1
|
Tang Q, Tang J, Chen C, Zhu F, Yu Q, Chen H, Chen L, Ma S, Chen K, Li G. Bombyx mori RPL13 participates in UV-induced DNA damage repair of B. mori nucleopolyhedrovirus through interaction with Bm65. INSECT MOLECULAR BIOLOGY 2024; 33:638-649. [PMID: 38801334 DOI: 10.1111/imb.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Ribosomal protein L13 (RPL13) is highly conserved in evolution. At present, the properties and functions of RPL13 have not been characterised in insects. In this study, Bombyx mori RPL13 (BmRPL13) was first found to be specifically recruited to the sites of ultraviolet (UV)-induced DNA damage and contributed to UV damage repair. Escherichia coli expressing BmRPL13 showed better resistance to UV radiation. After knocking down the expression of BmRPL13 in BmN cells, the repair speed of UV-damaged DNA slowed down. The further results showed that BmRPL13 interacted with B. mori nucleopolyhedrovirus (BmNPV) ORF65 (Bm65) protein to locate at the UV-induced DNA damage sites of BmNPV and helped repair UV-damaged viral DNA.
Collapse
Affiliation(s)
- Qi Tang
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jingjing Tang
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ceru Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feifei Zhu
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qian Yu
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Huiqing Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Liang Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shangshang Ma
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guohui Li
- Department of Biological Sciences, School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Shu X, Hua G, Zheng X, Chen Z, Zhang J, Zhuang W, Chen J. Screening of reliable reference genes for the normalization of RT-qPCR in chicken oviduct tract. Poult Sci 2024; 103:103980. [PMID: 38959666 PMCID: PMC11269787 DOI: 10.1016/j.psj.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Utilizing publicly available RNA-seq data to screen for ideal reference genes is more efficient and accurate than traditional methods. Previous studies have identified optimal reference genes in various chicken tissues, but none have specifically focused on the oviduct (including the infundibulum, magnum, isthmus, uterus, and vagina), which is crucial for egg production. Identifying stable reference genes in the oviduct is essential for improving research on gene expression levels. This study investigated genes with consistent expression patterns in the chicken oviduct, encompassing both individual oviduct tract tissues and the entire oviduct, by utilizing multiple RNA-seq datasets. The screening results revealed the discovery of 100 novel reference genes in each segment of oviduct tissues, primarily associated with cell cycle regulation and RNA binding. Moreover, the majority of housekeeping genes (HKGs) showed inconsistent expression levels across distinct samples, suggesting their lack of stability under varying conditions. The stability of the newly identified reference genes was assessed in comparison to previously validated stable reference genes in chicken oviduct and commonly utilized HKGs, employing traditional reference gene screening methods. HERPUD2, CSDE1, VPS35, PBRM1, LSM14A, and YWHAB were identified to be suitable novel reference gene for different parts of the oviduct. HERPUD2 and YWHAB were reliable for gene expression normalization throughout the oviduct tract. Furthermore, overexpression and interference assays in DF1 cells showed LSM14A and YWHAB play a crucial role in cell proliferation, highlighting the importance of these newly reference genes for further research. Overall, this study has expanded the options for reference genes in RT-qPCR experiments in different segments of the chicken oviduct and the entire oviduct.
Collapse
Affiliation(s)
- Xin Shu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ziwei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
3
|
Chen Z, Hua G, Shu X, Zhuang W, Zhang J, Zhu R, Zheng X, Chen J. Screening of reliable reference genes for the normalization of RT-qPCR in chicken liver tissues and LMH cells. Sci Rep 2024; 14:17828. [PMID: 39090210 PMCID: PMC11294616 DOI: 10.1038/s41598-024-68752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
The liver plays a vital role in lipid synthesis and metabolism in poultry. To study the functional genes more effectively, it is essential to screen of reliable reference genes in the chicken liver, including females, males, embryos, as well as the Leghorn Male Hepatoma (LMH) cell line. Traditional reference gene screening involves selecting commonly used housekeeping genes (HKGs) for RT-qPCR experiments and using different algorithms to identify the most stable ones. However, this approach is limited in selecting the best reference gene from a small pool of HKGs. High-throughput sequencing technology may offer a solution to this limitation. This study aimed to identify the most consistently expressed genes by utilizing multiple published RNA-seq data of chicken liver and LMH cells. Subsequently, the stability of the newly identified reference genes was assessed in comparison to previously validated stable poultry liver expressed reference genes and the commonly employed HKGs using RT-qPCR. The findings indicated that there is a higher degree of similarity in stable expression genes between female and male liver (such as LSM14A and CDC40). In embryonic liver, the optimal new reference genes were SUDS3, TRIM33, and ERAL1. For LMH cells, the optimal new reference genes were ALDH9A1, UGGT1, and C21H1orf174. However, it is noteworthy that most HKGs did not exhibit stable expression across multiple samples, indicating potential instability under diverse conditions. Furthermore, RT-qPCR experiments proved that the stable expression genes identified from RNA-seq data outperformed commonly used HKGs and certain validated reference genes specific to poultry liver. Over all, this study successfully identified new stable reference genes in chicken liver and LMH cells using RNA-seq data, offering researchers a wider range of reference gene options for RT-qPCR in diverse situations.
Collapse
Affiliation(s)
- Ziwei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xin Shu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Runbang Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
4
|
Wang L, Liu Q, Guo P, Gao Z, Chen D, Zhang T, Ning J. Evaluation of Reference Genes for Quantitative Real-Time PCR Analysis in the Bean Bug, Riptortus pedestris (Hemiptera: Alydidae). INSECTS 2023; 14:960. [PMID: 38132633 PMCID: PMC10743553 DOI: 10.3390/insects14120960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Quantitative real-time PCR (qRT-PCR) is widely accepted as a precise and convenient method for quantitatively analyzing the expression of functional genes. The data normalization strongly depends upon stable reference genes. The bean bug, Riptortus pedestris (Hemiptera: Alydidae), is a significant pest of leguminous crops and broadly distributed across Southeast Asia. In this study, a total of 16 candidate reference genes (RPL32, RPS23, SDHA, UBQ, UCCR, GST, TATA-box, HSP70, GAPDH, RPL7A, SOD, RPS3, Actin, α-tubulin, AK, and EF1) were carefully chosen in R. pedestris, and their expression levels were assessed across various conditions, including different developmental stages, diverse tissues, temperature treatments, adult age, molting time, and mating status. Following this, the stability of these reference genes was evaluated using four algorithms (ΔCt, GeNorm, NormFinder, and BestKeeper). Ultimately, the comprehensive rankings were determined using the online tool RefFinder. Our results demonstrate that the reference gene for qRT-PCR analysis in R. pedestris is contingent upon the specific experimental conditions. RPL7A and EF1 are optimal reference genes for developmental stages. Furthermore, α-tubulin and EF1 exhibit the most stable expression across various adult tissues. RPL32 and RPL7A exhibit the most stable expression for adult age. For nymph age, RPL32 and SOD display the most stable expression. For temperature conditions, RPS23 and RPL7A were identified as the most suitable for monitoring gene expression. Lastly, we verified the practicability of evaluating expression levels of odorant-binding protein 37 (RpedOBP37) and cytochrome P450 6a2 (RpedCYP6) throughout developmental stages, tissues, and temperature conditions. These findings are a significant addition to the qRT-PCR analysis studies on R. pedestris, serving as a fundamental groundwork for future investigations on stable reference genes in R. pedestris as well as other organisms.
Collapse
Affiliation(s)
- Liuyang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Q.L.)
| | - Qingyu Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Q.L.)
| | - Pei Guo
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, China; (P.G.); (Z.G.); (D.C.)
| | - Zhanlin Gao
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, China; (P.G.); (Z.G.); (D.C.)
| | - Dan Chen
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, China; (P.G.); (Z.G.); (D.C.)
| | - Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding 071000, China; (P.G.); (Z.G.); (D.C.)
| | - Jun Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.W.); (Q.L.)
| |
Collapse
|
5
|
Chen J, Chen Z, Zhang J, Zhuang W, Zheng X. Screening of reliable reference genes for the normalization of RT-qPCR in chicken gastrointestinal tract. Poult Sci 2023; 102:103169. [PMID: 37918133 PMCID: PMC10641542 DOI: 10.1016/j.psj.2023.103169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
The application of reverse transcription quantitative real-time PCR technology for the production of gene tissue expression profiles is a widely employed approach in molecular biology research. It is imperative to ascertain internal reference genes that exhibit stable expression across diverse tissues to ensure the precision of tissue gene expression profiles. While there have been studies documenting the most suitable reference genes for various tissues in chickens, there is a dearth of research on the identification of reference genes in the gastrointestinal (GI) tract of chickens. This study utilized 4 different algorithms (Delta CT, BestKeeper, NormFinder, and Genorm) to assess the stability of 19 internal reference genes in various GI tract tissues, including individual GI tract tissues, the anterior and posterior GI tract, and the entire GI tissue. The RefFinder software was employed to comprehensively rank these genes. The research findings successfully identified the most appropriate internal reference genes for each type of GI tissue. Furthermore, TBP, DNAJC24, Polr2b, RPL13, andAp2m exhibited stable expression in the entire and posterior GI tract, whereas HMBS, TBP, Ap2m, GUSB, DNAJC24, and RPL13 demonstrated stable expression in the anterior GI tract. However, the internal reference genes commonly utilized, namely β-Actin, 18s RNA, and ALB, exhibit poor stability and are not advised for future investigations concerning gene expression in the GI region. Consequently, MUC2 and CDX1, 2 genes that specifically express in the gut, were chosen for examination to ascertain the stability of the aforementioned internal reference genes in this particular study. In summary, this study presents a relatively stable set of internal reference genes that can be employed to enhance the precision of quantifying mRNA expression levels in functional genes within the chicken GI tract.
Collapse
Affiliation(s)
- Jianfei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ziwei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jilong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Wuchao Zhuang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaotong Zheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
6
|
Herbst A, Bexter F, Kouassi NM, Gabriel G, Rautenschlein S. Distribution of importin-α isoforms in poultry species and their tissue- and age-related differences. Res Vet Sci 2023; 164:104994. [PMID: 37696109 DOI: 10.1016/j.rvsc.2023.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
While importin-α is well studied in mammals, the knowledge in avian species is still limited. In this study, we compared the mRNA expression patterns of five importin-α isoforms in the respiratory tract, liver, and spleen of chickens, turkeys, and pekin ducks in two different age-groups. In addition, we determined the distribution of importin-α in selected tissue of conchae, trachea, and lung of post-hatch chickens at all cellular levels by immunohistochemical staining. Our results indicate that importin-α3 is the most abundant isoform in the respiratory tract of chickens, turkeys, and pekin ducks. Moreover, importin-α is expressed as a gradient with lowest mRNA levels in the conchae and highest levels in the lung. The mRNA expression levels of most isoforms were higher in tissues from post-hatch chickens and turkeys in comparison to the corresponding embryos. In contrast to that, duck embryos mostly show higher mRNA expression levels of importin-α than post-hatch ducks.
Collapse
Affiliation(s)
- Alexandra Herbst
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | | | - Gülsah Gabriel
- Leibniz-Institute for Virology, Martinistraße 52, 20251 Hamburg, Germany; Institute for Virology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
7
|
Fodor A, Hess C, Ganas P, Boros Z, Kiss J, Makrai L, Dublecz K, Pál L, Fodor L, Sebestyén A, Klein MG, Tarasco E, Kulkarni MM, McGwire BS, Vellai T, Hess M. Antimicrobial Peptides (AMP) in the Cell-Free Culture Media of Xenorhabdus budapestensis and X. szentirmaii Exert Anti-Protist Activity against Eukaryotic Vertebrate Pathogens including Histomonas meleagridis and Leishmania donovani Species. Antibiotics (Basel) 2023; 12:1462. [PMID: 37760758 PMCID: PMC10525888 DOI: 10.3390/antibiotics12091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Anti-microbial peptides provide a powerful toolkit for combating multidrug resistance. Combating eukaryotic pathogens is complicated because the intracellular drug targets in the eukaryotic pathogen are frequently homologs of cellular structures of vital importance in the host organism. The entomopathogenic bacteria (EPB), symbionts of entomopathogenic-nematode species, release a series of non-ribosomal templated anti-microbial peptides. Some may be potential drug candidates. The ability of an entomopathogenic-nematode/entomopathogenic bacterium symbiotic complex to survive in a given polyxenic milieu is a coevolutionary product. This explains that those gene complexes that are responsible for the biosynthesis of different non-ribosomal templated anti-microbial protective peptides (including those that are potently capable of inactivating the protist mammalian pathogen Leishmania donovanii and the gallinaceous bird pathogen Histomonas meleagridis) are co-regulated. Our approach is based on comparative anti-microbial bioassays of the culture media of the wild-type and regulatory mutant strains. We concluded that Xenorhabdus budapestensis and X. szentirmaii are excellent sources of non-ribosomal templated anti-microbial peptides that are efficient antagonists of the mentioned pathogens. Data on selective cytotoxicity of different cell-free culture media encourage us to forecast that the recently discovered "easy-PACId" research strategy is suitable for constructing entomopathogenic-bacterium (EPB) strains producing and releasing single, harmless, non-ribosomal templated anti-microbial peptides with considerable drug, (probiotic)-candidate potential.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| | - Petra Ganas
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| | - Zsófia Boros
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2100 Gödöllő, Hungary;
| | - János Kiss
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, H-2100 Gödöllő, Hungary;
| | | | - Károly Dublecz
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Sciences (MATE), Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (K.D.); (L.P.)
| | - László Pál
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Sciences (MATE), Deák Ferenc utca 16, H-8360 Keszthely, Hungary; (K.D.); (L.P.)
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, H-1143 Budapest, Hungary;
| | - Anna Sebestyén
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Michael G. Klein
- USDA-ARS & Department of Entomology, The Ohio State University, 13416 Claremont Ave, Cleveland, OH 44130, USA;
| | - Eustachio Tarasco
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
| | - Manjusha M. Kulkarni
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.M.K.); (B.S.M.)
| | - Bradford S. McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; (M.M.K.); (B.S.M.)
| | - Tibor Vellai
- Department of Genetics, Institute of Biology, Eötvös Loránd University, Pázmány Péter. sétány 1C, H-1117 Budapest, Hungary; (Z.B.); (T.V.)
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine (Vetmeduni Vienna), 1210 Vienna, Austria; (C.H.); (P.G.)
| |
Collapse
|
8
|
Bagheri S, Mitra T, Paudel S, Abdelhamid MK, Könnyü S, Wijewardana V, Kangethe RT, Cattoli G, Lyrakis M, Hess C, Hess M, Liebhart D. Aerosol vaccination of chicken pullets with irradiated avian pathogenic Escherichia coli induces a local immunostimulatory effect. Front Immunol 2023; 14:1185232. [PMID: 37261344 PMCID: PMC10227613 DOI: 10.3389/fimmu.2023.1185232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The present study investigated the expression of cytokines and cellular changes in chickens following vaccination with irradiated avian pathogenic Escherichia coli (APEC) and/or challenge. Four groups of 11-week-old pullets, each consisting of 16 birds were kept separately in isolators before they were sham inoculated (N), challenged only (C), vaccinated (V) or vaccinated and challenged (V+C). Vaccination was performed using irradiated APEC applied via aerosol. For challenge, the homologous strain was administered intratracheally. Birds were sacrificed on 3, 7, 14 and 21 days post challenge (dpc) to examine lesions, organ to body weight ratios and bacterial colonization. Lung and spleen were sampled for investigating gene expression of cytokines mediating inflammation by RT-qPCR and changes in the phenotype of subsets of mononuclear cells by flow cytometry. After re-stimulation of immune cells by co-cultivation with the pathogen, APEC-specific IFN-γ producing cells were determined. Challenged only birds showed more severe pathological and histopathological lesions, a higher probability of bacterial re-isolation and higher organ to body weight ratios compared to vaccinated and challenged birds. In the lung, an upregulation of IL-1β and IL-6 following vaccination and/or challenge at 3 dpc was observed, whereas in the spleen IL-1β was elevated. Changes were observed in macrophages and TCR-γδ+ cells within 7 dpc in spleen and lung of challenged birds. Furthermore, an increase of CD4+ cells in spleen and a rise of Bu-1+ cells in lung were present in vaccinated and challenged birds at 3 dpc. APEC re-stimulated lung and spleen mononuclear cells from only challenged pullets showed a significant increase of IFN-γ+CD8α+ and IFN-γ+TCR-γδ+ cells. Vaccinated and challenged chickens responded with a significant increase of IFN-γ+CD8α+ T cells in the lung and IFN-γ+TCR-γδ+ cells in the spleen. Re-stimulation of lung mononuclear cells from vaccinated birds resulted in a significant increase of both IFN-γ+CD8α+ and IFN-γ+TCR-γδ+ cells. In conclusion, vaccination with irradiated APEC caused enhanced pro-inflammatory response as well as the production of APEC-specific IFN-γ-producing γδ and CD8α T cells, which underlines the immunostimulatory effect of the vaccine in the lung. Hence, our study provides insights into the underlying immune mechanisms that account for the defense against APEC.
Collapse
Affiliation(s)
- Sina Bagheri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Taniya Mitra
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Surya Paudel
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Mohamed Kamal Abdelhamid
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Simon Könnyü
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Richard Thiga Kangethe
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Manolis Lyrakis
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
9
|
Kanakachari M, Ashwini R, Chatterjee RN, Bhattacharya TK. Embryonic transcriptome unravels mechanisms and pathways underlying embryonic development with respect to muscle growth, egg production, and plumage formation in native and broiler chickens. Front Genet 2022; 13:990849. [PMID: 36313432 PMCID: PMC9616467 DOI: 10.3389/fgene.2022.990849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Muscle development, egg production, and plumage colors are different between native and broiler chickens. The study was designed to investigate why improved Aseel (PD4) is colorful, stronger, and grew slowly compared with the control broiler (CB). Methods: A microarray was conducted using the 7th-day embryo (7EB) and 18th-day thigh muscle (18TM) of improved Aseel and broiler, respectively. Also, we have selected 24 Gallus gallus candidate reference genes from NCBI, and total RNA was isolated from the broiler, improved Aseel embryo tissues, and their expression profiles were studied by real-time quantitative PCR (qPCR). Furthermore, microarray data were validated with qPCR using improved Aseel and broiler embryo tissues. Results: In the differential transcripts screening, all the transcripts obtained by microarray of slow and fast growth groups were screened by fold change ≥ 1 and false discovery rate (FDR) ≤ 0.05. In total, 8,069 transcripts were differentially expressed between the 7EB and 18TM of PD4 compared to the CB. A further analysis showed that a high number of transcripts are differentially regulated in the 7EB of PD4 (6,896) and fewer transcripts are differentially regulated (1,173) in the 18TM of PD4 compared to the CB. On the 7th- and 18th-day PD4 embryos, 3,890, 3,006, 745, and 428 transcripts were up- and downregulated, respectively. The commonly up- and downregulated transcripts are 91 and 44 between the 7th- and 18th-day of embryos. In addition, the best housekeeping gene was identified. Furthermore, we validated the differentially expressed genes (DEGs) related to muscle growth, myostatin signaling and development, and fatty acid metabolism genes in PD4 and CB embryo tissues by qPCR, and the results correlated with microarray expression data. Conclusion: Our study identified DEGs that regulate the myostatin signaling and differentiation pathway; glycolysis and gluconeogenesis; fatty acid metabolism; Jak-STAT, mTOR, and TGF-β signaling pathways; tryptophan metabolism; and PI3K-Akt signaling pathways in PD4. The results revealed that the gene expression architecture is present in the improved Aseel exhibiting embryo growth that will help improve muscle development, differentiation, egg production, protein synthesis, and plumage formation in PD4 native chickens. Our findings may be used as a model for improving the growth in Aseel as well as optimizing the growth in the broiler.
Collapse
Affiliation(s)
- M. Kanakachari
- ICAR-Directorate of Poultry Research, Hyderabad, India
- EVA.4 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - R. Ashwini
- ICAR-Directorate of Poultry Research, Hyderabad, India
| | | | - T. K. Bhattacharya
- ICAR-Directorate of Poultry Research, Hyderabad, India
- *Correspondence: T. K. Bhattacharya,
| |
Collapse
|
10
|
Hasanpur K, Hosseinzadeh S, Mirzaaghayi A, Alijani S. Investigation of chicken housekeeping genes using next-generation sequencing data. Front Genet 2022; 13:827538. [PMID: 36176302 PMCID: PMC9514876 DOI: 10.3389/fgene.2022.827538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Accurate normalization of the gene expression assays, using housekeeping genes (HKGs), is critically necessary. To do so, selection of a proper set of HKGs for a specific experiment is of great importance. Despite many studies, there is no consensus about the suitable set of HKGs for implementing in the quantitative real-time PCR analyses of chicken tissues. A limited number of HKGs have been widely used. However, wide utilization of a little number of HKGs for all tissues is challenging. The emergence of high-throughput gene expression RNA-seq data has enabled the simultaneous comparison of the stability of multiple HKGs. Therefore, employing the average coefficient of variations of at least three datasets per tissue, we sorted all reliably expressed genes (REGs; with FPKM ≥ 1 in at least one sample) and introduced the top 10 most suitable and stable reference genes for each of the 16 chicken tissues. We evaluated the consistency of the results of five tissues using the same methodology on other datasets. Furthermore, we assessed 96 previously widely used HKGs (WU-HKGs) in order to challenge the accuracy of the previous studies. The New Tuxedo software suite was used for the main analyses. The results revealed novel, different sets of reference genes for each of the tissues with 17 common genes among the top 10 genes lists of 16 tissues. The results did disprove the suitability of WU-HKGs such as Actb, Ldha, Scd, B2m, and Hprt1 for any of the tissues examined. On the contrary, a total of 6, 13, 14, 23, and 32 validated housekeeping genes (V-HKGs) were discovered as the most stable and suitable reference genes for muscle, spleen, liver, heart, and kidney tissues, respectively. Although we identified a few new HKGs usable for multiple tissues, the selection of suitable HKGs is required to be tissue specific. The newly introduced reference genes from the present study, despite lacking experimental validation, will be able to contribute to the more accurate normalization for future expression analysis of chicken genes.
Collapse
|
11
|
Bagheri S, Paudel S, Wijewardana V, Kangethe RT, Cattoli G, Hess M, Liebhart D, Mitra T. Production of interferon gamma and interleukin 17A in chicken T-cell subpopulations hallmarks the stimulation with live, irradiated and killed avian pathogenic Escherichia coli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104408. [PMID: 35390358 DOI: 10.1016/j.dci.2022.104408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis with different clinical manifestations. The disease is associated with compromised animal welfare and results in substantial economic losses in poultry production worldwide. So far, immunological mechanisms of protection against colibacillosis are not comprehensively resolved. Therefore, the present study aimed to use an ex vivo model applying chicken mononuclear cells stimulated by live and inactivated APEC. For this purpose, an 8-color flow cytometry panel was set up to target viable chicken immune cells including CD45+, CD8α+, CD4+, TCR-γδ+, Bu-1+ cells and monocytes/macrophages along with the cytokines interferon gamma (IFN-γ) or interleukin 17A (IL-17A). The 8-color flow cytometry panel was applied to investigate the effect of live and two different types of inactivated APEC (formalin-killed APEC and irradiated APEC) on the cellular immune response. For that, mononuclear cells from spleen, lung and blood of 10-week-old specific pathogen-free layer birds were isolated and stimulated with live, irradiated or killed APEC. Intracellular cytokine staining and RT-qPCR assays were applied for the detection of IFN-γ and IL-17A protein level, as well as at mRNA level for spleenocytes. Ex vivo stimulation of isolated splenocytes, lung and peripheral blood mononuclear cells (PBMCs) from chickens with live, irradiated or killed APEC showed an increasing number of IFN-γ and IL-17A producing cells at protein and mRNA level. Phenotyping of the cells from blood and organs revealed that IFN-γ and IL-17A were mainly produced by CD8α+, TCR-γδ+ T cells as well as CD4+ T cells following stimulation with APEC. Expression level of cytokines were very similar following stimulation with live and irradiated APEC but lower when killed APEC were applied. Consequently, in the present study, an ex vivo model using mononuclear cells of chickens was applied to investigate the cellular immune response against APEC. The results suggest the relevance of IFN-γ and IL-17A production in different immune cells following APEC infection in chickens which needs to be further investigated in APEC primed birds.
Collapse
Affiliation(s)
- Sina Bagheri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Surya Paudel
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency IAEA, Vienna, Austria
| | - Richard Thiga Kangethe
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency IAEA, Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency IAEA, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Taniya Mitra
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
12
|
von Buchholz JS, Ruhnau D, Hess C, Aschenbach JR, Hess M, Awad WA. Paracellular intestinal permeability of chickens induced by DON and/or C. jejuni is associated with alterations in tight junction mRNA expression. Microb Pathog 2022; 168:105509. [PMID: 35367310 DOI: 10.1016/j.micpath.2022.105509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Toxins, antigens, and harmful pathogens continuously challenge the intestinal mucosa. Therefore, regulation of the intestinal barrier is crucial for the maintenance of mucosal homeostasis and gut health. Intercellular complexes, namely, tight junctions (TJs), regulate paracellular permeability. TJs are mainly composed of claudins (CLDN), occludin (OCLN), tight junction associated MARVEL-domain proteins (TAMPS), the scaffolding zonula occludens (ZO) proteins and junction-adhesion molecules (JAMs). Different studies have shown that a Campylobacter infection can lead to a phenomenon so-called "leaky gut", including the translocation of luminal bacteria to the underlying tissue and internal organs. Based on the effects of C. jejuni on the chicken gut, we hypothesize that impacts on TJ proteins play a crucial role in the destructive effects of the intestinal barrier. Likewise, the mycotoxin deoxynivalenol (DON) can also alter gut permeability in chickens. Albeit DON and C. jejuni are widely distributed, no data are available on their effect on the tight junctions' barrier in the broiler intestine and consequences for permeability. Therefore, the aim of this study was to analyze the interaction between DON and C. jejuni on the gut barrier by linking permeability with gene expression of TJ proteins and to determine the relationships between the measurements. Following oral infection of birds with C. jejuni NCTC 12744 at 14 days of age, we demonstrate that the co-exposure with DON has considerable consequences on gut permeability as well as on gut TJ mRNA expression. Co-exposure of DON and C. jejuni enhanced the negative effect on paracellular permeability of the intestine, which was also noticed for the bacteria or the mycotoxin alone by the Ussing chamber technique at certain time points in both jejunum and caecum. Furthermore, the increased paracellular permeability was associated with significant changes in TJ mRNA expression in the small and large intestine. The actual study demonstrates that co-exposure of broiler chickens to DON and C. jejuni resulted in a decreased barrier function via up-regulation of pore-forming tight junctions (CLDN7 and CLDN10), as well as the cytosolic TJ protein occludin (OCLN) that can shift to various paracellular locations and are therefore able to alter the epithelial permeability. These findings indicate that the co-exposure of broiler chickens to DON and C. jejuni affects the paracellular permeability of the gut by altering the tight junction proteins. Furthermore, analysing of correlations between TJs revealed that the mRNA expression levels of most tight junctions were correlated with each other in both jejunum and caecum. Finally, the findings indicate that the molecular composition of tight junctions can be used as a marker for gut health and integrity.
Collapse
Affiliation(s)
- J Sophia von Buchholz
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jörg R Aschenbach
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
13
|
Analysis of stability of reference genes for qPCR in bovine preadipocytes during proliferation and differentiation in vitro. Gene X 2022; 830:146502. [PMID: 35483498 DOI: 10.1016/j.gene.2022.146502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/08/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
The stability of internal reference genes is crucial to the reliability of gene expression results using real-time fluorescence quantitative PCR (qRT-PCR). Inappropriate reference genes may lead to inaccurate results or even wrong conclusions. This study aims to identify stable reference genes for analyzing the expression of proliferation-related and differentiation-inducing genes in bovine primary preadipocytes (BPPs) in vitro. In this study, the stability of 16 candidate internal reference genes (GAPDH, ACTB, PPIA, LRP10, HPRT1, YWHAZ, B2M, TBP, EIF3K, RPS9, UXT, 18S rRNA, RPLP0, MARVELD, EMD and RPS15A) for qRT-PCR at proliferation and differentiation stages of BPPs was investigated by three different algorithms (geNorm, NormFinder and BestKeeper). The expression of two marker genes, PCNA and LPL, was used to determine the validity of the candidate reference genes (RGs) at the proliferation and differentiation stages, respectively. The results showed that GAPDH and RPS15A were the most stable RGs in the proliferation of bovine primary preadipocyte, while PPIA was the least stable internal reference gene. RPLP0 and EIF3K were the most stable RGs in the differentiation induction of bovine primary preadipocyte, while GAPDH was the least stable internal reference gene. This study of RGs laid the foundation for subsequent research into the mechanism of proliferation and differentiation of BPPs in vitro using qRT-PCR.
Collapse
|
14
|
Screening and validation of reference genes for qRT-PCR of bovine skeletal muscle-derived satellite cells. Sci Rep 2022; 12:5653. [PMID: 35383222 PMCID: PMC8983775 DOI: 10.1038/s41598-022-09476-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
The accuracy of sixteen commonly used internal reference genes was assessed in skeletal muscle-derived satellite cells of Qinchuan cattle at different stages of proliferation and induction of differentiation to determine the most suitable ones. Quantitative real-time PCR and three commonly used algorithmic programs, GeNorm, NormFinder and BestKeeper, were used to evaluate the stability of expression of the candidate internal reference genes (GAPDH, ACTB, PPIA, LRP10, HPRT1, YWHAZ, B2M, TBP, EIF3K , RPS9, UXT, 18S rRNA, RPLP0, MARVELD, EMD and RPS15A) in skeletal muscle-derived satellite cells at 0, 12, 24, 36 and 48 h of growth and after differentiation for 0, 2, 4, 6 and 8 days. The expression of two satellite cell marker genes, CCNA2 and MYF5, was used for validation analysis. The results of the software analyses showed that GAPDH and RPS15A were the most stable reference gene combinations during in vitro proliferation of bovine skeletal muscle-derived satellite cells, RPS15A and RPS9 were the most stable reference gene combinations during in vitro induction of differentiation of the cells, and PPIA was the least stable reference gene during proliferation and differentiation and was not recommended. This study lays the foundation for the selection of reference genes for qRT-PCR during the proliferation and induction of differentiation of bovine skeletal muscle-derived satellite cells.
Collapse
|
15
|
Schreier J, Rychlik I, Karasova D, Crhanova M, Breves G, Rautenschlein S, Jung A. Influence of heat stress on intestinal integrity and the caecal microbiota during Enterococcus cecorum infection in broilers. Vet Res 2022; 53:110. [PMID: 36527124 PMCID: PMC9756510 DOI: 10.1186/s13567-022-01132-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Enterococcus cecorum (EC) is one of the most relevant bacterial pathogens in modern broiler chicken production from an economic and animal welfare perspective. Although EC pathogenesis is generally well described, predisposing factors are still unknown. This study aimed to understand the effect of heat stress on the caecal microbiota, intestinal integrity, and EC pathogenesis. A total of 373 1-day-old commercial broiler chicks were randomly assigned to four groups: (1) noninoculated, thermoneutral conditions (TN); (2) noninoculated, heat stress conditions (HS); (3) EC-inoculated, thermoneutral conditions (TN + EC); and (4) EC-inoculated, heat stress conditions (HS + EC). Birds were monitored daily for clinical signs. Necropsy of 20 broilers per group was performed at 7, 14, 21, and 42 days post-hatch (dph). A trend towards enhanced and more pronounced clinical disease was observed in the EC-inoculated, heat-stressed group. EC detection rates in extraintestinal tissues via culture were higher in the HS + EC group (~19%) than in the TN + EC group (~11%). Significantly more birds were colonized by EC at 7 dph in the HS + EC group (100%) than in the TN + EC group (65%, p < 0.05). The caecal microbiota in the two EC-inoculated groups was significantly more diverse than that in the TN group (p < 0.05) at 14 dph, which may indicate an effect of EC infection. An influence of heat stress on mRNA expression of tight junction proteins in the caecum was detected at 7 dph, where all six investigated tight junction proteins were expressed at significantly lower levels in the heat stressed groups compared to the thermoneutral groups. These observations suggest that heat stress may predispose broilers to EC-associated disease and increase the severity thereof. Furthermore, heat stress may impair intestinal integrity and promote EC translocation.
Collapse
Affiliation(s)
- Jana Schreier
- grid.412970.90000 0001 0126 6191Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - Ivan Rychlik
- grid.426567.40000 0001 2285 286XVeterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic
| | - Daniela Karasova
- grid.426567.40000 0001 2285 286XVeterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic
| | - Magdalena Crhanova
- grid.426567.40000 0001 2285 286XVeterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic
| | - Gerhard Breves
- grid.412970.90000 0001 0126 6191Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Silke Rautenschlein
- grid.412970.90000 0001 0126 6191Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - Arne Jung
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
16
|
Vaccination against the Protozoan Parasite Histomonas meleagridis Primes the Activation of Toll-like Receptors in Turkeys and Chickens Determined by a Set of Newly Developed Multiplex RT-qPCRs. Vaccines (Basel) 2021; 9:vaccines9090960. [PMID: 34579197 PMCID: PMC8472887 DOI: 10.3390/vaccines9090960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Histomonosis in turkeys and chickens is caused by the extracellular parasite Histomonas meleagridis, but the outcome of the disease varies depending on the host species. So far, studies on the immune response against histomonosis focus mainly on different traits of the adaptive immune system. Activation of toll like receptors (TLR) leads to the interplay between cells of innate and adaptive immunity with consequences on B and T cell clonal expansion. Therefore, the present investigation focused on the interaction of virulent and/or attenuated histomonads with the innate immune system of turkeys and chickens at 4, 10, 21 days post inoculation. The expression of TLRs (TLR1A, 1B, 2A, 2B, 3, 4, 5, 6(Tu), 7, 13(Tu) and 21(Ch)) and pro-inflammatory cytokines (IL1β and IL6) were analysed in caecum and spleen samples by RT-qPCR. Most frequent significant changes in expression levels of TLRs were observed in the caecum following infection with virulent parasites, an effect noticed to a lower degree in tissue samples from birds vaccinated with attenuated parasites. TLR1B, 2B and 4 showed a continuous up-regulation in the caecum of both species during infection or vaccination, followed by challenge with virulent parasites. Vaccinated birds of both species showed a significant earlier change in TLR expression following challenge than birds kept non-vaccinated but challenged. Expression of TLRs and pro-inflammatory cytokines were associated with severe inflammation of diseased birds in the local organ caecum. In the spleen, changes in TLRs and pro-inflammatory cytokines were less prominent and mainly observed in turkey samples. In conclusion, a detailed comparison of TLRs and pro-inflammatory cytokines of the innate immune system following inoculation with attenuated and/or virulent H. meleagridis of two avian host species provides an insight into regulative mechanisms of TLRs in the development of protection and limitation of the disease.
Collapse
|
17
|
Na W, Wang Y, Gong P, Zhang X, Zhang K, Zhang H, Wang N, Li H. Screening of Reference Genes for RT-qPCR in Chicken Adipose Tissue and Adipocytes. Front Physiol 2021; 12:676864. [PMID: 34054585 PMCID: PMC8160385 DOI: 10.3389/fphys.2021.676864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Reverse transcription quantitative real-time PCR is the most commonly used method to detect gene expression levels. In experiments, it is often necessary to correct and standardize the expression level of target genes with reference genes. Therefore, it is very important to select stable reference genes to obtain accurate quantitative results. Although application examples of reference genes in mammals have been reported, no studies have investigated the use of reference genes in studying the growth and development of adipose tissue and the proliferation and differentiation of preadipocytes in chickens. In this study, GeNorm, a reference gene stability statistical algorithm, was used to analyze the expression stability of 14 candidate reference genes in the abdominal adipose tissue of broilers at 1, 4, and 7 weeks of age, the proliferation and differentiation of primary preadipocytes, as well as directly isolated preadipocytes and mature adipocytes. The results showed that the expression of the TATA box binding protein (TBP) and hydroxymethylbilane synthase (HMBS) genes was most stable during the growth and development of abdominal adipose tissue of broilers, the expression of the peptidylprolyl isomerase A (PPIA) and HMBS genes was most stable during the proliferation of primary preadipocytes, the expression of the TBP and RPL13 genes was most stable during the differentiation of primary preadipocytes, and the expression of the TBP and HMBS genes was most stable in directly isolated preadipocytes and mature adipocytes. These results provide reference bases for accurately detecting the mRNA expression of functional genes in adipose tissue and adipocytes of chickens.
Collapse
Affiliation(s)
- Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Animal Science and Technology, Hainan University, Haikou, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ke Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
von Buchholz JS, Bilic I, Aschenbach JR, Hess M, Mitra T, Awad WA. Establishment of a novel probe-based RT-qPCR approach for detection and quantification of tight junctions reveals age-related changes in the gut barriers of broiler chickens. PLoS One 2021; 16:e0248165. [PMID: 33667266 PMCID: PMC7935255 DOI: 10.1371/journal.pone.0248165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Tight junctions (TJs) play a dominant role in gut barrier formation, therefore, resolving the structures of TJs in any animal species is crucial but of major importance in fast growing broilers. They are regulated in molecular composition, ultrastructure and function by intracellular proteins and the cytoskeleton. TJ proteins are classified according to their function into barrier-forming, scaffolding and pore-forming types with deductible consequences for permeability. In spite of their importance for gut health and its integrity limited studies have investigated the TJs in chickens, including the comprehensive evaluation of TJs molecular composition and function in the chicken gut. In the actual study sequence-specific probes to target different TJ genes (claudin 1, 3, 5, 7, 10, 19, zonula occludens 1 (ZO1), occludin (OCLN) and tricellulin (MD2)) were designed and probe-based RT-qPCRs were newly developed. Claudin (CLDN) 1, 5, ZO1 and CLDN 3, 7, MD2 were engulfed in multiplex RT-qPCRs, minimizing the number of separate reactions and enabling robust testing of many samples. All RT-qPCRs were standardized for chicken jejunum and caecum samples, which enabled specific detection and quantification of the gene expression. Furthermore, the newly established protocols were used to investigate the age developmental changes in the TJs of broiler chickens from 1-35 days of age in the same organ samples. Results revealed a significant increase in mRNA expression between 14 and 21days of age of all tested TJs in jejunum. However, in caecum, mRNA expression of some TJs decreased after 1 day of age whereas some TJs mRNA remained constant till 35 days of age. Taken together, determining the segment-specific changes in the expression of TJ- proteins by RT-qPCR provides a deeper understanding of the molecular mechanisms underpinning pathophysiological changes in the gut of broiler chickens with various etiologies.
Collapse
Affiliation(s)
- J. Sophia von Buchholz
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Ivana Bilic
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Jörg R. Aschenbach
- Department of Veterinary Medicine, Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Michael Hess
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Taniya Mitra
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Wageha A. Awad
- Department for Farm Animals and Veterinary Public Health, Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
19
|
Liu L, Han H, Li Q, Chen M, Zhou S, Wang H, Chen L. Selection and Validation of the Optimal Panel of Reference Genes for RT-qPCR Analysis in the Developing Rat Cartilage. Front Genet 2020; 11:590124. [PMID: 33391345 PMCID: PMC7772434 DOI: 10.3389/fgene.2020.590124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Real-time fluorescence quantitative PCR (RT-qPCR) is widely used to detect gene expression levels, and selection of reference genes is crucial to the accuracy of RT-qPCR results. Minimum Information for Publication of RT-qPCR Experiments (MIQE) proposes that using the panel of reference genes for RT-qPCR is conducive to obtaining accurate experimental results. However, the selection of the panel of reference genes for RT-qPCR in rat developing cartilage has not been well documented. In this study, we selected eight reference genes commonly used in rat cartilage from literature (GAPDH, ACTB, 18S, GUSB, HPRT1, RPL4, RPL5, and SDHA) as candidates. Then, we screened out the optimal panel of reference genes in female and male rat cartilage of fetus (GD20), juvenile (PW6), and puberty (PW12) in physiology with stability analysis software of genes expression. Finally, we verified the reliability of the selected panel of reference genes with the rat model of intrauterine growth retardation (IUGR) induced by prenatal dexamethasone exposure (PDE). The results showed that the optimal panel of reference genes in cartilage at GD20, PW6, and PW12 in physiology was RPL4 + RPL5, which was consistent with the IUGR model, and there was no significant gender difference. Further, the results of standardizing the target genes showed that RPL4 + RPL5 performed smaller intragroup differences than other panels of reference genes or single reference genes. In conclusion, we found that the optimal panel of reference genes in female and male rat developing cartilage was RPL4 + RPL5, and there was no noticeable difference before and after birth.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingxian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
20
|
Hassanpour H, Aghajani Z, Bahadoran S, Farhadi N, Nazari H, Kaewduangta W. Identification of reliable reference genes for quantitative real-time PCR in ovary and uterus of laying hens under heat stress. Stress 2019; 22:387-394. [PMID: 30806126 DOI: 10.1080/10253890.2019.1574294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The main stage in real-time quantitative PCR is a quantification of gene transcriptomes, in which suitable use of reliable reference genes is critical to normalize accurately. To determine the most stable reference genes in laying hens under heat stress, from a panel of nine typical candidate reference genes, the mRNA transcript of ACTB, HMBS, HPRT1, RPL13, RPL32, 18SrRNA, TBP, TFRC, and YWHAZ was evaluated in the ovary and uterus of both control and heat-stress groups of laying hens. Forty 23-week-old White Leghorn laying hens were housed in two rooms. The control (n = 20) and heat-stress (n = 20) groups were maintained at 21-23 °C and 36-38 °C for 8 weeks respectively. Analysis of this set of genes was done with BestKeeper, geNorm, and NormFinder software programs to find the most stable ones. Candidate reference genes ranked in the uterus of heat-stress and control groups of hens included YWHAZ, HPRT1, HMBS, RPL13, TFRC, ACTB, TBP, RPL32, and 18SrRNA; those in the ovary were YWHAZ, HPRT1, TFRC, HMBS, RPL13, TBP, RPL32, ACTB, and 18SrRNA. The overall results indicated that the most stable genes are YWHAZ, HPRT1, HMBS, RPL13, TFRC, TBP, ACTB, RPL32, and 18SrRNA respectively. In addition, the combination of YWHAZ, HPRT1, and HMBS is suggested as the most stable reference group of genes for more accurate quantitative data normalization in the ovarian and uterine tissues of laying hens under control and heat stress conditions. Lay summary Heat stress influences the expression of many genes in the reproductive tissues of birds. Accurate evaluation of these changes via real-time quantitative PCR depends on the determination of reliable reference genes. In this study, nine candidate housekeeping genes were evaluated, and the most stable were YWHAZ, HPRT1, HMBS, RPL13, TFRC, TBP, ACTB, RPL32, and 18SrRNA.
Collapse
Affiliation(s)
- Hossein Hassanpour
- a Department of Basic Sciences Faculty of Veterinary Medicine , Shahrekord University , Shahrekord , Iran
- b Research Institute of Animal Embryo Technology , Shahrekord University , Shahrekord , Iran
| | - Zahra Aghajani
- a Department of Basic Sciences Faculty of Veterinary Medicine , Shahrekord University , Shahrekord , Iran
| | - Shahab Bahadoran
- c Department of Clinical Sciences Faculty of Veterinary Medicine , Shahrekord University , Shahrekord , Iran
| | - Navid Farhadi
- a Department of Basic Sciences Faculty of Veterinary Medicine , Shahrekord University , Shahrekord , Iran
| | - Hasan Nazari
- b Research Institute of Animal Embryo Technology , Shahrekord University , Shahrekord , Iran
| | - Waranyoo Kaewduangta
- d Department of Agricultural Technology Faculty of Technology , Mahasarakham University , Mahasarakham , Thailand
| |
Collapse
|
21
|
Gao S, Wang G, Huang Z, Lei X, Bian Y, Liu Y, Huang W. Selection of Reference Genes for qRT-PCR Analysis in Lentinula edodes after Hot-Air Drying. Molecules 2018; 24:molecules24010136. [PMID: 30602709 PMCID: PMC6337709 DOI: 10.3390/molecules24010136] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/31/2022] Open
Abstract
Volatile sulfur compounds gradually develop in Lentinula edodes after hot-air drying, and many genes are involved in the generation of these sulfur compounds. The expression stability of reference genes may vary in a particular experimental treatment when analyzing their expressions by quantitative real-time polymerase chain reaction (qRT-PCR). In this study, the expression profile of 17 candidate genes was assessed in L. edodes under treatment at 50 °C for 0, 1, 2, and 3 h, and the expression stability of each reference gene was analyzed by three statistical algorithms, including geNorm, NormFinder, and BestKeeper. Results indicated that the two optimal reference genes for mycelium and fruiting body were CAC and DAHP as well as CAC and NUP, respectively. Additionally, CAC and DAHP were found to be the two most stable reference genes across the mycelium and fruiting body set. Our results will provide a genetic foundation for further research on the metabolism genes of sulfur compounds in L. edodes.
Collapse
Affiliation(s)
- Shuangshuang Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Gangzheng Wang
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Zhicheng Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xiaoyu Lei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yinbing Bian
- Institute of Applied Mycology, Plant Science and Technology College, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
22
|
Hassanpour H, Bahadoran S, Farhadfar F, Chamali ZF, Nazari H, Kaewduangta W. Identification of reliable reference genes for quantitative real-time PCR in lung and heart of pulmonary hypertensive chickens. Poult Sci 2018; 97:4048-4056. [DOI: 10.3382/ps/pey258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
|
23
|
Kidane FA, Mitra T, Wernsdorf P, Hess M, Liebhart D. Allocation of Interferon Gamma mRNA Positive Cells in Caecum Hallmarks a Protective Trait Against Histomonosis. Front Immunol 2018; 9:1164. [PMID: 29892298 PMCID: PMC5985309 DOI: 10.3389/fimmu.2018.01164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/09/2018] [Indexed: 01/22/2023] Open
Abstract
Histomonosis is a parasitic disease of gallinaceous birds characterized by necrotic lesions in cacum and liver that usually turns fatal in turkeys while it is less severe in chickens. Vaccination using in vitro attenuated Histomonas meleagridis has been experimentally shown to confer protection against histomonosis. The protective mechanisms that underpin the vaccine-induced immune response are not resolved so far. Therefore, the actual study aimed to evaluate the location and quantitative distribution patterns of signature cytokines of type 1 [interferon gamma (IFN-γ)] or type 2 [interleukin (IL)-13] immune responses in vaccinated or infected hosts. An intergroup and interspecies difference in the spatial and temporal distribution patterns of cytokine mRNA positive cells was evident. Quantification of cells showed a significantly decreased percentage of IFN-γ mRNA positive cells at 4 days post-inoculation (DPI) in caeca of turkeys inoculated exclusively with the attenuated or the virulent inocula, compared to control birds. The decrement was followed by a surge of cells expressing mRNA for IFN-γ or IL-13, reaching a peak of increment at 10 DPI. By contrast, turkeys challenged following vaccination showed a slight increment of cecal IFN-γ mRNA positive cells at 4 DPI after which positive cell counts became comparable to control birds. The increase in infected birds was accompanied by an extensive distribution of positively stained cells up to the muscularis layer of cecal tissue whereas the vaccine group maintained an intact mucosal structure. In chickens, the level of changes of positive cells was generally lower compared to turkeys. However, control chickens were found with a higher percentage of IFN-γ mRNA positive cells in cecum compared to their turkey counterparts indicating a higher resistance to histomonosis, similar to the observation in immunized turkeys. In chickens, it could be shown that the changes of cytokine-positive cells were related to variations of mononuclear cells quantified by immunofluorescence. Furthermore, gene expression measured by reverse transcription quantitative real time PCR confirmed variations in organs between the different groups of both bird species. Overall, it can be concluded that a proportionally increased, yet controlled, allocation of IFN-γ mRNA positive cells in caeca hallmarks a protective trait against histomonosis.
Collapse
Affiliation(s)
- Fana Alem Kidane
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Taniya Mitra
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Patricia Wernsdorf
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
24
|
Katarzyńska-Banasik D, Grzesiak M, Sechman A. Selection of reference genes for quantitative real-time PCR analysis in chicken ovary following silver nanoparticle treatment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:186-190. [PMID: 28946009 DOI: 10.1016/j.etap.2017.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Reliable results of quantitative real time PCR (qPCR) analysis require normalization of target gene expression level using reference genes (RGs). However housekeeping genes expression may vary under experimental conditions, so selection of the proper RGs is a crucial step in a qPCR analysis. Several algorithms have been developed to address this problem: geNorm, NormFinder and BestKeeper. In this study, we have used these three tools to evaluate the stability of RGs in the ovarian tissues of hens treated with silver nanoparticles. Eight genes were selected for the validation: HPRT, HMBS, VIM, SDHA, TBP, RPL13, GAPDH and 18S rRNA. According to geNorm the best combination of reference genes is SDHA and TPP. NormFinder also selected SDHA as the most suitable gene, but in combination with RPL13. Analysis in BestKeeper showed that SDHA, RPL13 might be the best choice in gene expression studies using the chicken ovary. In conclusion, the results obtained depend on the algorithm used and it arises from the diverse calculation strategies used in these programs. The outcome from the NormFinder is considered to be the most trustworthy and used in further qPCR analysis.
Collapse
Affiliation(s)
- Dorota Katarzyńska-Banasik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - Małgorzata Grzesiak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
25
|
Khan S, Roberts J, Wu SB. Reference gene selection for gene expression study in shell gland and spleen of laying hens challenged with infectious bronchitis virus. Sci Rep 2017; 7:14271. [PMID: 29079779 PMCID: PMC5660252 DOI: 10.1038/s41598-017-14693-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023] Open
Abstract
Ten reference genes were investigated for normalisation of candidate target gene expression data in the shell gland and spleen of laying hens challenged with two strains of infectious bronchitis virus (IBV). Data were analysed with geNorm, NormFinder and BestKeeper, and a comprehensive ranking (geomean) was calculated. In the combined data set of IBV challenged shell gland samples, the comprehensive ranking showed TATA-box binding protein (TBP) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) as the two most stable, and succinate dehydrogenase complex flavoprotein subunit A (SDHA) and albumin (ALB) as the two least stable reference genes. In the spleen, and in the combined data set of the shell gland and spleen, the two most stable and the two least stable reference genes were TBP and YWHAZ, and ribosomal protein L4 (RPL4) and ALB, respectively. Different ranking has been due to different algorithms. Validation studies showed that the use of the two most stable reference genes produced accurate and more robust gene expression data. The two most and least stable reference genes obtained in the study, were further used for candidate target gene expression data normalisation of the shell gland and spleen under an IBV infection model.
Collapse
Affiliation(s)
- Samiullah Khan
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Juliet Roberts
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Shu-Biao Wu
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia.
| |
Collapse
|