the importance of the osteocytic mechanoreceptive network as a receptor in this neuronal regulation mechanism. Finally, the review focuses on the bone myoregulation reflex, which is known as a mechanism by which bone loading regulates muscle functions neuronally. Considering the ageing-related regressive changes in the nerve fibres that provide both structural and functional regulation in bone and skeletal muscle tissue and the bone and muscle tissues they innervate, it is suggested that neuronal mechanisms might play a central role in explaining osteosarcopenia in older adults.
Collapse
Affiliation(s)
- Ilhan Karacan
- Physical Medicine and Rehabilitation Department, Hamidiye Medical School, Health Science University Istanbul, Istanbul, Turkey
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kemal Sıtkı Türker
- Physiology, Faculty of Dentistry, Istanbul Gelisim University, Istanbul, Turkey
| |
Collapse
|
8
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
9
|
Sun Y, Fede C, Zhao X, Del Felice A, Pirri C, Stecco C. Quantity and Distribution of Muscle Spindles in Animal and Human Muscles. Int J Mol Sci 2024; 25:7320. [PMID: 39000428 PMCID: PMC11242712 DOI: 10.3390/ijms25137320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Muscle spindles have unique anatomical characteristics that can be directly affected by the surrounding tissues under physiological and pathological conditions. Understanding their spatial distribution and density in different muscles is imperative to unravel the complexity of motor function. In the present study, the distribution and number/density of muscle spindles in human and animal muscles were reviewed. We identified 56 articles focusing on muscle spindle distribution; 13 articles focused on human muscles and 43 focused on animal muscles. The results demonstrate that spindles are located at the nerve entry points and along distributed vessels and they relate to the intramuscular connective tissue. Muscles' deep layers and middle segments are the main topographic distribution areas. Eleven articles on humans and thirty-three articles on animals (totaling forty-four articles) focusing on muscle spindle quantity and density were identified. Hand and head muscles, such as the pronator teres/medial pterygoid muscle/masseter/flexor digitorum, were most commonly studied in the human studies. For animals, whole-body musculature was studied. The present study summarized the spindle quantity in 77 human and 189 animal muscles. We identified well-studied muscles and any as-yet unfound data. The current data fail to clarify the relationship between quantity/density and muscle characteristics. The intricate distribution of the muscle spindles and their density and quantity throughout the body present some unique patterns or correlations, according to the current data. However, it remains unclear whether muscles with fine motor control have more muscle spindles since the study standards are inconsistent and data on numerous muscles are missing. This study provides a comprehensive and exhaustive approach for clinicians and researchers to determine muscle spindle status.
Collapse
Affiliation(s)
- Yunfeng Sun
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy; (Y.S.); (X.Z.); (A.D.F.)
| | - Caterina Fede
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.F.); (C.P.)
| | - Xiaoxiao Zhao
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy; (Y.S.); (X.Z.); (A.D.F.)
| | - Alessandra Del Felice
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy; (Y.S.); (X.Z.); (A.D.F.)
- Section of Neurology, Department of Neuroscience, University of Padova, 35122 Padova, Italy
| | - Carmelo Pirri
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.F.); (C.P.)
| | - Carla Stecco
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.F.); (C.P.)
| |
Collapse
|
10
|
Schönnagel L, Chiaparelli E, Camino-Willhuber G, Zhu J, Caffard T, Tani S, Burkhard MD, Kelly M, Guven AE, Shue J, Sama AA, Girardi FP, Cammisa FP, Hughes AP. Spine-specific sarcopenia: distinguishing paraspinal muscle atrophy from generalized sarcopenia. Spine J 2024; 24:1211-1221. [PMID: 38432297 DOI: 10.1016/j.spinee.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND CONTEXT Atrophy of the paraspinal musculature (PM) as well as generalized sarcopenia are increasingly reported as important parameters for clinical outcomes in the field of spine surgery. Despite growing awareness and potential similarities between both conditions, the relationship between "generalized" and "spine-specific" sarcopenia is unclear. PURPOSE To investigate the association between generalized and spine-specific sarcopenia. STUDY DESIGN Retrospective cross-sectional study. PATIENT SAMPLE Patients undergoing lumbar spinal fusion surgery for degenerative spinal pathologies. OUTCOME MEASURES Generalized sarcopenia was evaluated with the short physical performance battery (SPPB), grip strength, and the psoas index, while spine-specific sarcopenia was evaluated by measuring fatty infiltration (FI) of the PM. METHODS We used custom software written in MATLAB® to calculate the FI of the PM. The correlation between FI of the PM and assessments of generalized sarcopenia was calculated using Spearman's rank correlation coefficient (rho). The strength of the correlation was evaluated according to established cut-offs: negligible: 0-0.3, low: 0.3-0.5, moderate: 0.5-0.7, high: 0.7-0.9, and very high≥0.9. In a Receiver Operating Characteristics (ROC) analysis, the Area Under the Curve (AUC) of sarcopenia assessments to predict severe multifidus atrophy (FI≥50%) was calculated. In a secondary analysis, factors associated with severe multifidus atrophy in nonsarcopenic patients were analyzed. RESULTS A total of 125 (43% female) patients, with a median age of 63 (IQR 55-73) were included. The most common surgical indication was lumbar spinal stenosis (79.5%). The median FI of the multifidus was 45.5% (IQR 35.6-55.2). Grip strength demonstrated the highest correlation with FI of the multifidus and erector spinae (rho=-0.43 and -0.32, p<.001); the other correlations were significant (p<.05) but lower in strength. In the AUC analysis, the AUC was 0.61 for the SPPB, 0.71 for grip strength, and 0.72 for the psoas index. The latter two were worse in female patients, with an AUC of 0.48 and 0.49. Facet joint arthropathy (OR: 1.26, 95% CI: 1.11-1.47, p=.001) and foraminal stenosis (OR: 1.54, 95% CI: 1.10-2.23, p=.015) were independently associated with severe multifidus atrophy in our secondary analysis. CONCLUSION Our study demonstrates a low correlation between generalized and spine-specific sarcopenia. These findings highlight the risk of misdiagnosis when relying on screening tools for general sarcopenia and suggest that general and spine-specific sarcopenia may have distinct etiologies.
Collapse
Affiliation(s)
- Lukas Schönnagel
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA; Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Luisenstraße 64, 10117 Berlin, Germany
| | - Erika Chiaparelli
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA
| | - Gaston Camino-Willhuber
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA; Asuncion Klinikia, Izaskungo Aldapa, 20400 Tolosa, Spain
| | - Jiaqi Zhu
- Biostatistics Core, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Thomas Caffard
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA; Universitätsklinikum Ulm, Klinik für Orthopädie, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Soji Tani
- Department of Orthopaedic Surgery, School of Medicine, Showa University Hospital, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Tokyo, Japan
| | - Marco D Burkhard
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA
| | - Michael Kelly
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA
| | - Ali E Guven
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA
| | - Jennifer Shue
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA
| | - Andrew A Sama
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA
| | - Federico P Girardi
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA
| | - Frank P Cammisa
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA
| | - Alexander P Hughes
- Department of Orthopaedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine, 520 E 70th New York, NY 10021, USA.
| |
Collapse
|
11
|
Slongo EGR, Bressan EVR, Santos JPRD, Vendrametto JP, Carvalho ARD, Bertolini GRF. Effect of whole-body vibration frequency on objective physical function outcomes in healthy young adults: Randomized clinical trial. J Bodyw Mov Ther 2024; 39:598-605. [PMID: 38876693 DOI: 10.1016/j.jbmt.2024.03.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/16/2024] [Accepted: 03/24/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Whole-body vibration (WBV) is used to improve muscle function but is important to know if doses can affect the objective function outcomes. OBJECTIVE To compare the effect of two frequencies of WBV on objective physical function outcomes in healthy young adults. METHODS Forty-two volunteers were randomized into three groups: sham group (SG), and WBV groups with 30 (F30) and 45 Hz (F45). A 6-week WBV intervention protocol was applied by a vibrating platform twice a week, with the platform turn-off for SG and with two frequencies according to group, 30 or 45 Hz. The objective physical functions outcomes assessed were the proprioceptive accuracy, measured by proprioceptive tests, and quasi-static and dynamic balances, measured by Sensory Organization Test (SOT) and Y Balance Test, respectively. The outcomes were assessed before and after the WBV intervention. We used in the results comparisons, by GzLM test, the deltas percentage. RESULTS After the intervention, no statistical differences were observed in percentage deltas for any outcomes (proprioceptive accuracy, quasi-static and dynamic balances). CONCLUSION Objective physical function outcomes, after the 6-week WBV protocol, did not present statistically significant results in any of the intervention groups (F30 or F45) and SG.
Collapse
|
12
|
Shanbhag J, Fleischmann S, Wechsler I, Gassner H, Winkler J, Eskofier BM, Koelewijn AD, Wartzack S, Miehling J. A sensorimotor enhanced neuromusculoskeletal model for simulating postural control of upright standing. Front Neurosci 2024; 18:1393749. [PMID: 38812972 PMCID: PMC11133552 DOI: 10.3389/fnins.2024.1393749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
The human's upright standing is a complex control process that is not yet fully understood. Postural control models can provide insights into the body's internal control processes of balance behavior. Using physiologically plausible models can also help explaining pathophysiological motion behavior. In this paper, we introduce a neuromusculoskeletal postural control model using sensor feedback consisting of somatosensory, vestibular and visual information. The sagittal plane model was restricted to effectively six degrees of freedom and consisted of nine muscles per leg. Physiologically plausible neural delays were considered for balance control. We applied forward dynamic simulations and a single shooting approach to generate healthy reactive balance behavior during quiet and perturbed upright standing. Control parameters were optimized to minimize muscle effort. We showed that our model is capable of fulfilling the applied tasks successfully. We observed joint angles and ranges of motion in physiologically plausible ranges and comparable to experimental data. This model represents the starting point for subsequent simulations of pathophysiological postural control behavior.
Collapse
Affiliation(s)
- Julian Shanbhag
- Engineering Design, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sophie Fleischmann
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Wechsler
- Engineering Design, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heiko Gassner
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bjoern M. Eskofier
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anne D. Koelewijn
- Machine Learning and Data Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandro Wartzack
- Engineering Design, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Miehling
- Engineering Design, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Thomas P, Peele EE, Yopak KE, Sulikowski JA, Kinsey ST. Lectin binding to pectoral fin of neonate little skates reared under ambient and projected-end-of-century temperature regimes. J Morphol 2024; 285:e21698. [PMID: 38669130 PMCID: PMC11064730 DOI: 10.1002/jmor.21698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The glycosylation of macromolecules can vary both among tissue structural components and by adverse conditions, potentially providing an alternative marker of stress in organisms. Lectins are proteins that bind carbohydrate moieties and lectin histochemistry is a common method to visualize microstructures in biological specimens and diagnose pathophysiological states in human tissues known to alter glycan profiles. However, this technique is not commonly used to assess broad-spectrum changes in cellular glycosylation in response to environmental stressors. In addition, the binding of various lectins has not been studied in elasmobranchs (sharks, skates, and rays). We surveyed the binding tissue structure specificity of 14 plant-derived lectins, using both immunoblotting and immunofluorescence, in the pectoral fins of neonate little skates (Leucoraja erinacea). Skates were reared under present-day or elevated (+5°C above ambient) temperature regimes and evaluated for lectin binding as an indicator of changing cellular glycosylation and tissue structure. Lectin labeling was highly tissue and microstructure specific. Dot blots revealed no significant changes in lectin binding between temperature regimes. In addition, lectins only detected in the elevated temperature treatment were Canavalia ensiformis lectin (Concanavalin A) in spindle cells of muscle and Ricinus communis agglutinin in muscle capillaries. These results provide a reference for lectin labeling in elasmobranch tissue that may aid future investigations.
Collapse
Affiliation(s)
- Peyton Thomas
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - Emily E. Peele
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - Kara E. Yopak
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| | - James A. Sulikowski
- 2030 SE Marine Science Drive, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97365, USA
| | - Stephen T. Kinsey
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, 28403, USA
| |
Collapse
|
14
|
Dengiz A, Baskan E. Effects of Cervical Mobilization on Balance and Gait Parameters in Individuals With Stroke: A Randomized Controlled Trial. Percept Mot Skills 2024; 131:469-488. [PMID: 38166477 DOI: 10.1177/00315125231226039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Stroke is a significant health problem that may result in long-term functional deficits. Balance and walking problems are among the most common post-stroke deficits, and they may negatively affect quality of life. Our aim in this study was to investigate the effects of cervical mobilization on balance and gait parameters after stroke. Participants were 24 adults (aged 30-65 years), who scored 24 or above on the Standardized Mini-Mental State Exam (MMSE) and no more than 3 on the Modified Rankin scale. Participants were randomly assigned to either an experimental Bobath therapy and cervical mobilization group (n = 12) or a control group who received Bobath therapy and a sham application (n = 12). Both groups received 60 minutes of Bobath therapy three times a week for four weeks; additionally, the experimental group received 15 minutes of cervical mobilization in each session, while the control group received 15 minutes of spinal sham mobilization each session. Pre and post treatment, we assessed all participants' demographic characteristics, gait parameters, balance parameters, and forward head posture values using a clinical data assessment form, spatiotemporal gait analysis (LEGSystm), portable computerized kinesthetic balance device (SportKAT 550), and craniovertebral angle (CVA), respectively. The groups showed no significant differences in their initial demographic and clinical characteristics (age, sex, stroke duration and disability levels.). In comparing changes on variables of interest, we observed significant experimental versus control group improvements in balance parameters except for their left side balance score (right side, left side, forward, backward and total balance scores were significant at p = .003, p = .089, p < .001, p = .022, p < .001, respectively), gait parameters (stride number, stride length, stride time, stride velocity, cadance at p = .007, p = .019, p = .013, p = .005, p = .001, respectively) and CVA (p < .001). Also, there were findings in favor of the experimental group on the modified timed up and go test on walk out, mid turn, walk back and total times (p = .028, p = .001, p = .016, and p = .001, respectively),but not for sit-to-stand time or stand-to-sit time. Clinicians involved in stroke rehabilitation should assess and treat the cervical region to enhance rehabilitation effectiveness.
Collapse
Affiliation(s)
- Aziz Dengiz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Muş Alparslan University, Muş, Türkiye
| | - Emre Baskan
- Faculty of Physiotherapy and Rehabilitation, Pamukkale University, Denizli, Türkiye
| |
Collapse
|
15
|
Justo-Cousiño LA, Da Cuña-Carrera I, Alonso-Calvete A, González-González Y. Effect of Kinesio taping on wrist proprioception in healthy subjects: A randomized clinical trial. J Hand Ther 2024; 37:184-191. [PMID: 38307737 DOI: 10.1016/j.jht.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/04/2024]
Abstract
BACKGROUND Although the use of KT has increased considerably in the clinical practice in the last years, there is limited evidence about the effects of its application in proprioception. PURPOSE The aim of this study was to determine the effect of KT on joint position sense and force sense on the wrist of healthy subjects. METHODS Fifty-four subjects were analyzed in a randomized, crossover, single-blind study design. To determine the force sense, the subjects had to reach 50% of their maximum grip force. Wrist joint position sense was assessed during active repositioning tests at the target angles of 30° flexion and extension of wrist. A digital dynamometer was used to determine the sense of force and a digital goniometer was used to determine the joint position sense. Subjects were evaluated with KT (I- strip on ventral aspect of forearms from origin to insertion) and placebo (an inelastic tape was applied following the same procedure as KT). RESULTS No significant differences have been found in the force sense, neither in the comparisons between control and interventions (p=0.286), nor between pre and post-intervention (p=0.111). For wrist joint position sense, a statistically significant effect (p< 0.05) was found at 30º of extension between the control and experimental group in favor of the control group. CONCLUSIONS The application of KT did not produce changes in FS and only caused a significant improvement in JPS in extension (30º). The results appear to indicate that the application of KT to improve proprioception in healthy subjects should be reconsidered.
Collapse
Affiliation(s)
- Lorenzo A Justo-Cousiño
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Faculty of Physical Therapy, Pontevedra, Spain; Physiotherapy Group FS1, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Pontevedra, Spain
| | - Iria Da Cuña-Carrera
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Faculty of Physical Therapy, Pontevedra, Spain; Physiotherapy Group FS1, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Pontevedra, Spain
| | - Alejandra Alonso-Calvete
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Faculty of Physical Therapy, Pontevedra, Spain; REMOSS Research Group, Facultade de Ciencias da Educación e do Deporte, Universidade de Vigo, Pontevedra, Spain.
| | - Yoana González-González
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Faculty of Physical Therapy, Pontevedra, Spain; Physiotherapy Group FS1, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Pontevedra, Spain
| |
Collapse
|
16
|
Bataillé L, Lebreton G, Boukhatmi H, Vincent A. Insights and perspectives on the enigmatic alary muscles of arthropods. Front Cell Dev Biol 2024; 11:1337708. [PMID: 38288343 PMCID: PMC10822924 DOI: 10.3389/fcell.2023.1337708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Three types of muscles, cardiac, smooth and skeletal muscles are classically distinguished in eubilaterian animals. The skeletal, striated muscles are innervated multinucleated syncytia, which, together with bones and tendons, carry out voluntary and reflex body movements. Alary muscles (AMs) are another type of striated syncytial muscles, which connect the exoskeleton to the heart in adult arthropods and were proposed to control hemolymph flux. Developmental studies in Drosophila showed that larval AMs are specified in embryos under control of conserved myogenic transcription factors and interact with excretory, respiratory and hematopoietic tissues in addition to the heart. They also revealed the existence of thoracic AMs (TARMs) connecting to specific gut regions. Their asymmetric attachment sites, deformation properties in crawling larvae and ablation-induced phenotypes, suggest that AMs and TARMs could play both architectural and signalling functions. During metamorphosis, and heart remodelling, some AMs trans-differentiate into another type of muscles. Remaining critical questions include the enigmatic modes and roles of AM innervation, mechanical properties of AMs and TARMS and their evolutionary origin. The purpose of this review is to consolidate facts and hypotheses surrounding AMs/TARMs and underscore the need for further detailed investigation into these atypical muscles.
Collapse
|
17
|
Bornstein B, Watkins B, Passini FS, Blecher R, Assaraf E, Sui XM, Brumfeld V, Tsoory M, Kröger S, Zelzer E. The mechanosensitive ion channel ASIC2 mediates both proprioceptive sensing and spinal alignment. Exp Physiol 2024; 109:135-147. [PMID: 36951012 PMCID: PMC10988735 DOI: 10.1113/ep090776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
By translating mechanical forces into molecular signals, proprioceptive neurons provide the CNS with information on muscle length and tension, which is necessary to control posture and movement. However, the identities of the molecular players that mediate proprioceptive sensing are largely unknown. Here, we confirm the expression of the mechanosensitive ion channel ASIC2 in proprioceptive sensory neurons. By combining in vivo proprioception-related functional tests with ex vivo electrophysiological analyses of muscle spindles, we showed that mice lacking Asic2 display impairments in muscle spindle responses to stretch and motor coordination tasks. Finally, analysis of skeletons of Asic2 loss-of-function mice revealed a specific effect on spinal alignment. Overall, we identify ASIC2 as a key component in proprioceptive sensing and a regulator of spine alignment.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Bridgette Watkins
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversityPlanegg‐MartinsriedGermany
| | - Fabian S. Passini
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| | - Ronen Blecher
- Orthopedic DepartmentAssuta Ashdod University Hospital, Ashdod, Israel, affiliated to Ben Gurion University of the NegevBeer ShebaIsrael
| | - Eran Assaraf
- Department of Orthopedic SurgeryShamir Medical Center, Assaf HaRofeh Campus, Zeffifin, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv UniversityTel AvivIsrael
| | - Xiao Meng Sui
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Vlad Brumfeld
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | - Michael Tsoory
- Department of Veterinary ResourcesWeizmann Institute of ScienceRehovotIsrael
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversityPlanegg‐MartinsriedGermany
| | - Elazar Zelzer
- Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
18
|
Veerkamp K, van der Krogt MM, Waterval NFJ, Geijtenbeek T, Walsh HPJ, Harlaar J, Buizer AI, Lloyd DG, Carty CP. Predictive simulations identify potential neuromuscular contributors to idiopathic toe walking. Clin Biomech (Bristol, Avon) 2024; 111:106152. [PMID: 38091916 DOI: 10.1016/j.clinbiomech.2023.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Most cases of toe walking in children are idiopathic. We used pathology-specific neuromusculoskeletal predictive simulations to identify potential underlying neural and muscular mechanisms contributing to idiopathic toe walking. METHODS A musculotendon contracture was added to the ankle plantarflexors of a generic musculoskeletal model to represent a pathology-specific contracture model, matching the reduced ankle dorsiflexion range-of-motion in a cohort of children with idiopathic toe walking. This model was employed in a forward dynamic simulation controlled by reflexes and supraspinal drive, governed by a multi-objective cost function to predict gait patterns with the contracture model. We validated the predicted gait using experimental gait data from children with idiopathic toe walking with ankle contracture, by calculating the root mean square errors averaged over all biomechanical variables. FINDINGS A predictive simulation with the pathology-specific model with contracture approached experimental ITW data (root mean square error = 1.37SD). Gastrocnemius activation was doubled from typical gait simulations, but lacked a peak in early stance as present in electromyography. This synthesised idiopathic toe walking was more costly for all cost function criteria than typical gait simulation. Also, it employed a different neural control strategy, with increased length- and velocity-based reflex gains to the plantarflexors in early stance and swing than typical gait simulations. INTERPRETATION The simulations provide insights into how a musculotendon contracture combined with altered neural control could contribute to idiopathic toe walking. Insights into these neuromuscular mechanisms could guide future computational and experimental studies to gain improved insight into the cause of idiopathic toe walking.
Collapse
Affiliation(s)
- Kirsten Veerkamp
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands; School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia; Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, and Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University Gold Coast, Australia.
| | - Marjolein M van der Krogt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands
| | - Niels F J Waterval
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands; Amsterdam UMC, Univ of Amsterdam, Rehabilitation Medicine, Amsterdam Movement Sciences, Meibergdreef 9, Amsterdam, the Netherlands
| | - Thomas Geijtenbeek
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - H P John Walsh
- Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, and Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University Gold Coast, Australia; Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Queensland Children's Hospital, Brisbane, Australia
| | - Jaap Harlaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; Department of Orthopedics & Sports Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annemieke I Buizer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Rehabilitation Medicine, Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam, the Netherlands; Emma Children's Hospital Amsterdam UMC, Amsterdam, the Netherlands
| | - David G Lloyd
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia; Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, and Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University Gold Coast, Australia
| | - Christopher P Carty
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia; Griffith Centre of Biomedical & Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, and Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University Gold Coast, Australia; Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Queensland Children's Hospital, Brisbane, Australia
| |
Collapse
|
19
|
Kröger S. Experimental Physiology special issue: 'Mechanotransduction, muscle spindles and proprioception'. Exp Physiol 2024; 109:1-5. [PMID: 38160398 PMCID: PMC10988673 DOI: 10.1113/ep091431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Biomedical CenterLudwig‐Maximilians‐UniversitätPlanegg‐MartinsriedGermany
| |
Collapse
|
20
|
Jellad A, Kalai A, Abbes I, Jguirim M, Boudokhane S, Salah Frih ZB, Bedoui MH. The effect of cervical traction on stabilometric parameters in cervical radiculopathy patients: A randomized crossover study. J Back Musculoskelet Rehabil 2024; 37:1031-1040. [PMID: 38277282 DOI: 10.3233/bmr-230270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Cervical traction is effective on pain and function in patients with cervical radiculopathy but its effectiveness on balance disorders has not yet been studied. OBJECTIVE To evaluate the effect of mechanical intermittent cervical traction (MICT) on stabilometric parameters in patients with cervical radiculopathy. METHODS This randomized crossover study assigned 20 patients with cervical radiculopathy to one of the two groups: Group effective traction (ET)/sham traction (ST) (n= 10) treated firstly with ET (traction force of 12 Kg) then with ST (traction force of 2 Kg) with one-week interval and group ST/ET (n= 10) treated invertedly with a ST then ET. Each traction procedure was maintained for 10 minutes twice separated by 5 minutes of rest. Patients were assessed before and immediately after MICT procedure. Main outcome measures were stabilometric parameters: center of pressure, sway area and lateral and anteroposterior displacements using a force platform. Secondary outcome measures were pain intensity, grip strength and dizziness. RESULTS ET has provided a significantly greater improvement in both groups and in the total population in terms of stabilometric parameters (p< 0.01), pain intensity, and grip strength (p< 0.05), compared to ST. CONCLUSION MICT seems to have an immediate beneficial effect on stabilometric parameters, pain and grip strength in patients with cervical radiculopathy.
Collapse
Affiliation(s)
- Anis Jellad
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Laboratory of Technology and Medical Imaging - LR12ES06, Center for Musculoskeletal Biomechanics Research, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Amine Kalai
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Laboratory of Technology and Medical Imaging - LR12ES06, Center for Musculoskeletal Biomechanics Research, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Ilef Abbes
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Mahbouba Jguirim
- Laboratory of Technology and Medical Imaging - LR12ES06, Center for Musculoskeletal Biomechanics Research, Faculty of Medicine, University of Monastir, Monastir, Tunisia
- Department of Rheumatology, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Soumaya Boudokhane
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Zohra Ben Salah Frih
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Mohamed Hedi Bedoui
- Laboratory of Technology and Medical Imaging - LR12ES06, Center for Musculoskeletal Biomechanics Research, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
21
|
Housley SN, Powers RK, Nardelli P, Lee S, Blum K, Bewick GS, Banks RW, Cope TC. Biophysical model of muscle spindle encoding. Exp Physiol 2024; 109:55-65. [PMID: 36966478 PMCID: PMC10988694 DOI: 10.1113/ep091099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
Muscle spindles encode mechanosensory information by mechanisms that remain only partially understood. Their complexity is expressed in mounting evidence of various molecular mechanisms that play essential roles in muscle mechanics, mechanotransduction and intrinsic modulation of muscle spindle firing behaviour. Biophysical modelling provides a tractable approach to achieve more comprehensive mechanistic understanding of such complex systems that would be difficult/impossible by more traditional, reductionist means. Our objective here was to construct the first integrative biophysical model of muscle spindle firing. We leveraged current knowledge of muscle spindle neuroanatomy and in vivo electrophysiology to develop and validate a biophysical model that reproduces key in vivo muscle spindle encoding characteristics. Crucially, to our knowledge, this is the first computational model of mammalian muscle spindle that integrates the asymmetric distribution of known voltage-gated ion channels (VGCs) with neuronal architecture to generate realistic firing profiles, both of which seem likely to be of great biophysical importance. Results predict that particular features of neuronal architecture regulate specific characteristics of Ia encoding. Computational simulations also predict that the asymmetric distribution and ratios of VGCs is a complementary and, in some instances, orthogonal means to regulate Ia encoding. These results generate testable hypotheses and highlight the integral role of peripheral neuronal structure and ion channel composition and distribution in somatosensory signalling.
Collapse
Affiliation(s)
| | - Randal K. Powers
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Paul Nardelli
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGA
| | - Sebinne Lee
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGA
| | - Kyle Blum
- Department of Physiology, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Guy S. Bewick
- Institute of Medical ScienceUniversity of AberdeenAberdeenUK
| | | | - Timothy C. Cope
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGA
- W. H. Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of Technology, Georgia Institute of TechnologyAtlantaGA
| |
Collapse
|
22
|
Komandur A, Fazyl A, Stein W, Vidal-Gadea AG. The mechanoreceptor pezo-1 is required for normal crawling locomotion in the nematode C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001085. [PMID: 38188418 PMCID: PMC10765246 DOI: 10.17912/micropub.biology.001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
The discovery in 2010 of the PIEZO family of mechanoreceptors revolutionized our understanding of the role of proprioceptive feedback in mammalian physiology. Much remains to be elucidated. This study looks at the role this receptor plays in normal locomotion. Like humans, the nematode C. elegans expresses PIEZO-type channels (encoded by the pezo-1 gene) throughout its somatic musculature. Here we use the unbiased automated behavioral software Tierpsy to characterize the effects that mutations removing PEZO-1 from body wall musculature have on C. elegans crawling. We find that loss of PEZO-1 results in disrupted locomotion and posture, consistent with phenotypes associated with loss of PIEZO2 in human musculature. C. elegans is thus an amenable system to study the role of mechanoreception on muscle physiology and function.
Collapse
Affiliation(s)
| | - Adina Fazyl
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States
| | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States
| | - Andrés G. Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States
| |
Collapse
|
23
|
Wang Y, Huang Y, Chen X. The relationship between low handgrip strength with or without asymmetry and fall risk among middle-aged and older males in China: evidence from the China Health and Retirement Longitudinal Study. Postgrad Med J 2023; 99:1246-1252. [PMID: 37740568 DOI: 10.1093/postmj/qgad085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 09/24/2023]
Abstract
PURPOSE This study sought to explore the potential correlation between low handgrip strength (HGS) with or without asymmetry and fall risk in middle-aged and older Chinese adults. METHODS Baseline characteristic data from participants 45+ years of age and data regarding fall events collected from two rounds (2011-2013) of the China Health and Retirement Longitudinal Study were utilized for the present analyses. HGS and HGS asymmetry was defined according to the updated American Society of Hand Therapist. Fall events were identified through self- or proxy-reported details. Logistic regression analyses were employed to gauge the potential relationship between abnormal HGS and fall risk. RESULTS In total, 10 563 participants were enrolled in this analysis, of whom 47.49% (5016/10 563) were male. The proportions of low HGS alone, HGS asymmetry alone, and low HGS with asymmetry were 22.23%, 18.34%, and 22.75%, respectively, in males, but just 3.64%, 35.12%, and 6.62% in females. A total of 693 and 1019 fall events were recorded for male (13.82%) and female (18.37%) participants over the 2-year follow-up period, respectively. Significant differences in fall event incidence among different HGS groups were only observed among males. An adjusted logistic regression analysis model confirmed that low HGS with dominant asymmetry was closely related to fall risk among middle-aged and older males [P = 0.014, odds ratio = 1.332, 95% confidence interval: 1.059-1.676). CONCLUSION These results demonstrated that low HGS with dominant asymmetry is a risk factor linked to increased fall risk among middle-aged and older Chinese males. What is already known on this topic Low HGS or HGS asymmetry is been reported to be linked to an increased risk of falls in middle-aged and older adults; however, little is known about the association between fall risk and low HGS and/or HGS asymmetry. Main messages The prevalence of low HGS alone and low HGS asymmetry in men was significantly higher than in women, while HGS alone asymmetry was more common in women than men. The risk factor for the increased risk of falls in Chinese middle-aged and older men is low and asymmetric HGS, rather than low or asymmetric HGS alone. Low HGS with dominant asymmetry rather than nondominant asymmetry is associated with future fall risk among middle-aged and older Chinese males. Current research questions What is the mechanism for the significant difference in the proportion of abnormal HGS components between the sexes? If female subjects with low HGS and asymmetric HGS were added, would an association be observed between low HGS and asymmetric HGS falls? Is there an association between the severity of asymmetric HGS with weakness and falls?
Collapse
Affiliation(s)
- Yilin Wang
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center , Zigong, Sichuan Province 643020, China
| | - Yalian Huang
- Sichuan Research Center of Applied Psychology, Chengdu Medical College, Chengdu, Sichuan Province 610500, China
| | - Xiaoyan Chen
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center , Zigong, Sichuan Province 643020, China
| |
Collapse
|
24
|
Valdes K, Manalang KC, Leach C. Proprioception: An evidence-based review. J Hand Ther 2023; 37:S0894-1130(23)00142-4. [PMID: 39492292 DOI: 10.1016/j.jht.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Proprioception is an essential sensory function of the body. Proprioception is defined as one's awareness of their body's position and movement through space. It contributes to both the conscious and unconscious awareness of limb and trunk position and movement. The purpose of this review is to provide an evidence-based review of proprioception and conditions that interfere with proprioceptive acuity. PURPOSE The purpose of this review is to provide an evidence-based review of proprioception and conditions that interfere with proprioceptive acuity. STUDY DESIGN This narrative literature review examines studies that determine proprioceptive systems and their implication for rehabilitation. METHODS Relevant study data were extracted as part of this review. RESULTS Types of proprioceptive interventions can include active or passive movement training, somatosensory stimulation training, force reproduction, and somatosensory discrimination training. Joint position sense error is the most widely used objective measure of proprioception. CONCLUSIONS Therapists should consider using a standardized measure to ascertain proprioceptive deficits in their patients following upper extremity injury or disease to determine the deficits and measure change. There are a variety of interventions that can be used in hand rehabilitation to restore proprioceptive acuity, and active movement interventions have been found to be the most effective.
Collapse
Affiliation(s)
- Kristin Valdes
- Occupational Therapy Department, Touro University Nevada, Henderson, NV, USA.
| | | | - Christen Leach
- Occupational Therapy Department, Touro University Nevada, Henderson, NV, USA
| |
Collapse
|
25
|
Omstead KM, Williams J, Weinberg SM, Marazita ML, Burrows AM. Mammalian facial muscles contain muscle spindles. Anat Rec (Hoboken) 2023; 306:2562-2571. [PMID: 36799659 DOI: 10.1002/ar.25172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Muscle spindles are sensory receptors in skeletal muscle that provide information on muscle length and velocity of contraction. Previous studies noted that facial muscles lack muscle spindles, but recent reports indicate that the human platysma muscle and "buccal" muscles contain spindles. Mammalian facial muscles are active in social communication, vibrissa movement, and vocalizations, including human speech. Given these functions, we hypothesized that facial muscles contain muscle spindles, and we predicted that humans would have the greatest number, given the role our lips play in speech. We examined previously sectioned and stained (with H&E and trichrome stains) orbicularis oris (upper fibers) and zygomaticus (major) muscles across a broad phylogenetic range of mammalian species, spanning a wide distribution of body size and ecological niche, to assess the presence of muscle spindles. We also stained several sections with Sirius red to highlight the muscle spindle capsule. Our results indicate that mammalian facial muscles contain muscle spindles, supporting our hypothesis. Contrary to our prediction, though, humans (and other primates) had the lowest number of muscle spindles. We instead found that the carnivoran sample and the horse sample had the greatest number of spindles. Larger body size and nocturnality were also associated with a greater number of spindles. These results must be viewed with caution, though, as our sample size was small and there are critical mammalian taxa missing. Future work should use an expanded phylogenetic range of mammalian species to ascertain the role that phylogeny plays in muscle spindle presence and count.
Collapse
Affiliation(s)
- K Madisen Omstead
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jade Williams
- Undergraduate Pre-Medical and Health Professions Program, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anne M Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
27
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
28
|
Watkins B, Schultheiß J, Rafuna A, Hintze S, Meinke P, Schoser B, Kröger S. Degeneration of muscle spindles in a murine model of Pompe disease. Sci Rep 2023; 13:6555. [PMID: 37085544 PMCID: PMC10121695 DOI: 10.1038/s41598-023-33543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
Pompe disease is a debilitating medical condition caused by a functional deficiency of lysosomal acid alpha-glucosidase (GAA). In addition to muscle weakness, people living with Pompe disease experience motor coordination deficits including an instable gait and posture. We reasoned that an impaired muscle spindle function might contribute to these deficiencies and therefore analyzed proprioception as well as muscle spindle structure and function in 4- and 8-month-old Gaa-/- mice. Gait analyses showed a reduced inter-limb and inter-paw coordination in Gaa-/- mice. Electrophysiological analyses of single-unit muscle spindle proprioceptive afferents revealed an impaired sensitivity of the dynamic and static component of the stretch response. Finally, a progressive degeneration of the sensory neuron and of the intrafusal fibers was detectable in Gaa-/- mice. We observed an increased abundance and size of lysosomes, a fragmentation of the inner and outer connective tissue capsule and a buildup of autophagic vacuoles in muscle spindles from 8-month-old Gaa-/- mice, indicating lysosomal defects and an impaired autophagocytosis. These results demonstrate a structural and functional degeneration of muscle spindles and an altered motor coordination in Gaa-/- mice. Similar changes could contribute to the impaired motor coordination in patients living with Pompe disease.
Collapse
Affiliation(s)
- Bridgette Watkins
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Jürgen Schultheiß
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Andi Rafuna
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Stefan Hintze
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Meinke
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Klinikum, Ludwig-Maximilians-University, Munich, Germany
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
29
|
Heggli U, Swanenburg J, Hofstetter L, Häusler M, Schweinhardt P, Bron D. Typical Cockpit Ergonomics Influence on Cervical Motor Control in Healthy Young Male Adults. Aerosp Med Hum Perform 2023; 94:107-112. [PMID: 36829287 DOI: 10.3357/amhp.6096.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
INTRODUCTION: Neck pain and injury are common problems in military high-performance aircraft and helicopter aircrews. A contributing factor may be the reclined sitting position in cockpits. This study aimed to determine the effect of typical cockpit ergonomics on cervical proprioception, assessed by using the cervical joint position error (cJPE).METHODS: A total of 49 healthy male military employees (mean age 19.9 ± 2.2 yr) were examined. Measurements of the cJPE were obtained in the flexion, extension, and rotation directions in an upright and in a 30°-reclined sitting position. Each condition comprised three trials, with an additional 3-kg head load to mimic real world working conditions.RESULTS: A smaller cJPE was noted in the 30°-reclined sitting position (mean cJPE = 3.9 cm) than in the upright sitting position (mean cJPE = 4.6 cm) in the flexion direction. The cJPE decreased significantly in all movement directions across the three trials; for example, in the flexion direction in the 30°-reclined sitting position: Trial 1/2/3 mean cJPE = 5.0/3.8/3.1 cm.CONCLUSION: It seems that a reclined seating position has a positive influence on cJPE. However, the result is weak. In both sitting positions and all three directions, the first tests of the cJPE showed the highest values. Already after one or two further measurement runs, a significantly reduced cJPE was observed. This rapid improvement might indicate that an exercise similar to the cJPE test may improve the pilots' cervical proprioception and possibly reduce the risk of injury or pain.Heggli U, Swanenburg J, Hofstetter L, Häusler M, Schweinhardt P, Bron D. Typical cockpit ergonomics influence on cervical motor control in healthy young male adults. Aerosp Med Hum Perform. 2023; 94(3):107-112.
Collapse
|
30
|
Cao R, Chen P, Wang H, Jing H, Zhang H, Xing G, Luo B, Pan J, Yu Z, Xiong WC, Mei L. Intrafusal-fiber LRP4 for muscle spindle formation and maintenance in adult and aged animals. Nat Commun 2023; 14:744. [PMID: 36765071 PMCID: PMC9918736 DOI: 10.1038/s41467-023-36454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Proprioception is sensed by muscle spindles for precise locomotion and body posture. Unlike the neuromuscular junction (NMJ) for muscle contraction which has been well studied, mechanisms of spindle formation are not well understood. Here we show that sensory nerve terminals are disrupted by the mutation of Lrp4, a gene required for NMJ formation; inducible knockout of Lrp4 in adult mice impairs sensory synapses and movement coordination, suggesting that LRP4 is required for spindle formation and maintenance. LRP4 is critical to the expression of Egr3 during development; in adult mice, it interacts in trans with APP and APLP2 on sensory terminals. Finally, spindle sensory endings and function are impaired in aged mice, deficits that could be diminished by LRP4 expression. These observations uncovered LRP4 as an unexpected regulator of muscle spindle formation and maintenance in adult and aged animals and shed light on potential pathological mechanisms of abnormal muscle proprioception.
Collapse
Affiliation(s)
- Rangjuan Cao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hongsheng Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bin Luo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jinxiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
31
|
Pascual-Valdunciel A, Kurukuti NM, Montero-Pardo C, Barroso FO, Pons JL. Modulation of spinal circuits following phase-dependent electrical stimulation of afferent pathways. J Neural Eng 2023; 20. [PMID: 36603216 DOI: 10.1088/1741-2552/acb087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Objective.Peripheral electrical stimulation (PES) of afferent pathways is a tool commonly used to induce neural adaptations in some neural disorders such as pathological tremor or stroke. However, the neuromodulatory effects of stimulation interventions synchronized with physiological activity (closed-loop strategies) have been scarcely researched in the upper-limb. Here, the short-term spinal effects of a 20-minute stimulation protocol where afferent pathways were stimulated with a closed-loop strategy named selective and adaptive timely stimulation (SATS) were explored in 11 healthy subjects.Approach. SATS was applied to the radial nerve in-phase (INP) or out-of-phase (OOP) with respect to the muscle activity of the extensor carpi radialis (ECR). The neural adaptations at the spinal cord level were assessed for the flexor carpi radialis (FCR) by measuring disynaptic Group I inhibition, Ia presynaptic inhibition, Ib facilitation from the H-reflex and estimation of the neural drive before, immediately after, and 30 minutes after the intervention.Main results.SATS strategy delivered electrical stimulation synchronized with the real-time muscle activity measured, with an average delay of 17 ± 8 ms. SATS-INP induced increased disynaptic Group I inhibition (77 ± 23% of baseline conditioned FCR H-reflex), while SATS-OOP elicited the opposite effect (125 ± 46% of baseline conditioned FCR H-reflex). Some of the subjects maintained the changes after 30 minutes. No other significant changes were found for the rest of measurements.Significance.These results suggest that the short-term modulatory effects of phase-dependent PES occur at specific targeted spinal pathways for the wrist muscles in healthy individuals. Importantly, timely recruitment of afferent pathways synchronized with specific muscle activity is a fundamental principle that shall be considered when tailoring PES protocols to modulate specific neural circuits. (NCT number 04501133).
Collapse
Affiliation(s)
- Alejandro Pascual-Valdunciel
- Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, IL, United States of America.,Department of PM&R, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.,Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain.,E.T.S. Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Nish Mohith Kurukuti
- Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, IL, United States of America.,Department of Biomedical Engineering and Mechanical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
| | - Cristina Montero-Pardo
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain.,Universidad Carlos III de Madrid, Madrid, Spain
| | - Filipe Oliveira Barroso
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - José Luis Pons
- Legs & Walking AbilityLab, Shirley Ryan AbilityLab, Chicago, IL, United States of America.,Department of PM&R, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.,Department of Biomedical Engineering and Mechanical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
32
|
Santuz A, Akay T. Muscle spindles and their role in maintaining robust locomotion. J Physiol 2023; 601:275-285. [PMID: 36510697 PMCID: PMC10483674 DOI: 10.1113/jp282563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Muscle spindles, one of the two main classes of proprioceptors together with Golgi tendon organs, are sensory structures that keep the central nervous system updated about the position and movement of body parts. Although they were discovered more than 150 years ago, their function during movement is not yet fully understood. Here, we summarize the morphology and known functions of muscle spindles, with a particular focus on locomotion. Although certain properties such as the sensitivity to dynamic and static muscle stretch are long known, recent advances in molecular biology have allowed the characterization of the molecular mechanisms for signal transduction in muscle spindles. Building upon classic literature showing that a lack of sensory feedback is deleterious to locomotion, we bring to the discussion more recent findings that support a pivotal role of muscle spindles in maintaining murine and human locomotor robustness, defined as the ability to cope with perturbations. Yet, more research is needed to expand the existing mechanistic understanding of how muscle spindles contribute to the production of robust, functional locomotion in real world settings. Future investigations should focus on combining different animal models to identify, in health and disease, those peripheral, spinal and brain proprioceptive structures involved in the fine tuning of motor control when locomotion happens in challenging conditions.
Collapse
Affiliation(s)
- Alessandro Santuz
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Sciences Research Institute, Dalhousie University, Halifax, NS, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Sciences Research Institute, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
33
|
Bornstein B, Heinemann-Yerushalmi L, Krief S, Adler R, Dassa B, Leshkowitz D, Kim M, Bewick G, Banks RW, Zelzer E. Molecular characterization of the intact mouse muscle spindle using a multi-omics approach. eLife 2023; 12:81843. [PMID: 36744866 PMCID: PMC9931388 DOI: 10.7554/elife.81843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
The proprioceptive system is essential for the control of coordinated movement, posture, and skeletal integrity. The sense of proprioception is produced in the brain using peripheral sensory input from receptors such as the muscle spindle, which detects changes in the length of skeletal muscles. Despite its importance, the molecular composition of the muscle spindle is largely unknown. In this study, we generated comprehensive transcriptomic and proteomic datasets of the entire muscle spindle isolated from the murine deep masseter muscle. We then associated differentially expressed genes with the various tissues composing the spindle using bioinformatic analysis. Immunostaining verified these predictions, thus establishing new markers for the different spindle tissues. Utilizing these markers, we identified the differentiation stages the spindle capsule cells undergo during development. Together, these findings provide comprehensive molecular characterization of the intact spindle as well as new tools to study its development and function in health and disease.
Collapse
Affiliation(s)
- Bavat Bornstein
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | | | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Ruth Adler
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Dena Leshkowitz
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of ScienceRehovotIsrael
| | - Minchul Kim
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular MedicineBerlinGermany,Team of syncytial cell biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
| | - Guy Bewick
- Institute of Medical Sciences, University of AberdeenAberdeenUnited Kingdom
| | - Robert W Banks
- Department of Biosciences, Durham UniversityDurhamUnited Kingdom
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
34
|
Chen Y, Cao S, Qian L, Chen W, Wang C, Ma X, Wang X, Huang J. The influence of local pain on balance control in patients with chronic ankle instability. BMC Musculoskelet Disord 2022; 23:699. [PMID: 35869458 PMCID: PMC9306023 DOI: 10.1186/s12891-022-05656-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Local pain around the ankle joint is a common symptom in patients with chronic ankle instability (CAI). However, whether the local pain would impose any influence on the balance control performance of CAI patients is still unknown. Methods A total of twenty-six subjects were recruited and divided into the following two groups: pain-free CAI (group A) and pain-present CAI (group B). Subjects in both groups received two independent tests: the star excursion balance test and the single-leg stance test, in order to reflect their balance control ability more accurately. Results Compared with group A, the group B showed significantly more episodes of the history of sprains, decreased ankle maximum plantarflexion angle, and lower Cumberland scores (all p < 0.05). In the star excursion balance test, group B demonstrated a significantly reduced anterior reach distance than group A (p < 0.05). During the single leg stance test, group B showed a significant increase in the magnitude of electromyographic signals both in peroneus longus and soleus muscles than group A (each p < 0.05). Additionally, group B had a significantly more anterolaterally positioned plantar center of pressure than group A (p < 0.05). Conclusion CAI patients with local pain around the ankle joint had more episodes of sprains and lower functional scores when compared to those without pain. The balance control performance was also worse in the pain-present CAI patients than those without pain.
Collapse
|
35
|
Watkins B, Schuster HM, Gerwin L, Schoser B, Kröger S. The effect of methocarbamol and mexiletine on murine muscle spindle function. Muscle Nerve 2022; 66:96-105. [PMID: 35373353 DOI: 10.1002/mus.27546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION/AIMS The muscle relaxant methocarbamol and the antimyotonic drug mexiletine are widely used for the treatment of muscle spasms, myotonia, and pain syndromes. To determine whether these drugs affect muscle spindle function, we studied their effect on the resting discharge and on stretch-induced action potential frequencies of proprioceptive afferent neurons. METHODS Single unit action potential frequencies of proprioceptive afferents from muscle spindles in the murine extensor digitorum longus muscle of adult C57BL/6J mice were recorded under resting conditions and during ramp-and-hold stretches. Maximal tetanic force of the same muscle after direct stimulation was determined. High-resolution confocal microscopy analysis was performed to determine the distribution of Nav 1.4 channels, a potential target for both drugs. RESULTS Methocarbamol and mexiletine inhibited the muscle spindle resting discharge in a dose-dependent manner with IC50 values around 300 μM and 6 μM, respectively. With increasing concentrations of both drugs, the response to stretch was also affected, with the static sensitivity first followed by the dynamic sensitivity. At high concentrations, both drugs completely blocked muscle spindle afferent output. Both drugs also reversibly reduced the specific force of the extensor digitorum longus muscle after tetanic stimulation. Finally, we present evidence for the presence and specific localization of the voltage-gated sodium channel Nav 1.4 in intrafusal fibers. DISCUSSION In this study we demonstrate that both muscle relaxants affect muscle spindle function, suggesting impaired proprioception as a potential side effect of both drugs. Moreover, our results provide additional evidence of a peripheral activity of methocarbamol and mexiletine.
Collapse
Affiliation(s)
- Bridgette Watkins
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Hedwig M Schuster
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Laura Gerwin
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Benedikt Schoser
- Department of Neurology, LMU Klinikum, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
36
|
Kissane RWP, Charles JP, Banks RW, Bates KT. Skeletal muscle function underpins muscle spindle abundance. Proc Biol Sci 2022; 289:20220622. [PMID: 35642368 PMCID: PMC9156921 DOI: 10.1098/rspb.2022.0622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Muscle spindle abundance is highly variable within and across species, but we currently lack any clear picture of the mechanistic causes or consequences of this variation. Previous use of spindle abundance as a correlate for muscle function implies a mechanical underpinning to this variation, but these ideas have not been tested. Herein, we use integrated medical imaging and subject-specific musculoskeletal models to investigate the relationship between spindle abundance, muscle architecture and in vivo muscle behaviour in the human locomotor system. These analyses indicate that muscle spindle number is tightly correlated with muscle fascicle length, absolute fascicle length change, velocity of fibre lengthening and active muscle forces during walking. Novel correlations between functional indices and spindle abundance are also recovered, where muscles with a high abundance predominantly function as springs, compared to those with a lower abundance mostly functioning as brakes during walking. These data demonstrate that muscle fibre length, lengthening velocity and fibre force are key physiological signals to the central nervous system and its modulation of locomotion, and that muscle spindle abundance may be tightly correlated to how a muscle generates work. These insights may be combined with neuromechanics and robotic studies of motor control to help further tease apart the functional drivers of muscle spindle composition.
Collapse
Affiliation(s)
- Roger W. P. Kissane
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - James P. Charles
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Robert W. Banks
- Department of Biosciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Karl T. Bates
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
37
|
Wilkinson KA. Molecular determinants of mechanosensation in the muscle spindle. Curr Opin Neurobiol 2022; 74:102542. [PMID: 35430481 PMCID: PMC9815952 DOI: 10.1016/j.conb.2022.102542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/12/2022] [Accepted: 03/13/2022] [Indexed: 01/11/2023]
Abstract
The muscle spindle (MS) provides essential sensory information for motor control and proprioception. The Group Ia and II MS afferents are low threshold slowly-adapting mechanoreceptors and report both static muscle length and dynamic muscle movement information. The exact molecular mechanism by which MS afferents transduce muscle movement into action potentials is incompletely understood. This short review will discuss recent evidence suggesting that PIEZO2 is an essential mechanically sensitive ion channel in MS afferents and that vesicle-released glutamate contributes to maintaining afferent excitability during the static phase of stretch. Other mechanically gated ion channels, voltage-gated sodium channels, other ion channels, regulatory proteins, and interactions with the intrafusal fibers are also important for MS afferent mechanosensation. Future studies are needed to fully understand mechanosensation in the MS and whether different complements of molecular mediators contribute to the different response properties of Group Ia and II afferents.
Collapse
|
38
|
Muscle spindles of the multifidus muscle undergo structural change after intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1879-1888. [PMID: 35618974 PMCID: PMC7613463 DOI: 10.1007/s00586-022-07235-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/14/2022] [Accepted: 04/17/2022] [Indexed: 11/05/2022]
Abstract
Purpose Proprioceptive deficits are common in low back pain. The multifidus muscle undergoes substantial structural change after back injury, but whether muscle spindles are affected is unclear. This study investigated whether muscle spindles of the multifidus muscle are changed by intervertebral disc (IVD) degeneration in a large animal model. Methods IVD degeneration was induced by partial thickness annulus fibrosus lesion to the L3-4 IVD in nine sheep. Multifidus muscle tissue at L4 was harvested at six months after lesion, and from six age-/sex-matched naïve control animals. Muscle spindles were identified in Van Gieson’s-stained sections by morphology. The number, location and cross-sectional area (CSA) of spindles, the number, type and CSA of intrafusal fibers, and thickness of the spindle capsule were measured. Immunofluorescence assays examined Collagen I and III expression. Results Multifidus muscle spindles were located centrally in the muscle and generally near connective tissue. There were no differences in the number or location of muscle spindles after IVD degeneration and only changes in the CSA of nuclear chain fibers. The thickness of connective tissue surrounding the muscle spindle was increased as was the expression of Collagen I and III. Conclusion Changes to the connective tissue and collagen expression of the muscle spindle capsule are likely to impact their mechanical properties. Changes in capsule stiffness may impact the transmission of length change to muscle spindles and thus transduction of sensory information. This change in muscle spindle structure may explain some of the proprioceptive deficits identified with low back pain.
Collapse
|
39
|
Williams K, Yokomori K, Mortazavi A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front Genet 2022; 13:835099. [PMID: 35646075 PMCID: PMC9136090 DOI: 10.3389/fgene.2022.835099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) has revolutionized modern genomics, but the large size of myotubes and myofibers has restricted use of scRNA-seq in skeletal muscle. For the study of muscle, single-nucleus RNA-seq (snRNA-seq) has emerged not only as an alternative to scRNA-seq, but as a novel method providing valuable insights into multinucleated cells such as myofibers. Nuclei within myofibers specialize at junctions with other cell types such as motor neurons. Nuclear heterogeneity plays important roles in certain diseases such as muscular dystrophies. We survey current methods of high-throughput single cell and subcellular resolution transcriptomics, including single-cell and single-nucleus RNA-seq and spatial transcriptomics, applied to satellite cells, myoblasts, myotubes and myofibers. We summarize the major myonuclei subtypes identified in homeostatic and regenerating tissue including those specific to fiber type or at junctions with other cell types. Disease-specific nucleus populations were found in two muscular dystrophies, FSHD and Duchenne muscular dystrophy, demonstrating the importance of performing transcriptome studies at the single nucleus level in muscle.
Collapse
Affiliation(s)
- Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
40
|
Lian W, Hao F, Hao P, Zhao W, Gao Y, Rao JS, Duan H, Yang Z, Li X. Distribution Heterogeneity of Muscle Spindles Across Skeletal Muscles of Lower Extremities in C57BL/6 Mice. Front Neuroanat 2022; 16:838951. [PMID: 35370570 PMCID: PMC8968039 DOI: 10.3389/fnana.2022.838951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
Muscle spindles, an important proprioceptor scattered in the skeletal muscle, participate in maintaining muscle tension and the fine regulation of random movement. Although muscle spindles exist in all skeletal muscles, explanations about the distribution and morphology of muscle spindles remain lacking for the indetermination of spindle location across muscles. In this study, traditional time-consuming histochemical technology was utilized to determine the muscle spindle anatomical and morphological characteristics in the lower extremity skeletal muscle in C57BL/6 mice. The relative distance from spindles to nerve-entry points varied from muscles in the ventral-dorsal direction, in which spindles in the lateral of gastrocnemius were not considered to be close to its nerve-entry point. In the longitudinal pattern, the domain with the highest abundance of spindles corresponded to the nerve-entry point, excluding the tibialis anterior. Spindles are mainly concentrated at the middle and rostral domain in all muscles. The results suggest a heterogeneity of the distribution of spindles in different muscles, but the distribution trend generally follows the location pattern of the nerve-entry point. Histochemical staining revealed that the spindle did not have a symmetrical structure along the equator, and this result does not agree with previous findings. Exploring the distribution and structural characteristics of muscle spindles in skeletal muscle can provide some anatomical basis for the study of muscle spindles at the molecular level and treatment of exercise-related diseases and provide a comprehensive understanding of muscle spindle morphology.
Collapse
Affiliation(s)
- Wenxi Lian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Yudan Gao
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Jia-Sheng Rao,
| | - Hongmei Duan
- Department of Neurobiology, Capital Medical University, Beijing, China
- Hongmei Duan,
| | - Zhaoyang Yang
- Department of Neurobiology, Capital Medical University, Beijing, China
- Zhaoyang Yang,
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
- Xiaoguang Li,
| |
Collapse
|
41
|
Partanen JV, Vanhanen J, Liljander SK. Electromyography of the muscle spindle. Sci Rep 2022; 12:4220. [PMID: 35273346 PMCID: PMC8913790 DOI: 10.1038/s41598-022-08239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
In needle electromyography, there are two spontaneous waveforms, miniature end plate potentials and “end plate spikes”, appearing usually together. Miniature end plate potentials are local, non-propagating postsynaptic waves, caused by spontaneous exocytosis of acetylcholine in the neuromuscular junction. The prevailing hypothesis states that “end plate spikes” are propagated postsynaptic action potentials of muscle fibers, caused by presynaptic irritation of the motor nerve or nerve terminal. Using several small concentric needle electrodes in parallel with the muscle fibers, most “end plate spikes” are strictly local or propagating for 2–4 mm. At the end plate zone, there are miniature end plate potentials without “end plate spikes”. Local “end plate spikes” are junctional potentials of intrafusal gamma neuromuscular junctions of the nuclear bag fibers, and propagated “end plate spikes” are potentials of nuclear chain muscle fibers of muscle spindles. Miniature end plate potentials without “end plate spikes” at the end plate zone derive from alpha neuromuscular junctions. These findings contrast with the prevailing hypothesis. The history of observations and different hypotheses of the origin of end plate spikes are described.
Collapse
Affiliation(s)
- Juhani V Partanen
- Department of Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, P.O. Box 800, 00029, Hus, Finland.
| | - Jukka Vanhanen
- Department of Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, P.O. Box 800, 00029, Hus, Finland
| | - Sara K Liljander
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076, Aalto, Finland
| |
Collapse
|
42
|
Treatment with platelet-rich plasma attenuates proprioceptor abnormalities in a rat model of postpartum stress urinary incontinence. Int Urogynecol J 2022; 33:2159-2167. [PMID: 35195739 DOI: 10.1007/s00192-022-05112-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Stress urinary incontinence (SUI) is the most prevalent form of urinary incontinence, and vaginal delivery is a major risk factor for developing SUI. We evaluated the hypothesis that applying the autologous platelet rich plasma (PRP) to the pelvic floor muscles via injection affects expression of proprioceptors and improves postpartum stress urinary incontinence (PSUI) in rats. METHODS Virgin female Sprague-Dawley rats were divided into control (n = 10) and experimental group(n = 20). Vaginal dilation was used to establish PSUI, and the rats in the experimental group were further divided into the PSUI group (n = 10) and PSUI+PRP group (n = 10). Pelvic floor muscles from rats in the PSUI+PRP group were positioned under ultrasound guidance for PRP injection. The morphology and number of pelvic floor muscle spindles were assessed using H&E staining, proprioceptors evaluated by gold chloride staining, and changes in the expression of neurotrophin-3 (NT-3) and skeletal myosin MY-32 determined by immunohistochemistry. RESULTS After 28 days,bladder leak point pressure (BLPP) and abdominal leaking-urine point pressure (ALPP) in rats with PSUI were significantly lower than in control animals (P<0.01). Both BLPP and ALPP increased significantly in the PSUI+PRP group (P<0.01). Compared with the control group, muscle spindle morphology and structure in the PSUI and PSUI+PRP groups had different pathological changes,with higher variations in the PSUI group. The positive signals for NT-3/MY-32 expression in control rats were higher than those from PSUI or PSUI+PRP groups, however, the expression for NT-3/MY-32 in PSUI+PRP animals was higher than that seen in the PSUI group (P < 0.01). CONCLUSIONS PSUI rats have an abnormal expression of pelvic proprioceptors, which affect proprioceptive function, and further the contractibility of pelvic floor muscles. A PRP injection may restore the sensory function of pelvic proprioceptors, thus improving urine leakage in PSUI rats.
Collapse
|
43
|
Barrett P, Quick TJ, Mudera V, Player DJ. Neuregulin 1 Drives Morphological and Phenotypical Changes in C2C12 Myotubes: Towards De Novo Formation of Intrafusal Fibres In Vitro. Front Cell Dev Biol 2022; 9:760260. [PMID: 35087826 PMCID: PMC8787273 DOI: 10.3389/fcell.2021.760260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Muscle spindles are sensory organs that detect and mediate both static and dynamic muscle stretch and monitor muscle position, through a specialised cell population, termed intrafusal fibres. It is these fibres that provide a key contribution to proprioception and muscle spindle dysfunction is associated with multiple neuromuscular diseases, aging and nerve injuries. To date, there are few publications focussed on de novo generation and characterisation of intrafusal muscle fibres in vitro. To this end, current models of skeletal muscle focus on extrafusal fibres and lack an appreciation for the afferent functions of the muscle spindle. The goal of this study was to produce and define intrafusal bag and chain myotubes from differentiated C2C12 myoblasts, utilising the addition of the developmentally associated protein, Neuregulin 1 (Nrg-1). Intrafusal bag myotubes have a fusiform shape and were assigned using statistical morphological parameters. The model was further validated using immunofluorescent microscopy and western blot analysis, directed against an extensive list of putative intrafusal specific markers, as identified in vivo. The addition of Nrg-1 treatment resulted in a 5-fold increase in intrafusal bag myotubes (as assessed by morphology) and increased protein and gene expression of the intrafusal specific transcription factor, Egr3. Surprisingly, Nrg-1 treated myotubes had significantly reduced gene and protein expression of many intrafusal specific markers and showed no specificity towards intrafusal bag morphology. Another novel finding highlights a proliferative effect for Nrg-1 during the serum starvation-initiated differentiation phase, leading to increased nuclei counts, paired with less myotube area per myonuclei. Therefore, despite no clear collective evidence for specific intrafusal development, Nrg-1 treated myotubes share two inherent characteristics of intrafusal fibres, which contain increased satellite cell numbers and smaller myonuclear domains compared with their extrafusal neighbours. This research represents a minimalistic, monocellular C2C12 model for progression towards de novo intrafusal skeletal muscle generation, with the most extensive characterisation to date. Integration of intrafusal myotubes, characteristic of native, in vivo intrafusal skeletal muscle into future biomimetic tissue engineered models could provide platforms for developmental or disease state studies, pre-clinical screening, or clinical applications.
Collapse
Affiliation(s)
- Philip Barrett
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Tom J Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, London, United Kingdom.,UCL Centre for Nerve Engineering, University College London, London, United Kingdom
| | - Vivek Mudera
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Darren J Player
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|
44
|
Weiss JT, Donlea JM. Roles for Sleep in Neural and Behavioral Plasticity: Reviewing Variation in the Consequences of Sleep Loss. Front Behav Neurosci 2022; 15:777799. [PMID: 35126067 PMCID: PMC8810646 DOI: 10.3389/fnbeh.2021.777799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep is a vital physiological state that has been broadly conserved across the evolution of animal species. While the precise functions of sleep remain poorly understood, a large body of research has examined the negative consequences of sleep loss on neural and behavioral plasticity. While sleep disruption generally results in degraded neural plasticity and cognitive function, the impact of sleep loss can vary widely with age, between individuals, and across physiological contexts. Additionally, several recent studies indicate that sleep loss differentially impacts distinct neuronal populations within memory-encoding circuitry. These findings indicate that the negative consequences of sleep loss are not universally shared, and that identifying conditions that influence the resilience of an organism (or neuron type) to sleep loss might open future opportunities to examine sleep's core functions in the brain. Here, we discuss the functional roles for sleep in adaptive plasticity and review factors that can contribute to individual variations in sleep behavior and responses to sleep loss.
Collapse
Affiliation(s)
- Jacqueline T. Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey M. Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Jeffrey M. Donlea
| |
Collapse
|
45
|
Mayer WP, Baptista JDS, De Oliveira F, Mori M, Liberti EA. Consequences of ankle joint immobilisation: insights from a morphometric analysis about fibre typification, intramuscular connective tissue, and muscle spindle in rats. Histochem Cell Biol 2021; 156:583-594. [PMID: 34476549 DOI: 10.1007/s00418-021-02027-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
Orthosis immobilisations are routinely used in orthopaedic procedures. This intervention is applicable in bone fractures, ligament injuries, and tendonitis, among other disorders of the musculoskeletal system. We aimed to evaluate the effects of ankle joint functional immobilisation on muscle fibre morphology, connective tissue, muscle spindle and fibre typification triggered by a novel metallic orthosis. We developed a rodent-proof experimental orthosis able to hold the tibiotalar joint in a functional position for short and long terms. The tibialis anterior muscles of free and immobilised legs were collected and stained by histology and histochemistry techniques to investigate general muscle morphology, connective tissue and muscle fibre typification. Morphometric analysis of muscle cross-section area, fibre type cross-section area, fibre type density, percentage of intramuscular connective tissue, and thickness of the muscle spindle capsule were obtained to gain insights into the experimental protocol. We found that short- and long-term immobilisation decreased the cross-section area of the muscles and induced centralisation of myonuclei. The connective tissue of immobilised muscle increased after 2 and 4 weeks mainly by deposition of type III and type I collagen fibres in the perimysium and endomysium, respectively, in addition to muscle spindle capsule thickening. Type IIB muscle fibre was severely affected in our study; the profile assumed odd shapes, and our data suggest interconversion of these fibre types within long-term immobilisation. In conclusion, our protocol has produced structural and histochemical changes in muscle biology. This method might be applied to various rodent models that enable genetic manipulation for the investigation of muscle degeneration/regeneration processes.
Collapse
Affiliation(s)
- William P Mayer
- Department of Medical Neuroscience, Dalhousie Medicine New Brunswick, Dalhousie University, Saint John, NB, Canada.
| | | | - Flavia De Oliveira
- Department of Biosciences, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Matsuyoshi Mori
- Department of Prothesis, School of Dentistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Edson A Liberti
- Department of Anatomy, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
46
|
Influence of Intervertebral Fixation and Segmental Thrust Level on Immediate Post-Spinal Manipulation Trunk Muscle Spindle Response in an Animal Model. Brain Sci 2021; 11:brainsci11081022. [PMID: 34439641 PMCID: PMC8393701 DOI: 10.3390/brainsci11081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: To characterize the effect of unilateral (single and two-level) lumbar facet/zygapophysial joint fixation on paraspinal muscle spindle activity immediately following L4 or L6 high velocity low amplitude spinal manipulation (HVLA-SM) delivered at various thrust durations. Methods: Secondary analysis of immediate (≤2 s) post-HVLA-SM trunk muscle spindle response from two studies involving anesthetized adult cats (n = 39; 2.3–6.0 kg) with either a unilateral single (L5/6) or two-level (L5/6 and L6/7) facet joint fixation. All facet fixations were contralateral to L6 dorsal root recordings. HVLA-SM was delivered to the spinous process in a posterior-to-anterior direction using a feedback motor with a peak thrust magnitude of 55% of average cat body weight and thrust durations of 75, 100, 150, and 250 ms. Time to 1st action potential and spindle activity during 1 and 2 s post-HVLA-SM comparisons were made between facet joint fixation conditions and HVLA-SM segmental thrust levels. Results: Neither two-level facet joint fixation, nor HVLA-SM segmental level significantly altered immediate post-HVLA-SM spindle discharge at tested thrust durations (FDR > 0.05). Conclusions: Two-level facet joint fixation failed to alter immediate (≤2 s) post-HVLA-SM spindle discharge when compared to single-level facet joint fixation at any thrust duration. Segmental thrust level did not alter immediate post-HVLA-SM spindle response in two-level facet joint fixation preparations.
Collapse
|
47
|
Hunter I, Coulson B, Zarin AA, Baines RA. The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function. Front Neural Circuits 2021; 15:684969. [PMID: 34276315 PMCID: PMC8282269 DOI: 10.3389/fncir.2021.684969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
It is difficult to answer important questions in neuroscience, such as: "how do neural circuits generate behaviour?," because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion of the relatively complete connectome associated with one identified interneuron of the locomotor circuit, A27h, and relating it to similar circuits in mammals. Next, it is developed by examining its application to study two important areas of neuroscience research: critical periods of development and interindividual variability in neural circuits. In summary, this article highlights the potential to use the larval locomotor network as a "generic" model circuit, to provide insight into mammalian circuit development and function.
Collapse
Affiliation(s)
- Iain Hunter
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Bramwell Coulson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aref Arzan Zarin
- Department of Biology, The Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
48
|
Fulceri F, Biagioni F, Limanaqi F, Busceti CL, Ryskalin L, Lenzi P, Fornai F. Ultrastructural characterization of peripheral denervation in a mouse model of Type III spinal muscular atrophy. J Neural Transm (Vienna) 2021; 128:771-791. [PMID: 33999256 PMCID: PMC8205903 DOI: 10.1007/s00702-021-02353-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Spinal muscular atrophy (SMA) is a heritable, autosomal recessive neuromuscular disorder characterized by a loss of the survival of motor neurons (SMN) protein, which leads to degeneration of lower motor neurons, and muscle atrophy. Despite SMA being nosographically classified as a motor neuron disease, recent advances indicate that peripheral alterations at the level of the neuromuscular junction (NMJ), involving the muscle, and axons of the sensory-motor system, occur early, and may even precede motor neuron loss. In the present study, we used a mouse model of slow progressive (type III) SMA, whereby the absence of the mouse SMN protein is compensated by the expression of two human genes (heterozygous SMN1A2G, and SMN2). This leads to late disease onset and prolonged survival, which allows for dissecting slow degenerative steps operating early in SMA pathogenesis. In this purely morphological study carried out at transmission electron microscopy, we extend the examination of motor neurons and proximal axons towards peripheral components, including distal axons, muscle fibers, and also muscle spindles. We document remarkable ultrastructural alterations being consistent with early peripheral denervation in SMA, which may shift the ultimate anatomical target in neuromuscular disease from the spinal cord towards the muscle. This concerns mostly mitochondrial alterations within distal axons and muscle, which are quantified here through ultrastructural morphometry. The present study is expected to provide a deeper knowledge of early pathogenic mechanisms in SMA.
Collapse
Affiliation(s)
- Federica Fulceri
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Carla L Busceti
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077, Pozzilli, IS, Italy. .,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
49
|
Ferreira N, Richner M, van der Laan A, Bergholdt Jul Christiansen I, Vægter CB, Nyengaard JR, Halliday GM, Weiss J, Giasson BI, Mackenzie IR, Jensen PH, Jan A. Prodromal neuroinvasion of pathological α-synuclein in brainstem reticular nuclei and white matter lesions in a model of α-synucleinopathy. Brain Commun 2021; 3:fcab104. [PMID: 34136810 PMCID: PMC8202146 DOI: 10.1093/braincomms/fcab104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Neuropathological observations in neurodegenerative synucleinopathies, including Parkinson disease, implicate a pathological role of α-synuclein accumulation in extranigral sites during the prodromal phase of the disease. In a transgenic mouse model of peripheral-to-central neuroinvasion and propagation of α-synuclein pathology (via hindlimb intramuscular inoculation with exogenous fibrillar α-synuclein: the M83 line, expressing the mutant human Ala53Thr α-synuclein), we studied the development and early-stage progression of α-synuclein pathology in the CNS of non-symptomatic (i.e. freely mobile) mice. By immunohistochemical analyses of phosphroylated α-synuclein on serine residue 129 (p-S129), our data indicate that the incipient stage of pathological α-synuclein propagation could be categorized in distinct phases: (i) initiation phase, whereby α-synuclein fibrillar inoculum induced pathological lesions in pools of premotor and motor neurons of the lumbar spinal cord, as early as 14 days post-inoculation; (ii) early central phase, whereby incipient α-synuclein pathology was predominantly detected in the reticular nuclei of the brainstem; and (iii) late central phase, characterized by additional sites of lesions in the brain including vestibular nuclei, deep cerebellar nuclei and primary motor cortex, with coincidental emergence of a sensorimotor deficit (mild degree of hindlimb clasping). Intriguingly, we also detected progressive α-synuclein pathology in premotor and motor neurons in the thoracic spinal cord, which does not directly innervate the hindlimb, as well as in the oligodendroglia within the white matter tracts of the CNS during this prodromal phase. Collectively, our data provide crucial insights into the spatiotemporal propagation of α-synuclein pathology in the nervous system of this rodent model of α-synucleinopathy following origin in periphery, and present a neuropathological context for the progression from pre-symptomatic stage to an early deficit in sensorimotor coordination. These findings also hint towards a therapeutic window for targeting the early stages of α-synuclein pathology progression in this model, and potentially facilitate the discovery of mechanisms relevant to α-synuclein proteinopathies. In a rodent model of synucleinopathy, Ferreira et al., delineate the spatiotemporal progression of incipient α-synuclein pathology (of peripheral origin) in the CNS. The authors show early affection of brainstem reticular nuclei in non-paralyzed mice, and pathological white matter lesions in relation to the neuronal pathology.
Collapse
Affiliation(s)
- Nelson Ferreira
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mette Richner
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Amelia van der Laan
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ida Bergholdt Jul Christiansen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christian B Vægter
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Glenda M Halliday
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney and Neuroscience Research Australia, Sydney 2006, Australia
| | - Joachim Weiss
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, Gainesville, FL 3261, USA
| | - Ian R Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T2B5, Canada
| | - Poul H Jensen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Asad Jan
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|