1
|
Andersson B, Langen B, Liu P, Dávila López M. Development of a machine learning framework for radiation biomarker discovery and absorbed dose prediction. Front Oncol 2023; 13:1156009. [PMID: 37256187 PMCID: PMC10225714 DOI: 10.3389/fonc.2023.1156009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Background Molecular radiation biomarkers are an emerging tool in radiation research with applications for cancer radiotherapy, radiation risk assessment, and even human space travel. However, biomarker screening in genome-wide expression datasets using conventional tools is time-consuming and underlies analyst (human) bias. Machine Learning (ML) methods can improve the sensitivity and specificity of biomarker identification, increase analytical speed, and avoid multicollinearity and human bias. Aim To develop a resource-efficient ML framework for radiation biomarker discovery using gene expression data from irradiated normal tissues. Further, to identify biomarker panels predicting radiation dose with tissue specificity. Methods A strategic search in the Gene Expression Omnibus database identified a transcriptomic dataset (GSE44762) for normal tissues radiation responses (murine kidney cortex and medulla) suited for biomarker discovery using an ML approach. The dataset was pre-processed in R and separated into train and test data subsets. High computational cost of Genetic Algorithm/k-Nearest Neighbor (GA/KNN) mandated optimization and 13 ML models were tested using the caret package in R. Biomarker performance was evaluated and visualized via Principal Component Analysis (PCA) and dose regression. The novelty of ML-identified biomarker panels was evaluated by literature search. Results Caret-based feature selection and ML methods vastly improved processing time over the GA approach. The KNN method yielded overall best performance values on train and test data and was implemented into the framework. The top-ranking genes were Cdkn1a, Gria3, Mdm2 and Plk2 in cortex, and Brf2, Ccng1, Cdkn1a, Ddit4l, and Gria3 in medulla. These candidates successfully categorized dose groups and tissues in PCA. Regression analysis showed that correlation between predicted and true dose was high with R2 of 0.97 and 0.99 for cortex and medulla, respectively. Conclusion The caret framework is a powerful tool for radiation biomarker discovery optimizing performance with resource-efficiency for broad implementation in the field. The KNN-based approach identified Brf2, Ddit4l, and Gria3 mRNA as novel candidates that have been uncharacterized as radiation biomarkers to date. The biomarker panel showed good performance in dose and tissue separation and dose regression. Further training with larger cohorts is warranted to improve accuracy, especially for lower doses.
Collapse
Affiliation(s)
- Björn Andersson
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Oncology, Division of Molecular Radiation Biology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Peidi Liu
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcela Dávila López
- Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Larsson M, Rudqvist NP, Spetz J, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Age-related long-term response in rat thyroid tissue and plasma after internal low dose exposure to 131I. Sci Rep 2022; 12:2107. [PMID: 35136135 PMCID: PMC8825795 DOI: 10.1038/s41598-022-06071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/18/2022] [Indexed: 11/08/2022] Open
Abstract
131I is used clinically for therapy, and may be released during nuclear accidents. After the Chernobyl accident papillary thyroid carcinoma incidence increased in children, but not adults. The aims of this study were to compare 131I irradiation-dependent differences in RNA and protein expression in the thyroid and plasma of young and adult rats, and identify potential age-dependent biomarkers for 131I exposure. Twelve young (5 weeks) and twelve adult Sprague Dawley rats (17 weeks) were i.v. injected with 50 kBq 131I (absorbed dose to thyroid = 0.1 Gy), and sixteen unexposed age-matched rats were used as controls. The rats were killed 3-9 months after administration. Microarray analysis was performed using RNA from thyroid samples, while LC-MS/MS analysis was performed on proteins extracted from thyroid tissue and plasma. Canonical pathways, biological functions and upstream regulators were analysed for the identified transcripts and proteins. Distinct age-dependent differences in gene and protein expression were observed. Novel biomarkers for thyroid 131I exposure were identified: (PTH), age-dependent dose response (CA1, FTL1, PVALB (youngsters) and HSPB6 (adults)), thyroid function (Vegfb (adults)). Further validation using clinical samples are needed to explore the role of the identified biomarkers.
Collapse
Affiliation(s)
- Malin Larsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden.
| | - Nils-Petter Rudqvist
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson, Houston, TX, 77030, USA
- Department of Immunology, University of Texas MD Anderson, Houston, TX, 77030, USA
| | - Johan Spetz
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Britta Langen
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- UT Department of Radiation Oncology, Division of Molecular Radiation Biology, UT Southwestern Medical Center, 2201 Inwood Rd., Dallas, TX, 75390, USA
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| |
Collapse
|
3
|
Larsson M, Rudqvist N, Spetz J, Shubbar E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Long-term transcriptomic and proteomic effects in Sprague Dawley rat thyroid and plasma after internal low dose 131I exposure. PLoS One 2021; 15:e0244098. [PMID: 33382739 PMCID: PMC7774980 DOI: 10.1371/journal.pone.0244098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Radioiodide (131I) is commonly used to treat thyroid cancer and hyperthyroidis.131I released during nuclear accidents, have resulted in increased incidence of thyroid cancer in children. Therefore, a better understanding of underlying cellular mechanisms behind 131I exposure is of great clinical and radiation protection interest. The aim of this work was to study the long-term dose-related effects of 131I exposure in thyroid tissue and plasma in young rats and identify potential biomarkers. Materials and methods Male Sprague Dawley rats (5-week-old) were i.v. injected with 0.5, 5.0, 50 or 500 kBq 131I (Dthyroid ca 1–1000 mGy), and killed after nine months at which time the thyroid and blood samples were collected. Gene expression microarray analysis (thyroid samples) and LC-MS/MS analysis (thyroid and plasma samples) were performed to assess differential gene and protein expression profiles in treated and corresponding untreated control samples. Bioinformatics analyses were performed using the DAVID functional annotation tool and Ingenuity Pathway Analysis (IPA). The gene expression microarray data and LC-MS/MS data were validated using qRT-PCR and ELISA, respectively. Results Nine 131I exposure-related candidate biomarkers (transcripts: Afp and RT1-Bb, and proteins: ARF3, DLD, IKBKB, NONO, RAB6A, RPN2, and SLC25A5) were identified in thyroid tissue. Two dose-related protein candidate biomarkers were identified in thyroid (APRT and LDHA) and two in plasma (DSG4 and TGM3). Candidate biomarkers for thyroid function included the ACADL and SORBS2 (all activities), TPO and TG proteins (low activities). 131I exposure was shown to have a profound effect on metabolism, immune system, apoptosis and cell death. Furthermore, several signalling pathways essential for normal cellular function (actin cytoskeleton signalling, HGF signalling, NRF2-mediated oxidative stress, integrin signalling, calcium signalling) were also significantly regulated. Conclusion Exposure-related and dose-related effects on gene and protein expression generated few expression patterns useful as biomarkers for thyroid function and cancer.
Collapse
Affiliation(s)
- Malin Larsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Nils Rudqvist
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Spetz
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emman Shubbar
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z. Parris
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Britta Langen
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Langen B, Helou K, Forssell-Aronsson E. The IRI-DICE hypothesis: ionizing radiation-induced DSBs may have a functional role for non-deterministic responses at low doses. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:349-355. [PMID: 32583290 PMCID: PMC7368863 DOI: 10.1007/s00411-020-00854-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Low-dose ionizing radiation (IR) responses remain an unresolved issue in radiation biology and risk assessment. Accurate knowledge of low-dose responses is important for estimation of normal tissue risk in cancer radiotherapy or health risks from occupational or hazard exposure. Cellular responses to low-dose IR appear diverse and stochastic in nature and to date no model has been proposed to explain the underlying mechanisms. Here, we propose a hypothesis on IR-induced double-strand break (DSB)-induced cis effects (IRI-DICE) and introduce DNA sequence functionality as a submicron-scale target site with functional outcome on gene expression: DSB induction in a certain genetic target site such as promotor, regulatory element, or gene core would lead to changes in transcript expression, which may range from suppression to overexpression depending on which functional element was damaged. The DNA damage recognition and repair machinery depicts threshold behavior requiring a certain number of DSBs for induction. Stochastically distributed persistent disruption of gene expression may explain-in part-the diverse nature of low-dose responses until the repair machinery is initiated at increased absorbed dose. Radiation quality and complexity of DSB lesions are also discussed. Currently, there are no technologies available to irradiate specific genetic sites to test the IRI-DICE hypothesis directly. However, supportive evidence may be achieved by developing a computational model that combines radiation transport codes with a genomic DNA model that includes sequence functionality and transcription to simulate expression changes in an irradiated cell population. To the best of our knowledge, IRI-DICE is the first hypothesis that includes sequence functionality of different genetic elements in the radiation response and provides a model for the diversity of radiation responses in the (very) low dose regimen.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, SE-413 45 Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
5
|
Spetz J, Langen B, Rudqvist NP, Parris TZ, Shubbar E, Dalmo J, Wängberg B, Nilsson O, Helou K, Forssell-Aronsson E. Transcriptional effects of 177Lu-octreotate therapy using a priming treatment schedule on GOT1 tumor in nude mice. EJNMMI Res 2019; 9:28. [PMID: 30895393 PMCID: PMC6426909 DOI: 10.1186/s13550-019-0500-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND 177Lu-octreotate is used for therapy of somatostatin receptor expressing neuroendocrine tumors with promising results, although complete tumor remission is rarely seen. Previous studies on nude mice bearing the human small intestine neuroendocrine tumor, GOT1, have shown that a priming injection of 177Lu-octreotate 24 h before the main injection of 177Lu-octreotate resulted in higher 177Lu concentration in tumor, resulting in increased absorbed dose, volume reduction, and time to regrowth. To our knowledge, the cellular effects of a priming treatment schedule have not yet been studied. The aim of this study was to identify transcriptional changes contributing to the enhanced therapeutic response of GOT1 tumors in nude mice to 177Lu-octreotate therapy with priming, compared with non-curative monotherapy. RESULTS RNA microarray analysis was performed on tumor samples from GOT1-bearing BALB/c nude mice treated with a 5 MBq priming injection of 177Lu-octreotate followed by a second injection of 10 MBq of 177Lu-octreotate after 24 h and killed after 1, 3, 7, and 41 days after the last injection. Administered activity amounts were chosen to be non-curative, in order to facilitate the study of tumor regression and regrowth. Differentially regulated transcripts (RNA samples from treated vs. untreated animals) were identified (change ≥ 1.5-fold; adjusted p value < 0.01) using Nexus Expression 3.0. Analysis of the biological effects of transcriptional regulation was performed using the Gene Ontology database and Ingenuity Pathway Analysis. Transcriptional analysis of the tumors revealed two stages of pathway regulation for the priming schedule (up to 1 week and around 1 month) which differed distinctly from cellular responses observed after monotherapy. Induction of cell cycle arrest and apoptotic pathways (intrinsic and extrinsic) was found at early time points after treatment start, while downregulation of pro-proliferative genes were found at a late time point. CONCLUSIONS The present study indicates increased cellular stress responses in the tumors treated with a priming treatment schedule compared with those seen after conventional 177Lu-octreotate monotherapy, resulting in a more profound initiation of cell cycle arrest followed by apoptosis, as well as effects on PI3K/AKT-signaling and unfolded protein response.
Collapse
Affiliation(s)
- Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.,Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Nils-Petter Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emman Shubbar
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Johanna Dalmo
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ola Nilsson
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gula Stråket 2B, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Hossain MA, Asa TA, Rahman MR, Moni MA. Network-based approach to identify key candidate genes and pathways shared by thyroid cancer and chronic kidney disease. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
7
|
Fujiki K, Kanayama Y, Yano S, Sato N, Yokokita T, Ahmadi P, Watanabe Y, Haba H, Tanaka K. 211At-labeled immunoconjugate via a one-pot three-component double click strategy: practical access to α-emission cancer radiotherapeutics. Chem Sci 2018; 10:1936-1944. [PMID: 30881623 PMCID: PMC6385556 DOI: 10.1039/c8sc04747b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/19/2018] [Indexed: 01/04/2023] Open
Abstract
α-Emission radiotherapeutics has potential to be one of most effective cancer therapeutics. Herein, we report a facile synthesis of an 211At-labeled immunoconjugate for use as an α-emission molecular targeting therapy. We synthesized a tetrazine probe modified with closo-decaborate(2-), a prosthetic group that forms a bioavailable stable complex with 211At. Our one-pot three-component double-click labeling method was used to attach decaborate to trastuzumab (anti-HER2 antibody) using decaborate-tetrazine and TCO-aldehyde probes without reducing the antibody binding affinity. Labeling the decaborate-attached trastuzumab with 211At produced in the cyclotron at the RIKEN Nishina Center, at which highly radioactive 211At can be produced, readily furnished the 211At-labeled trastuzumab with a maximum specific activity of 15 MBq μg-1 and retention of the native binding affinity. Intratumor injection of the 211At-labeled trastuzumab in BALB/c nude mice implanted with HER2-expressing epidermoid cancer cells yielded efficient accumulation at the targeted tumor site as well as effective suppression of tumor growth.
Collapse
Affiliation(s)
- Katsumasa Fujiki
- Biofunctional Synthetic Chemistry Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan . .,GlycoTargeting Research Laboratory , RIKEN Baton Zone Program , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Yousuke Kanayama
- Laboratory for Pathophysiological and Health Science , RIKEN Center for Biosystems Dynamics Research , 6-7-3 Minatojima-minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| | - Shinya Yano
- Nuclear Chemistry Research Team , RIKEN Nishina Center for Accelerator-Based Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Nozomi Sato
- Nuclear Chemistry Research Team , RIKEN Nishina Center for Accelerator-Based Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Takuya Yokokita
- Nuclear Chemistry Research Team , RIKEN Nishina Center for Accelerator-Based Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Peni Ahmadi
- Biofunctional Synthetic Chemistry Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan .
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science , RIKEN Center for Biosystems Dynamics Research , 6-7-3 Minatojima-minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| | - Hiromitsu Haba
- Nuclear Chemistry Research Team , RIKEN Nishina Center for Accelerator-Based Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan . .,GlycoTargeting Research Laboratory , RIKEN Baton Zone Program , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Biofunctional Chemistry Laboratory , A. Butlerov Institute of Chemistry , Kazan Federal University , 18 Kremlyovskaya Street , Kazan 420008 , Russia
| |
Collapse
|
8
|
Langen B, Rudqvist N, Spetz J, Helou K, Forssell-Aronsson E. Deconvolution of expression microarray data reveals 131I-induced responses otherwise undetected in thyroid tissue. PLoS One 2018; 13:e0197911. [PMID: 30001320 PMCID: PMC6042689 DOI: 10.1371/journal.pone.0197911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/10/2018] [Indexed: 01/19/2023] Open
Abstract
High-throughput gene expression analysis is increasingly used in radiation research for discovery of damage-related or absorbed dose-dependent biomarkers. In tissue samples, cell type-specific responses can be masked in expression data due to mixed cell populations which can preclude biomarker discovery. In this study, we deconvolved microarray data from thyroid tissue in order to assess possible bias from mixed cell type data. Transcript expression data [GSE66303] from mouse thyroid that received 5.9 Gy from 131I over 24 h (or 0 Gy from mock treatment) were deconvolved by cell frequency of follicular cells and C-cells using csSAM and R and processed with Nexus Expression. Literature-based signature genes were used to assess the relative impact from ionizing radiation (IR) or thyroid hormones (TH). Regulation of cellular functions was inferred by enriched biological processes according to Gene Ontology terms. We found that deconvolution increased the detection rate of significantly regulated transcripts including the biomarker candidate family of kallikrein transcripts. Detection of IR-associated and TH-responding signature genes was also increased in deconvolved data, while the dominating trend of TH-responding genes was reproduced. Importantly, responses in biological processes for DNA integrity, gene expression integrity, and cellular stress were not detected in convoluted data–which was in disagreement with expected dose-response relationships–but upon deconvolution in follicular cells and C-cells. In conclusion, previously reported trends of 131I-induced transcriptional responses in thyroid were reproduced with deconvolved data and usually with a higher detection rate. Deconvolution also resolved an issue with detecting damage and stress responses in enriched data, and may reduce false negatives in other contexts as well. These findings indicate that deconvolution can optimize microarray data analysis of heterogeneous sample material for biomarker screening or other clinical applications.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
- * E-mail:
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
9
|
Spetz J, Rudqvist N, Langen B, Parris TZ, Dalmo J, Schüler E, Wängberg B, Nilsson O, Helou K, Forssell-Aronsson E. Time-dependent transcriptional response of GOT1 human small intestine neuroendocrine tumor after 177Lu[Lu]-octreotate therapy. Nucl Med Biol 2018; 60:11-18. [PMID: 29502008 DOI: 10.1016/j.nucmedbio.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Patients with neuroendocrine tumors expressing somatostatin receptors are often treated with 177Lu[Lu]-octreotate. Despite being highly effective in animal models, 177Lu[Lu]-octreotate-based therapies in the clinical setting can be optimized further. The aims of the study were to identify and elucidate possible optimization venues for 177Lu[Lu]-octreotate tumor therapy by characterizing transcriptional responses in the GOT1 small intestine neuroendocrine tumor model in nude mice. METHODS GOT1-bearing female BALB/c nude mice were intravenously injected with 15 MBq 177Lu[Lu]-octreotate (non-curative amount) or mock-treated with saline solution. Animals were killed 1, 3, 7 or 41 d after injection. Total RNA was extracted from the tumor samples and profiled using Illumina microarray expression analysis. Differentially expressed genes were identified (treated vs. control) and pathway analysis was performed. RESULTS Distribution of differentially expressed transcripts indicated a time-dependent treatment response in GOT1 tumors after 177Lu[Lu]-octreotate administration. Regulation of CDKN1A, BCAT1 and PAM at 1 d after injection was compatible with growth arrest as the initial response to treatment. Upregulation of APOE and BAX at 3 d, and ADORA2A, BNIP3, BNIP3L and HSPB1 at 41 d after injection suggests first activation and then inhibition of the intrinsic apoptotic pathway during tumor regression and regrowth, respectively. CONCLUSION Transcriptional analysis showed radiation-induced apoptosis as an early response after 177Lu[Lu]-octreotate administration, followed by pro-survival transcriptional changes in the tumor during the regrowth phase. Time-dependent changes in cell cycle and apoptosis-related processes suggest different time points after radionuclide therapy when tumor cells may be more susceptible to additional treatment, highlighting the importance of timing when administering multiple therapeutic agents.
Collapse
Affiliation(s)
- Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Johanna Dalmo
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ola Nilsson
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
10
|
Rudqvist N, Laiakis EC, Ghandhi SA, Kumar S, Knotts JD, Chowdhury M, Fornace AJ, Amundson SA. Global Gene Expression Response in Mouse Models of DNA Repair Deficiency after Gamma Irradiation. Radiat Res 2018; 189:337-344. [PMID: 29351057 DOI: 10.1667/rr14862.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the event of an improvised nuclear device or "dirty bomb" in a highly populated area, potentially hundreds of thousands of people will require screening to ensure that exposed individuals receive appropriate treatment. For this reason, there is a need to develop tools for high-throughput radiation biodosimetry. Gene expression represents an emerging approach to biodosimetry and could potentially provide an estimate of both absorbed dose and individual radiation-induced injury. Since approximately 2-4% of humans are thought to be radiosensitive, and would suffer greater radiological injury at a given dose than members of the general population, it is of interest to explore the potential impact of such sensitivity on the biodosimetric gene expression signatures being developed. In this study, we used wild-type mice and genetically engineered mouse models deficient in two DNA repair pathways that can contribute to radiation sensitivity to estimate the maximum effect of differences in radiosensitivity. We compared gene expression in response to a roughly equitoxic (LD50/30) dose of gamma rays in wild-type C57BL/6 (8 Gy) and DNA double-strand break repair-deficient Atm-/- (4 Gy) and Prkdcscid (3 Gy) mutants of C57BL/6. Overall, 780 genes were significantly differentially expressed in wild-type mice one day postirradiation, 232 in Atm-/- and 269 in Prkdcscid. Upstream regulators including TP53 and NFκB were predicted to be activated by radiation exposure in the wild-type mice, but not in either of the DNA repair-deficient mutant strains. There was also a significant muting of the apparent inflammatory response triggered by radiation in both mutant strains. These differences impacted the ability of gene expression signatures developed in wild-type mice to detect potentially fatal radiation exposure in the DNA repair-deficient mice, with the greatest impact on Atm-/- mice. However, the inclusion of mutant mice in gene selection vastly improved performance of the classifiers.
Collapse
Affiliation(s)
- Nils Rudqvist
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Evagelia C Laiakis
- b Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Shanaz A Ghandhi
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Suresh Kumar
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Jeffrey D Knotts
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Mashkura Chowdhury
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| | - Albert J Fornace
- b Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Sally A Amundson
- a Center for Radiological Research, Columbia University Medical Center, Columbia University, New York, New York
| |
Collapse
|
11
|
Rudqvist N, Spetz J, Schüler E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Transcriptional response to 131I exposure of rat thyroid gland. PLoS One 2017; 12:e0171797. [PMID: 28222107 PMCID: PMC5319760 DOI: 10.1371/journal.pone.0171797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 01/26/2017] [Indexed: 12/25/2022] Open
Abstract
Humans are exposed to 131I in medical diagnostics and treatment but also from nuclear accidents, and better knowledge of the molecular response in thyroid is needed. The aim of the study was to examine the transcriptional response in thyroid tissue 24 h after 131I administration in rats. The exposure levels were chosen to simulate both the clinical situation and the case of nuclear fallout. Thirty-six male rats were i.v. injected with 0–4700 kBq 131I, and killed at 24 h after injection (Dthyroid = 0.0058–3.0 Gy). Total RNA was extracted from individual thyroid tissue samples and mRNA levels were determined using oligonucleotide microarray technique. Differentially expressed transcripts were determined using Nexus Expression 3.0. Hierarchical clustering was performed in the R statistical computing environment. Pathway analysis was performed using the Ingenuity Pathway Analysis tool and the Gene Ontology database. T4 and TSH plasma concentrations were measured using ELISA. Totally, 429 differentially regulated transcripts were identified. Downregulation of thyroid hormone biosynthesis associated genes (e.g. thyroglobulin, thyroid peroxidase, the sodium-iodine symporter) was identified in some groups, and an impact on thyroid function was supported by the pathway analysis. Recurring downregulation of Dbp and Slc47a2 was found. Dbp exhibited a pattern with monotonous reduction of downregulation with absorbed dose at 0.0058–0.22 Gy. T4 plasma levels were increased and decreased in rats whose thyroids were exposed to 0.057 and 0.22 Gy, respectively. Different amounts of injected 131I gave distinct transcriptional responses in the rat thyroid. Transcriptional response related to thyroid function and changes in T4 plasma levels were found already at very low absorbed doses to thyroid.
Collapse
Affiliation(s)
- Nils Rudqvist
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Spetz
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emil Schüler
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z. Parris
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Britta Langen
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
12
|
Dalmo J, Spetz J, Montelius M, Langen B, Arvidsson Y, Johansson H, Parris TZ, Helou K, Wängberg B, Nilsson O, Ljungberg M, Forssell-Aronsson E. Priming increases the anti-tumor effect and therapeutic window of 177Lu-octreotate in nude mice bearing human small intestine neuroendocrine tumor GOT1. EJNMMI Res 2017; 7:6. [PMID: 28097640 PMCID: PMC5241264 DOI: 10.1186/s13550-016-0247-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Background 177Lu-[DOTA0, Tyr3]-octreotate (177Lu-octreotate) is used for treatment of patients with somatostatin receptor (SSTR) expressing neuroendocrine tumors. However, complete tumor remission is rarely seen, and optimization of treatment protocols is needed. In vitro studies have shown that irradiation can up-regulate the expression of SSTR1, 2 and 5, and increase 177Lu-octreotate uptake. The aim of the present study was to examine the anti-tumor effect of a 177Lu-octreotate priming dose followed 24 h later by a second injection of 177Lu-octreotate compared to a single administration of 177Lu-octreotate, performed on the human small intestine neuroendocrine tumor cell line, GOT1, transplanted to nude mice. Results Priming resulted in a 1.9 times higher mean absorbed dose to the tumor tissue per administered activity, together with a reduced mean absorbed dose for kidneys. Priming gave the best overall anti-tumor effects. Magnetic resonance imaging showed no statistically significant difference in tumor response between treatment with and without priming. Gene expression analysis demonstrated effects on cell cycle regulation. Biological processes associated with apoptotic cell death were highly affected in the biodistribution and dosimetry study, via differential regulation of, e.g., APOE, BAX, CDKN1A, and GADD45A. Conclusions Priming had the best overall anti-tumor effects and also resulted in an increased therapeutic window. Results indicate that potential biomarkers for tumor regrowth may be found in the p53 or JNK signaling pathways. Priming administration is an interesting optimization strategy for 177Lu-octreotate therapy of neuroendocrine tumors, and further studies should be performed to determine the mechanisms responsible for the reported effects. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0247-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johanna Dalmo
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden.
| | - Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| | - Mikael Montelius
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| | - Yvonne Arvidsson
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| | - Henrik Johansson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| | - Bo Wängberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| | - Ola Nilsson
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| | - Maria Ljungberg
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden
| |
Collapse
|
13
|
Langen B, Rudqvist N, Parris TZ, Helou K, Forssell-Aronsson E. Circadian rhythm influences genome-wide transcriptional responses to (131)I in a tissue-specific manner in mice. EJNMMI Res 2015; 5:75. [PMID: 26669694 PMCID: PMC4679710 DOI: 10.1186/s13550-015-0150-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/27/2015] [Indexed: 02/02/2023] Open
Abstract
Background Circadian variation of gene expression is often neglected when ionizing radiation-induced effects are studied, whether in animal models or in cell culture. This study characterized diurnal variation of genome-wide transcriptional regulation and responses of potential biomarkers and signature genes in normal mouse tissues at 24 h after i.v. administration of 131I. Methods Female BALB/c nude mice were i.v. injected with 90 kBq 131I at 9:00 a.m., 12:00 p.m., or 3:00 p.m. and killed after 24 h (n = 4/group). Paired control groups were mock-treated (n = 3–4/group). The kidneys, liver, lungs, spleen, and thyroid were excised, snap-frozen, and stored at −80 °C until extraction of total RNA. RNA microarray technology was used for genome-wide expression analysis. Enriched biological processes were categorized after cellular function. Signature genes for ionizing radiation and thyroid hormone-induced responses were taken from the literature. Absorbed dose was estimated using the Medical Internal Radiation Dose (MIRD) formalism. Results The thyroid received an absorbed dose of 5.9 Gy and non-thyroid tissues received 0.75–2.2 mGy over 24 h. A distinct peak in the total number of significantly regulated transcripts was observed at 9:00 a.m. in the thyroid, but 3 h later in the kidney cortex, kidney medulla, and liver. Transcriptional regulation in the lungs and spleen was marginal. Associated cellular functions generally varied in quality and response strength between morning, noon, and afternoon. In the thyroid, 25 genes were significantly regulated at all investigated times of day, and 24 thereof showed a distinct pattern of pronounced down-regulation at 9:00 a.m. and comparatively weak up-regulation at later times. Eleven of these genes belonged to the species-specific kallikrein subfamily Klk1b. Responses in signature genes for thyroid hormone-induced responses were more frequent than for ionizing radiation, and trends persisted irrespective of time of day. Conclusion Diurnal variation of genome-wide transcriptional responses to 90 kBq 131I was demonstrated for the thyroid, kidney cortex and medulla, and liver, whereas variation was only marginal in the lungs and spleen. Overall, significant detection of potential biomarkers and signature genes was validated at each time of day, although direction of regulation and fold-change differed between morning, noon, and afternoon. These findings suggest that circadian rhythm should be considered in radiation research and that biological and analytical endpoints should be validated for circadian robustness. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0150-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden. .,Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden.
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Gothenburg, Sweden. .,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|